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1 Rooted planar quadrangulations

A (rooted planar) quadrangulation is a rooted planar map where every face has degree 4.
A quadrangulation cannot have loops (why?) but multiple edges are allowed. We denote
by qn the number of quadrangulations with n faces. The number of edges is then 2n,
here it is better to count by the number of faces to avoid parity issues. Our purpose is
to compute qn using the method studied in the lecture.
For this we must consider a more general counting problem. A quadrangulation with

a boundary is a rooted planar map where every face, except possible the outer face, has
degree 4. We do not assume the boundary to be simple. The outer degree is necessarily
even, and we denote by qn,k the number of quadrangulations with n inner faces and
outer degree 2k. It is elementary to check that qn = qn,1 for n ≥ 2 (think about gluing
together the two boundary edges).

Short formulation of the problem (for those who want no indications)

Find a nice explicit formula for qn (and possibly qn,k as a bonus) using the
method studied in the lecture.

Detailed questions (for those who want some indications)

1. Using Tutte’s recursive decomposition (see Figure 1 for a reminder), check that
qn,k is given by the recurrence relation

qn,k =
n∑

n′=0

k−1∑
k′=0

qn′,k′qn−n′,k−1−k′ + qn−1,k+1 (1)

with the initial data q0,0 = 1, q0,k = 0 if k > 0.
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Figure 1: Reminder of Tutte’s recursive decomposition.

2. Deduce that the bivariate generating function Q(t, u) :=
∑

n≥0
∑

k≥0 qn,kt
nuk sat-

isfies
Q(t, u) = 1 + uQ(t, u)2 + t

Q(t, u)− 1− uQ1(t)

u
(2)

whereQ1(t) :=
∑

n≥0 qn,1t
n. Rewrite this equation in the form P (Q(t, u), Q1(t), t, u) =

0 with P (Q, q, t, u) a polynomial in 4 variables.

3. Show that there exists a unique series U(t) ∈ Z[[t]] such that

∂P

∂Q
(Q(t, U(t)), Q(t, 1), t, u) = 0. (3)

4. (“Question de cours”) Deduce two other polynomial relations between U(t), Q(t, U(t)),
Q1(t).

5. By manipulating the three polynomial equations (a computer might help), show
that

Q1(t) =
(1− 12t)3/2 − 1 + 18t

54t2
(4)

and deduce an expression for qn.

(Hint: first eliminate Q(t, U(t)), then Q1(t), to deduce a quadratic polynomial
relation between U(t) and t. Wait, haven’t we seen the series Q1(t) before?)

6. A useful alternative form: show that Q1 admits the rational parametrization

Q1 =
4R−R2

3
, t =

R− 1

3R2
. (5)

(Hint: substitute U = R−1
R(R+2) in the previous quadratic relation between U and t.)

7. Replace t and Q1 by their rational parametrization in the initial functional equa-
tion (2), which is a quadratic polynomial in Q(t, u), and compute the discriminant:
what do you notice?

2



8. Deduce the one-cut form

Q(t, u) =
(1−R+ 3R2u)− (1−R+ 2Ru+R2u)

√
1− 4Ru

6R2u2
. (6)

9. Deduce that quadrangulations with fixed outer degree 2k are counted by

[uk]Q(t, u) =
(2 +R)Ck + (1−R)Ck+1

3
Rk (7)

where Ck = 1
k+1

(
2k
k

)
is the k-th Catalan number.

(Hint: recall that
√
1− 4x = 1− 2

∑
k≥0Ckx

k+1, substitute into the one-cut form,
and observe that we do not need to care about the “leading terms” since they only
serve to kill negative powers of u.)

10. (For the brave) Apply the Lagrange inversion formula to deduce an expression for
qn,k.

2 Basketball walks

A basketball walk with n steps is a sequence (x0, . . . , xn) ∈ Zn+1 such that xt − xt−1 ∈
{−2,−1, 1, 2} for all t. The name was coined by Ayyer and Zeilberger because the walk
record the score difference between two teams playing a basketball game at a time where
three-pointers did not exist. See [1] and references therein.
Let gn denote the number of basketball walks where the initial value is x0 = 0, the

final value is xn = 1, and we have xt > 0 for any t > 0. The purpose of the exercise is to
show that

G(t) :=

∞∑
n=1

gnt
n = −1

2
+

1

2

√
2− 3t− 2

√
1− 4t

t
(8)

and that
1 +G(z) +G(z)2 = Cat(z) (9)

where Cat(z) is the generating function of Catalan numbers (this latter identity was the
motivation of [1]).

1. Let gn,k denote the number of basketball walks satisfying the same property as
above, except that the final value is xn = k ≥ 1. Show that the bivariate generating
function G(t, u) :=

∑
n≥1

∑
k≥1 gn,kt

nuk−1 satisfies the functional equation

K(t, u)G(t, u) = t(1 + u)− t

u

(
G(t, 0) +

∂G

∂u
(t, 0) +

G(t, 0)

u

)
(10)

with the kernel K(t, u) := 1− t(u−2 + u−1 + u+ u2).

2. Show that the kernel equation K(t, U(t)) = 0 admits two roots U1,2(t) in C[[t1/2]].

3. Explain how G(t, 0) is given in terms of these roots.

4. Do the algebra!
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(a) (b)

Figure 2: Recursive decomposition for triangulations with a simple boundary.

3 Triangulations with simple boundaries

A (rooted planar) triangulation is a rooted planar map whose all faces have degree 3.
We may enumerate them using the recursive decomposition we have seen before, by a
straightforward adaptation of the first exercise. But, following the original approach of
Tutte and Brown, we may also proceed slightly differently by writing down a functional
equation for triangulations with a simple boundary, i.e. we assume that there is no
separating vertex incident to the outer face (a vertex is said separating if its removal
disconnects the map).
To add even more fun, we may actually distinguish different classes of triangulations,

depending on their possible “singularities”: general triangulations may have loops and
multiple edges, and we refer to them as type I triangulations, type II triangulations may
have multiple edges but no loops, finally type III triangulations have neither loops nor
multiple edges. In fact, a triangulation is of type II if and only if it is 2-connected, and
of type III if and only if it is 3-connected. (A map or a graph is said k-connected if it
remains connected whenever one removes at most (k − 1) of its vertices.)
In this exercise we concentrate on the type II case. We denote by Tn,k the number

of triangulations of type II with n inner vertices (vertices not on the boundary) and
a boundary of length m + 2. We may see that the number of triangulations of type
II without boundary is Tn−2,0 = Tn−3,1. Show that the bivariate generating function
satisfies the functional equation

T (t, u) = 1 + t
T (t, u)− T (t, 0)

u
+ uT (t, u)2. (11)

and solve it! (i.e. determine at least T (t, 0) and possible even T (t, u) – there is still a
one-cut form, and we may obtain an explicit formula for Tn,k).
If you want more, redo the same exercise for types I and III. How are these different

series related?
You may also try counting quadrangulations with a simple boundary (in which case

one gets a cubic equation, which may still be solved by the same method). How is the
series related to the one considered in the first exercise? (Buzzword: free cumulants.)
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