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Abstract When subjected to changes in applied stress, the pore space of rocks elastically deforms,
producing changes in internal pore pressure when the pore fluid is unable to flow in or out of the stressed
volume. The magnitude of this effect depends on the geometry and compliance of the pore space, which is a
function of the overall microcrack population within the rock. To test how increasing levels of stress‐induced
microcracks impact the poroelastic properties of rocks, we measured experimentally the incremental changes of
pore pressure in response to small increments of axial and radial stress (i.e., Skempton coefficients) in Westerly
granite at increasing differential stress under triaxial conditions. The anisotropy in loading conditions, with
increasing differential stress at constant pressure, leads to anisotropy in poroelastic properties. With increasing
load, the apparent Skempton coefficient in the axial direction decreases, while the apparent Skempton
coefficient in the radial direction increases. At a stress level commensurate to that at the onset of dilatancy
dominance, the apparent axial Skempton coefficient becomes negative, that is, local pore pressure increases in
response to decreases in axial stress. Upon unloading, we observe hysteresis in both coefficients, with the axial
one remaining lower in the unloading path than in the loading path. The negative Skempton effect in highly
stressed rocks implies that pore pressure might locally increase around faults experiencing rapid unloading, for
example, during earthquakes.

Plain Language Summary When rocks are squeezed or stretched, the microscopic cracks and pores
within them are deformed and change volume. When these cracks and pores are filled with a fluid (water, gas,
etc.), their volume change lead to change in fluid pressure. We typically expect that squeezing the rock leads to
fluid pressure increase. We detected this effect experimentally in granite, and examined how its magnitude
varied with increasing deformation and cracking of the rock. We found that the change of fluid pressure
depended strongly on the direction of loading. When the rock was brought to high loads, the increased
population of cracks aligned with the loading direction lead to a reversal of the anticipated effect: squeezing the
rock in the direction parallel to the cracks lead to small but detectable decreases in fluid pressure. This reversal
might be important to the understanding of how rocks respond to sudden deformation such as those occurring
near faults during earthquakes.

1. Introduction
Void spaces (pores and cracks) in rocks are often saturated with a pressurized fluid, so that any change in the
volume of the void space can potentially result in a change in the fluid pressure (e.g., Jaeger et al., 2007, chap. 7).
When the stresses applied to a rock mass vary suddenly, for example, during an earthquake, the instantaneous
response of the rock is initially undrained, that is, fluid is macroscopically immobile and fluid pressure evolves
following local pore volume change. Over time, the pressure variations are relaxed due to fluid diffusion. In
isotropic, linear elastic materials, the fluid pressure change associated with a sudden (undrained) stress change is
characterized by Skempton's coefficient, which is defined as the ratio of pore pressure to mean stress change (e.g.,
Wang, 2000, Section 2.4). This coefficient is usually positive: a compressive increment in mean stress leads to an
incremental increase in pore pressure. This phenomenon was generalized by Skempton (1954) to include the
possibility that shear stresses also produce pore pressure changes. In anisotropic materials, more coefficients are
required to describe the undrained behavior: we expect the pore pressure change to be different depending on the
direction of the stress increment with respect to the symmetry axes of the material (e.g., Wang, 2000, Section 2.7).

One major source of anisotropy in rock physical properties (elastic and transport) is the preferred orientation of
microcracks (e.g., Walsh, 1965b), which is the result of either pre‐existing structures from rock formation
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processes, or from anisotropic stresses preferentially closing or opening microcracks. Under conventional triaxial
conditions (with principal stresses such that σ1 > σ2 = σ3) and at low temperature (in the brittle regime), dif-
ferential stress induces transverse isotropy in the microstructure, with the axis of symmetry aligned with the
maximum compression axis. Initially, an increase in differential stress leads to the progressive elastic closure of
pre‐existing microcracks which are aligned perpendicularly to the direction of maximum compression (Lockner
& Byerlee, 1977). As samples undergo further increases in differential stress, new tensile microcracks nucleate
and grow in a direction parallel to the compression axis (Paterson & Wong, 2005, Chapter 5). This damage is
dilatant, where progressive increases in compressive stress result in an increase in sample volume (Brace
et al., 1966). When the rock is fluid‐saturated and under undrained conditions, we also expect a concomitant pore
pressure decrease (Brace & Martin, 1968).

Decreases in differential stress reverse this process and lead to changes in volumetric strain by forcing the closure
of the new tensile microcracks and the reopening of the pre‐existing ones. However, changes in volumetric strain
do not necessarily follow the same path during these increases and decreases in differential stress. Instead, they
produce hysteresis loops that are generally reversible during repeated cycles to the same maximum differential
stress (Scholz & Kranz, 1974; Zoback & Byerlee, 1975a). Furthermore, once the previous maximum stress has
been exceeded, new hysteresis loops are observed (Brantut & Petit, 2023; Holcomb, 1981). This stress history
dependence has also been observed in other physical properties, such as wave velocities (e.g., Brantut &
Petit, 2023; Holcomb, 1981; Passelègue et al., 2018) and permeability (e.g., Mitchell & Faulkner, 2008; Zoback &
Byerlee, 1975b). Therefore, physical properties and anisotropy of rocks depend on both the state of stress and the
stress history, which together control the state of the material microstructure.

In low‐porosity rocks such as granite, changes in volumetric strain are dominated by the opening and closing of
cracks, which depend on both the stress and the stress history. Rapid changes in pore volume (e.g., from cracks
opening and closing) cause changes in pore pressure due to poroelastic coupling. In the course of loading‐
unloading cycles under triaxial conditions, the undrained poroelastic parameters, and in particular the Skemp-
ton coefficients, are expected to be anisotropic, and to vary with stress due to evolving anisotropy in the material
fabric. However, in situ measurements of pore pressure changes under undrained conditions are notoriously
difficult due to the interaction between the pore space of the rock and the drainage system (pore fluid piping). The
influence of the drainage system is particularly noticeable for “tight” rocks because of their very low pore volume
(Ghabezloo & Sulem, 2010).

Early experimental indications of anisotropy in Skempton's coefficient was presented in Wang (1997), who re-
ported pore pressure variations in response to uniaxial loading that were lower than anticipated by a purely
isotropic theory. Further work conducted on porous sandstone and ceramics indicate the development of stress‐
induced anisotropy reflected in variations in axial and radial Skempton's coefficients (Lockner & Beeler, 2003;
Lockner & Stanchits, 2002), with an overall decrease in axial Skempton's coefficient with increasing overall
differential stress under triaxial stress conditions. Pimienta et al. (2015a, 2015b) also report anisotropic poroe-
lastic behavior in porous sandstone, with pore pressure change being lower in response to axial loading than
hydrostatic loading.

In contrast to undrained poroelastic constants, elastic wave velocities and their anisotropy have been regularly
measured during rock deformation tests, including cycling loading, and can be used to determine microcrack
fabric evolution (e.g., Benson et al., 2005; Brantut & Petit, 2023; Passelègue et al., 2018; Sayers & Kacha-
nov, 1995; Schubnel et al., 2003). In a recent theoretical development, Wong (2017) established a link between
the microcrack fabric parameters that can be obtained from wave velocity data and the undrained moduli of water‐
saturated cracked rocks. The model of Wong (2017) relies on the combination of an effective medium model for
cracked, dry materials (Sayers &Kachanov, 1995), and the use of a micromechanical model to arrive at undrained
moduli and undrained coefficients (A. H.‐D. Cheng, 1997). This approach has the potential to dramatically
simplify the estimation of undrained parameters in rocks, and possibly open the way for field estimates based on
seismic data. However, it relies on many assumptions regarding microcrack geometry and homogeneity of the
solid, and its use with seismic or ultrasonic data is also questionable due to the possibly large differences between
static and dynamic moduli (even in dry rocks). Recently, Elsigood et al. (2023) showed that Wong (2017)'s model
could adequately predict the anisotropy in Skemption coefficients in thermally cracked Westerly granite under
triaxial conditions, but quantitative agreement was quite limited, especially at low pressure. Further testing of the
model and its limitations is thus warranted.
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Here, we present results from experiments designed to obtain in situ measurements of pore pressure change due to
rapid axial and radial stressing in water‐saturated Westerly granite. Conventional experimental methods in
poroelasticity typically require undrained boundary conditions at the sample scale, which would imply
impracticably large errors and corrections for low‐porosity rocks like granite (e.g., Lockner & Stanchits, 2002,
§9). Thus, we use here an alternative method based on transient measurements, relying on the rather long hy-
draulic diffusion timescale across our sample to capture the initial (transient, local) undrained pore pressure
changes. We interpret our data in terms of anisotropic apparent Skempton coefficients, keeping in mind that we
cannot access the true static undrained properties of the overall sample. These measurements were repeated at
selected stress states during increasing amplitude cyclic loading. In the same experiments, we also measured
elastic wave velocities, and estimate the evolution in microcrack fabric parameters with changing stress condi-
tions (following Shafiro & Kachanov, 1997; Schubnel et al., 2003). We extrapolate these dynamic parameters to
low frequency, undrained quantities, and compare the predicted Skempton coefficients with those measured
directly.

2. Experimental Method
2.1. Testing Apparatus and Sample Instrumentation

Experiments were conducted on a cylindrical sample of Westerly granite of 100 mm length and 40 mm diameter.
The sample was equipped with two pairs of axial and radial strain gauges, located around the center. The sample
was jacketed in a perforated nitrile sleeve, and 12 ultrasonic transducers and three fluid pressure sensors were
positioned around the surface of the cylinder (Figure 1a).

Seven of the ultrasonic transducers were polarized perpendicularly to the sample surface (and thus mostly sen-
sitive to incoming P‐waves), and five transducers were polarized tangentially to the surface, in the horizontal
direction (and thus sensitive to incoming Sh‐waves). The 12 transducers were arranged around the sample so that
straight rays connecting P‐wave sensitive sensors were at five different angles from the sample vertical axis, and
rays connecting Sh‐wave sensitive sensors were at three different angles from the sample axis (Figure 1b).

The fluid pressure sensors are made of a stainless steel stem with a 0.4 mm diameter hole in direct contact with the
sample surface at one end, and connected to a thin penny‐shaped cavity (0.2 mm thick, 7 mm in diameter) at the
other end. The cavity is closed with a sealed steel cap mounted with a diaphragm strain gauge that is sensitive to
the difference between the pressures on either side, that is, confining pressure on the outside and pore fluid
pressure on the inside. Details of the design and calibration of the sensors can be found in Brantut (2020) and
Brantut and Aben (2021). Three such sensors were placed on the sample surface in line at different positions along

Figure 1. (a) Schematic of sensor arrangement and (b) full map of all sensors in contact with the cylindrical surface of the sample. (c) Loading geometry and boundary
conditions.
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the sample vertical (a quarter, half, and three quarters from the sample ends; Figure 1b). Only the middle sensor
was used for calculations as this furthest position from the sample ends maximizes the time under undrained
conditions.

The jacket was sealed with epoxy around each sensor, and the sample was placed in the conventional, oil‐medium
triaxial apparatus installed in the Rock and Ice Physics Laboratory at UCL (Eccles et al., 2005). All tests were
conducted at room temperature. Confining pressure was set by a hand pump and adjusted manually throughout the
test. It was recorded at the pressure vessel inlet by a pressure transducer. Axial load was applied by an auto-
compensated piston driven by a servo‐hydraulic ram, and measured using an internal load cell. Axial shortening
was measured by an external linear variable differential transformer, corrected for the calibrated machine
stiffness.

The pore fluid system was connected to both the top and bottom of the sample, and grooved steel disks distributed
the fluid across the sample end surfaces. Pore fluid pressure was controlled using a servo‐hydraulic intensifier. All
mechanical data were acquired at a frequency of up to 5 Hz.

At regular intervals, wave velocity surveys were conducted, where a 250 V 1 MHz pulse was sent from and to
each of the P‐ and Sh‐wave transducers in turn. The collected waveforms were analyzed using a cross‐correlation
method (e.g., Brantut, 2015) to obtain accurate relative variations in P‐ and Sh‐wave velocities throughout the
experiment. The absolute accuracy of wave velocity measurements was impacted by the manual picking of a
reference data set, by additional errors due to imperfect coupling between sensors and the rock surface, and by the
overall low aperture of the ultrasonic sensors (e.g., Kovalyshen et al., 2020). The resulting error is of the order of
±150 m/s, estimated by manual exploration of possible picks.

2.2. Experimental Protocol

Throughout the experiment, confining pressure was maintained nominally constant at 45MPa and the sample was
saturated with water held at a controlled pore pressure of 5 MPa (Figure 1c). Permeability was measured prior to
deformation using the steady‐state flow method with pore pressure controlled at 5 MPa at one end of the sample
and vented at the other. At 10 MPa confining pressure, permeability was 1.3 × 10− 19 m2, and at 45 MPa
confining pressure, permeability was 6.1 × 10− 21 m2.

There were two main features of the experimental protocol: (a) increasing amplitude (hundreds of MPa) dif-
ferential stress cycles; and (b) repeated small‐amplitude (a few MPa) rapid strain‐rate (greater than 10− 4 s− 1)
radial and axial stress cycles. The large amplitude stress cycles were performed to introduce and recover (at least
in part) increasing levels of anisotropy and damage in the sample. The rapid stress cycles were conducted to
measure how (transiently) undrained strain and pore pressure changes evolved due to this damage.

The following sequence of large amplitude stress cycles was chosen (Figure 2a): Starting from 20 MPa differ-
ential stress (cycle 0), we first increased differential stress up to 220 MPa (cycle 1), then unloaded, reloaded up to
345 MPa, and unloaded again to 20 MPa (cycle 2) and repeated the operation to reach 440 MPa (cycle 3). Finally,
the sample was brought to failure (not shown in Figure 2) to measure its strength, which was 520 MPa.

The rapid axial and radial stress changes were conducted at nine selected stress levels during the large amplitude
loading cycles (Figure 2a). At each level, axial and radial stress were independently and repeatedly stepped up and
down. Following each change in stress, it was necessary to allow sufficient time for the pore pressure in the
sample to equilibrate due to the low hydraulic diffusivity of the granite. The typical timescale required for
reequilibration of pore pressure after a stress step was of the order of 1,000 s, consistent with a hydraulic
diffusivity of the order of 10− 5 m2/s. The rapid step changes in axial stress were up to 7 MPa and the changes in
confining pressure were of around 1 MPa.

The quantity of measurements conducted resulted in the experiment taking over 1 month to complete.

2.3. Estimations of Apparent Undrained Parameters

Conventional measurements of undrained quantities require that the tested sample is under undrained boundary
conditions, that is, no fluid flow in an out of the specimen, and that pore pressure is homogeneous at the sample
scale. In practice, experiments are often conducted under “experimentally undrained” conditions (Pimienta
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et al., 2016), that is, with a non zero dead volume in the pore fluid lines
upstream and/or downstream the sample itself. This additional dead volume
needs to be corrected for (or artificially suppressed, as in Lockner and
Stanchits (2002)) to estimate Skempton's coefficients. While such corrections
are feasible for porous rocks, whereby the pore volume may not be small
compared to the dead volume, for low porosity cracked rocks the correction
would be large and conducive to large errors. Here, we develop an alternative
measurement methodology that allows us to measure Skempton's coefficients
in a transient manner. Because of the assumptions of the method and to avoid
confusion with conventional techniques, we subsequently call our measure-
ments “apparent” undrained quantities (in the same way as Pimienta
et al., 2015b, called their results “pseudo‐”Skempton coefficients).

We imposed constant rate (servo‐controlled ramp) changes in axial stress and
step changes (manual pump) in radial stress and measured the resulting
changes in pore pressure and axial and radial strain. Since the imposed stress
changes occurred over a much shorter timescale (a few seconds) than the
hydraulic diffusion timescale across the sample (around 1,000 s), the initial
response of the sample is expected to be transiently undrained. Pore pressure
was maintained constant at both ends of the sample, so that internal pore
pressure gradually reequilibrated over time due to drainage.

Assuming uncoupled poroelastic response and diffusion along the sample
axis z, the spatiotemporal evolution of pore pressure in the sample is given by
a diffusion equation (e.g., Pimienta et al., 2016)

∂Δp
∂t

− α
∂2Δp
∂z2

=
1
3
Bi
∂Δσi
∂t

, (1)

where Δp is the pore pressure change, t is time, α is hydraulic diffusivity, Bi is
the Skempton coefficient along direction i (as defined in Wang, 2000, Section
2.7) and Δσi is the (imposed) stress change along direction i (i = x, z). The
solution of Equation 1 subject to boundary conditions Δp = 0 at z = ±L, and
for an initial step change in stress producing an undrained pressure change
Δpundrained = BiΔσi/3 is (Carslaw & Jaeger, 1959, Section 3.4):

Δp(z, t) = Δpundrained
4
π
∑
∞

n=0

(− 1)n

2n + 1
e− (2n+1)

2π2(t/tdiff )/4 cos
(2n + 1)πz/L

2
, (2)

where tdiff = L2/α is the hydraulic diffusion time, and L is the sample's half‐
length.

For our granite sample with low hydraulic diffusivity, tdiff was of the order of
1,000 s, so that the peak local pore pressure change measured in the center-
most portion of the specimen should be representative of the undrained

response (Figure 3). The validity of this measurement method relies on two factors: (a) homogeneity of the
sample, and (b) fast sensor response time compared to overall diffusion time.

There is no indication that our Westerly granite sample was significantly heterogeneous before deformation, and
we only increased the applied differential stress up to 85% of the failure stress. Even at the highest applied stress
(cycle 3), we did not detect substantial deviations between the local strains measured by strain gauges. In addition,
strain localization in granite typically appears at stresses larger than 85% of the peak (e.g., Aben et al., 2018;
Lockner et al., 1991; McBeck et al., 2022). Therefore, the specimen can be considered homogeneous throughout
the experiment.

Figure 2. Time series of differential stress, confining pressure (a), axial and
radial strain (b), P‐wave (c), and Sh‐wave velocities (d) for the entire
duration of the test. The markers indicate when low amplitude stress steps
were conducted: triangle up (△) is for cycle 0, squares (□) are for cycle 1,
circles (◯) are for cycle 2, and triangles down (▽) are for cycle 3.
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A more challenging aspect of the measurements is the delayed detection of pore pressure transients due to the
existence of a small fluid‐filled cavity within the transducers that leads to a time‐dependent fluid exchange be-
tween the rock and the transducer (Brantut & Aben, 2021). Even under experimentally undrained conditions, the
existence of dead volumes in pore fluid instrumentation and tubing leads to delays and limits the amplitude of
pore pressure measurements (e.g., Pimienta et al., 2015b; Pimienta et al., 2016). In particular, under oscillatory
stress variations, delays in pore pressure equilibration between sample and sensing elements lead to phaseshifts
and to apparent negative values of poroelastic coefficients (Pimienta et al., 2015b). Here, we imposed stress steps
and waited for sufficiently large time for pore pressure transients to dissipate between each step, so our mea-
surements should not be impacted by phase shifts. However, the amplitude of pore pressure changes are impacted
by the delay, since pore pressure in the sample gradually decreases due to drainage at the boundaries.

As an example of transducer response time, Figure 4 shows that the maximum pore pressure change in the center
of the sample occurred around 180 s after an imposed differential stress change that occurred over around 6 s.
Note that a similar delayed response was noted by Hart and Wang (2001), who were unable to determine the
cause. This delay limits our ability to capture precisely the true transient undrained response. Therefore, our
estimate of Skempton's coefficients must be considered a lower bound. Pore pressure measured off the center, at
positions z = ±25 mm (see Figure 1), show a lower maximum variation after the initial delay, which is consistent
with the prediction shown in Figure 3. We also note that there is some variability in each transducer response time,
which could be due to local variations in hydraulic properties. As stated above, we will only use the transducer
positioned centrally to record the maximum pore pressure change and limit the effects due to the delayed
response.

The error could be severe if the hydraulic diffusion time across the sample (tdiff) were commensurate or shorter
than the transducer delay time. This is not the case: the transducer response time is given by
ttrans = β2trans/ (β

2A2α), where βtrans is the transducer storage capacity, β is the rock storage capacity and A is the
transducer‐rock contact area (Brantut & Aben, 2021). Due to the small dimensions of the transducer compared to
the sample's half‐length L, the ratio ttrans/ tdiff is always much smaller than 1 (using transducer parameters given in
Brantut & Aben, 2021). In the example of Figure 4, the transducer response time was of the order of 100 s, which
is 10 times smaller than tdiff . In that example, it took over 1 hour for pore pressure to return to the 5 MPa value
imposed at the boundaries.

In our pressure vessel with a compensated piston, changes in confining pressure should in principle lead to an
isotropic response. However, the early response is essentially that of an increase in radial stress only due to a
combination of the piston seal friction, time taken for confining oil to reach the compensation chamber and
realignment of the piston. Our records of internal load indicate that there are small changes in axial stress relative

Figure 3. Simulation of the spatiotemporal evolution of pore pressure in the sample following an initial homogeneous step increment Δpundrained. The sample's half‐length
is denoted L, z is the axial position, t is time, and tdiff is the hydraulic diffusion time. Pore pressure change is maintained at zero at both ends of the sample. (a) Snapshots
of pore pressure profiles; filled circles indicate transducer positions in our experimental setup. (b) Time evolution of pore pressure at three positions along the sample
(z/L = 0 and z/L = ±0.5). In our experiment, L = 50 mm and tdiff is of the order of 1,000 s.
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to the changes in confining pressure steps. Whilst the small changes in axial
stress do influence the pore pressure response through the Skempton effect,
the effect of radial stress changes dominates and hence, in our calculations,
we have assumed purely radial stress changes (see Appendix A).

The strain gauges that were bonded directly on to the sample surface recorded
the instantaneous changes in axial and radial strain in response to changes in
axial stress. Undrained Young's modulus and undrained Poisson's ratio were
calculated from the linear fit (least‐squares) of axial and radial strain against
axial stress.

The radial and axial Skempton coefficients were calculated as (Wang, 2000,
Section 2.7) Bx = 3Δp/2Δσx, Bz = 3Δp/Δσz, where Δp is the change in
pore pressure, Δσx = Δσy is the change in radial stress, and Δσz is the change
in axial stress. We calculated the Skempton coefficients by taking the
maximum change in pore pressure following a change in external stress.

2.4. Inferring Crack Density Tensors and Undrained Coefficients From
Ultrasonic Data

One of our objectives was to determine the extent to which wave velocity data
can be used to infer poroelastic quantities such as Skempton's coefficients. To
make any such inference, a number of steps and assumptions are involved
(depicted in Figure 5). First, we used a noninteractive effective medium
model for fluid‐saturated penny‐shaped cracks in an homogeneous isotropic
matrix (M. Kachanov, 1993) to relate components of the compliance tensor to
crack density tensors αij and βijkl and saturation parameter ψsat (see formal
definitions below). The elastic compliances in that model are so‐called “un-
relaxed” because they are derived without regards for fluid pressure equili-

bration between cracks (e.g., Guéguen & Kachanov, 2011; Le Ravalec & Guéguen, 1996; Schubnel et al., 2003).
Second, following the steps outlined in Schubnel and Guéguen (2003), the saturation parameter ψsat is then
corrected to simulate the same microcrack fabric but without fluid, ψdry, hence producing a prediction for the dry
(or, equivalently, drained) effective compliance tensor of the material. In a third step, we use the estimated dry
compliances to predict properties under undrained conditions (i.e., assuming uniform fluid pressure within the
rock representative elementary volume) and obtain Skempton's coefficients Bx and Bz (A. H.‐D. Cheng, 1997).

Figure 4. An example of the delayed pore pressure sensor response to
changes in axial stress. Here, pore pressure would only be expected to
increase during increases in stress, however this is delayed due to the
nonzero dead volume inside fluid pressure sensors. Pore pressure measured
in the central portion (z = 0) increases more than that measured above and
below (z = ±25 mm).

Figure 5. Key steps involved in indirect estimations of Skempton's coefficients from ultrasonic wave velocity data. The
underlying principle originates from the work of Schubnel and Guéguen (2003) (estimation of dry compliances from high
frequency, fluid saturated compliances) and Wong (2017) (estimation of Skempton coefficients from (dry) crack densities).
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2.4.1. From Velocities to Crack Densities

In practice, the first step is probably the more challenging and prone to errors. In our triaxial deformation ge-
ometry, the effective elastic properties are well described by a transversely isotropic symmetry due to the closure
of sub‐horizontal microcracks and the development of sub‐axial microcracks in the direction of the maximum
principal stress (e.g., Passelègue et al., 2018; Sayers & Kachanov, 1995; Schubnel et al., 2003). In this symmetry,
five independent components of the compliance tensor are required. In the effective medium model of M.
Kachanov (1993) employed here, the compliances are linked to five independent components of two crack density
tensors αij and βijkl as (e.g., Guéguen & Sarout, 2009)

Ssat1111 =
1
E0
+ h(α11 + ψβ1111), (3a)

Ssat3333 =
1
E0
+ h(α33 + ψβ3333), (3b)

Ssat1133 = −
ν0
E0
+ hψβ1133, (3c)

Ssat1212 =
1 + ν0
2E0

+ h(
1
2
α11 + ψ

1
3
β1111), (3d)

Ssat1313 =
1 + ν0
2E0

+ h(
1
4
(α11 + α33) + ψβ1133), (3e)

where

h =
32(1 − ν20)
3(2 − ν0)E0

, (4)

ψ = (1 −
ν0
2
)

δ
1 + δ

− 1, (5)

and

δ =
πζE0

4(1 − ν20)
(
1
Kfl

−
1
K0
), (6)

and where E0, ν0, and K0 are the intact material Young's modulus, Poisson's ratio, and bulk modulus respectively,
ζ is the (average) crack aspect ratio, and Kfl is the fluid bulk modulus.

From the compliance tensor given in Equation 3, we compute the stiffness tensor and P and Sh (phase) velocities
at any (phase) angle from the symmetry axis (e.g., Thomsen, 1986). Our off‐axis measurements (Figure 1) only
provide group velocities (and group angles). The overall relationship between the five independent components of
the crack density tensors and the observed group velocities is nonlinear, and requires us to further constrain phase
angles based on the group (ray) angles. We determine α11,α33,β1111,β1133 and β3333 as well as phase angles by
using an iterative inverse approach, fitting the observed group velocities and group angles with a least‐square
minimization procedure (similar to that employed in Brantut & Petit, 2023, Section 2.2). We assumed that the
Young's modulus of the solid matrix (E0) was 89 GPa, the Poisson's ratio (ν0) was 0.22, the bulk modulus of the
fluid (Kfl) was 2.2 GPa, and the crack aspect ratio (ζ) was taken as 10− 3 (e.g., Guéguen & Sarout, 2009). We
further constrained the inversion by ensuring positivity of all components of the crack density tensors αij and βijkl.

Beyond potential limitations from the model assumptions, the accuracy of the crack density estimates is limited
by the absolute errors in the velocity measurements, which are rather large, especially in the off‐axis data (see
Kovalyshen et al., 2020, for a detailed analysis). Due to the nonlinearity of the problem, it is difficult to estimate
errors in crack densities in absolute terms. However, the relative variations in wave velocities are very accurate
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due to the cross‐correlation procedure employed. Therefore, we anticipate
that the relative variations in crack densities are also well constrained.

2.4.2. From Crack Densities to Undrained Properties

Once equipped with estimates of αij and βijkl from velocity data, we can use
the same effective medium model to predict the compliances in the dry (or,
equivalently, drained) limit by considering that the elastic moduli Kfl tends to
zero. In this case, ψ is equal to − ν0/2 (close to 0.1), and the influence of the
fourth‐order crack density tensor βijkl on the overall crack compliance is thus
small (Sayers & Kachanov, 1995).

We follow here the approach of Wong (2017), and compute the drained
elastic compliance terms (Sijkl) from Equation 3 with Kfl → 0, from which we
calculate the axial and radial Skempton coefficients using the micro-
mechanical relations (A. H.‐D. Cheng, 1997)

Bx =
3(S11 + S12 + S13) − 1/K0

2S11 + 2S12 + 4S13 + S33 + ϕ/Kfl − (1 + ϕ)/K0
, (7)

and

Bz =
3(2S13 + S33) − 1/K0

2S11 + 2S12 + 4S13 + S33 + ϕ/Kfl − (1 + ϕ)/K0
. (8)

Explicit Equations 7 and 8 in terms of crack density tensors are given by Wong (2017).

3. Results
3.1. Behavior During Large Amplitude Stress Cycles

The timeseries of stress, strain and wave velocities are presented in Figure 2, and the corresponding stress‐strain
behavior is shown in Figure 6. During the first loading cycle (up to 220 MPa differential stress), the sample
experienced limited hysteresis and nonlinearity in stress‐strain behavior. At 220 MPa differential stress, we
observed small increases in subaxial P wave velocities and small decreases in subhorizontal P and Sh wave
velocities (by about 20–30 m/s). No significant creep was observed when the sample was left at high stress during
this first cycle.

The second loading cycle was conducted up to 344 MPa. At that stress, some time‐dependent axial and radial
creep strains were measured, and after 1 hr the stress was lowered to 313 MPa. At that load, no further substantial
creep strains could be observed. During loading beyond the previous maximum stress, some nonlinearity in axial
stress‐strain behavior was observed, and volumetric strain showed significant deviations from the initial
compression behavior to net dilation above around 300MPa. After a small increase during loading, the subaxial P
wave velocities decreased slightly upon initial unloading and remained constant afterward. By contrast, sub-
horizontal P and Sh wave velocities decreased by up to 100 m/s during loading, that is, between 1.7% and 3% drop
for P and Sh waves, respectively. Upon unloading back to 20 MPa differential stress, the wave velocities returned
essentially to their original values. Axial and volumetric strains also returned near their initial values, but sig-
nificant hysteresis was observed in the stress‐strain behavior.

The third loading cycle was conducted up to 435 MPa differential stress. Similarly to the previous cycle, some
creep occurred at that stress, and the load was decreased to 400 MPa to limit the time‐dependent creep strain
accumulation.While differential stress was kept at 400MPa, no significant axial creep deformation was observed,
and limited volumetric creep deformation, of the order of a few tens of μstrain, accumulated. During loading, the
volumetric strain showed a large deviation from the initial linear trend, with a net increase in volume compared to
the unstressed sample. Upon unloading, the volumetric strain displayed large hysteresis, with almost no change at
stresses between 400 and 220 MPa, and a return near the initial, unstressed state at 20 MPa differential stress. The
axial strain also displayed large hysteresis in that cycle. The change in P and Sh wave velocities followed a trend

Figure 6. Stress‐strain behavior from strain gauge and internal load cell data
(gray), and positions where series of small amplitude stress steps were
conducted (markers).
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qualitatively similar to that of the previous cycle, with a larger amplitude in the change: the horizontal P wave
velocity dropped by about 270 m/s (around 5%) and horizontal Sh wave velocity dropped by about 280 m/s
(8.8%). After unloading, the velocities did not return exactly back to their initial, unstressed values.

3.2. Undrained Rapid Axial Stress Cycles

Throughout the experiment, axial stress and confining pressure were independently stepped up and down at nine
selected positions during the large amplitude stress cycles. The axial stress and resulting strain and pore pressure
changes are shown at two of these positions; first at low stress (cycle 1) in Figure 7, and second at high stress
(cycle 3) in Figure 8.

At low differential stress (around 25MPa, cycle 1), axial stress was rapidly decreased and increased by between 5
and 7 MPa (Figure 7a), causing axial strain decreases and increases of up to 100 µstrain (Figure 7c), increases and
decreases in radial strain of around 30 µstrain (Figure 7e), leading to a volumetric strain decreases and increases of
around 40 µstrain (Figure 7g). In response to the axial stress decrease, the pore pressure quasi‐instantaneously
decreased by about 0.4 MPa followed by a slow increase (Figure 7i), and vice versa.

At the highest differential stress (around 400 MPa, cycle 3), axial stress changes were similarly around 5–7 MPa
(Figure 8a). For increases in axial stress, axial strain increased by around 80 µstrain (Figure 8c) and radial strain
decreased by around 75 µstrain (Figure 8e), which resulted in volumetric strain increasing by around 25 µstrain
(Figure 8g). Again, the pore pressure instantaneously decreased by 0.25MPa and then slowly increased back to its
initial value (Figure 8i). A trend of time‐dependent decrease in radial and volumetric strain, of the order of 50
µstrain over around 2 hr, was observed in addition to the changes due to the differential stress steps. In another

Figure 7. Axial (a) and radial (b) stress changes at low stress (cycle 1) with corresponding changes in axial strain (c, d), radial
strain (e, f), volumetric strain (g, h) and pore pressure (i, j). Increases in axial stress lead to increases in pore pressure.
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series of steps conducted during cycle 3 at lower stress (around 220 MPa), a time‐dependent trend in radial strain
of similar magnitude was also observed but with a drift in the reverse direction.

The major difference between the cycles at high and low differential stress was the change in sign of the pore
pressure response. At low differential stress, an increase in axial stress resulted in an increase in pore pressure,
whereas at high differential stress an increase in axial stress resulted in a decrease in pore pressure. Volumetric
strain remained positive to increases in axial stress even when pore pressure change was negative and therefore
the volume of the pore space was increasing whilst the volume of the bulk rock was decreasing.

In contrast with axial stress steps, the response to radial stress steps was qualitatively similar at low and high
stress. When radial stress was stepped up, axial strain slightly decreased (indicating axial extension), and radial
strain increased, leading to a net increase in volumetric strain (Figures 7 and 8, panels b, d, and h). The resulting
pore pressure change was always positive in response to an increase in radial stress.

3.3. Undrained Apparent Elastic Properties

During the series of rapid increases and decreases in axial stress at around 400 MPa, radial strain had an overall
decreasing trend with time (Figure 8d). However, this did not affect the short term (undrained) radial responses to
stress changes which were reproducible (see Figure 9). For rapid cycles at 400 MPa differential stress, we
combined the changes in axial strain during each positive and negative change in stress (Figure 9a). Axial strain
changes were linearly increasing with the change in stress with minimal differences between different stress
cycles. The same changes in stress also caused changes in radial strain which were linearly decreasing with
changes in axial strain and were also reproducible across repeated cycles (Figure 9b). The undrained Young's
modulus was calculated from the linear fit between axial stress and axial strain changes (Figure 9a, solid line) and

Figure 8. Axial (a) and radial (b) stress changes at high stress (cycle 3) with corresponding changes in axial strain (c, d), radial
strain (e, f), volumetric strain (g, h) and pore pressure (i, j). Increases in axial stress lead to decreases in pore pressure.
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the undrained Poisson's ratio was calculated from the linear fit between axial strain and radial strain (Figure 9b,
solid line).

The undrained Young's modulus and undrained Poisson's ratio were similarly calculated for rapid stress changes
at multiple points in the stress history. The full set of results is shown in Table 1. Overall, the undrained Young's
modulus was lower at 68.1 GPa at low stress following high stress (Table 1, cycle 3, 26 MPa differential stress)
compared with the undrained Young's modulus of 73.6 GPa before the cycles (Table 1, cycle 0, 16 MPa dif-
ferential stress). However, this trend is not completely clear, because the undrained Young's modulus calculated at
low stress for cycle 1 and cycle 2 had greater variation between repeated measurements. The undrained Poisson's
ratio is in general higher at higher differential stress. However, similarly to the undrained Young's modulus, the
undrained Poisson's ratio calculated during cycle 1 at 18 MPa differential stress and during cycle 2 at 26 MPa
differential stress have particularly large variation between repeated measurements.

Figure 9. Example of instantaneous poroelastic response at 400 MPa differential stress (cycle 3) in response to step changes
in differential stress. (a) Change in axial strain during all increases and decreases in axial stress shown in Figure 8, giving the
undrained Young's modulus (Euz ). (b) The change in axial and radial strain during the same changes in stress, giving the
undrained Poisson's ratio (νuz ).

Table 1
Summary of Undrained Poroelastic Parameters (Young's Modulus (Euz ), Poisson's Ratio (νuz ), Axial Skempton Coefficient
(Bz), and Radial Skempton Coefficient (Bx)) and Their Errors, Calculated From Rapid, Small Amplitude (a Few MPas)
Stress Changes Around Nine Values of the Differential Stress (σz − σx) During the Cyclic Loading Cycles

Cycle σz − σx, MPa

Euz , GPa νuz Bx Bz

Value SE Value SE Mean SD Mean SD

0 16 73.6 1.01 0.284 0.012 0.71 0.169 0.17 0.02

1 221 74.6 1.02 0.261 0.009 0.76 0.156 0.02 0.003

1 18 74.4 2.87 0.258 0.027 0.69 0.036 0.2 0.029

2 307 74.0 0.91 0.328 0.012 0.78 0.082 − 0.05 0.012

2 223 73.6 0.34 0.307 0.003 0.75 0.108 − 0.05 0.029

2 20 68.3 3.37 0.314 0.025 0.62 0.12 0.21 0.026

3 404 70.3 0.68 0.329 0.004 1.02 0.134 − 0.14 0.009

3 222 69.6 0.42 0.322 0.005 0.94 0.155 − 0.08 0.006

3 26 68.1 0.67 0.297 0.007 0.59 0.186 0.17 0.009

Note. Undrained Young's modulus and Poisson's ratio are computed from fitting the slope the stress and strain data (Figure 9),
and the standard error (SE) is shown for the fits. The axial and radial Skempton coefficients were separately calculated for
each change in pore pressure from a change in stress and the mean and standard deviation (SD) were calculated at each stress
level.
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3.4. Axial and Radial Apparent Skempton Coefficients

The axial and radial apparent Skempton coefficients were calculated from the
ratio of the maximum change in pore pressure from a rapid change in stress.
Each measurement was repeated around 10 times and we averaged the results.

The radial Skempton coefficient increased with increasing differential stress
(Figure 10). When the large amplitude stress cycles were reversed following a
new maximum load, the radial Skempton coefficient decreased with
decreasing differential stress, but with some hysteresis.

At low differential stress during cycle 1, the radial Skempton coefficient was
around 0.7 (Figure 10, upward triangle). Stress was increased to around
220 MPa and the radial Skempton coefficient increased to around 0.75, and
returned to around the initial value when stress was decreased back to 20 MPa
(cycle 1, squares). At the maximum differential stress of around 400 MPa
during the third cycle (cycle 3, downward triangles), the radial Skempton
coefficient reached a maximum of around 1.0.

The trend observed in the axial Skempton coefficient was the opposite to that
of the radial coefficient. As differential stress was increased, the axial

Skempton coefficient decreased. When differential stress decreased, the axial Skempton coefficient increased
back to its starting value of around 0.2. At the maximum differential stress of 400 MPa, the axial Skempton
coefficient was at its minimum of around − 0.15. Therefore, an increase in axial stress of 5 MPa caused pore
pressure to decrease by around 0.25MPa (Figures 8a and 8e). The axial Skempton coefficient was also negative at
a differential stress of 310 MPa, and at a differential stress of 220 MPa following the stress increases to both
310 MPa (cycle 2) and 420 MPa (cycle 3).

We also calculated the errors (standard deviation) of the averaged Bx and Bz values (Table 1). The errors in the
averaged radial Skempton coefficients are much larger (up to 0.186) than in the average axial Skempton co-
efficients (up to 0.029).

3.5. Estimated Apparent Skempton Coefficients From Ultrasonic Data

The Skempton coefficients were also calculated indirectly from the ultrasonic wave velocity measurements at the
same positions as the direct measurements during cycles 0 to 3. We determined the Skempton coefficients, using
Equations 7 and 8, from the drained elastic compliances (Sijkl), which were calculated from the unrelaxed elastic
moduli using the crack density tensors. The final results are shown in Figure 13, and crack densities and fitted
velocity variations are shown in Figures 11 and 12, respectively.

The inverted crack densities show a dominant contribution of α11 and β1111, which reflect the apparent evolution
of anisotropy in wave velocity. The crack density component α33, β1133 and β3333 were substantially lower than
α11 and β1111, and decreased with increasing differential stress. Repeating the inversion procedure without the
zero lower bound constraint on crack density components would produce slightly negative values of α33 and β3333,
and slightly better fit to data, which points to either an inadequacy of the effective medium theory employed, or,
more likely, to a bias in the absolute values of the P and Sh wave velocities measured by manual picks of the
reference survey. Despite this limitation, the overall fit to data is acceptable (Figure 12) and well within the
picking errors. The relative evolution of both α11 and β1111 show an increase with increasing differential stress
during cycles 2 and 3, and a stable behavior during cycle 1.

The resulting inferred radial Skempton coefficient (Bx) increased with increasing differential stress (Figure 13,
circles). Initially, prior to load cycles at 20 MPa differential stress, Bx was 0.45 and increased to 0.85 at 400 MPa
differential stress (the maximum of cycles). There was a small amount of hysteresis at low differential stress, Bx
increased by around 0.05 units following each stress cycle.

The computed axial Skempton coefficient (Bz) was small, of the order of 0.05, and systematically negative. It
slightly decreased with increasing differential stress (Figure 13, triangles). Initially, at 20 MPa differential stress,

Figure 10. Axial Skempton coefficient (Bz) and radial coefficient (Bx) as a
function of differential stress.
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Figure 11. Crack densities inverted using Equation 3 from the high‐frequency unrelaxed elastic moduli by assuming that the
Young's modulus of the solid matrix (E0) was 89 GPa, the Poisson's ratio (ν0) was 0.22, the bulk modulus of the fluid (Kfl)
was 2.2 GPa, and the crack aspect ratio (ζ) was 10− 3. These crack densities were used to calculate the drained compliances
leading to the estimated Skempton coefficients in Figure 13.

Figure 12. Measured group velocities (solid black symbols) and fits (open magenta symbols) during differential stress cycles.
Wemeasured P‐wave velocities across paths at five different angles relative to the (vertical) direction of compression and Sh‐
wave velocities at three different angles. Here we show the velocities measured at the twomost extreme angles to the vertical:
(a) P‐wave velocity measured horizontally; (b) P‐wave velocity measured at 28° (quasi‐vertical); (c) Sh‐wave velocity
measured horizontally; and (d) Sh‐wave velocity measured at 28°.
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Bz was − 0.03 and decreased to − 0.06 at the maximum differential stress at
400MPa. There was hysteresis at low differential stress, with Bz being around
0.05 smaller following all stress cycles.

The estimates of the radial Skempton coefficient were systematically lower
than the directly measured values by around 0.2. Despite this quantitative
difference, the qualitative sense of evolution during the large amplitude stress
cycles was similar.

4. Discussion
4.1. Qualitative Behavior of the Apparent Skempton Coefficients

Weobserved general trends of decreasing axial apparent Skempton coefficient
Bz and increasing radial apparent Skempton coefficient Bx with increasing
differential stress. These trends were similar for both directly measured values
(Figure 10) and for values estimated from ultrasonic wave velocities
(Figure 13). The trends inBx andBz are consistentwith previousmeasurements
in Berea sandstone (Lockner & Stanchits, 2002) and our measurements on
thermally cracked Westerly granite samples (Elsigood et al., 2023).

The observed behavior corresponds to a stress‐induced anisotropic response,
where the Skempton coefficients become increasingly anisotropic with the
application of increased differential stress. As indicated by our measurements
of P‐wave and Sh‐wave velocities in the horizontal and sub‐vertical di-
rections, and consistently with previously published results in similar mate-
rials and conditions (e.g., Paterson & Wong, 2005, Section 5.4.3), the initial
increase in axial stress predominantly closes pre‐existing microcracks aligned
perpendicular to the axis of compression, with further increases in axial stress
causing the generation of new tensile microcrack damage with cracks aligned
parallel to the direction of compression. This anisotropic crack orientation

distribution leads to differences in the radial and axial compliances and that in turn leads to the anisotropy in the
Skempton coefficients.

Westerly granite is often considered to have minimal pre‐existing anisotropy, and therefore we would only expect
minimal differences between Bx and Bz prior to deformation. However, it is likely that intrinsic elastic anisotropy
exists even at high confining pressure (Lokajíček et al., 2021). Additionally, the larger than expected differences
could be the result of uncertainties in our measurements, which will now be addressed.

4.2. Uncertainties and Limitations of Direct Measurements

The variation in the repeated measurements of Bx and Bz is quantified using the standard deviation. The standard
deviation of measurements of Bx is much larger than for Bz. Therefore, relative differences between values of Bx
calculated at different stress levels should be considered within the context of these larger errors. In the worst
case, for Bx during cycle 3 at 26 MPa differential stress, the mean is 0.59 and standard deviation is 0.186 and
therefore 95% of values would be expected to lie in the range of 0.23–0.95. In the best case, for Bx during cycle 1
at 18 MPa differential stress, the mean is 0.69 and standard deviation is 0.036 and therefore 95% of values would
be expected to lie in the range of 0.62–0.76. For all values of Bz, the standard deviation is lower than the lowest
value for Bx, and considerably so for most.

One source of the larger variance in the Bx values compared with the Bz values is the repeatability of the stress
steps themselves. Axial stress steps were conducted using a servo‐controlled constant rate (ramp) change, which
was reproducible for both increases and decreases. By contrast, confining pressure was changed in steps using a
hand‐pump and decreased by releasing a valve, so these changes were not as reproducible (see Appendix A for
assumptions on confining pressure changes resulting in only radial stress steps).

Along with the variation within repeat measurements, we must also consider a bias within the measured pore
pressure changes. In low diffusivity rocks, the pore pressure transducers have a delay in measuring the pore

Figure 13. The axial and radial Skempton coefficients calculated using
Equations 7 and 8 from the drained compliance matrix, which were
calculated indirectly. The ultrasonic wave velocities were used to calculate
in‐turn the unrelaxed compliances, crack densities, drained compliances, and
then the Skempton coefficients assuming that the Young's modulus of the
solid matrix (E0) was 89 GPa, the Poisson's ratio (ν0) was 0.22, the bulk
modulus of the fluid (Kfl) was 2.2 GPa, and the porosity (ϕ) was either 0.5%
(magenta) or 0.2% (black).
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pressure changes due to the time taken for pore pressure to equilibrate between the low‐volume transducers and
the local pore volume of the sample (see Figure 4). The delay time will be small for confining pressure changes
because the confining pressure acts on the fluid in the sensor simultaneously with the fluid in the rock pore space.
Therefore, measurements of Bz will likely have been underestimated and the actual Bz will have been higher when
positive and lower when negative.

At the highest loads, time‐dependent variations in radial strain were detected, superimposed on variations linked
to stress steps. These time‐dependent changes indicate the occurrence of inelastic processes, such as brittle creep
(Brantut et al., 2013) or dilatancy recovery (Brantut & Petit, 2023; Holcomb, 1981; Scholz & Kranz, 1974). The
potential for brittle creep was limited by the fact that load was reduced from its peak. Typical strain rates for the
time‐dependent changes observed here were of the order of 10− 9 to 10− 8 s− 1, and no long‐term trend was observed
in terms of pore pressure changes. Therefore, we consider that the long‐term inelastic changes did not signifi-
cantly impact the measurements conducted in response to stress steps. This is supported by the repeatability and
reversibility of the pore pressure response to stress steps.

Since the pore pressure variations were measured locally, there is also a potential bias that could be due to sample
heterogeneity. As illustrated in Figure 4 and verified throughout our data set, all pore pressure transducers
responded consistently in the same sense of variation in response to stress steps. The only differences were in
amplitude (as anticipated from theory, see Figure 3) and in delay time. The variations in delay time are likely due
to variations in local hydraulic diffusivity, as well as the quality of coupling between the sensor stem and rock that
could modify fluid flow at the interface. Such delays only indicate possible variations in transport properties, but
do not imply large differences (and certainly not differences in sign) in the amplitude of the undrained pore
pressure response. The lack of substantial sample heterogeneity is further supported by the excellent agreement
between our local strain gauge data.

4.3. Comparison Between Direct and Indirect Estimates of Apparent Skemption Coefficients

The ultrasonic wave velocities are calculated using a cross‐correlation method, compared with a reference survey
where arrival times are manually picked. The absolute arrival times of Sh‐waves, in particular, are difficult to
determine due to interactions with the arrival of the faster P‐waves. Changes in wave velocity using the cross‐
correlation method introduces minimal errors. However, absolute values of wave velocity are required to
invert for the unrelaxed elastic compliance matrix. Therefore, absolute errors introduced from the manual picks
become important.

Effective medium theory was used to calculate the drained elastic compliance matrix from the unrelaxed
compliance matrix via the crack density tensors. To invert for the crack density tensor, we have to make an
assumption of the elastic moduli of the intact material: E0 = 89 GPa and ν0 = 0.22. These cannot be known
exactly, but they influence the crack densities and therefore also the calculated drained elastic compliance matrix.
We also estimated the axial and radial Skempton coefficients using Equations 7 and 8, which again required
values of E0 and ν0. Additionally, the calculated values of Bx and Bz have a strong dependence on the estimate of
porosity, illustrated by the significant differences between the Skempton coefficients calculated using a porosity
of 0.2% (Figure 13, black points) and 0.5% (Figure 13, magenta points). Therefore, the exact values of the
estimated Bx and Bz should be considered indicative.

While the values of Bx and Bz estimated from ultrasonic wave velocities follows the same qualitative trend as that
directly measured with pore pressure variations, quantitative discrepancies suggest a systematic bias. Beyond the
aforementioned sources of error, it is likely that the dominant problem is the fundamental difference between
static moduli (measured, say, using load‐unload cycles of around 1 MPa amplitude) and dynamic moduli (where
the associated stress changes are orders of magnitude smaller). Even in dry, low porosity materials, it is well
documented that static and dynamic moduli differ, sometimes by up to a factor of two at low pressure, and that this
difference decreases with increasing pressure (e.g., C. H. Cheng & Johnston, 1981). InWesterly granite at 40MPa
effective confining pressure, we expect a discrepancy of the order of 25% (C. H. Cheng & Johnston, 1981; Martin
& Chandler, 1994), which will translate into large errors in Skemption coefficients. Thus, our estimates
(Figure 13) are only qualitative, but they correctly capture the trend with changing conditions. These results are
consistent with previous data on thermally cracked Westerly granite (Elsigood et al., 2023), which showed a
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substantial quantitative discrepancy between measured and predicted Skempton coefficient at low effective
pressure, and a comparatively smaller error at more elevated pressure.

4.4. Hysteresis of Apparent Undrained Poroelastic Coefficients

There is minimal hysteresis in the axial Skempton coefficient at 20 MPa differential stress comparing mea-
surements at cycle 0 with cycles 1, 2, and 3 (Figure 10). However, there is a noticeable trend in the axial Skempton
coefficient at around 200MPa differential stress which is decreasing when measured after each cycle, where Bx at
cycle 3 is lower than at cycle 2, which is itself lower than at cycle 1 (Figure 10). The microstructural changes
induced by the large amplitude (greater than 100 MPa) differential loading cycles, first closing cracks perpen-
dicular to the direction of compression, and then opening cracks parallel to the compressional axis, dictate the
value of the axial Skempton coefficient. Therefore, the reversibility of the microstructural changes dictates the
hysteresis of the poroelastic response. Tensile cracks that were created at high stress, above 220 MPa, are not
expected to close again straight away when stress is decreased to 220 MPa due to only partial back sliding of
cracks (e.g., David & Zimmerman, 2011). It is not until stress is decreased much further that we see Bz return to
positive values.

There was noticeable hysteresis in the undrained Young's modulus (Euz ) at around 20 MPa differential stress
between cycles 0 and 3. However, we are not able to interpret any hysteresis during intermediate cycles 1 and 2
due to the larger variation in measurements (Table 1). This hysteresis is likely due to the damage caused at high
stress, permanently reducing the stiffness.

There was no noticeable hysteresis in the Skempton coefficients in the small rapid undrained unloading and
loading cycles, which is consistent with prior measurements by (Elsigood et al., 2023; Lockner & Stanchits,
2002).

The hysteresis in apparent Skempton coefficients during the large amplitude cycles parallels the hysteresis in
stress‐strain behavior (Figure 6). While only minimal hysteresis in axial and volumetric strain was observed
during cycle 1, large hysteresis loops occurred during cycles 2 and 3. In particular, the volumetric strain expe-
rienced a limited change upon unloading between 340 and 220 MPa, of the order of that expected from the elastic
contribution; the inelastic change was thus nearly unchanged. Remarkably, both apparent Skempton's coefficients
remained also nearly unchanged between those two stresses. Similarly, limited recovery of apparent Skempton's
coefficients was observed during unloading from 400 to 220 MPa in cycle 3. In that same interval, volumetric
strain was nearly constant. Overall, the apparent Skempton's coefficients appear to be strongly correlated to the
(inelastic) volumetric strain.

4.5. A Negative Pore Pressure Response

At high differential stress we measured a decreasing pore pressure response to increases in axial stress (negative
Bz). This effect was measured at four of the nine positions of differential stress in the overall stress cycles: at
307 MPa and then at 223 MPa during cycle 2, and at 404 MPa and then at 222 MPa during cycle 3 (Table 1).

The apparent axial Skempton's coefficient measured at each of the nine stress positions were reproducible for
increases and decreases in axial stress (Figures 7 and 8) and the variation between measurements was small
(Table 1, Bz: SD). In particular, the measurements of negative Bz were consistent in causing both decreases in pore
pressure from increases in differential stress and increases in pore pressure from decreases in axial stress.

Even when the apparent axial Skempton coefficient was negative, the apparent bulk Skempton coefficient
(B = (2/3)Bx + (1/3)Bz) was always positive, due to the contribution of the much higher apparent radial
Skempton coefficient. Therefore, hydrostatic compression of the sample would not result in a decrease in pore
pressure.

4.5.1. Comparison With Previous Data Sets

To our knowledge, negative values of (apparent) Skempton's coefficients in the direction of loading have not been
reported previously in the literature. Our data can be compared to those of Lockner and Stanchits (2002), who
explored the pore pressure changes due to change in mean stress and deviatoric stress with increasing overall
differential stress in Berea sandstone, Navajo sandstone, packed Ottawa sand, and a porous aluminum oxide
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ceramic. Lockner and Stanchits (2002) reported their results in terms of coefficients B and η related to the axial
(Bz) and radial (Bx) Skempton coefficients by

Bx = B −
3
4
η, (9a)

and

Bz = B +
3
2
η. (9b)

The results of Lockner and Stanchits (2002) show that, for Berea sandstone, Navajo sandstone, and Ottawa sand
pack, B is approximately constant with increasing differential stress, and η becomes increasingly negative with
increasing differential stress. This equates to an increasing Bx and decreasing Bz with increasing differential
stress, consistent with the trends we find here. Lockner and Stanchits (2002) found no pore pressure response from
changes in deviatoric stress (η = 0) in the porous ceramic for increasing differential stress. Using Equation 9b, Bz
is negative when B< − (3/2)η. In Berea sandstone, at the highest deviatoric stress shown of 55 MPa (approx-
imately 80% of the failure stress), B ranged from 0.49 to 0.54, and η ranged from − 0.36 to − 0.30 (Lockner &
Stanchits, 2002). Therefore, Bz was in the range of − 0.05 to +0.09 and we can infer that at high stress in Berea
sandstone it is possible to have a negative pore pressure response to increases in axial stress. However, their data
at 80% of failure stress were the least reproducible of their results.

In a follow‐up work, Lockner and Beeler (2003) report exclusively nonnegative values of Bz in Berea sandstone,
but the decreasing trend of Bz with increasing load remained. The same trend was observed in thermally cracked
Westerly granite tested at low overall differential stress (below the dilatancy threshold) in Elsigood et al. (2023).

Therefore, it appears that negative Bz can only be observed in tight, cracked rock under elevated differential
stresses, beyond the onset of dilatancy. In our tests on granite, negative Bz are observed when the rock has been
brought to stresses beyond the onset of net dilation (around 300 MPa, 58% of the failure stress). This threshold
might not have been reached in the tests conducted on porous sandstone by Lockner and Stanchits (2002) and
Lockner and Beeler (2003), possibly due to the large existing porosity that could mask, at least in part, the dilatant
effects of microcracks. As a test of this idea, we consider the behavior of the porous ceramic sample in Lockner
and Stanchits (2002), which is used as a control where the pore space is dominated by equant pores with few low‐
aspect ratio microcracks. The porous ceramic does not show any deviatoric stress dependence (η = 0), but it still
shows some pore pressure response to mean stress with B = 0.12 to 0.13 even at high deviatoric stress. This type
of equant pore will still exist in Berea sandstone even at high differential stress, helping to offset some of the
negative pore pressure response to changing axial stress. By contrast, in Westerly granite, there are essentially no
equant pores to offset the negative pore pressure effects of opening cracks.

4.5.2. Micromechanics of a Negative Axial Skempton Coefficient

We now consider what a negative axial Skempton coefficient (Bz) means in terms of the micromechanical model
of A. H.‐D. Cheng (1997). In Equation 8, the denominator is always positive (as porosity, ϕ, is negligible and the
bulk modulus of the sample will be smaller than the bulk modulus of the solid constituents) so we consider only
the numerator: 3(2S13 + S33) − 1/K0. We express the numerator in terms of the drained Young's modulus and
Poisson's ratio as 3(1 − 2νz)/Ez − 3(1 − 2ν0)/E0, so that

Bz < 0 if
1 − 2νz
1 − 2ν0

<
E0
Ez

. (10)

In rocks subject to triaxial stress states with mostly closed horizontal cracks and a population of open subaxial
microcracks, we anticipate that Ez should be close to E0, so the numerator becomes close to 6(ν0 − νz)/E0.
Therefore, Bz is negative when the Poisson's ratio of the sample is greater than the Poisson's ratio of the solid
matrix:

Bz < 0 if νz ≳ ν0, (11)
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assuming that the Young's modulus of the material is approximately equal to the Young's modulus of the solid
matrix (Ez ≈ E0).

In tight rocks, the situation νz > ν0 is commonly observed during inelastic deformation (e.g., Faulkner et al., 2006;
Walsh, 1965a) and can be interpreted as nonlinear buckling of the loading‐bearing solid between cracks (Ashby &
Hallam, 1986), slip at microscale interfaces (e.g., David et al., 2012, 2020; Walsh, 1965a) and/or slip‐induced
opening of tensile microcracks (e.g., M. L. Kachanov, 1982; Basista & Gross, 1998). However, conventional
models that include microscale slip possibly coupled to tensile crack opening usually predict perfect linear elastic
behavior at the onset of unloading due to nonzero friction that prevents immediate backslip, and thus no change in
Poisson's ratio and significant crack closing/opening (e.g., Walsh, 1965a). Such model predictions are consistent
with the existence of a “deadband” in variations of wave velocities and dilatancy at the onset of unloading; such a
deadband is not always observed (Stevens & Holcomb, 1980), even though there is indeed strong hysteresis in
properties during unloading (e.g., Brantut & Petit, 2023; Passelègue et al., 2018; Zoback & Byerlee, 1975b). The
reversibility we observe in terms of pore pressure change during rapid, small amplitude load‐unload cycles is thus
the manifestation of either (a) direct crack opening/closure not linked to frictional effects (e.g., nonlinear buckling
effects such as those described by Ashby and Hallam (1986)), or (b) slip at near frictionless shear cracks within
the material.

To further examine the conditions under which negative Bz may appear in cracked rocks, we can use the
anisotropic crack model of Sayers and Kachanov (1995) (Equation 3) with A. H.‐D. Cheng (1997)'s expression
(8), which leads to (Wong, 2017):

Bz =
3h(α33 + ψ(β3333 + 2β1133))

2S11 + 2S12 + 4S13 + S33 + ϕ/Kfl − (1 + ϕ)/K0
, (12)

where ψ = − ν0/2 (dry limit), so that

Bz < 0 is equivalent to α33 −
ν0
2
(β3333 + 2β1133)< 0. (13)

From relationships between crack density tensors αij and βijkl (Guéguen & Sarout, 2009), we have

α33 = β3333 + 2β1133, (14)

which makes condition (Equation 13) impossible to satisfy rigorously. In our indirect estimates of Bz from ul-
trasonic data, we did not enforce the equality (Equation 14); we obtained slightly negative Bz, which is incon-
sistent with the underlying model assumptions. Since all the inferred α33, β1133 and β3333 were close to zero, the
indirect estimates only indicate that Bz is also close to zero (which is consistent with the direct estimates), but that
combined measurement errors and model limitations are too large to properly constrain the eventual sign of Bz.

The impossibility of obtaining negative Bz from the model of Wong (2017) originates from the assumption that
open cracks do not open further, close or slide in the computation of effective compliances. It reinforces the idea
that negative Bz likely arises from either nonlinear effects (crack opening/closing) or microscale slip effects
(which are invisible to ultrasonic data and not modeled in Sayers and Kachanov (1995)). Nonlinearity could come
from variations in crack density tensors in response to applied stress (e.g., Holcomb, 1981). Our wave velocity
data showed no resolvable change during each stress step, even at the highest tested applied load, which indicates
a limited nonlinearity in terms of crack density. It is possible that more accurate measurements could detect crack
density variations during stress steps, so we cannot completely rule out this process.

Thus, it appears that the negative apparent axial Skempton coefficient must be the result of nonlinear processes. It
is thus likely that the apparent Bz wemeasured are stress‐sensitive, that is, the value must depend on the amplitude
of the perturbation. We used stress steps of a few MPa, which resulted in a few 10 s of microstrain. Exploring the
effect of the amplitude of the perturbation would be an attractive experimental approach to better constrain the
micromechanical origin of negative (resp. positive) pore pressure changes in response to increasing (resp.
decreasing) axial stress steps.
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4.6. Implications

Undrained poroelastic properties of rocks are key quantities that impact stress and deformation in the Earth's
brittle crust. Specifically, the Skempton coefficient enters in descriptions of short‐term stress transfer around fault
zones following earthquakes (e.g., Jónsson et al., 2003; Peltzer et al., 1998).

In their early work, Cocco and Rice (2002) suggested that fault damage zones might be adequately modeled by an
anisotropic material with a Skempton coefficient that is near zero in all directions except perpendicular to the fault
plane, that is, only fault‐normal changes in stress lead to substantial (undrained) changes in pore pressure. This
assumption is consistent with the existence of microcracks parallel to the fault plane (Wong, 2017). Our new data
on cracked granite are in full support of this hypothesis: in our experiment, the dominance of axial microcracks
leads to high (positive) values of the radial Skempton coefficient, and small (negative) values of the axial
Skempton coefficient.

The fact that the Skempton coefficient in the axial direction can be negative has large implications for stress
redistribution around faults after earthquakes. In which situation will this effect be significant? It is worth noting
that negative axial Skempton coefficients are only observed beyond the onset of dilation, that is, at a stress state
that is commensurate with the frictional strength of the faulted rock (e.g., Hadley, 1975, Chapter 1). Thus, we
expect that only the regions that experienced high stress prior to an earthquake will have a negative Skempton
coefficient in the direction of the largest principal stress. In practice, the stress state in the crust is generally
considered to be close to the frictional strength of faults (Brudy et al., 1997; Zoback & Healy, 1992), so that the
material around optimally oriented faults is not stressed enough to have a negative Skempton coefficient. Thus,
regions where Skempton can be negative are likely to be around misoriented faults (or branches) and geometrical
irregularities such as transpressive relays. Systematic investigations are required to determine precisely the extent
and conditions where a substantially negative Skempton effect can be observed in nature.

5. Conclusions
During deformation of Westerly granite at elevated pressure and ambient temperature, the axial and radial
Skempton coefficients become progressively anisotropic with increasing differential stress: the axial Skemption
coefficient Bz decreases, and the radial Skempton coefficient Bx increases with increasing load. The stress‐
induced anisotropy mostly recovers when differential stress is removed. There is hysteresis between the
loading and unloading curves; where the anisotropy is not recovered after an initial reduction in differential stress.
This is comparable to similar hysteresis in pore volume, elastic wave velocities and permeability in cyclic loading
tests performed on Westerly granite (Brantut & Petit, 2023; Holcomb, 1981; Mitchell & Faulkner, 2008; Pas-
selègue et al., 2018; Zoback & Byerlee, 1975a, 1975b) and is likely due to the difference between the onset of
sliding on shear cracks when loading and the onset of backsliding when unloading.

The apparent axial Skempton coefficient Bz becomes negative at high stress, that is, an increase in axial stress
caused a decrease in pore pressure. The negative pore pressure effect was repeatable for unloading and reloading
of the sample, and is correlated to the existence of subaxial dilatant microcracks that dominate the volumetric
strain response of the rock. Dilatancy under compression is considered a non‐linear process caused by sliding on
shear cracks leading to the opening of tensile cracks. However, the reversibility of the process from unloading and
reloading of small axial stress suggests that the initial microstructural changes causing dilatancy are approxi-
mately linear.

Attempts to make predictions of Skempton's coefficients from dynamic elastic wave velocity data produce poor
quantitative agreement, even when the data are suitably corrected for frequency effects. This discrepancy is likely
due to accumulated errors in the inference of dynamic moduli and crack density tensors from possibly inaccurate
velocity data. However, the sense of variation and orders of magnitudes of Bx and Bz are still correctly captured by
the predictions.

Appendix A: Radial Stress Changes
Under undrained conditions, pore pressure changes with stress due to the Skempton effect are given by
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Δp =
2
3
ΔσxBx +

1
3
ΔσzBz, (A1)

where Δp is the change in pore pressure, Δσx and Δσz are the changes in
radial and axial stress, respectively, and Bx and Bz are the radial and axial
Skempton coefficients, respectively. By assuming confining pressure
changes produce only changes in radial stress, Bx was calculated as
3Δp/2Δσx, but if this assumption cannot be made then we must correct Bx for
axial stress changes, according to

Bx =
3
2
Δp
Δσx

−
Δσz
2Δσx

Bz. (A2)

The magnitude of the correction factor is small because both Δσz/2Δσx and
Bz are small. The axial stress change with confining pressure (Δσz/2Δσx) is
mostly between − 0.25 and 0.25 (Figure A1) and Bz was between − 0.2 and
0.2. Therefore we would expect the correction to Bx to be within 0.04. Indeed,
if we corrected our calculated Bx values, the worst case change would be less
than 0.03, and in most cases it would be less than 0.01. Given the large errors
shown in Bx (Table 1), incorporating these correction factors would not
significantly effect the main results.
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