Colles de mathématiques en E1A

Équations, polynômes et inégalités

du 26 au 30 septembre (semaine 3)

1 Commentaires généraux

- La colle commence par une question de cours qui conditionne la note finale :
 - Si la question de cours n'est pas sue : note < 10.
 - Si la question de cours est sue : note ≥ 10 .
- On sera très attentif à la rigueur de la rédaction.
 - Introduction des variables : soit (preuve de \forall), posons (preuve de \exists).
 - Démonstration d'une implication : supposons.
 Ne surtout pas confondre la condition suffisante et la condition nécessaire.
 - o Démonstration d'une équivalence : double implication.
 - Interdiction d'utiliser les symboles mathématiques comme des abréviations.
 - Respect de l'ordre des mots et utilisation des parenthèses en cas d'ambiguïté.

2 Questions de cours

- Reprise de tout le programme précédent sur les équations et les polynômes.
- Règles des signes. Équivalence entre $x \le y$ et $x y \le 0$.
- Règles de calcul sur les inégalités avec démonstrations : pour tous x,y,z réels,

$$x \le y \implies x + z \le y + z,$$

$$(x \le y \text{ et } z \ge 0) \implies xz \le yz,$$

$$(x \le y \text{ et } z \le 0) \implies xz \ge yz.$$

- Définition de fonction croissante, strictement croissante, décroissante, strictement décroissante. Exemples et contre-exemples avec démonstrations : carré, racine carrée, inverse.
- Valeur absolue : définition, règles de calcul, inégalité triangulaire, graphe de $x \mapsto |x|$, traduction de $|x-y| \le a$ par des encadrements.
- Partie entière : définition, encadrement $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$, graphe de $x \mapsto \lfloor x \rfloor$.

3 Extraits du programme officiel

Fonctions polynomiales, polynômes

Degré, somme et produit de polynômes.

Par convention, deg $0 = -\infty$.

La construction des polynômes formels n'est pas au programme, on pourra identifier polynômes et fonctions polynomiales.

Ensemble $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} , ensembles $\mathbb{R}_n[X]$ des polynômes à coefficients dans \mathbb{R} de degré au plus n.

Racines d'un polynôme. Factorisation par (X-a) dans un polynôme ayant a comme racine.

Trinômes du second degré.

Application : un polynôme de $\mathbb{R}_n[X]$ admettant plus de n+1 racines distinctes est nul.

Pratique, sur des exemples, de la division euclidienne. \blacktriangleright

Discriminant d'un trinôme du second degré. Factorisation dans le cas de racines réelles. Lorsqu'il n'y a pas de racine réelle, le signe du trinôme reste constant sur \mathbb{R} .

Fonctions réelles d'une variable réelle

L'analyse reposant largement sur la pratique des inégalités, on s'assurera que celle-ci est acquise à l'occasion d'exercices.

Fonction valeur absolue

Définition. Propriétés, représentation graphique.

Lien avec la distance sur \mathbb{R} .

On insistera sur la fonction valeur absolue, non étudiée au lycée.

Fonction partie entière

Définition. Représentation graphique.

Notation $x \longmapsto |x|$.

La notation E est réservée à l'espérance mathématique. La fonction partie entière permet de discrétiser des phénomènes continus.