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The ABC flow is a prototype for fast dynamo action, essential to the origin of mag-
netic field in large astrophysical objects. Probably the most studied configuration is
the classical 1 :1 :1 flow. We investigate its dynamo properties varying the magnetic
Reynolds number Rm. We identify two kinks in the growth rate, which correspond re-
spectively to an eigenvalue crossing and to an eigenvalue coalescence. The dominant
eigenvalue becomes purely real for a finite value of the control parameter. Finally
we show that even for Rm = 25000, the dominant eigenvalue has not yet reached an
asymptotic behaviour. It still varies very significantly with the controlling parameter.
Even at these very large values of Rm the fast dynamo property of this flow cannot
yet be established.
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I. INTRODUCTION

We investigate the kinematic dynamo action associated with the well known ABC-flow
(Arnol’d, Beltrami, Childress1). We focus on the highly symmetric, and most classical setup:
A :B :C = 1:1 :1 . Its dynamo properties have been assessed in 1981 by Arnol’d et al. 2 and
it represents since then the prototype flow for fast dynamo action. A “fast dynamo”3 is a
flow which achieves exponential magnetic field amplification over a typical time related to
the advective timescale and not the ohmic diffusive timescale (in which case it is referred to
as a “slow dynamo”). It is known4 that exponential stretching of fluid elements is necessary
for fast dynamo action. The existence of fast dynamos is essential to account for the presence
of magnetic field in astrophysical bodies, for which the ohmic diffusive time is often larger
than the age of their formation. If self-excited dynamo action is to generate their magnetic
fields, it is therefore essential that it be achieved over an advective timescale. The most
classical flow to exemplify such “fast dynamo” action is indeed the ABC-flow. Arnold and
Korkina 5 first investigated the dynamo property of the ABC-flow, originally introduced to
investigate Lagrangian chaos. Many developments followed, which will be discussed in the
course of this article6–8.

Most of the recent developments in this field involve non-linear studies with forcing be-
longing to the class of ABC flows9,10, with a few noticeable exceptions11,12. The asymptotic
behaviour of one of the most classical example of fast dynamo is however still not understood.
This motivates the following high-resolution linear study.

II. NUMERICAL METHOD

We are concerned with the kinematic dynamo problem, for which a solenoidal magnetic
field evolution is governed under a prescribed flow by the induction equation

∂B

∂t
= ∇×

(
u×B− Rm−1∇×B

)
. (1)

We consider here the ABC-flow (Arnold 13 , Henon 14), which takes the form

u = (A sin z + C cos y) ex + (B sinx+ A cos z) ey + (C sin y +B cosx) ez , (2)

and restrict our attention to the case where the magnetic field has the same periodicity as
the flow (i.e. 2π-periodic in all directions of space, see Archontis, Dorch, and Nordlund 15
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for extensions) and the weight of the three symmetric Beltrami components are of equal
strength (A = B = C ≡ 1).

Let us stress again that we also restrict our attention to the kinematic dynamo problem,
in which the flow is analytically prescribed and unaltered by the magnetic field (see Galloway
and Frisch 8 for an investigation of the stability of this flow).

The choice A :B :C = 1:1 :1 belongs to the largest symmetry class for this kind of flows,
and has for this reason been the most intensively studied. However, it yields very small
chaotic regions and is thus possibly non optimal for dynamo action (see Alexakis 11 for a
detailed study of this point). This parameter choice is however essential as it is, partly for
historical reasons, the most classical example of steady analytical fast dynamo.

The simulations presented in this article were performed using a modified version of a
code originally developed by Galloway and Frisch 6 and which uses a fully spectral method
with explicit mode coupling.

The original time-stepping used by Galloway and Frisch 6 relies on a Leapfrog scheme
stabilised by a Dufort-Frankel discretization of the diffusive term. Introducing L to denote
the discretized diffusion operator, which is local in Fourier space, and NL to denote the
discretized inductive term, non-local as it couples neighbouring modes, this scheme can be
expressed as

Bn+1 = Bn−1 + 2dt

(
NL(Bn) +

1

2
L(Bn+1 +Bn−1)

)
, (3)

using a red-black (or Chloride-Sodium) staggering in time and space, see Galloway and
Frisch 7 .

We have implemented two alternative time stepping schemes, in order to assess the sta-
bility of the temporal evolution at large values of Rm. We used a Crank-Nicolson Adams-
Bashforth scheme

Bn+1 = Bn + dt

(
1

2
L(Bn+1 +Bn) +

3

2
NL(Bn)− 1

2
NL(Bn−1)

)
, (4)

as well as a second order BDF discretization

3

2
Bn+1 = 2Bn − 1

2
Bn−1 + dt

(
L(Bn+1) + 2NL(Bn)−NL(Bn−1)

)
. (5)

These two schemes are unstaggered and involve larger memory requirements, still offering
the same complexity. All schemes are semi-implicit, but retain an explicit marching for the
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non-local term in order to prevent the resolution of a linear system at each time-step. We
verified that the results presented in this article are independent of the above choices.

In the limit of large magnetic Reynolds numbers, the problem (1) becomes stiff. We
therefore ensured that the temporal discretization did not introduce spurious effects by
reproducing a few simulations, spanning over the whole range of Rm investigated, using the
three schemes presented above.

We always obtained the same dominant mode and temporal behaviour with all three
methods. Although we do not present here a detailed investigation of the numerical prop-
erties of these schemes, we should report that the original Galloway and Frisch 6 scheme
involves a smaller amount of memory requirement and a larger CFL condition.

For all the above schemes, the computing time obviously varies with the control parameter
Rm. If all spatial modes are computed up to a truncation N , the computational complexity
scales like O(N4). Assuming the asymptotic scaling of the magnetic field length scale, we get
N ∼ Rm1/2 and thus expect a complexity growing as O(Rm2). We have therefore derived
a parallel version of the code using the MPI library and a spectral domain decomposition
strategy to tackle larger values of Rm. This yields shorter computing time at large resolution.

The results presented in this article were obtained with numerical resolutions ranging
from N = 64 for the smallest values of Rm to N = 1024 for Rm = 25000. In all cases
we verified that the results reported here were unaltered by doubling the resolution. The
simulations presented here were performed on up to 512 cores.

It is worth stressing that the quantity ∇ ·B is obviously preserved by (1), and that this
essential property is retained by the discrete numerical schemes, and thus the magnetic field
remains solenoidal throughout the simulations.

We investigate a linear problem and therefore expect that, independently of the initial
conditions, the long time integration will simply reflect the eigenmode with largest growth
rate. In practice, we used two different sets of initial conditions, either

B(t = 0) ∝ (sin z − cos y) ex + (sinx− cos z) ey + (sin y − cosx) ez , (6)

or a random initial condition with a spectrum converging as k−2 for regularity and projected
numerically to get a non-divergent field.

The former is useful for comparison with earlier studies (e.g. Galloway and Frisch 6) for
moderate values of Rm, while the later ensures a projection of the initial perturbation on
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the fastest growing mode.

III. MODES CROSSING

This study is focused on the 1 :1 : 1 ABC-flow, which has a large number of symmetries.
These have been well documented16,17. The symmetry group is generated by two independent
rotations: the cloverleaf rotation T : x → y → z → x and a rotation of angle π/2 followed
by a translation around one of the three coordinate axes. For example Rty : x → π/2 +

z, y → y − π/2, z → π/2 − x. All the other symmetries are obtained by combinations
of these two rotations. The resulting group of symmetries of the ABC-flow contains 24
elements (including identity). For each direct numerical simulation, we tested which of
these symmetries (or anti-symmetries) were satisfied by the realised solution.

Figure 1 presents the evolution of the maximum growth rate of the magnetic field as a
function of Rm. Each point on the figure corresponds to a three-dimensional simulation.
We confirm growth rates obtained by earlier studies (see Galloway 12 for a recent review),
and we extend the range of investigation from Rm < 1600 to Rm < 25000. The curve has
been validated against published growth rates using spectral methods7,18 as well as a finite
volume method19 for which simulations have been performed up to Rm = 2000 (Teyssier &
Dormy private comm.).

In addition to the wider extend of Rm variation, our curve also offers a finer resolution
than previously obtained graphs. This highlights the presence for two kinks in the curve,
labelled Rm1 and Rm2 on the figure. The first of these occurs in the stable window reported
by Galloway and Frisch 7 near Rm = 20 and corresponds to Rm1 ∈ [24.05, 24.10]. A mode
crossing was previously suggested owing to the changes in the eigenfunction symmetry12.
Here we demonstrate this eigenvalue crossing by following both eigenvalues on each side
of the crossing. In fact whereas time stepping algorithms usually only provide information
on the dominant eigenvalue, i.e. the eigenmode with largest growth rate, we use it here
to get more information. Indeed, transient behaviour starting with well selected initial
conditions provide information on the behaviour of a given mode, even if it is not the
dominant eigenmode (see Figure 2). The temporal behaviour of this mode can be followed
via direct integration for a certain length of time until it is overcome by the fastest growing
mode. This approach allowed us to continue the branches corresponding to each eigenvalue
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FIG. 1. Plot of the real part of the eigenvalue for the fastest growing magnetic field mode as a

function of the magnetic Reynolds number Rm (using logarithmic scale in the x-axis).
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FIG. 2. Time evolution of the magnetic energy, which highlights the information provided by

transient behaviours. Left (a) a simulation for Rm = 16.5 (< Rm1) using as initial condition the

final solution obtained at Rm > Rm1, right (b) simulation for Rm = 28.4 (> Rm1).

outside of the region in which they are dominant eigenvalues (see dotted lines and open
symbols on Figure 1).

In the first window Rm < Rm1 as argued by Arnol’d16, we observe that the dominant
eigenmode has all “even” symmetries of the ABC-flow, i.e. it has every combination of an
even number of Rt as a symmetry, and is antisymmetric otherwise (the solution changes
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sign by the corresponding transformation). In the second window Rm > Rm1, we observe
numerically that all the above symmetries and anti-symmetries disappear, as pointed by
Galloway and Frisch 7 . However, S. Jones and A. Gilbert (private comm.) are currently using
a decomposition of this mode in three components each satisfying different symmetries.

As noted by earlier authors, the dominant eigenvalues are complex, leading to oscillations
of the energy, visible on Figure 2 (particularly on the first part of Figure 2a, as the period of
oscillations is elsewhere very short compared to the time extend of the plot). The imaginary
part of the dominant eigenvalue ω = Im (λ) can thus be directly determined from these
time series. The graph ω(Rm) is displayed on Figure 3. As explained above, not only
do we display the dominant eigenvalue (solid line and symbols) but we are also able to
follow each mode past their region of selection (dotted lines and open symbols). One can
note that, as Rm increases past Rm1, the imaginary part of the dominant eigenvalue jumps
discontinuously from ω ≃ 0.53, corresponding to the first window identified by Arnold and
Korkina 5 , to ω ≃ 0.13 corresponding to the second window of Galloway and Frisch 7 . This
discontinuous jump in the pulsation highlights the eigenvalue crossing occurring at Rm1.
There again, transient behaviours were used to obtain the open symbols.

IV. OSCILLATORY DYNAMICS

In order to obtain a deeper understanding of the oscillatory mechanism in both dynamo
windows and of how a steadily growing mode can be observed at larger Rm (see Figure 3),
we introduce a phase space for this linear system. We rely for Rm < Rm1 on two vectors,
corresponding respectively to the dominant |k| = 1 contribution16

b1 = (sin(z)− cos(y)) ex + (sin(x)− cos(z)) ey + (sin(y)− cos(x)) ez , (7)

and to |k| = 2

b2 = (sin(y) cos(z)) ex + (sin(z) cos(x)) ey + (sin(x) cos(y)) ez . (8)

These vector fields respectively correspond to the first and the second harmonics of the
true eigenvector. These two vector fields necessarily satisfy all symmetries of the realised
eigenmode for this parameter regime (Rm < Rm1).
Simulations in this regime rapidly reach an asymptotic behaviour starting with b1 as an
initial condition.
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FIG. 3. Plot of the imaginary part of the eigenvalue as a function of Rm (using logarithmic scale

in the x-axis).

We construct the phases by introducing

X = ⟨B · b1⟩ exp−σt , and Y = ⟨B · b2⟩ exp−σt , (9)

where the growth rate σ is a function of Rm (see figure 1). As the governing equations are
linear, the exponential damping is here essential in order to introduce a limit behaviour. The
quantities X and Y are presented on figure 4a for Rm = 11.5. The undamped trajectory
of the system is also represented using dashed lines, and directly illustrates the exponential
growth of the dominant mode. The damped trajectory evolves toward the equivalent of a
stable limit cycle.

The exponential damping on X and Y provides us with the equivalent of a non-linear
dynamical system. This explains why we report below phenomena that are usually associated
to non-linear dynamics.

In the second window, Rm > Rm1, the two modes we selected (corresponding to the
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FIG. 4. Phase space diagrams for Rm < Rm1 (a) and Rm > Rm1 (b).

lowest k⃗ component of the realised mode) are

b′
1 = (− sin(y)− cos(z)) ex + (sin(z) + cos(x)) ey + (− sin(x) + cos(y)) ez , (10)

b′
2 = (sin(y)− cos(z)) ex + (sin(z)− cos(x)) ey + (sin(x)− cos(y)) ez . (11)

These correspond to two components of the general family reported earlier for this mode7.
Note that these two vectors do not provide a complete decomposition of the first harmonic.
They involve symmetries (though none in common), but these are not relevant here since
they are not verified by the full eigenmode nor the first harmonic.

The resulting orbits of X ′ = ⟨B · b′
1⟩ exp−σt and Y ′ = ⟨B · b′

2⟩ exp−σt are represented
on figure 4b for various values of the controlling parameter Rm > Rm1. The represented
quantities are not arbitrarily rescaled. Only the exponential damping has been applied, and
all cases have been started with the same initial condition (involving random, but divergence
free, fluctuations). The oscillating nature of the dynamo for Rm < Rm2 is clearly illustrated
by the limit cycle. For Rm > Rm2 the oscillations disappear and the dynamo mode therefore
becomes a fixed point in the [X ′, Y ′] plan. For clarity, we suppressed the trajectories that
lead to the limit cycles or the steady solutions on figure 4b.

V. EIGENVALUES COALESCENCE

As the magnetic Reynolds number is further increased, a second kink in the growth rate
is observed on Figure 1 for Rm2 ∈ [215.0, 215.4]. This second kink, however, does not
correspond to a change of dominant eigenvalue, but instead to an eigenvalues coalescence.
The strategy highlighted above to follow secondary modes does not yield any secondary
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branch here, indicating that there is no significant change in the dominant eigenmode.

Figure 3 reveals that the behaviour of the imaginary part of the eigenvalue is very dif-
ferent near the second kink. Instead of the abrupt jump reported at Rm1, the pulsation
continuously (but not smoothly) tends to zero as Rm approaches Rm2 and vanishes for
Rm > Rm2.

The lack of oscillations at large Rm is a well known characteristic, it was already noticed
by Galloway and Frisch 6 for (Rm > 400), although they could not assess whether the period
of oscillations was simply increasing with Rm or the eigenvalue had become purely real. Lau
and Finn 18 suggested that this could be associated with a mode crossing, a new mode with
purely real eigenvalue taking over above Rm2.

We show here that the imaginary part of the eigenvalue indeed vanishes for Rm > Rm2,
and that this corresponds to the coalescence of two complex conjugate eigenvalues on the
real axis. The coalescence yields the kink in the evolution of the real part of the eigenvalue.

The simplest mathematical model for a complex conjugate eigenvalue coalescence on the
real axis corresponds to a situation of the form

λ± = α(Rm)±
√

β(Rm) , (12)

where α and β are differentiable real functions of Rm. A negative β (for Rm < Rm2) yields
two complex conjugate modes, and thus oscillations of the magnetic energy. As β becomes
positive (for Rm > Rm2), the eigenvalues are purely real and the β term now contributes to
the real part of the eigenvalue λ+ offering the largest growth rate.

Figure 5a presents a detailed view on the variation of σ = Re (λ) and ω = Im (λ) close
to Rm2. Defining σ2 = σ(Rm2) we plot σ(Rm)− σ2 and −ω(Rm). It is clear that the kink
in σ is concomitant of the vanishing of ω.

Let us now form on Figure 5b the quantity F = σ(Rm)− σ2 − ω(Rm). The square-root
behaviour of F near Rm2 is obvious. Assuming that the above model (12) is correct, F

corresponds to α − α0 + sign (β)
√

|β|, where α0 = α(Rm2). We can note on Figure 5a
for Rm < Rm2 that α − α0 remains small compared to variations in β. The quantity
sign (Rm−Rm2)F

2 therefore offers a good approximation to β and should be differentiable
at Rm2.

More formally, assuming that α and β are regular functions of Rm, we can write a finite
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FIG. 5. Eigenvalues coalescence for Rm close to Rm2 ≃ 215. Both the real part (written as

σ(Rm)− σ2) and the opposite of the imaginary part (i.e. −ω(Rm)) are represented (a). The sum

F of both (b), and sign (Rm − Rm2)F
2 illustrate the continuity and regularity in the functional

form of the eigenvalue (see text).

expansion of the form

α = α0 + α1(Rm− Rm2) + α2(Rm− Rm2)
2 + · · · , (13)

β = β1(Rm− Rm2) + β2(Rm− Rm2)
2 + · · · , (14)

with β1 > 0. The quantity sign (Rm − Rm2)F
2 can be written at the lowest orders in

Rm− Rm2

sign (Rm− Rm2)F
2 = sign (Rm− Rm2)α

2
1(Rm− Rm2)

2

+ sign (Rm− Rm2)α1

√
β1(|Rm− Rm2|)3/2

+ β1(Rm− Rm2).

(15)

This development implies that sign (Rm−Rm2)F
2 is differentiable at Rm2. Figure 5b clearly

illustrate this property on the direct numerical simulation.
Another insight on the nature of this transition can be gained from the “phase space”

introduced in figure 4b. As noted above a remarkable feature is that the steady solutions
obtained after the coalescence lies on the ellipse described by the limit cycle shortly below
the coalescence (on the figure Rm = 220). This behaviour which is similar to that of an
excitable system (such as a pendulum subject to a constant torque), has recently been
observed in experimental dynamos measurements20. The phase space was then constructed
using two components of the magnetic field at a given location (a probe).

Such behaviour is reminiscent of a saddle-node bifurcation. In these systems, the dy-
namics becomes increasingly slow on the cycle as the system approaches the state at which
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FIG. 6. Evolution in time of the projection of the dominant mode on the two large scale components,

represented via the angle θ, such that (cos(θ), sin(θ)) = (X ′, Y ′)/
√
X ′2 + Y ′2.

the saddle and the node will collapse. In order to assess this property in our system, albeit
linear, we introduce the angle θ of the system over a unit circle described through the or-
bit, so that (cos(θ), sin(θ)) = (X ′, Y ′)/

√
X ′2 + Y ′2. The time evolution of θ with increasing

values of Rm is presented in figure 6. The system clearly spends an increasing amount
of time as Rm approaches Rm2 near the angle at which the stable solution will occur for
Rm = Rm2. Such behaviour could be described by a simple phase dynamics, e.g. Pétrélis
et al. 21 , Guckenheimer and Holmes 22 .

It is interesting that these approaches of non-linear dynamics can cast some light on the
behaviour of kinematic dynamos. A similar occurrence of a saddle-node transition for a
kinematic dynamo numerical model of the above mentioned VKS experiment has indeed
been reported in Gissinger 23 , with an expression of the form (12).

The fact that the fixed points in the (X ′, Y ′) plan describe the previously existing limit cy-
cle is a strong indication that there is at first no significant change occurring in the structure
of the dominant eigenmode after the eigenvalues coalescence. Indeed the “double cigars”
structure (see Dorch 24), associated to the oscillations for Rm ∈ [Rm1,Rm2] is preserved
once the growth rate has become steady, Rm > Rm2 (see Figure 7).
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FIG. 7. Eigenmode obtained for Rm = 434.2 (> Rm2). An isosurface of the magnetic energy is

represented. To highlight the symmetry, it is coloured according to the value of Bx, from negative

(dark gray - blue online) to positive (lighter gray - red online). The corresponding eigenvalue is

purely real, yet the double cigars structure of the field remains clearly visible. Magnetic field lines

are also depicted on the right plot.

VI. ASYMPTOTIC BEHAVIOUR

We have finally increased the control parameter in the range 215–25000. Despite the fact
that the largest magnetic Reynolds number tackled in this study is roughly 15 times larger
than earlier results, the growth rate has not reached an asymptotic value yet. The growth
rate obtained for our largest Rm is very close to 0.1 and appears to be still significantly
increasing with Rm.

The 1:1 :1 ABC-flow has also been considered by Gilbert 25 using maps in a limit in which
the diffusivity is formally set to zero. This approach has yield growth rate of 0.04 – 0.05, so
much smaller than the value achieved by our direct numerical simulations at Rm = 25000.
It is therefore not unplausible to anticipate that the behaviour of σ(Rm) above 25000 will
not be monotonic and σ will probably decrease again.

Another indication is provided by the largest Lyapunov exponent of the flow, which is
approximately 0.055 (see Galanti, Sulem, and Pouquet 26). Owing to the lack of regularity
of the field in the limit of large Rm numbers, the largest Lyapunov exponent however
does not provide an upper bound on the asymptotic growth rate3. An upper bound can be
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sought by considering the topological entropy htop (see Finn and Ott 27,28). For steady three-
dimensional flows the topological entropy is equal to the line stretching exponent hline (see
Childress and Gilbert 3), which can be estimated for the 1:1 :1 ABC-flow to be hline ≃ 0.09.
This provides yet another indication that the curve σ(Rm) must decrease for larger values
of Rm.

A plausible scenario, suggested by the behaviour of submodes as investigated by S. Jones
and A. Gilbert, is that two complex conjugate eigenvalues may emerge again at larger Rm.
This is often observed in saddle-node bifurcations (e.g. Ravelet et al. 20). It would result
in the reappearance of the oscillations, and an abrupt decrease of the growth rate (the
counterpart of the increase observed at Rm2). This would deserve further study.

The asymptotic behaviour of the 1 : 1 : 1 ABC-flow is thus not yet established. It is at
the moment, despite the high resolution simulations presented here, impossible to assess its
asymptotic growth rate. It is not even possible to rule out the possibility of an eventual
decay of the growth rate to zero at very large Rm.

VII. CONCLUSION

We have investigated using high resolution direct numerical simulations the behaviour of
the 1 : 1 : 1 ABC-dynamo. We have shown that the two dynamo windows identified for this
dynamo are associated with a change of dominant eigenvalue. We have identified a second
kink in the growth rate as a function of Rm and shown that it corresponds to an eigenvalue
coalescence and the end of the oscillatory nature of the solutions. Finally, even at very large
values of Rm, we show that the growth rate is still strongly varying and not monotonic yet.

Relaxing the requirement of a fully three-dimensional flow and allowing for time depen-
dence, other models for fast dynamo actions have been obtained by Galloway and Proctor 29 ,
with a velocity depending only on two coordinates. The time dependence ensures exponen-
tial stretching at least in this plane. The induction equation is then separable in the z

direction, allowing faster numerical integrations. The asymptotic limit of large Rm appears
easier to reach for such flows. Other studies involved time dependence of the flow30 and
some hint at a possible resonance phenomenon31.

Finding a good example of fully three-dimensional flow that acts as a fast dynamo remains
a challenging problem. The most classically given example remains the 1 : 1 : 1 ABC-flow.
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This unexpectedly rich behaviour of the 1:1 :1 ABC-dynamo at very large Rm, highlighted
in our study, deserves further investigations. It is most likely associated with the fact this
flow yields very small chaotic regions12.
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