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Lecture 1: Few revisions

1.1 Sets

1.1.1 Common sets

By convention, the following symbols are reserved for the most common sets of numbers:
g — empty set;
N — natural numbers, N = {0,1,2,...};

Z —integers, Z={...,—2,—1,0,1,2,... };

Q - rational numbers (from quotient), Q = {]—Q,p €Z,q¢€ N*};
4q
R — real numbers, R = {ajas...a,.ap41...,Vi € N,a; € N,;p € N*};
C — complex numbers, C = {a + 1403, (o, ) € R?*}. a (resp. ) is referred to as the real

part (resp. the imaginary part), and the imaginary unit i is defined by its property i? = —1.

1.1.2 Product of sets
Let F and F' be two sets:

— ExF={(z,y),z€ E,yeF}
— E x E = E? is the set of all couples of E;

— E x ... x E = E" is the set of n-tuple of F.

1.2  Functional analysis
1.2.1 Asymptotic notation

Let f and g be two functions in the neighbourhood of a, such as g is not equal to 0 in the
neighbourhood of a.
f(@)

The function f is negligible with respect to g in the neighbourhood of a, if lim ﬂ =0,
z—a g(x
and f is denoted: f = o(g) (called little-0).

In other words, f(z)/g(z) tends to zero as x tends to a and the limit of f/g at a is zero.
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1.2.2 Continuity
A function f: E — R is continuous at z¢ € E if lim f(z) = f(x).

T—T0

To go further, f is continuous at xg if, for e = 0, f(xg+€) = f(xo) + o(1).

1.2.3 Derivability

A function f is differentiable at z( € F if M has a limit when x — xy. This
r — Xy
limit is referred to as the derivative of f at z(, denoted f'(x).
d,
Other notation: f' = —f
dx

If f(x,y) is a function of several variables (x and y), the partial derivatives of f are the
derivatives of f with respect to one of its variables (either x or y), denoted:

of (x,y)  Of(x,y)
ox of Jy

Common derivative:

Let ¢ € R be a constant , Vo € R:

f(z) = ¢ has for derivative f'(z) = 0;

f(z) = cx has for derivative f'(z) = ¢;

Vz € R, Vn € N, f(z) = ca™ has for derivative f'(z) = cnz"!;

Ve € R*, Va € Z, f(z) = ca® has for derivative f'(z) = caxz®! (and so
f(z) = 27! = = has for derivative _—2),
4 77

Ve € RY, Va € R, f(z) = ca® 1has for derivative f'(z) = caz®! (and so
= 12 = \/z has for derivative —=);

flx)==z vz has for derivative 2\/5),

f(z) = e has for derivative f'(z) = ce;

1
Vz € RY, f(z) = In(x) has for derivative f'(z) = —.
7

V a a constant € R, Vz € R, f(z) = a” has for derivative f'(z) = a”In(a).

Operations on derivative: Let ¢ € R be a constant and f and g two functions :
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— scalar multiplication: (cf) = cf;
— sum of two functions: (f +g) = f' +¢/;
— product of two functions: (fg)' = f'g+ f¢';

— function composition: (fog) =g f'og;

— inverse function: (%) = (_fJ;/)

/ ’o /
— quotient of two functions: (i) = (M)
g g

1.2.4 Bijectivity
A function f : E — F is injective for all a and b in E, if and only if, f(a) = f(b) implies

a=>b.

A function f : F — F is surjective, if and only if, for every element y € F', there is at least
one element z € E such that f(z) =y.

A function f : F — F' is bijective (or one-to-one correspondence), if and only if, f is
injective and surjective at the same time, 7.e. every y € F' has a unique counterimage with

f:
Vye F,lz € E, f(z) =y
If f is bijective, one can define a function g that associates to every y € F' its counterimage

with f. It verifies go f = IdF and f o g = IdF', where IdE and IdF represent the identity
function: Vx € E, go f(x) =x and Yy € F, fog(y) =y).

g is called inverse function of f, g = f~1.

1.2.5 Differential equation

A differential equation is an equation involving an unknown function f and at least one
of its derivatives (f’, f”,...). If the unknown function f only involves derivatives with respect

to one variable, then the differential equation is called an ordinary differential equation
(ODE).

For example, V(a,b) € R, the differential equation of first order f’ 4+ af = b has for set of
solutions the functions defined by:

b
VAER, Vo €R, fla)= e+ -
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The value of the arbitrary constant A can be found by assuming particular conditions (e.g.
initial conditions).

If the unknown function involves derivatives with respect to two or more variables (z, v, ...),
then the differential equation is called a partial differential equation (PDE).

1.3 Matrix
1.3.1 Definitions

— A matrix is any rectangular array of numbers. If the array has n rows and m columns,
then it is an n X m matrix, denoted A,, ,,. One dimensional matrices are called row vectors
for a 1 x m matrix or column vectors for a n x 1 matrix. One uses the notation (a; ;) to refer
to the number in the ¢ — th row and j — th column. If n =m, A,,,, = A,,,, = A,, is called a
square matrix.

— The zero matrix or null matrix is a matrix with all its elements equal to zero, denoted 0,, .

— The identity matrix is a square matrix with ones on the main diagonal and ze-

ros elsewhere, called I,. The identity matrix is neutral with regard to products: VA,,
AxI,=1,x A= A.

— The trace, called tr(A), of a square matrix A is the sum of its diagonal elements.

1.3.2 Matrix operation

— The transpose of a matrix flips a matrix A = [a, ;| over its diagonal: it switches the row

and column indices of the matrix and gives another matrix denoted as ‘A (also called A’,
A or AT): TA = [aj,).

— The matrix addition is the operation of adding two matrices of the same dimensions, A, ,,
and B, ,,, by adding the corresponding elements together.

a b e f\ _ [(a+e b+ f
¢ d) T\ n) " \ctg d+n

— The multiplication by a scalar A: A(a; ;) = (Aa; ;).

)\ (@ b  [Aa XD
c d)  \)A M
— The matrix product : we can only multiply two matrices together if the number of columns

of the first matrix equals the number of rows of the second matrix.
Let A, and B,,, be two matrices: A, ,,B,,, exists but B,, ,A, ,, does not exist if n # p.

a b\ (e f\ [(ae+bg af +Dbh
c d)\g h) \ce+dg cf+dh
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Some properties on the matrix product:

Let A, B, and C be three matrices (such that their products exist), and g and A two
scalars :
i) AB # BA in general: the matrix product is not commutative;
ii) A(AB) = (MA)B = A(AB): the matrix product is associative;
iii) “(AB) = 'B'A

iv) A(B+C) = AB + AC and (A + B)C = AC + BC.

v) AB = 0 does not imply A =0 or B = 0. Moreover, AC' = BC' does not imply
A= B.

1.3.3 Determinant of a square matrix
The determinant is a value that can be computed from the elements of a square matrix

A, denoted det(A) = |A|.

. a b a b
Forn:2,1fA—(c d),det(A)—c d

‘:ad—bc.

If n > 2, the determinant is defined recursively using the Laplace formula with regard to a
row or a column and using cofactors. For example, if n = 3:

a b c 0 0 O © © O © © O
det(A)=|d e fl=al® e f|—-bld @ fl+cld e ©
g h 1 @ h 1 g @ 1 g h ©
e fl _,|d f d el _ . . (i _
=al, b‘g ; +c’g h‘—a(ez hf)—b(di —gf)+ c(dh — ge)

For a triangular matrix, its determinant is the product of its diagonal elements.

1.4 Counting

The cardinality of a set E, called card(FE) is the number of elements of the set E.
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Vn € N, the number of permutations of the n elements, denoted n! (and called n-
factorial), is defined as:

) Ix2x.ox(n—1)xn ifn>0
R I if n = 0.

An arrangement is an ordered subset of k elements among n. The number of arrange-
ment A¥ of k elements among n is defined as:

A combination is a (unordered) subset of k elements among n. The number of combi-
nation C* is defined as:

1.5 Discrete probability

1.5.1 Probability space

Let’s assume a randomized experiment (when the outcome is not deterministic, but the
probability of each event is known) defined by a probability space (2, P):

— () is the set of all possible outcomes, called sample space.

— P is the probability distribution associated to the outcomes of the experiment. P
verifies:

Vo € Q, P(x) € [0,1]

Y P(x)=1

e

An event F is a subset of Q and verifies: P(E) = Y P(x)

zel

If all events of 2 are elementary events (i.e. all events are equiprobable), then VE € Q:

Let (€2, P) be a probability space and A and B two events from this space:

(i) P(A)€0,1];
(i) P(@)=0and P(Q) =1

(iii) The complementary event of A, denoted A or A°, verifies: P(A) =1 — P(A);
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(iv) The probability of having A and B is denoted P(AN B) ;

(v) The probability of having A or B is: P(AUB) = P(A)+ P(B)— P(ANB) ;

(vi) The events A and B are incompatible if and only if AN B = @. Then, P(AUB) =
P(A) + P(B).

1.5.2 Conditional probability and independence
A. Conditional probability

Given a probability space (€2, P) and two events A and B with P(B) # 0. The conditional
probability of A given B, denoted P(A|B) or Pg(A), is defined by:

P(ANnB
Consequently, P(AN B) = P(A|B)P(B)
One can deduce:
(i) the Bayes’ theorem:
P(BJA)P(A
P(A|B) = P(BIA)P(4) ]lD()B)< )

(ii) the law of total probability:

P(A) = P(AN B) + P(ANB) = P(A|B)P(B) + P(AN B)P(B)

B. Independence
Two events A and B are independent if and only if P(AN B) = P(A)P(B).

Similarly, if P(B) # 0, A and B are independent if and only if P(A|B) = P(A).

1.6 Taylor series

The Taylor series of a function is a series expansion of the function in the neighbourhood of
a point. For example, the Taylor series of a function f(z) around a certain value a is

S —a) @0 foe-af e -ar

f(l’) - f(a) 1 21 3l n!

The Taylor series is very useful to approximate a complex function around a certain point
and is often used in the analysis of non-linear biological system.
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1.7 Other revisions

—V (a,b) € R?, (a+b)* =a?+2ab+ b?, and a* — v* = (a — b)(a + D).

—V (a1,...,a,) € R™, (a; + ... +an)2:Za?+ZZaiaj
i=1

i=1 j#i
— Two vectors v; = (z,y) and vy = (2/,y) are collinear if 3 a € R, v; = avy that is to say,
vy +ya' =0;

— V0 €R, cos(d) +isin(f) = e¥.
— f:R — Ris an even function if and only if V z € R, f(—x) = f(z).

— f:R — Ris an odd function if and only if V z € R, f(—x) = —f(z).
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Lecture 2: Elementary linear algebra

2.1 Linear map and matrix
2.1.1 Linear map

A linear map f : E — F'is a mapping that preserves the operations of addition and scalar
multiplication:

fx+y)=f(x)+ f(y)
V(x,y) € E, VAER :

fOx) = Af(x)

Any vector x in E can be represented as ¢y bg+c¢; by+co ba+.....4+¢, b, where ¢, ¢y, ..., ¢, are
the coefficients and B = (bg, by, ....., by ) is a basis for E. Therefore, dim(E) = n = dim(R").

The canonical basis (or standard basis), denoted C, is the set of unit vectors pointing in
the direction of the axes of a Cartesian coordinate system. For n = 2, the canonical basis is
e1=(1,0) and e3 = (0,1). For n = 3, the canonical basis is e; = (1,0,0), e3 = (0,1,0), and
€3z = (O, O, 1)

2.1.2 Matrix representation of a linear map

A linear map from E to F' can always be represented by a matrix. Reciprocally, one can
associate a unique linear map to any matrix. If A is a real m x n matrix, then f(x) = A x
describes a linear map R” — R™.

For instance, a linear map

R? — R? 0 b
g: (11:1) <a:171 + bx2> can be represented by the matrix A = ( ) .
— c d
To cxy + dxs

A is called canonical matrix denoted Mat(g). Generally, the canonical matrix of a R"
linear map is a unique n x n array.

R? — R? 1 3
For example, h : 1 1 + 37 can be represented by the matrix A = .
T — 2x 0 =2

2 —2ZT2

The matrix A turns the vector x = <§1> = r1€1 + Te€y into the vector h(x) = A (:171) =
2

X2
<x1 + 3x9

9 > , where (x,x2) are the coordinates of the vector z in the canonical basis defined
—2T2

by the vectors of the canonical basis e; = ((1)) ,€9 = (2)
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2.1.3 Operations on linear maps
Let’s consider n € N, two linear maps f and ¢g in R” — R", a vector x € R", and a basis B
of R™. Based on the properties of matrices, one can deduce the following properties of linear
maps:

— Matg(f +g) = Matg(f) + Mats(g);

— Matg(f o g) = Matg(f)Mats(g);

— Matg(f(x)) = Matg(f)Matg(z).

2.2 Invertible matrix

A square matrix A,, is invertible if it exists a matrix B,, such as AB = BA = 1,. Then, B
is the inverse of A, denoted A~

Let’s consider the linear maps f and g corresponding to the matrices A and B, one can
deduce that fog = Id, i.e. fis bijective and g = f~!. In other words, a matrix is invertible
if and only if its associated linear map is bijective.

Forn=2 A= (CCL Z) is invertible, if and only if ad —bc # 0, i.e. if and only if det(A) # 0,
e 1 d —=b) _ 1 d —b
ad —bc \—c a det(A) \—c¢ a

In general (n > 2), A, is invertible, if and only if det(A) # 0.

and its inverse is:

For higher dimension matrices, 2 methods can be used to find the inverse:

Let’s consider a new matrix A which is now a 3 x 3 matrix,

by by b3
— Method n°1: Set a 3 x 3 matrix B = [ by b5 bg | and solve the system A x B = I3. So,
by bs by
B is the inverse of A.
I Y1
— Method n°2: Take two column vectors X = | x5 | and Y = | yo | . Consider the system
T3 Y3

A x X =Y and express all the z1, x9, 3 as linear combinations of ¥, 72, y3. The inverse is
the matrix formed by taking the coefficients of the previous linear combinations in the right
order.

10
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Systems of linear equations can be written with matrices:
For example, let’s consider the system (E) of linear equations:
To + T =0
(E):Q o422 +29 =1
To+21+2x, =1

(E) can be written using matrices:

110 To 0
Ax=cwithA=|1 2 1|, x=|x;],andc= |1
11 2 X9 1

2.3 Eigenvectors and eigenvalues

An eigenvector of a matrix A is a non-zero vector, v € R™\ {0}, such that it exists a scalar
A € R that satisfies Av = Av. A is called the eigenvalue associated with v.

A is a eigenvalue of A <= Iv #0,Av = \v

v #£0,Av — A\[,v=0
Iv#0,(A—A,)v=0

0 is an eigenvalue of (A — AI,,)
(A — AIL,) is not invertible
det(A — AI,,) = 0.

171110

To get the eigenvalues of A and their associated eigenvectors, one has to:

— Find the eigenvalues A by solving det(A — AL,) = 0.

gl
— For each eigenvalue A, find the associated eigenvector by finding | x5 | such as:

Geometrically, an eigenvector associated with a real non-zero eigenvalue points in a direction
of the vector space that is stretched by the transformation A and its eigenvalue corresponds

11
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to the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.
Conversely, an eigenvalue of zero indicates that the transformation is collapsing at least one
dimension (some non-zero vectors are transformed into the zero vector).

2.4 Change of basis

A vector space can have many bases and sometimes working with one basis is easier than
with another. Therefore, a change of basis may be necessary. For instance, one can perform
a change of basis from the canonical basis C to a new basis B.

Given two bases By = (uj,us) and By = (vy,Vvs), the matrix of change of basis from B; to
Bs, denoted Pg, 5,, is the matrix composed by the coordinates of the vectors B; in the basis
Bl :

Vi V2
P By,B, = U1 & o
U9 <& <
The matrix of change of basis has the following properties:

Mat32(f) = Pz;ll,B2 MatBl(f) PBl,Bz (1)
Matgy(x) = Pg 'y, Matp (). (2)

2.5 Diagonalizable matrix

Eigenvectors of a linear map f (and its associated canonical matrix A) directly indicate the
directions of the stretching operated by the linear transformation. Thus, working in the
basis B formed by the eigenvectors of A is much easier, as the linear map f can be directly
represented by a diagonal matrix in the basis B. Thus, a change of basis from the canonical
basis C to basis B of eigenvectors is essential. This is the general idea of the diagonalization.

A square matrix A is diagonalizable if it exists an invertible matrix P that verifies A =

PDP~!, where D is a diagonal matrix. The diagonal entries of the matrix D are the eigen-
values of A, and the column vectors of P are the right eigenvectors of A.

12



Training Maths & Stats 2020 Master Imalis - ENS

Qoo Qo1  -.- Qop /\0 0 0
A — a1 ayp ... Qip _ PDP_I _p 0 )\1 0 P_l
Ano Gpi - Qpn 0O 0 ... A\
Voo Vo1 .-+ Uon
where p = | V10 V1L e Uln , and Mg, Ay, ..., A\, are the eigenvalues that respec-
Uno Uni Unn
Voo Vo1 Von
tively correspond to the eigenvectors oA , et R Sk
VUno U1ln Unn
L J

Matrix operations are far easier on diagonal matrices, for example:
A*=PDP'PDP™' < A*=PD*P' — A"=PD"P!

thus, one would rather work with the diagonalized matrices instead of the original ones. This
is very useful when analyzing biological systems.

2.6 Other properties

— A symmetrical matrix is always diagonalizable ;
— Given a diagonalizable matrix A, det(A) =[] A; and tr(A4) => A ;

— The characteristic polynomial associated with the matrix A, is defined as:

P'R'—> R )
) N — det(A—=)I,)

P, has the eigenvalues of A as roots. A is diagonalizable if and only if P, has n roots or
p < n roots with a total roots’ degree equals to n.

— A is not invertible if and only if det(A) = 0, i.e. 0 is an eigenvalue of A.

13
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Lecture 3: Dynamical systems

3.1 Mathematical modeling of biological systems

Biological systems are dynamical systems changing through time. Thus, they are often mod-
elled by mathematical equations that describe the evolutions of a given variable through time
(e.g. the ratio of an activated enzyme X (t¢), the membrane potential V' (¢), or the number
of individual of a species in a population N(¢)). The analysis of the variable, X, V', or N
as a function of time belongs to the study of dynamical systems. Systems that relate the
variables to their time derivatives constitute systems of differential equations.

3.1.1 Example in one dimension

Let’s consider a bacterial population characterized by a constant division time of 1 hour
between each generation and N (t) is the number of bacteria at time ¢. One can deduce:

N(t1) = 2N(to), N(tz) = 2N(t;) = 2°N(ty)... ¥n €N, N(t,) = 2"N(ty),

that can be generalized in continuous time: V¢ € R, N(t) = 2'N(t,)

In a short time period, between ¢ and ¢ + dt with dt — 0, one can quantify the variation
of number of bacteria, i.e. by definition of the derivative:

N(t+dt) — N(t)

— — N'(t) = In(2)2'N(to) = In(2)N (%)

then,
N(t+dt) — N(t) = AN(t)dt + o(dt)

with A = In(2): at the first order d¢, the variation of number of bacteria between ¢ and ¢ +dt
is proportional to d¢ and to N(t): biological systems can often be modelled in first order
differential equations.

3.1.2 Example in two dimensions

Given a system of two interacting species X and Y, with the variables z(t) the number of
individuals from species X and y(¢) the number of individuals from species Y at time ¢, one
can propose this model for a small time variation:

z(t+dt) —z(t) = a dt z(t) + b dt y(t) + o(dt)

y(t+dt) —y(t) = cdt z(t) + d dt y(t) + o(dt)

with the parameters a, b, c,d € R. By dividing the system by dt — 0:

14
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Combing these systems of differential equations with matrices can strongly help their reso-

lutions.

2/ (t) = ax(t) + by(t)

y'(t) = cx(t) + dy(t).

3.2 Phase space of a dynamical system

Given a general first order dynamical system:

One can represent a phase space, i.e. a plot (z,y) that has the following objects:

(i) the solutions: trajectories followed by the system given a set of initial conditions.
(ii) the force field: tangents of the trajectories in different points of the space phase.

(iii) the isoclines (or nullclines): the curves in which each variable remains constant from
one time point to the next (in the x’,y" system, it is the curves 2’ = 0 and 3’ = 0).

o' = f(z,y)

y = g(z,y)

)

S S A A

e
B e
- |
|
|- -
- | .
- | - - -
-i| - - W
| - -
- - -

~

Y

R
80 100

Figure 1: Phase space (x,y): some solutions are plotted in blue, examples of isocline are

represented in red, and force fields in grey.

A fixed point of a dynamical system is reached when all the temporal derivatives of the

system are equal to zero, i.e. it corresponds to:

If the system is initially located at the fixed point, it will never move: fixed points are

f(@,9) = g(2,9) =

0.

the intersection of the isoclines ' =0 and 3’ = 0.

15
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The stability of a fixed point is defined by the evolution of the system when it starts at
an initial point close to this fixed point. The fixed point is stable (resp. instable) is the
system converging toward the fixed point (resp. diverging away from the fixed point).

Sometimes, differential equations do not present mathematical explicit solutions. However, it
is always possible to approximate the trajectories of the system in the phase space for a given
initial condition. Several methods exist. For example, the Euler method (the simplest
method) proposes the approximation (Z,7) of the trajectory given the initial conditions
(%0, yo) and a short time step dt:

T(t+dt) =z(t) +dt f(Z,7)
Vi,

g(t +dt) = y(t) + dt g(z,7).

3.3 Solving a linear system

Let’s consider the dynamical system (£):

x'(t) = Mx, where M = (a b) and x = <$1>
c d T

Let’s assume that M is diagonalizable with real eigenvalues A\; and Ay and their correspond-

. . (751 1
g eigenvectors u = and v = .
U2 V2

In the basis B formed by its eigenvectors, (F) can thus be expressed using the diagonal

matrix D = A0 = P~ 'MP, with:
0 X

upr M1 - 1 V2 —U1
P = and P l=——
Uy V2 U1 Vg — Ug V1 \ U2 Uy

Thus, the system (F) is equivalent to:

x'(t)=P D P ' x(t) —= P 'X/(t)=D P 'x(t)

nl(t)

Let’s define n(t) = (n )
2

) = P~'x(t), the system (E) can thus be written as (E'):

n'(t) = Dn(t)

Instead of working with M, we can now work with the diagonal matrix D, which corresponds
to a change of basis (see Lecture 2).

Then, the system (E’) can be directly solved (see Lecture 1):

16
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eMt

n(t) = Nn(0) where N = ( 0 ert

) <= x(t) = PNP 'x(0)

Thus, given an initial condition x(0), one can always find the value of x(t). However, knowing
the value of x(t) is not the only goal when studying a system. Frequently, one would like to
how the system behaves given enough time, e.g., whether the system converges into a set of
values, diverge toward infinity or cycle. This can be achieved by studying the fixed points
of the system and their stability.

3.4 Stability of the fixed points
3.4.1 Linear case

Let’s suppose the system (F) :

x(t) = Mx(t), where M = <i fz)

The eigenvalues of M are the solutions of the equations det(A — AI,,). M is diagonalizable
if the equation admits two solutions A; and Ag. The eigenvalues can be real or complex (in
this latter case A\; and Ay are conjugated).

A.If Ay and A5 € R*:

As A\; and Ay € Rx, A is invertible, and ad — ¢d # 0. Thus, (0,0) is the only fixed point of
(E). The stability is determined by the behavior of the system in the neighborhood of (0, 0)
with x(0) # (0,0). According to the result of section 3.3, we could look at the stability of n
since it has a simpler form: n(t) = (eM?!, e*2!):

(i) if Ay > 0 and Ay > 0: n(t) goes to +00. Then, (0,0) is an unstable fixed point.
(i) if Ay < 0 and A < 0: n(t) goes to 0. Then, (0,0) is a stable fixed point.

(iii) if Ay <0 < Ag or Ay < 0 < A;: one axis converges and the other diverges.
(0,0) is a saddle point.

B.If A\; =0 and A\ € Rx:

It exists an infinity of fixed points (the line ny = 0) and (Zlgg) = (n m(0) )
2

So, if Ay < 0 (resp. Ay > 0) all fixed points are stable (resp. unstable).

17
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C. If A\; and )\, are not real:

If the eigenvalues of M are complex with the form A = r + iw with (r,w) € R x R*, we can
still look at the behavior of n(t):

Thus, the system (E) has the following solutions:
z1(t) = Cie™ cos(wt + ¢1) + Coe™ sin(wt + ¢y)
zo(t) = Cie cos(wt + ¢o) + Coe™ sin(wt + ¢o).

The behavior of the system depends on the sign of the real part r of the eigenvalues:

(i) if r < 0, the fixed point is stable and the system oscillates with decreasing amplitude.
(i) if » > 0, the fixed point is unstable and the system oscillates with increasing amplitude.

(iii) if » = 0, the fixed point is not unstable or stable and the system oscillates on an ellipse
(depending on the initial conditions).

D. If M is not diagonalizable:

2 1 _1/2 Yy

Thus, it is not possible to find two non-collinear eigenvectors. It is then impossible to find
a general formula for the systems. The trajectory of the system can only be approximated
by simulations.

/ —
For example, M = (i}) = (1/ 2 1 ) (a:) only has one eigenvalue of order 1, A = —1.
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Figure 2: Stability of fixed points in R?: if the eigenvalues are real: A) negative
eigenvalues, B) positive eigenvalues, and, C) one positive, one negative;
if the eigenvalues are complex: D) their real part is negative, E) their real part is negative,
and, F) if their real part equals 0.

3.4.2 Non-linear case

Most of the dynamical systems are not linear, hence, often do not have explicit solutions.
The study of a non-linear system is limited to the study of its fixed points and their stability.
The idea is to find a fixed point of the system and approximate the non-linear system in the
neighbourhood of this fixed point by a linear system. Given a simple system:

7= fla,y)
(B): { Y =g(z,y).

Let’s suppose that the system (F) has a fixed point (Z,¢). At the point (z,y) = (Z+€,, J+¢€,)
that is very near the fixed point, we want to analyse whether the system is converging or
is pushed away from the fixed point by looking at the changes induced by these small
displacements (€, €,)

dee _d(z—3) _de
dt dt  dt
de, _dly—9) _dy
dt dt dt

given that z, y are the equilibrium point, therefore, they do not change with time.
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Because we are analysing the point that is very near the fixed point, we have:

de,,
T f(%y)
de,
o g(l’ay)

The Taylor series of f(z,y) and g(x,y) around the fixed point (Z,y) are

flx,y) =f(2,9) + W(x —I)+ W(y — §) + higher order terms
x Y
9(z,y) =g9(z,9) + 8gg: y)( — )+ %ﬁ;y)(y — ¢) + higher order terms

At the fixed point, f(Z,9) = g(Z,9) = 0, and since we consider the point very near the fixed
point, the higher order terms are negligible. Therefore, this system

ég__ﬁfﬁay)‘ . 8f@xyn .
dt o or @9~ ay (&9) Y
de,  Og(x,y) dg(x,y)

T [P oy | ey

become a linear system with respect to (e, €,). The Jacobian matrix, denoted J; 4, is then
used to characterize the behavior of the system around the fixed point.

of of

dx Oy
Jiag) =

dg g

oxr 0Oy (2.9)

Thus, the study of the stability of the fixed point can be done by analysing Ji; 5 (see pre-
vious section).

Example: the Lotka-Volterra system:
Let’s consider two species of prey and predator with x the density of preys and y the density
of predators and the system:

¥ = oar—Pry : n
{y’ I with a, 8,7, and § € R™.

Here, we suppose a = =r and v =9 = m:

{y = rz(l-y)

/

y = —my(l-u).
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The two fixed points are (0,0) and (1,1) with the respective Jacobian matrices:

r 0 0 —r
J(070) = (0 _m) and J(l,l) = (m 0 )

with the respective eigenvalues: Jigo) : A € {r,—m} and J(1 1) : A € {iy/rm, —iy/rm}.

The fixed point (0,0) is then a saddle point, and the fixed point (1,1) is not stable or unstable:
the system oscillates in an ellipse in the neighbourhood of this point.

Effective

T T T T T T T T T T T
0 1 2 3 4 0 2000 4000 6000 8000 10000

X t

Figure 3: Lotka-Volterra system (example with m =r = 0.1 and (zo,yy) = (0.8,0.2)):
A) Phase space (z,y) between t=0 and t=10,000
B) Temporal representation of the system: x(t) in green and y(¢) in orange.

3.5 Bifurcation

A bifurcation in a dynamical system occurs when a small continuous change of a parameter
value (the bifurcation parameter) causes a sudden qualitative change of the behavior of the
system.

There are different kinds of bifurcations depending on the change of the behavior of the
system:

The transcritical bifurcation: a transcritical bifurcation occurs when a fixed point inter-
changes its stability with another fixed point as the parameter varies. For instance, given the
system Vo € R, 2/ = az — 2* = z(a — ), the two fixed point x = 0 and = = « interchanges
their stability according to the sign of «, the bifurcation occurs at oo = 0.
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Figure 4: Transcritical bifurcation (T'C). Thick lines are stable fixed points, dashed lines
are unstable fixed points

The pitchfork bifurcation: a pitchfork bifurcation occurs when the system transitions
from one fixed point to three fixed points. For instance, given the system Va € R, 2/ =
ar — 23 = x(a — 2?), for a < 0, the system has only one stable fixed point at z = 0, but for

a > 0, there is one unstable fixed point at z = 0 and two stable fixed point at = = +/a.

(44

Figure 5: Pitchfork bifurcation. Thick lines are stable fixed points, dashed lines are
unstable fixed points

The saddle-node bifurcation: a saddle-node bifurcation (or fold bifurcation) is a bifur-
cation in which two fixed points collide and annihilate each other. For instance, given the
system Vi € R, 2’ = pu+ 22, for u < 0, the system has two fixed points (a stable fixed point
at —/—p and an unstable fixed point at +,/—pu). For u = 0, there is a unique stable fixed
point called a saddle-node fixed point. For u > 0, there is no more fixed point.
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.o
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L0

Figure 6: Saddle-node bifurcation. Thick lines are stable fixed points, dashed lines are
unstable fixed points
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Lecture 4: Probability

4.1 Discrete probability

The goal of this section is to study randomized experiments, i.e. experiments with non-
deterministic outcomes, but for which the probability of each outcome is known.
Discrete probabilities deal with experiments that have a finite number IN of outcomes.

4.1.1 Random variable

A real-valued random variable X is a function defined on the set of outcomes of a
randomized experiment: X : {2 — R. It is any function that gives a real value depending on
the outcome of the experiment. X (£2) is the codomain of X.

A. Probability distribution

Let’s consider a random variable X on (2, P), its distribution Py is the function that gives
the probability of each value of X.

Vo€ X(Q), Px(x)=P(X=2)= > Pw).

B. Cumulative distribution function

Let’s consider X a random variable, its cumulative distribution function (CDF), Fl,
is the function defined as:
Ve e R, Fx(z) = P(X < x).

The cumulative distribution function is increasing, and has for limits 0 and 1 in —oo and +oo
respectively. A cumulative distribution function fully describes its corresponding random
variable.

C. Expected value and variance

The expected value of a random variable X is its mean value on the set of possible

outcomes:
E(X)=Y PwX(w)= > zP(X=uz).

weN zeX ()

The variance of a random variable X is the mean of the squared deviation of a random
variable from its mean:

V(X) = B((X - E(X))*) = B(X?) - E(X)”
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The standard deviation of X is o(X) = /V(X).

The expected value and the variance have the following properties, V(a,b) € R?, and X and
Y two random variables:

(i) E(aX +b)=aE(X)+b and E(X+Y)=E(X)+ E(Y)

(ii) V(aX 4+ b) = a*V(X) and if X and Y are independent V(X +Y) =V(X)+ V(Y)

D. Independence

Two random variables X and Y are independent if and only if:

V(i,j) € X(Q) xY(Q), P(X =) (Y =j)) = P(X =9)P(Y = j)

4.1.2 Common discrete distributions

A. Uniform distribution U(n)

A random variable X follows a uniform distribution with a unique parameter n, X ~ U(n),
if its n outcomes are equally likely. In other words, X takes the values 1,2,...,n with
equiprobability:

vie {1,2,....n}, PX(@'):P(X:Z'):%

_n+1 n®—1

E(X) 5 and V(X) =

B. Bernoulli distribution 5(p)

A random variable X follows a Bernoulli distribution with a unique parameter p, X ~ B(p),
if X takes the value 1 with probability p and the value 0 with probability ¢ =1 — p:

o D if v=1
P(X_“’)_{ 1—p if 2=0

E(X)=p and V(X)=pq=p(l—p)

A Bernoulli experiment corresponds to an experiment with two outcomes: a success with
probability p and failure with probability 1 — p.
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C. Binomial distribution B(n,p)

Let’s consider n independent repetitions of a Bernoulli experiment of parameter p, B(p), and
an associated random variable X that counts the total number of success(es) among these n
repetitions. Thus, X(2) = {0,1,...,n} and follows the binomial distribution, X ~ B(n, p):

Yk e X(Q), P(X =k) = (Z)pk(l —p)nk,

E(X)=np and V(X)=np(1l—p)

D. Geometric distribution G(p)

Let’s consider a succession of independent Bernoulli experiments of parameter p, the ex-
periment ends once it reaches the first success. X is the random variable that counts the
number of Bernoulli experiments until the first success. Thus, X (Q2) = N* and X follows
the geometric distribution of parameter p, X ~ G(p):

Vke N, P(X =k)=(1—p)"'p
1 _1l=p

E(X):Z—9 and V(X)= =

E. Poisson distribution P(\)
The Poisson distribution of parameter A describes rare probabilistic events (or a very large
number of individually unlikely events) happening in a certain time interval: the associated

random variable X gives the probability of a number of occurrence of a rare event given the
average occurrence A of this event. Thus, X(Q2) € N and X ~ P(\):

VkeN, P(X =k) = e =

E(X)=X and V(X)= A\

The Poisson distribution is a continuous version of the binomial distribution: if X follows
B(n,p) with n > 30, p < 0.1, and np < 15, X can be approximated by a Poisson distribution
of parameter \ = np.
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Figure 7: Common discrete distributions
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4.2 Continuous probability
4.2.1 Probability density

In an infinite sample space Q (e.g. R,[0,1],...), the probability of an event w € € is

1
Plw) = Card(Q) T too 0

Thus, the probability of a single event in an infinite sample space always equal 0 and the
approach is instead to look at the probability of having an outcome close to X (w) = z. The
probability density fx of a random variable X is a function define as:

Ve e X(Q), dv — 0, P(X € [z,z + dzx]) = fx(x)dz

Thus, to get the probability of a event {X € [a,b]} with a < b, we have to sum this small
interval dx between a and b:

P(X €la,b)) =Pla< X <b) = /b fx(z)d.

4.2.2 Cumulative distribution function

A real-valued continuous random variable X is characterized by its density fx. The
cumulative distribution function Fx is defined by:

Ve e X(Q), Fx(z) = P(X <z) = /ﬂf fx(u)du.

400
By definiton, fx(w)du = 1.

— 00

4.2.3 Expected value and variance

The expected value of a continuous random variable X is defined by:

B0 = [ apateyie

o

The variance of a continuous random variable X is defined by:

V(X) = /_+Oo(x — B(X))?fx(v)dz

[e.9]

The standard deviation of X is o(X) = /V(X).
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4.2.4 Common continuous distributions

A. Uniform distribution U(a,b)

A continuous random variable X follows a uniform distribution between a and b (with a < b),
X ~U(a,b), if X takes a random value = € [a, b] with equiprobability and fx is defined by:

1 .
vz € R, fx(l"):{ I if = € [a,b]

0 otherwise.
0 if x<a
rT—a .
Vr e R, Fx(x)= — if x € a,b
1 if b<zx
a+b (a — b)?

E(X)= 5 and V(X) = 1

B. Exponential distribution £(\)

The exponential distribution is a time-continuous version of the discrete geometric distribu-
tion. A continuous random variable X follows an exponential distribution of parameter A,

X ~ E(N), if X is defined by:

Vo € RT, fx(z) =™
Vo € RY) Fx(z)=1—e

1 1
E(X) = X and V(X) = "

C. Normal distribution N (u,o?)

A continuous random variable X follows a normal distribution of parameter p and o2,
X ~ N(u,a?), if fx is defined by:

L 2

oV 2

Vr € R, fx(ZL’) =

E(X)=p and V(X)=o"
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The cumulative distribution function of A (u, 0?), does not have a simple expression.

Z ~ N(0,1) is called the standard normal distribution. Z can be obtained from
any normal distribution X ~ A (u, 0?) with the following transformation:

Z is an even function, thus fz(—z) = fz(2). Its cumulative distribution function is
denoted ® and we have: &(—z) =1— ®(2).

The two following distributions are derived from the standard normal distribution.

D. Chi-squared distribution y?(k)
Let’s consider the independent continuous random variables X, Xo, ..., X} following the
standard normal distribution - the random variables X; are called independent and identically

distributed random variables. Then, the random variable Y, defined as the sum of the squares
of the variables X;, follows the y? distribution with k& degree of freedom:

k
Y =) X~ x(h)
i=1

E(Y)=k and V(Y) =2k

E. Student distribution t(k)

Let’s consider Z a random variable following a standard normal distribution A/(0,1) and V
a random variable following a y? distribution with & degree of freedom. Then, the random

A
N follows a Student distribution with &k degree of liberty, ¢(k).

variable Y =

For k> 2, E(Y)=0et V(Y):m

F. Fisher distribution F(d;,ds)

Let’s consider two independent and identically distributed random variables V; and V5 fol-
lowing two y? distributions with the degrees of freedom d; and dy respectively. Then, the
Vi/dy

follows a Fisher distribution of parameters d; and ds.
Va/dsy

random variable Y =
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Figure 8: Common continuous distributions
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4.2.5 Law of large numbers and Central limit theorem

The law of large numbers (LLN) describes the result of performing the same experiment a
large number of times n. Let’s consider n independent and identically distributed random
variable X7, X5, ..., X,,, with pu the expected value and o the standard deviation of the
common distribution of all X;. We can define the mean, M,,, of these random variables:

X 4+ Xo .+ X,
n

M,
According to the law of large numbers, the mean of the results obtained from a large number
of trials, M, should be close to the expected value of the common distribution, pu:
n — +oo, M, —pu
The central limit theorem (CLT) describes how fast M,, converges toward n:

Vi(M, — p) — N(0,07)

Mn_:u

— N(0,1)

Then, for large values of n,

For instance, if a random variable X follows a binomial distribution, X ~ B(n, p), that counts
the number of successes of a large enough sample (usually when np > 5 and n(1 —p) > 5),
the CLT applies and the discrete distribution of X can be approximated by a continuous
normal distribution, with a mean np and variance np(1—p): X ~ N (u = np, 0* = np(1—p)).

4.3 Introduction to Markov chains
4.3.1 Markov chains in discrete time

Markov chains are a simple class of mathematical models for random events. A given
chain describes a sequence of possible moves between states. We consider here the simple
case of a finite number of states (the set of possible values of the chain, called the state
space, denoted S) and discrete time. The probabilities of the transition between states are
here considered to be constant over time.

Let X,, be the random variable indicating the state of the chain at time n.

A Markov chain is a memoryless property: the future of the chain only depends on the
present state, and is independent of the past states (this is called the Markov property):
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V(Q?o, ceey an) S S,
P(Xn+1 = .:CnJrl’Xn = Tn, Xn,1 = Tp—1y -y X() = LU(]) = P(XnJrl = anrl‘Xn = xn)

Thus, the distribution of a Markov chain is only determined by its initial condition and the
transition probabilities between states.

4.3.2 Representation

Markov chains can be represented using a transition matrix or a state diagram: a
directed graph with nodes representing the individual states and directed edges indicating
the probability of transitions between states).

4.3.3 Properties of a Markov chain

If it exists a path in the Markov chain from state ¢ € S to state 7 € S, then state j is
accessible from state i:
dn, P(X,=j|Xo=1)>0

Two states (i,7j) € S communicate if it exists a path in the Markov chain from 7 to j and
from j to 7. The communications between states two by two form partitions of the state
space into disjoint communication classes.

A Markov chain is irreducible if it has only one communication class.

A state i € S is recurrent if from state i there is a probability of one to return to state ¢
after some time.

A state ¢ € S is transient if it is not recurrent, i.e. it exists a non-zero probability that the
chain will never return to state <.

A state i is absorbing if it is impossible to leave this state once reached:
P(X,=iX,=1) =1

A state ¢ € S has a period k if any return to state ¢ must occur in multiples of k time steps
from i. A Markov chain is aperiodic if all its states are aperiodic.

A state ¢ € S is ergodic if it is aperiodic and recurrent. A Markov chain is ergodic if all its
states are ergodic.
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Lecture 5: Statistics

5.1 The field of statistics

Statistics in biology aim to explain the observed biological variations: is the variation due
to biological factors or is it due to random noise of the biological processes or sampling
protocols?

5.1.1 Sampling and estimators

Unlike the field of probabilities that looks at the likelihood of different outcomes given a
random variable, the goal of the statistics is to find the probability distribution of the ob-
served random variable given some hypotheses (i.e. to find the theoretical distribution from
the empirical observations).

In statistics, the sample of a study is a subset of individuals from the studied population.
The observed characteristics of each individual (1, ...,4,...,n), called the randomized ex-
periment, are supposed to be some realizations (xy, ..., z;, ..., z,) of the random variables
(X1, .0y Xiy ooy X)) following a general distribution Px. The goal of the statistical inference
is to estimate the characteristics of the entire population, called parameters, thanks to the
sample. In other words, the goal is to estimate the expected value p, the standard deviation
o, and distribution Py of the observed random variable X.

To get valid estimations, the sampling (i.e. the selection of sample’s individuals) has to be
random and non-biased. For instance, if one selects individuals from the population that
share another characteristic Y (i.e. a subpopulation), the sampling is biased and estimates

Px|y.

Estimators can be deduced from the observations (xy, ..., z;, ..., Z,). An estimator is thus
a random variable depending on the sample.

For instance, an estimator of the expected value u = FE(X) of the random variable X is the
empirical mean M of the sample M = (X; + ... + X,,)/n (M is the mean of the observed
random variables X; so it is also a random variable).

A good estimator T of a parameter 6§ verifies two properties:
1. T is unbiased: E(T) = 0;

2. V(T') converges toward 0 with n: lim V(T) =0

n—-+o0o

The mean M directly verifies these properties and is a good estimator of the expected value

p = E(X). However, the empirical variance S? is not a good estimator of the variance
2

o =V(X):
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n

2
X
1< 1| (Z ) X2+ ..+ X2
SQZ_Z(Xz_M)ZZ_ ZXE_ =1 _ 1+ + no_ 2
n
i=1

n < n n
=1

E(S*)=FE (X% i n LR MQ) = %E(nXQ) — E(M?)
Given E(M?) = %E((X1 o X)) = %E(XQ) + ”("n; D p(x)?
B(S?) = B(X?) — %E(Xz) i LE(xy
B(8?) = "B - B = " Av(x) =L

Thus, the empirical variance S? is a biased estimator of ¢? = V(X), but the estimator

52 is not biased. The standard estimator of the variance is then:

n_
2 1 - 2
2 = > (X — M)

n—14%
=1

5.1.2 Example

Let’s suppose the experiment of flipping 10 times a coin and getting tail 10 times . We can
wonder whether this coin is well equilibrated (i.e. if the probability of having a tail equals
0.5)?

The classical approach in frequentist statistical inference is to suppose that the coin C' is
equilibrated (the null hypothesis, denoted Hy) and to test how likely is the fact of getting
tail 10 times.

Thus, we can design the following probabilistic model: we consider n flipping of the coin
C' and we define the random variables X, ..., X, following a Bernoulli distribution B(p =
0.5) equal to 1 if the result is tail, 0 if the result is face. Then, the random variable
Y, = X; + ... + X, follows a binomial distribution B(n,p). In the example n = 10, the
distribution of Yj, is:

1
Vk €{0;1;...;10}, P(Yip = k) = (k0)0.5’“(0.5)1“

Let’s look at the shortest interval of & € {0; 1;...;10} that have 95% of chance to containing
Yio:

7

10

PB<Yip<T) =) (k >o.5’f(o.5)1°’f = 0.891
k=3
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1
P2<Yp<8) =) (;) 0.5%(0.5)1% = 0.979

7
k=3

7

10

P(1<Yy<9) (k )0.5’?(0.5)“)* = 0.998
k=3

The probability of having Yjo € [2;8] is more than 95%. Thus, {0,1,9,10} are in the re-
gion of rejection: these extreme results have a probability lower than 5% under the null
hypothesis Hy. The rejection of Hy is done with a risk, called the alpha risk (here 5%),
that is the risk that the null hypothesis is rejected when it is actually true (this type of error
is called false positive). The risk alpha is chosen before the experiment (often in biology,

a = 0.05 = 5%).

Then , observing Yo = 10 can be interpreted as a rejection of the null hypothesis Hy, i.e. the
coin is not well equilibrated. We can even calculate the probability P(Y;p = 10) = 1/1024
under the null hypothesis. P(Yjy = 10) < « so the null hypothesis is rejected, and 1/1024,
called the p-value, is the probability, when the Hj is true, that Y;y would be the same as
or of greater magnitude than the observed results, i.e. 10.

If n = 2, the same statistical test can not define a region of rejection: flipping only two times
a coin is not enough for determining if the coin is well equilibrated or not. This example
shows the importance of having a large number of samples n in statistical tests, and illus-
trates the central limit theorem: the distribution is closer to a normal distribution when n
increases.

However, not rejecting the null hypothesis Hy does not mean that Hj is true: this type of
error is called a false negative. The less false negatives a statistical test has, the more false
positives it has, and reciprocally.

To conclude, the statistical test is a kind of proof by contradiction. To show that something
is true (e.g. the coin is biased), we suppose that this thing is wrong (e.g. the coin is well
equilibrated): this hypothesis is called null hypothesis Hy. Then, we have to find the proba-
bility distribution associated with the null hypothesis: it corresponds to the probability part
(that can be done by solving equations in the classical tests, or by doing simulations in the
more complex models). Finally, the statistical part takes care of designing an acceptation
interval of likely values and a rejection perimeter.
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Figure 9: Experimental distributions of the number of tails obtained given a certain
number of coin flipping (from 1 to 10, repeated 10,000 times)
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5.2 The statistical test

Let’s suppose the observations x, xs, . . ., z, of the random variables X, Xs, ..., X, following
an unknown distribution. Let’s consider the random variable Y linking X; together ¥ =
f(Xy,...,X,) and its observation, y = f(x1,...,2,).

5.2.1 Null hypothesis and alternative hypothesis

Let’s consider a default hypothesis Hy, called the null hypothesis, concerning the distri-
bution of the observed random variable Y, and H, = H, is the alternative hypothesis. A
hypothesis testing is a decision rule that, given the observation y, decides whether Hj is
rejected or not.

A test is characterized by its region of rejection, W, that describes a subset of Y (£2) defined
as:

—if y € W, Hy is rejected and H; is accepted;

—if y ¢ W, Hy is not rejected.

Generally, the region of rejection is chosen for being as large as possible.

5.2.2 Statistical errors

The type I error is the rejection of Hy when H is true (i.e. false positive). The type I
error is measured by the alpha risk («) that is the probability of rejecting Hy when Hj is
true. Generally, in biology, « is chosen equal to 5%.

a=P(Y € W|H,)

The type II error is the non-rejection of Hy when Hj is wrong (i.e. false negative). The
type II error is measured by the beta risk () that is the probability of accepting Hy when
H, is true.

B =PY ¢ W[H,)

The power of a statistical test is the probability that the test correctly rejects Hy when H;
Is true.

P(Y eW|H)=1-4

By convention, we tend to minimize the type I error associated with a statistical test be-
fore minimizing the type II error. Thus, the choice of Hy depends on the question: we must
choose as the null hypothesis a hypothesis for which false positives are the most problematic.

Frequently, g is not well quantified, thus we cannot be able to conclude that Hj is true, but
only that Hj is not rejected based on a.
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Figure 10: A statistical test with the distributions of its associated Hy (in red) and H,;
(in green). Representation of type I and II errors, and the statistical power of the test.

5.2.3 Unilateral or bilateral tests

Based on the definition of the region of rejection W, that is as large as possible, it exists
different type of test:

Unilateral test: Let’s consider Y following a Chi-squared distribution y?(1), the rejection
zone is W = [y, +00[ where 7 is defined such as:

PHO(OSYS’Y):l—Oé 1.€., PH()(YZIY):CY,
Bilateral test: Let’s consider Y following the standard normal distribution N(0, 1), the
rejection zone is W =] — oco; ] U [y, +00[ where + is defined such as:
Py (—y <Y <y)=1-—a ie, Py (Y >7)= %_

5.2.4 P-value

The p-value p is the probability, given Hj, that ¥ has a more extreme value than the ob-
servation y.

For a unilateral test, the p-value p is defined by:
p="PFu,(Y 2y) or p=Pp(Y <y)

Otherwise, for a bilateral test, the p-value p is defined by:
p="Py,(Y < =]7[ U 7| <Y)
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Thus, the rejection of the null hypothesis is given by:
— Hy is rejected if p < o
— Hj is not rejected if p > a.

A p-value gives qualitative information on the degree of confidence in the rejection of Hj.
However, it does not indicate anything about the quantitative difference. For instance, a
very small p-value indicates a very significant difference but it can correspond to a very small
difference (especially if the sample size n is large).

5.2.5 Parametric and nonparametric tests

When we suppose that the sample comes from a parametric distribution (i.e. a distribution
that depends on a certain number of parameters, such as a normal distribution), the cor-
responding statistical test is called a parametric test. For example, if we suppose that a
random variables X follows a normal distribution, the hypothesis of normality of the obser-
vations (z1,...,x,) has to be verified first in order to apply a parametric test.

Otherwise, we have to use a nonparametric test. Nonparametric tests often do not need to
verify strong hypotheses, but have generally a weaker statistical power compared to the para-
metric tests. For instance, for a given « risk (i.e. the same chance of having false positives),
a parametric test would generally have a smaller [ risk than its equivalent nonparametric
test (i.e. more false negatives).

5.2.6 Quantitative and qualitative/categorical variables

It exists two main types of variables. The quantitative variables regroup the discrete
and continuous random variables (i.e. random variables with values in N or R). Otherwise,
the categorical variables (or qualitative variables) are variables that do not represent
quantity (e.g. male or female, treatment or control, ...). Categorical variables are usually
not ordered and do not tolerate sum.

5.2.7 Multiple testing

Let’s suppose that we observed 20 realizations (xy,...,x9) of some random variables X
that follows a standard normal distribution A/(0,1) under Hy. Given an « risk of 5%, we
can compute the p-value for each of the 20 observations (xi,...,22), and one average we

can expect one p-value to be < 0.05 even if Hy : X; ~ N(0,1) is true.

Thus, observing one p-value < 0.05 does not mean that Hy has to be rejected, and we can
even compute the probability p, of rejecting Hy when Hj is true as a function of the number
of observations n:

pn = Pp,(at least one p < 0.05) =1 — Py, (all p > 0.05) =1—0.95".
pn is called the family-wise error rate (FWER): it is the probability of finding one or
more false positives (type I errors) when performing multiple tests.

For n = 100, p, = 0.99: it is almost certain to reject Hy whereas Hj is true. On average,
5 observations over 100 can be false positive: the global test has a « risk of almost 100%.
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Thus, we must correct for multiple testing:

— Bonferroni correction: the Bonferroni correction controls the FWER, i.e. it lowers
the individual level of significance («) in order to keep a global level of significance equal to
0.05 (i.e. p, = 0.05): the corrected « risk is then a/n.

— FDR-controlling procedure: the false discovery rate (FDR) is the expected propor-
tion of type I errors. The FDR procedure is less strict than the Bonferroni correction: it has
greater power, at the cost of increased numbers of type I errors.

5.2.8 How to design a statistical test

A classical statistical approach is composed of the following steps:

1.
2.

Choose a « risk (e.g. 0.05);
Realize n experiments that give the observations xy,..., x,;

Make hypotheses about the Xj,..., X, distributions (e.g. the random variables are
independent and identically distributed);

Set the hypothesis to test: the null hypothesis Hy and its alternative Hy;

Introduce the random variable Y as a function of Xi,..., X, (e.g. the mean of
Xl, Ce 7Xn)7
Compute the probability distribution of Y

Deduce the region of rejection as a function of «;
Look at the position of the observed value y regarding the region of rejection;

Reject or do not reject H.

Thanks to statistical software like R, the approach is simplified by using common statistical
tests that directly compute a p-value through the following steps:

1.

2.

Choose a « risk (e.g. 0.05);
Realize n experiments that give the observations xy,...,x,;

Make hypotheses about the X7, ..., X, distributions (e.g. the random variables are
independent and identically distributed);

Set the hypothesis to test: the null hypothesis Hy and its alternative Hy;
Find a common statistical test given the observations and the probability distributions;

Compare the obtained p-value associated with the observation y to the « risk:
— if p < a, Hy is rejected with the risk a;
— if p > a, Hy is not rejected with the risk a.
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5.3 Confidence interval

Let’s consider n independent observations (z1, . . ) of some random variables X; that fol-

low a same distribution with mean p and variance 2. Let’s Y be the mean of these random

variables (so y is the mean of the observations (z1,...,%,)). By applying the Central limit
2

theorem (CLT), if n is large enough, Y follows a normal distribution N (u, g—).
n

The confidence interval, associated with a given confidence level «, is an interval estimated
from the observations (z1,...,x,), that might contain the true value of the parameter p.

The confidence interval is not the interval that contains the true value of the parameter
with a high probability. But the probability of having observed y is very low (< «) if the
parameter p is not within this interval. In other words, if confidence intervals are constructed
using « from an infinite number of samplings, the proportion of those intervals that contain
u will equal .

Given «a and the observed data y, the confidence interval of the parameter p is defined by:
Plu—e<Y<pu+e=1-a

where e has to be determined based on the expected distribution.

y _
By applying the CLT, Z = £ N(0,1),14.e

a”
n

p—e<Y <pu+e=1—-a

e/[ (Y — M/[<e/[—1—a
—6/\/§§Z§6/\/§)=1—0‘
Thus, e/\/7 11 -a/2) = Za/2

o2 o2
Therefore, the confidence interval corresponds to [y — Zaj2\ — 5 Y+ Zas2 —] .
n n

If the variance o2 is unknown, we have to estimate it using the unbiased estimator S? of the

—H tn—1).
52

n

variance, and then Z =

5.4 Common statistical tests
5.4.1 One sample t-test

A one sample t-test (or Student’s t-test) is a statistical test to determine whether the
mean of the sampled observations (given by the random variables X7,..., X,, independent
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and identically distributed) could come from a population with a given expected value .
The null hypothesis of the t-test corresponds to Hy : E(X) = p.

At least one of the two following hypotheses has to be verified:
1. the random variables X; follow a normal distribution;

2. n is large (generally n > 30, i.e. the CLT applies).

Let’s consider the estimator M of the expected value p and the unbiased estimator S? of
the variance o2
Xi+...+X, 1
Mo T and  S? = SO (X — M)?

n n—1

i
The test statistic of a one sample t-test corresponds to:

M—p
S

Y= yn

~t(n—1)

The result of the t-test relies on the empirical mean M, standard deviation S and the sample
size n.

Example: The temperature of a healthy human body is generally equal to 37°C. To
verify it, we sampled the temperature of 50 healthy adults, represented by the independent
and identically distributed random variables X,...,X,,. The question is to check whether
E(X) # 37. Because n > 30, it fits the hypothesis of the Student’s t-test with the null
hypothesis Hy : E(X) = 37. We fix the risk a = 0.05. Let’s consider M and S? the
empirical mean and estimator of the variance, and Y defined as:

M —
Y =50 537~t(49)

Hy is rejected if the observed y is greater than Ft@lg)(l — a/2) or lower than thjg)(a/Z).
Function on R: t.test(x=x,mu=mu) where x is the vector of observations (z1,...,z,) and
mu the expected value to test.

5.4.2 Paired sample t-test

The paired sample t-test (or the dependent sample t-test) is a statistical test to determine
whether the mean difference between two sets of observations equals zero. Each individual
is measured twice, resulting in pairs of observations (X;,Y;). The idea is to define a third
variable Z such as Z; = X; — Y;. If X and Y follow the same distribution, E(Z) = 0. The
question of testing if it exists a significant difference between X and Y is equivalent to test
if E(Z) = 0: it corresponds to a t-test with a null hypothesis Hy : E(Z) = 0.
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Similarly, one of the following hypotheses has to be verified: Z = X — Y follows a normal
distribution, or the sample size n is large.

Example: We want to verify the effect of a new drug for reducing fever. 100 adults with fever
are randomly selected for taking part in the experiment. We measured for each individual
1 their temperature X; before taking the drug and their temperature Y; 30 minutes after
ingestion. Let’s consider Z; = X; — Y; and M and S? the empirical estimator of Z. The
experimental design fits with a paired sample t-test:

M
Z =100 — ~ 1(99)

Function on R: t.test(x=x,y=y,paired=TRUE) or t.test(x=x-y,mu=0) where x (resp. y) is
the vector of observations (z1,...,z,) (resp. (Y1,.--,Yn))-

5.4.3 Unpaired sample t-test

The unpaired sample t-test is a statistical test to determine whether the mean difference
between two sets of unpaired observations equals zero, i.e. whether the two sets of sampled
observations could come from the same population. In other words, given the unpaired in-
dependent and identically distributed random variable X;,..., X, and Y;,...,Y,, it tests
whether X and Y follow the same distribution with an expected value p.

The null hypothesis of the unpaired sample t-test corresponds to Hy : E(X) = E(Y).

At least one of the two following hypotheses has to be verified:
1. the random variables X; and Y; follow a normal distribution;

2. n is large (generally n > 30).

Xi+...+X, 1 )
Let’s define Mx = Lt + and S2 = —1 Z(Xz — MX>2 (and reciprocally My

n n —

(2
and SZ). The test statistic corresponds to:

Mx — My

7 =\/n ————
V/_\/S§(+S§

~ 1(2(n — 1))

The result of the t-test relies on the empirical means, the standard deviations, and the
sample size n. An unpaired sample t-test can also be done in the case of unequal sample
sizes nx and ny:

My — My
Sk L 5%

nx ny

Z Nt(nx—i—ny—Q)

Example: We want to verify the effect of a new drug for reducing fever. 100 adults infected
by the flu and 100 adults infected by the dengue virus are randomly selected for taking part
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in the experiment. We measured the temperature X; of the adults infected by the flu and Y;
of the adults infected by the dengue virus. Such an experimental design fits with an unpaired
sample t-test.

Function on R: t.test(x=x,y=y) where x (resp. y) is the vector of observations (x1,...,z,)
(resp. (y17 s 7yn))

5.4.4 One-way ANOVA

The one-way ANOVA (or one-factor ANOVA) is a statistical test to determine whether
the means of different sampled observations (generated through p > 2 different treatments)
are different, i.e. whether individuals from different treatments could come at least two
different populations.

For each treatment ¢ € (1,...,p), given n; the number of observations for this treatment,
we consider the n; independent and identically distributed random variables X7, ... ,Xfw
following the distribution A (p;, 02).

The null hypothesis of a one-way ANOVA corresponds to Hy : jt1 = ... = p,,.

The hypotheses of a one-way ANOVA are:
1. the independence of all random variables;
2. all random variables follow a normal distribution;

3. the variance of the different experimental treatments (1,...,p) are equal (called ho-
moscedasticity).

Let’s denote:

. , Xt

U Xi4... +X @E J

n:Zni, M; =2 "ooand M =2
i=1

n; n

We can define the factor and the residual sums of square of the observations, SSfactor and
SSresidualu such as:

szactor - an<Mz - M)Q, and Ssresidual - Z Z(X]Z - MZ)2

The test statistic of the one-factor ANOVA (ANalysis Of VAriance) corresponds to:

F = SSfactor/<p - ]-)
Ssresidual/(n - p)

~F(p—1,n—p)

Example: We want to verify whether the human body temperature depends on the age
class. 100 children (C'), 100 teenagers (7"), 100 adults (A), and 100 seniors (.5) are randomly
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selected for taking part in the experiment. We measured their temperature C;, T;, A;, and
S; for all 4 € [1,100]. Such an experimental design fits with a one-factor ANOVA with the
null hypothesis Hy : pue = pr = pta = lis.

Function on R: aov(y~f, data=df) where df is a data frame with the columns y (with all
the observation X?) and f (with the corresponding factors).

Two-way ANOVA: The two-way ANOVA is similar to the one-way ANOVA but allows
the interactions between factors, e.g. that it exists an effect of the variable A, an effect of
the variable B, and an interaction between A and B.

5.4.5 Nonparametric tests for quantitative variables

The previous tests assume (1) that all random variables follow normal distributions, or (2)
that the sample size n is greater than 30. If none of these hypotheses is verified, we must
use the equivalent nonparametric test. These tests have generally a lower statistical power.
They are based on the rank of the observations (instead of the observed values), and thus,
do not rely on a hypothetical distribution.

| Quantitative variable(s) | Parametric test | Nonparametric test |
One sample One-sample t-test Wilcoxon signed rank test
Two paired samples Paired-sample t-test | Wilcoxon signed rank test
Two unpaired samples Unpaired-sample t-test Mann-Whitney U test
n > 3 samples One-factor ANOVA Kruskal-Wallis test

5.4.6 Chi-squared test

A. Chi-squared goodness-of-fit test

The Chi-squared goodness-of-fit test is used for comparing the observed distribution of
a categorical random variable with p categories to a theoretical distribution that present the
theoretical frequencies F; with i € [1,p]. Let’s consider n observations attributed to one of
the p categories. We can then calculate their observed frequencies O; with i € [1, p].

The null hypothesis of a Chi-squared goodness-of-fit test corresponds to Hy: O and E have
the same distribution.

When n is large, the test statistic of a Chi-squared goodness-of-fit test corresponds to:

Z (nO; —nEy)” 2((p—1))

) nk;
i€[1,p]

Example: We want to verify if the risk of having fever depends on the class age. 1,000
persons with fever are randomly selected for taking part to the experiment and for each of
them we recorded their age class: children (C), teenagers ('), adults (A), and seniors (.5),
which gives the frequencies Og, Or, O4, and Og. Moreover, we know the frequencies of
the different age classes in the total population, denoted Es, Er, E4, and Eg. Such an
experimental design fits with a Chi-squared test with the null hypothesis: the categorical
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random variables O and F (with the categories C, T, A, and S) follow the same distribution.

Function on R: chisq.test(x=x, p=p) where x is the vector of observed frequencies and p is
the vector of theoretical frequencies (same length as x).

B. Chi-squared test of independence

The Chi-squared test of independence can be used for testing the independence of two
categorical random variables X and Y, with respectively nx and ny categories. These two
categorical variables can be represented within a two-way table, called a nx X ny contingency
table, displaying the multivariate frequency distribution.

The null hypothesis of a Chi-squared test of independence corresponds to Hy: X and Y are
independent.

Let O be the observed contingency table from empirical observation (i.e. O, is the frequency
of jointly observing X = x and Y = y). One can also define E, the expected contingency
table (i.e. the contingency table in a case of independence between X and Y') by computing:

5 row total x column total

sample size

When n is large, the test statistic is of the Chi-squared test of independence corresponds to:

>3 Gl i iy 1)

z€[l,nx] y€[l,ny] v

Example: We want to verify the correlation between having fever (F') and having high
blood pressure (P). 10,000 adults are randomly selected for taking part in the experiment
and for each of them we recorded if they experienced a fever in the previous six months (yes
or no) and if they have high blood pressure (yes or no): this experiment is resumed in a
contingency table. Such an experimental design fits with a Chi-squared test with the null
hypothesis: having fever and having high blood pressure are independent.

Function on R: chisq.test(x=x) where x is the matrix of the table of contingency. The table
of expected frequencies E is automatically computed.
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French-English translation

Codomain (or target set): ensemble d’arrivée (d'une fonction)
Complementary event: événement contraire

Cumulative distribution function: fonction de répartition
Eigenvalue: valeur propre

Eigenvector: vecteur propre

Even function (contrary odd function): fonction paire (fonction impaire)
Expected value: espérance

Inverse function: fonction bijective

Gaussian elimination: pivot de Gauss

Probability distribution: loi de probabilité

Proof by contradiction: raisonnement par l’absurde

Saddle point: point-selle

Sample space: univers (de probabilités)

Standard deviation: écart-type
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