Probabilistic Aspects of Computer Science
Random graphs

Anne Bouillard

November 28, 2020
Properties of random graphs in practice

- **sparse:** the degree of the vertices are very small compared with the size of the graph;
- **scale-free:** there are some vertices with high degree. For example, the distribution of the degrees is a power-law (for some $\tau > 1$, the number of vertices with degree k is proportional to $k^{-\tau}$);
- **small world:** the length between most of the vertices is relatively small;
- **transitivity/clustering:** the neighbors of my neighbors are my neighbors.

Examples of such graphs are social relations, the Internet, citation networks of scientists, telephony networks...
Why studying random graphs?

- Graphs with large size that are described by simple and local rules
- Possess (or not) properties (ou pas) of the previous slide with strong probability
- Good models for studying large graphs
 - Social networks
 - Propagation of epidemics...

We are interested in the behavior of those graphs when the number of vertices grows to infinity.
Different models of random graphs

1. **Erdős-Rényi graphs**: independent edges
2. **Configurations model**: sequence of degrees
3. **Preferential attachments**: incremental model
4. **Structured graphs**: grid with shortcuts.

Each edge is present with probability p.

Each vertex has a given degree, and the edges chosen at random.
Erdős-Rényi graphs: definition

Let \(n \in \mathbb{N} \) and \(p \in [0, 1] \). The space \(G(n, p) \) is the space of undirected graphs with \(n \) vertices and where each edge has probability \(p \) independently from the others. More precisely,
\[
G(n, p) = (\Omega_n, \mathcal{P}(\Omega_n), P),
\]
where
- \(\Omega_n \) is the set of non-directed graphs with \(n \) vertices \(\{1, \ldots, n\} \)
- if for \(1 \leq u < v \leq n \) \(E_{u,v} \) is the event “there is an edge between \(u \) and \(v \)” , \((E_{u,v}) \) is a family of mutually independent events and \(P(E_{u,v}) = p \).

There are at most \(N = \binom{n}{2} \) edges in a graph with \(n \) vertices and there are \(2^N \) graphs in \(G(n, p) \). In the following, \(G_{n,p} \) denotes a random element of \(G(n, p) \).

Example

In \(G(n, p) \),
- the complete graph has probability \(p^N \);
- the empty graph has probability \((1 - p)^N \);
- the probability that \(G_{n,p} \) has \(m \) edges is \(\binom{N}{m} p^m (1 - p)^{N-m} \).
Asymptotic behavior

Our goal here is to study the behavior of some graph properties when the number of vertices grows to infinity in two cases:

1. when p is fixed.
2. when $p = p(n)$ varies with n.
First-order properties of graphs

Closed form formulas generated by

\[F ::= \forall x F \mid \exists x F \mid F \lor F \mid F \land F \mid \neg F \mid x = y \mid I(x, y) \]

with the two axioms

\[\forall x \neg I(x, x) \quad \text{and} \quad \forall x \forall y I(x, y) \iff I(y, x). \]

Example

The following properties are first-order:

- there exists a path of length 3: \(\exists x \exists y \exists z \exists w I(x, y) \land I(y, z) \land I(z, w) \);
- there is no isolated vertex: \(\forall x \exists y I(x, y) \);
- every triangle is included in a clique of size 4:
 \[\forall x \forall y \forall z (I(x, y) \land I(y, z) \land I(x, z) \Rightarrow \exists w (I(x, w) \land I(y, w) \land I(z, w))). \]

The following properties are not first-order: \(G \) is connected, \(G \) is Hamiltonian, \(G \) is planar...
A 0-1 property for random graphs

Theorem

For every first-order statement A, \(\lim_{n \to \infty} P(G_{n,p} \text{ has } A) \in \{0, 1\} \).

Let $A_{r,s}$ be the property $\forall x_1, \ldots, x_r \forall y_1, \ldots, y_s \text{ distinct vertices}, \exists z \text{ distinct vertex such that } z \text{ is connected to every vertex } x_i \text{ and none of } y_j$.

Lemma

$\forall r, s, \lim_{n \to \infty} P(G_{n,p} \text{ has } A_{r,s}) = 1$.
A 0-1 property for random graphs

Let $A(x_i),(y_j),z$ be the event “in $G_{n,p}$, z is connected to the vertices x_1,\ldots,x_r and not to the vertices y_i,\ldots,y_s”. We have

$$\Pr(A(x_i),(y_j),z) = p^r(1-p)^s$$
$$\Pr(\forall z \neg A(x_i),(y_j),z) \leq (1-p^r(1-p)^s)^n$$
$$\Pr(\exists(x_i),(y_j) \forall z \neg A(x_i),(y_j),z) \leq n^{r+s}(1-p^r(1-p)^s)^n$$
$$\Pr(G_{n,p} \text{ has } A_{r,s}) \leq 1 - n^{r+s}(1-p^r(1-p)^s)^n$$

Hence $\lim_{n \to \infty} \Pr(G_{n,p} \text{ has } A_{r,s}) = 1$.
Building a model

We use the following results from completeness theory

- If a system has a model, then it has a denumerable model.
- A theory T is complete if for all B, $T \cup B$ or $T \cup \neg B$ is inconsistent.

Let G and G' two graphs that satisfy $A_{r,s}$ for all s and r.
Such graphs exist and can be constructed by induction:

1. G_0 is a graph with one vertex,
2. if G_n is built, then, for every disjoint subset of the vertices of G_n, S_1 and S_2:
 - either there exists a vertex in G_n that is adjacent to every vertex in S_1 and none in S_2,
 - or a new vertex satisfying that property is added to the graph.

At the end of that step, the new graph obtained is G_{n+1}.
Equivalence

The limit of such graphs satisfies $A_{r,s}$ for all s and r. The graphs G_n are finite for all n but obviously the graph obtained as a limit is not finite. It is then countable and we can assume that G and G' have an infinite countable number of vertices.

Lemma

G and G' are isomorphic.

The set of vertices of G and G' is \mathbb{N}. We build an isomorphism by induction.
Construction of the isomorphism

- Let \(f \) be this isomorphism and initially set \(f(0) = 0 \).
- Let \(V = \{0, \ldots, i - 1, f^{-1}(0), \ldots, f^{-1}(i - 1)\} \) be the set of vertices where \(f \) is already defined.
 - We now define \(f(i) \) and \(f^{-1}(i) \).
- Set \(R = \{j \in V \mid \{j, i\} \text{ is an edge in } G\} \) and \(S = \{j \in V \mid \{j, i\} \text{ is not an edge in } G\} \).
- From our hypothesis, there exists a vertex \(k \) in \(G' \) such that \(k \) is adjacent (in \(G' \)) to every vertex in \(f(R) \) and none in \(f(S) \).
- Set \(f(i) = k \) and \(f^{-1}(k) = i \).
- As a consequence, \((i, j)\) is an edge in \(G \) \(\iff\) \((f(i), f(j))\) is an edge in \(G' \), and the two graphs are isomorphic.
A complete system

Lemma

The system composed of all the \(A_{r,s} \) is complete: for every first order statement \(B \), either \(B \) or \(\neg B \) is provable from the \((A_{r,s}) \).

- By contradiction: suppose that both \(B \) and \(\neg B \) are not provable.
- the theories \((A_{r,s}) + B \) and \((A_{r,s}) + \neg B \) are both consistent and there exist models \(G \) and \(G' \) for both of them.
- But, from the previous fact, \(G \) and \(G' \) are isomorphic, and cannot disagree on \(B \).

To conclude, let \(A \) be a first order statement and suppose that \(A \) is provable from the \((A_{r,s}) \). As proofs are finite, then \(A \) is provable from a finite set \(S \) of \(A_{r,s} \). Then,

\[
P(\neg A \text{ in } G_{n,p}) \leq \sum_{(r,s) \in S} P(\neg A_{r,s} \text{ in } G_{n,p}) \xrightarrow{n \to \infty} 0.
\]

Then \(\lim_{n \to \infty} P(G_{n,p} \text{ has } A) = 1 \). If \(A \) is not provable from the \(A_{r,s} \), then the same holds for \(\neg A \) and \(\lim_{n \to \infty} P(G_{n,p} \text{ has } A) = 0 \), which ends the proof.
Threshold functions

A threshold function for the property A is a function $g(n)$ such that

(i) if $\lim_{n \to \infty} \frac{p(n)}{g(n)} = 0$ (or $p \ll g$), then $\lim_{n \to \infty} P(G_{n,p(n)} \text{ has } A) = 0$.

(ii) if $\lim_{n \to \infty} \frac{g(n)}{p(n)} = 0$ (or $p \gg g$), then $\lim_{n \to \infty} P(G_{n,p(n)} \text{ has } A) = 1$.

A threshold function can also be interpreted as follows:

- assign to each pair $\{u, v\}$ a random number $p_{u,v}$ chosen uniformly on $[0, 1]$.
- For $p \in [0, 1]$, the graph is made of the edges $\{u, v\}$ such that $p_{u,v} \leq p$.
- When p varies from 0 to 1, the graph $G_{n,p}$ grows. If $g(n) \gg p$, then $P(G_{n,p} \text{ has } A) = 0$; and if $g(n) \ll p$, then $P(G_{n,p} \text{ has } A) = 1$.
Threshold functions: examples

<table>
<thead>
<tr>
<th>property</th>
<th>threshold function $g(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains a path of length k</td>
<td>$n^{-\frac{k+1}{k}}$</td>
</tr>
<tr>
<td>is not planar</td>
<td>$\frac{1}{\ln n}$</td>
</tr>
<tr>
<td>contains an Hamiltonian path</td>
<td>$\frac{n}{\ln n}$</td>
</tr>
<tr>
<td>is connected</td>
<td>$\frac{n}{\ln n}$</td>
</tr>
<tr>
<td>contains a clique of size k</td>
<td>$n^{-\frac{k}{k-1}}$</td>
</tr>
</tbody>
</table>
Clique of size 4

Theorem

If A = "having a clique of size 4", then the threshold function is $g(n) = n^{-2/3}$. More precisely,

- if $p(n) \ll n^{-2/3}$, then $\lim_{n \to \infty} P(G_{n,p} \text{ satisfies } A) = 0$;
- if $p(n) \gg n^{-2/3}$, then $\lim_{n \to \infty} P(G_{n,p} \text{ satisfies } A) = 1$.

Let $C_1, \ldots, C_{\binom{n}{4}}$ be an enumeration of the 4-vertex sets and define the random variables $X_i \in \{0, 1\}, \ i \in \{1, \ldots, \binom{n}{4}\}$

$X_i = 1 \iff C_i$ is a clique of size 4.

Let $X = \sum_i X_i$.

Cliques of size 4

- $\mathbb{E}[X] = \sum \mathbb{E}[X_i] = \left(\frac{n}{4}\right)p(n)^6 = \left(\frac{1}{24}n^4 + o(n^4)\right)p(n)^6$;
- $\mathbb{E}[X^2] = \sum \mathbb{E}[X_i] + \sum_{i \neq j} \mathbb{E}[X_i X_j]$.

| $|C_i \cap C_j|$ | $\mathbb{E}[X_i X_j]$ | number |
|-----------------|---------------------|--------|
| ≤ 1 | $p(n)^{12}$ | $(\frac{n}{4}) ((\frac{n-4}{4}) + 4(\frac{n-4}{3}))$ |
| 2 | $p(n)^{11}$ | $(\frac{n}{4}) 6(\frac{n-4}{2})$ |
| 3 | $p(n)^{9}$ | $(\frac{n}{4}) 4(n - 4)$ |

$\mathbb{E}[X^2] = \left(\frac{1}{24}n^4 + o(n^4)\right)p(n)^6 + \left(\frac{1}{24^2}n^8 + o(n^8)\right)p(n)^{12} + \left(\frac{6}{24^2}n^6 + o(n^6)\right)p(n)^{11} + \left(\frac{4}{24}n^5 + o(n^5)\right)p(n)^9$

$\text{Var}[X] = \left(\frac{1}{24}n^4 + o(n^4)\right)p(n)^6 + \left(o(n^8)\right)p(n)^{12} + \left(\frac{6}{24^2}n^6\right)p(n)^{11} + \left(\frac{4}{24}n^5\right)p(n)^9$.
Clique of size 4: First and second moment method

- \(\mathbb{E}[X] = \left(\frac{1}{24} n^4 + o(n^4) \right) p(n)^6; \)
- \(\text{Var}(X) = \left(\frac{1}{24} n^4 + o(n^4) \right) p(n)^6 + (o(n^8)) p(n)^{12} + \left(\frac{6}{24^2} n^6 \right) p(n)^{11} + \left(\frac{4}{24^3} n^5 \right) p(n)^9. \)

- if \(p(n) = o(n^{-2/3}) \), then by the Markov inequality,
 \[
 P(X \neq 0) \leq \mathbb{E}[X] = \left(\frac{1}{24} n^4 + o(n^4) \right) p(n)^6 = o(1).
 \]

- if \(n^{-2/3} = o(p(n)) \), \(n^4 p(n)^6 \xrightarrow{n \to \infty} \infty \) then by the second moment method,
 \[
 P(X = 0) \leq \frac{\text{Var}(X)}{\mathbb{E}[X]^2} = O(n^{-4} p(n)^{-6}) + o(1) + O(n^{-2} p(n)^{-1}) + O(n^{-3} p(n)^{-3}) = o(1).
 \]
Threshold functions for monotone increasing properties

Definition

A property \mathcal{A} is monotone increasing if

$$G \subseteq G' \text{ and } G \text{ satisfies } \mathcal{A} \Rightarrow G' \text{ satisfies } \mathcal{A}.$$

Lemma

If \mathcal{A} is a monotone increasing property, then

$$p \leq p' \Rightarrow P(G_{n,p} \text{ satisfies } \mathcal{A}) \leq P(G_{n,p'} \text{ satisfies } \mathcal{A})$$

We use a coupling argument, and the previous construction of random graphs:

1. draw $p_e \sim \text{Unif}([0, 1])$ i.i.d for edges $e \in E$
2. we obtain $G_{n,p}$ (resp. $G_{n,p'}$) where the e is an edge if $p_i \leq p$ (resp. $p_i \leq p'$).
3. $G_{n,p} \subseteq G_{n,p'}$
4. $G_{n,p}$ satisfies $\mathcal{A} \Rightarrow G_{n,p'}$ satisfies \mathcal{A}
Threshold functions for monotone increasing properties

Theorem

If \mathcal{A} is monotonic increasing, then there exists a threshold function for this property.

1. Find a candidate for the threshold function: $g(n)$ such that

 $$\Pr(G_{n,g(n)} \text{ satisfies } \mathcal{A}) = \frac{1}{2}.$$

 This function is well-defined:
 - $\Pr(G_{n,p} \text{ satisfies } \mathcal{A})$ increases with p (lemma)
 - $\Pr(G_{n,p} \text{ satisfies } \mathcal{A}) = \sum_{G \text{ satisfies } \mathcal{A}} p^{|E(G)|} (1 - p)^{|N - E(G)|}$ is continuous + intermediate value theorem

2. k copies of $G(n, p)$
 - Let $G_{i,n,p}$ be k independent copies of $G_{n,p}$
 - $G = \bigcup_{i=1}^{k} G_{i,n,p}$ the union of these graphs (edge-wise)
 - $G \sim G_{n,q}$ with $q = 1 - (1 - p)^k \leq kp$, so

 $$\Pr(G_{n, kp} \notin \mathcal{A}) \leq \Pr(G_{n, q} \notin \mathcal{A}) \leq \left(\Pr(G_{n, p} \notin \mathcal{A})\right)^k.$$
Threshold functions for monotone increasing properties

\[P(G_{n,kp} \notin A) \leq P(G_{n,q} \notin A) \leq (P(G_{n,p} \notin A))^k. \]

1. \(k = \omega(n) \to \infty \) and \(p = g(n) \):

\[P(G_{n,\omega(n)g(n)} \notin A) \leq (P(G_{n,g(n)} \notin A))^{\omega(n)} = \left(\frac{1}{2}\right)^{\omega(n)} \to 0. \]

2. \(p = g(n)/\omega(n) \):

\[\frac{1}{2} = (P(G_{n,g(n)} \notin A)) \leq (P(G_{n,p(n)} \notin A))^{\omega(n)}, \]

so

\[(P(G_{n,p(n)} \notin A))^{\omega(n)} \geq \left(\frac{1}{2}\right)^{1/\omega(n)} \to 1. \]
Moment generating functions

Definition

Let X be a random variable on \mathbb{N}. Its (moment) generating functions is

$$g_X : s \mapsto \mathbb{E}[s^X] = \sum_{k=0}^{\infty} s^k \mathbb{P}(X = k).$$

- g_X is C^∞ on $] -1, 1[$
- $g_X(0) = \mathbb{P}(X = 0)$, $g_X(1) = 1$
- $\mathbb{P}(X = n) = g_X^{(n)}(0)/n!$
- $\mathbb{E}[X] = g_X'(1)$

Proposition

Let X and Y be two independent random variables, with respective generating functions g_X and g_Y. Then the generating function of $X + Y$ is $g_{X+Y} = g_X g_Y$.
Examples of moment generating functions

Example

- $X \sim \text{Ber}(p): g_X(s) = 1 - p + ps$;
- $X \sim \text{Bin}(n, p): g_X(s) = (1 - p + ps)^n$;
- $X \sim \text{Poi}(\lambda): g_X(s) = g_X(s) = e^{\lambda(s-1)}$;

Proposition

Let X and Y be two random variables, with respective generating functions g_X and g_Y. If $\forall s \in [0, \delta], g_X(s) = g_Y(s)$, then X and Y have the same distribution.
Wald's equality: preliminary lemma

Theorem

Let T be a non-negative integer r.v. and $(Z_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d r.v. independent of T. Set $X = \sum_{i=0}^{T} Z_i$ and let g_Z, g_T and g_X be the generating functions of Z_1, T and X.

$$g_X = g_T \circ g_Z.$$

$$s^{Z_1+\ldots+Z_T} = \sum_{n=0}^{\infty} 1\{T=n\} s^{Z_1+\ldots+Z_n},$$

$$\mathbb{E}(s^{Z_1+\ldots+Z_T}) = \sum_{n=0}^{\infty} \mathbb{E}[1\{T=n\} s^{Z_1+\ldots+Z_n}] \text{ (linearity)}$$

$$= \sum_{n=0}^{\infty} \mathbb{E}[1\{T=n\}] \mathbb{E}[s^{Z_1+\ldots+Z_n}] \text{ (independence of } T \text{ and } Z_i)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(T = n)[g_Z(s)]^n \text{ (independence of the } Z_i)$$

$$= \mathbb{E}[g_Z(s)^T] = g_T(g_Z(s)).$$
Wald’s equality

Theorem (Wald’s equality)

Let T be a non-negative integer random variable and $(Z_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d r.v. independent of T. Let $X = \sum_{i=0}^{T} Z_i$. Let g_Z, g_T and g_X be the respective generating functions of Z_1, T and X. Then

$$E[X] = E[Z]E[T].$$

$$E[X] = g_X'(1) = g_Z'(1)g_T'(g_Z(1)) = g_Z'(1)g_T'(1) = E[Z]E[T].$$
The idea of the Chernoff bounds is to apply Markov inequality to the generating function.

Theorem

- \(\forall s > 1, \ P(X \geq a) \leq \inf_{s > 1} \frac{E(s^X)}{s^a} \)
- \(\forall s < 1, \ P(X \leq a) \leq \inf_{s < 1} \frac{E(s^X)}{s^a} \)

\[
\forall s > 1, \ P(X \geq a) = P(s^X \geq s^a) \leq \frac{E(s^X)}{s^a}
\]

\[
\forall s < 1, \ P(X \leq a) = P(s^X \geq s^a) \leq \frac{E(s^X)}{s^a}
\]
Special case: sum of independent Bernoulli variables

Theorem

Let X_1, \ldots, X_n be n independent r.v., $X_i \sim \text{Ber}(p_i)$. Let $X = \sum_{i=1}^{n} X_i$ and set $\mu = \mathbb{E}[X]$.

1. $\forall \delta > 0$, $\mathbb{P}(X \geq (1 + \delta)\mu) \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$.

2. $\forall \delta \in]0, 1]$, $\mathbb{P}(X \geq (1 + \delta)\mu) \leq e^{-\mu \frac{\delta^2}{3}}$.

- g_i: generating function of X_i, so $g_i(s) = 1 - p_i + p_is = 1 + p_1(s-1) \leq e^{p_i(s-1)}$.
- $g_X(s) = \prod_{i=1}^{n} g_i(s) \leq \prod_{i=1}^{n} e^{p_i(s-1)} = e^{\mu(s-1)}$.
- $\forall s > 1$, $\mathbb{P}(X \geq (1 + \delta)\mu) \leq \frac{\mathbb{E}(s^X)}{s^{(1+\delta)\mu}} \leq \frac{e^{\mu(s-1)}}{s^{(1+\delta)\mu}}$.
- with $s = 1 + \delta$, we get

\[
\mathbb{P}(X \geq (1 + \delta)\mu) \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.
\]

- (2): $\forall \delta \in]0, 1]$, $\frac{e^{\delta}}{(1+\delta)^{1+\delta}} = e^{\delta-(1+\delta)\ln(1+\delta)} \leq e^{-\frac{\delta^2}{3}}$.

A. Bouillard PACS November 28, 2020 28 / 36
Special case: sum of independent Bernoulli variables (2)

Theorem

Let X_1, \ldots, X_n be n independent r.v., $X_i \sim \text{Ber}(p_i)$. Let $X = \sum_{i=1}^{n} X_i$ and set $\mu = \mathbb{E}[X]$. Then for all $\delta \in]0, 1[$,

1. $\mathbb{P}(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^\mu$.
2. $\mathbb{P}(X \leq (1 - \delta)\mu) \leq e^{-\mu \frac{\delta^2}{2}}$.

The proof is exactly the same with $s < 1$.

- $\mathbb{P}(X \leq (1 - \delta)\mu) \leq \frac{\mathbb{E}(s^X)}{s(1-\delta)\mu} \leq \frac{e^{\mu(s-1)}}{s(1-\delta)\mu}$.
- with $s = 1 - \delta$, we get

\[
\mathbb{P}(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^\mu.
\]

- (2) $\forall \delta \in]0, 1[,$ \quad $\frac{e^\delta}{(1-\delta)^{1-\delta}} = e^{\delta - (1-\delta) \ln(1-\delta)} \leq e^{-\frac{\delta^2}{2}}$.

A. Bouillard

PACS

November 28, 2020 29 / 36
Galton-Watson branching processes

The Galton-Watson branching process was initially introduced to study the extinction of family names in the Victorian England.

- $X_0 = 1$ (root, depth 0)
- X_n number of nodes at depth n (population of the n-th generation)
- $Z_i^{(n)}$ number of children of node i of the n-th generation. The $(Z_i^{(n)})_{i,n}$ are i.i.d.

What is the probability that the tree is finite?
Theorem

Let p_e be the extinction probability of the Galton-Watson process.

1. If $P(Z > 1) > 0$ and $E[Z] \leq 1$ then $p_e = 1$;
2. If $P(Z > 1) = 0$ and $E[Z] = 1$, then $p_e = 0$;
3. If $E[Z] > 1$, then $p_e = \beta < 1$.

Z is a r.v. with the same distribution as $Z_i^{(n)}$.
Distribution of the population of the n-the generation

\[X_{n+1} = \sum_{i=1}^{X_n} Z_i^{(n)}. \]

Generating functions:
- \(g(s) = \mathbb{E}[s^Z] \) the generating function of \(Z \)
- \(\phi_n = \mathbb{E}[s^{X_n}] \) that of \(X_n \).

Lemma

\[\phi_{n+1} = g_Z(\phi_n). \]

- Wald equality: \(\phi_{n+1} = \phi_n \circ g_Z \).
- \(\phi_{n+1} = \phi_0 \circ g_Z \circ \cdots \circ g_Z = \phi_0 \circ g_Z^{n+1}. \)
- \(\mathbb{P}(X_0 = 1) = 1 \), so \(\phi_0(s) = s \) and \(\phi_{n+1} = g_Z^{n+1}. \)
Extinction probability as a fix-point equation

- \(p_e = \mathbb{P}(\exists n \in \mathbb{N}, \ X_n = 0) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} \{X_n = 0\}) \) the extinction probability of the process
- \(\{X_n = 0\} \subseteq \{X_{n+1} = 0\} \), so \(p_e = \lim_{n \to \infty} \mathbb{P}(X_n = 0) \).

Lemma

\[p_e = g_Z(p_e). \]

- We know that \(\phi_{n+1}(0) = g_Z(\phi_n(0)) \)
- we also have \(\phi_{n+1}(0) = \mathbb{P}(X_{n+1} = 0) \) and \(\phi_n(0) = \mathbb{P}(X_n = 0) \)
- Then, by continuity (\(g_Z \) is continuous on \([0, 1]\)), \(p_e = g_Z(p_e) \).
Extinction probability as a fix-point equation (2)

Theorem (fixed point)

Consider the equation $p = g(p)$ where g is the generating function of a random variable X.

1. g is non-decreasing and convex on $[0, 1]$. Moreover, if $\mathbf{P}(X = 0) < 1$, then g is strictly increasing, and if $\mathbf{P}(X \leq 1) < 1$, then g is strictly convex.

2. If $\mathbf{P}(X < 1) < 1$, and if $\mathbb{E}[X] \leq 1$, then the equation $x = g(x)$ has a unique solution in $[0, 1]$, $x = 1$. If $\mathbb{E}[X] > 1$, then the equation $x = g(x)$ has two solutions, in $[0, 1]$, $x = 1$ and $\beta \in [0, 1]$.

- $g_Z(s) = \sum_{n \in \mathbb{N}} \mathbf{P}(Z = n)s^n$ is non-decreasing and strictly increasing if $\mathbf{P}(Z = 0) < 1$.
- $g'_Z(s) = \sum_{n \in \mathbb{N}} \mathbf{P}(Z = n + 1)s^n$ is non-decreasing and strictly increasing if $\mathbf{P}(Z \leq 1) < 1$.
- so g_Z is convex and strictly convex if $\mathbf{P}(Z \leq 1) < 1$.
Extinction probability as a fix-point equation (3)

- $x = 1$ is trivially a solution.
- Now, we use the convexity of g_Z.
- If $E[X] \leq 1$, then $g'_Z(1) \leq 1$ and, as the function is convex, $\forall x < 1$, $g'_Z(x) \leq 1$ and $g_Z(x) > x$.
- If $E[X] > 1$, on an interval $[1 - \epsilon, 1[$, $g_Z(x) < x$. But $g_Z(0) \geq 0$, so there exists β such that $\beta = g_Z(\beta)$.

![Graphs showing the conditions for the derivative of the moment generating function $g'_Z(1)$]
Extinction probability

Theorem

Let p_e be the extinction probability of the Galton-Watson process.

1. If $P(Z > 1) > 0$ and $E[Z] \leq 1$ then $p_e = 1$;
2. If $P(Z > 1) = 0$ and $E[Z] = 1$, then $p_e = 0$;
3. If $E[Z] > 1$, then $p_e = \beta < 1$.

- $x_n = P(X_n = 0)$
- $x_0 = 0$, so $\beta - x_0 \geq 0$
- if $x_n \leq \beta$, then as g_Z is non-decreasing, $x_{n+1} = g_Z(x_n) \leq g_Z(\beta) = \beta$
- So $p_e \leq \beta$ and finally $p_e = \beta$