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Unidimensional and Evolution Methods
for Optimal Transportation

In dimension one, optimal transportation is rather straightfor-
ward. The easiness with which a solution can be obtained in that
setting has recently been used to tackle more general situations,
each time thanks to the same method [4, 19, 49]. First, disintegrate
your problem to go back to the unidimensional case, and apply the
available 1d methods to get a �rst result; then, improve it gradually
using some evolution process.

This dissertation explores that direction more thoroughly. Look-
ing back at two problems only partially solved this way, I show how
this viewpoint in fact allows to go even further.

The �rst of these two problems concerns the computation of
Yann Brenier’s optimal map. Guillaume Carlier, Alfred Galichon, and
Filippo Santambrogio [19] found a new way to obtain it, thanks to
an di�erential equation for which an initial condition is given by the
Knothe–Rosenblatt rearrangement. (The latter is precisely de�ned
by a series of unidimensional transformations.) However, they only
dealt with discrete target measures; I generalize their approach to
a continuous setting [10]. By di�erentiation, the Monge–Ampère
equation readily gives a pde satis�ed by the Kantorovich potential;
but to get a proper initial condition, it is necessary to use the Nash–
Moser version of the implicit function theorem.

The basics of optimal transport are recalled in the �rst chapter,
and the Nash–Moser theory is exposed in chapter 2. My results are
presented in chapter 3, and numerical experiments in chapter 4.

The last chapter deals with the idt algorithm, devised by Fran-
çois Pitié, Anil C. Kokaram, and Rozenn Dahyot [49]. It builds a
transport map that seems close enough to the optimal map for most
applications [50]. A complete mathematical understanding of the
procedure is, however, still lacking. An interpretation as a gradient
�ow in the space of probability measures is proposed, with the sliced
Wasserstein distance as the functional. I also prove the equivalence
between the sliced and usual Wasserstein distances.
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Méthodes unidimensionnelles
et d’évolution pour le transport optimal

Sur une droite, le transport optimal ne pose pas de di�cultés.
Récemment, ce constat a été utilisé pour traiter des problèmes plus
généraux. En e�et, on a remarqué qu’une habile désintégration per-
met souvent de se ramener à la dimension un, ce qui permet d’utiliser
les méthodes a�érentes pour obtenir un premier résultat, que l’on
fait ensuite évoluer pour gagner en précision [4, 19, 49].

Je montre ici l’e�cacité de cette approche, en revenant sur
deux problèmes déjà résolus partiellement de cette manière, et en
complétant la réponse qui en avait été donnée.

Le premier problème concerne le calcul de l’application de Yann
Brenier. En e�et, Guillaume Carlier, Alfred Galichon et Filippo San-
tambrogio [19] ont prouvé que celle-ci peut être obtenue grâce à
une équation di�érentielle, pour laquelle une condition initiale est
donnée par le réarrangement de Knothe–Rosenblatt (lui-même dé-
�ni via une succession de transformations unidimensionnelles). Ils
n’ont cependant traité que des mesures �nales discrètes ; j’étends
leur résultat aux cas continus [10]. L’équation de Monge–Ampère,
une fois dérivée, donne une edp pour le potentiel de Kantorovitch ;
mais pour obtenir une condition initiale, il faut utiliser le théorème
des fonctions implicites de Nash–Moser.

Le chapitre 1 rappelle quelques résultats essentiels de la théorie
du transport optimal, et le chapitre 2 est consacré au théorème de
Nash–Moser. J’expose ensuite mes propres résultats dans le chapitre
3, et leur implémentation numérique dans le chapitre 4.

En�n, le dernier chapitre est consacré à l’algorithme idt, déve-
loppé par François Pitié, Anil C. Kokaram et Rozenn Dahyot [49].
Celui-ci construit une application de transport su�samment proche
de celle de M. Brenier pour convenir à la plupart des applications [50].
Une interprétation en est proposée en termes de �ot de gradients
dans l’espace des probabilités, avec pour fonctionnelle la distance
de Wasserstein projetée. Je démontre aussi l’équivalence de celle-ci
avec la distance usuelle de Wasserstein.
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Metodi unidimensionali e di evoluzione
per il trasporto o�imale

Sulla retta reale, il trasporto ottimale non presenta nessuna
di�coltà. Questo fatto è stato usato di recente per ottenere risultati
anche in situazioni più generali. Ogni volta, disintegrando il proble-
ma per tornare alla dimensione uno, in modo da utilizzare metodi
speci�ci a questo caso, si ottiene una prima soluzione; e poi, con
metodi d’evoluzione, questa viene migliorata [4, 19, 49].

Qui, vorrei mostrare l’e�cacia di tale approccio. Rivisito due
problemi che avevano ricevuto, in questo modo, solo soluzioni par-
ziali e, continuando nella stessa direzione, li completo.

Il primo problema riguarda la mappa ottimale di Yann Brenier.
Guillaume Carlier, Alfred Galichon e Filippo Santambrogio [19] han-
no dimostrato che si può calcolarla con un’equazione di�erenziale
ordinaria se il riordinamento di Knothe–Rosenblatt è preso come
condizione iniziale. Quest’ultimo viene precisamente de�nito da una
serie di trasformazioni unidimensionali. Tali autori hanno però trat-
tato solo il caso delle misure �nali discrete; estendo il loro risultato
al caso continuo [10]. Infatti, quando si di�erenzia l’equazione di
Monge–Ampère, si ottiene una pde per il potenziale di Kantorovič;
tuttavia, per avere una condizione iniziale assicurando esistenza e
unicità, bisogna usare il teorema di Nash–Moser.

Nel capitolo 1, tratto di qualche risultato essenziale della teoria
del trasporto ottimale. Il teorema di Nash e Moser è l’oggetto del
capitolo 2. Successsivamente, espongo i miei risultati nel capitolo 3,
e la loro implementazione numerica nel capitolo 4.

In�ne, nell’ultimo capitolo, studio l’algoritmo idt, ideato da
François Pitié, Anil C. Kokaram, e Rozenn Dahyot [49]. Tale algo-
ritmo produce una mappa così vicina a quella di Brenier, che può
essere utilizzata al suo posto in varie situazioni [50]. Un’interpre-
tazione di questo algoritmo è proposta come �usso gradiente nello
spazio delle misure di probabilità, rispetto al quadrato della distanza
di Super Wasserstein. Mostro anche l’equivalenza tra quest’ultima e
la distanza di Wasserstein classica.
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Preface

How I learned of optimal transportation is a bit fortuitous. From time to time, a
mathematical education can seem a bit lifeless; at least for me, it felt that way at some
point during my scholarship at the École normale supérieure. Yet when I complained
to Guillaume Carlier, who was my tuteur there, he suggested I should try a new
subject: optimal transportation. As it was rooted in a very simple question—roughly,
how to move stu� e�ciently?—but still involved nice mathematics, he thought it
might catch my interest. And it did.

Following his advice, I attended a series of lectures on the subject by François
Bolley, Bruno Nazaret, and Filippo Santambrogio—which turned out to be very lively
indeed. A year later, in 2010, I was lucky enough to go to the Scuola Normale Superiore
in Pisa to write my master thesis under the supervision of Luigi Ambrosio. I was to
study one of the most abstract outcome of the theory: gradient �ows in the space
of probability measures. The months I spent there were intense, and exciting. I was
therefore very glad to be able to start a phd under the joint supervision of Professors
Ambrosio and Santambrogio.

Over the three years that followed, I came to learn a lot, and not only about
mathematics, but also about perseverance and self-organization, about trust in others’
insights as well as in my own intuition—and about a researcher’s life and my own
aspirations. Of course, going back twice in Pisa for an extended amount of time, I also
had the opportunity to learn more about Italy, its language, its culture, and its people.

It was a wonderful experience, for which I am immensely grateful.

— Communay, August 15, 2013
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Introduction

Many illustrations can be found in the literature that try to simply present the problem
lying at the heart of optimal transportation. Some talk, for instance, of sand piles to
be moved [45, 62], or bread to be sent from bakeries to local cafés [63], or coal to be
delivered from mines to steelworks [56]. Let me indulge, however, in giving another
example. Readers already familiar with the subject might be excused for skipping the
following part; it should get more interesting afterwards.

Imagine you are the head of an industrial complex somewhere in China, maybe
producing electronic components for a company called Appell Inc. The labor comes
from rural areas all over the country, and needs housing close to the factories; there-
fore, the complex not only includes many plants, but also dormitories. Your task is to
assign to each and every one of your workers a bed. But their commuting costs you
money, as you have to pay for buses (or any other transportation system), and you
want to minimize your expenses. How would you achieve it?

Assuming there is barely enough accommodation for everyone, we can represent
the distributions of workers and beds by two measures µ and ν with the same total
mass. Then, given an area A, the values µ (A) and ν (A) respectively indicate the
numbers of employees and beds in that area. We will denote by c (x ,y) the daily cost
of transportation between the factory x and the dormitory y, back and forth.

Since there are so many workers—that is, so many variables—, you cannot expect
to �nd a precise solution for everyone, but you need to operate from a “mesoscopic”
level. A way to ease the search for a solution is to group your workers by factories, and
try to send all the people working at the same place x to sleep in the same dormitory
y. In that case, what you are looking for is a mapping, y = T (x ), telling you, for each
factory, where to house its sta�—that is, you want to �nd a map T that minimizes the
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total cost of transportation, ∫
c (x ,T (x )) dµ (x ),

and such that ν (A) = µ (T −1 (A)) for any area A, because T −1 (A) is where people
sleeping in A come from. This version of the problem was historically the �rst to
be studied, by Gaspard Monge [45] in the 18th century—although in term of sand
particles rather than workers—, and has therefore come to be known as Monge’s

problem.
However, there might be no such mapping—for instance, if you have no choice

but to split the workforce of a given factory between many dormitories. Hence, in the
1940s, Leonid Kantorovich [35, 36] proposed instead to model a solution as a measure
γ , such that γ (A × B) represents the number of people working in the area A and
sleeping somewhere in B (this implies its marginals should be µ and ν ). The total cost
of transportation for the plan γ is then given by∫

c (x ,y) dγ (x ,y).

To �nd an optimal γ is today called the Monge–Kantorovich problem; it really is a
generalization of Monge’s initial question, for if there is an optimal mapping T , then
it corresponds to an optimal measure γ such that

γ (A × B) = µ (A ∩T −1 (B)) ,

and the transport costs are the same.
In his papers, Kantorovich also showed you might be able—to keep our story

going—to pass on the problem to the workers: just start charging for the accommo-
dation, introduce fares to the transportation system to cover for its operation, and
generously hand over a subsidy to compensate for all that. Indeed, values may exist
for the subsidies and the bed rates such that the only solution for any employee not
to lose money is to �nd the right spot to sleep. That is, if S (x ) is the additional money
you grant daily to the people working in the factory x , and B (y) is the price you ask
for a bed in the dormitory y, then you could perhaps manage to set S and B in such a
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way that S (x ) ≤ B (y) + c (x ,y), with the double assurance that: (1) for any given x ,
there is equality for some y’s; (2) if the workers in x comply and go to one of those
y’s, everyone may have a bed. In the end, you pay the di�erence between what you
hand over and what you get back from the accommodation fares, and if S and B are
correctly set, that should be∫

S (x ) dµ (x ) −
∫

B (y) dν (y) = min
γ

∫
c (x ,y) dγ (x ,y).

The Monge–Kantorovich would then be solved, in some sense—but the di�culty now
lies in setting the right values for S and B. Those are called, when optimal, Kantorovich
potentials.

With Kantorovich’s approach, you might have therefore to split a group of
coworkers. On the other hand, if the factories are quite small, and not too concentrated,
then there are not that many people working at the same place, so it should be easier
to assign the same dormitory to them all: the solution might still be a mapping. For a
cost equal to the squared distance, this was formally proved by Yann Brenier [13, 14] in
the 1980s, who also showed optimal values exist for the bed rates B and the subsidies
S that force the employees to �nd the right spot, which they do by simply following
the direction of decreasing subsidies—more precisely, from a factory x , one should go
to y = T (x ) = x − ∇S (x ). This was to be expected somehow, as the handouts should
be fewer where there are more beds nearby.

But then, in practical terms, how to compute the optimal mappingT ? When both
measures are discrete—that is, when the factories and the dormitories are scattered—,
linear programming provides a solution, as does Dimitri P. Bertsekas’s algorithm [9].
However, when the distributions are more di�use, the problem is in general hard
to solve—except in dimension one. In that case, there is a formula, which translates
into the following method: if the factories and the dormitories are all aligned along
the same street, you should do the assignment going from one end to the other,
and allocate the �rst bed you encounter to the �rst man you meet, and so on. In
other terms, if F and G stand for the cumulative distributions of the workers and
beds—that is, if F (t ) and G (t ) are respectively the total numbers of workers and
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Figure A: Construction of the optimal map T in 1d. The cumulative distributions, F and G,
represent the areas below the graphs of the densities of µ and ν , denoted by f and
д respectively; the point x is sent onto y, i.e. y = T (x ), if and only if F (x ) = G (y),
which means the �lled areas should be equal.

beds located before the point t—, then people working in x should go to sleep to
y = T (x ) = G−1 ◦ F (x ); see �gure A, on this page.

In greater dimensions, even if many numerical methods have been developed [4,
7, 8, 11, 37, 40], the problem remains di�cult. It is, for instance, possible to start from
a non-optimal mapping, like the Knothe–Rosenblatt rearrangement—which, as we
shall see, applies the previous formula on each dimension—, and then alter it through
a steepest-descent algorithm so as to make it optimal [4]. Or, using the peculiar form
the optimal map should have, T (x ) = x − ∇S (x ), one can start from a non-optimal
potential S0, and then apply Newton’s method to catch the optimal S [40]. By some
aspects, my paper [10] combines these two approaches, since it computes the optimal
potential S rather than the map T directly, but it nevertheless manages to start from
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Knothe’s map. (I will present the results of this paper in chapter 3, with new numerical
experiments in chapter 4).

This Knothe–Rosenblatt rearrangement was devised independently by Herbert
Knothe [38] and Murray Rosenblatt [51] in the 1950s. It is a mapping, assigning to
each worker from your industrial complex a bed in a dormitory—although, a priori,
not in a very cost-e�ective way—by solving the problem on each dimension one after
the other, thanks to the unidimensional solution to Monge’s problem. Let us assume
the measures µ and ν have densities, which we denote by f and д; then f (x ) is the
number of workers in the factory x , and д(y) is the number of beds in the dormitory y.
If the complex’s roads are divided into avenues (north–south) and streets (west–east),
then the position x = (x1 , x2) of a factory is given by the intersection of an avenue x1

and a street x2; the same for a dormitory’s position y = (y1 ,y2). To assign the beds,
we can start by summing up the workforces on each avenue on the one hand, and the
beds on the other hand:

f̂ (x1) =

∫
f (x1 , x2) dx2 , д̂(x1) =

∫
д(y1 ,y2) dy2.

We denote by F̂ and Ĝ the cumulative distributions of f̂ and д̂. Then, dealing with
each avenue from the west to the east, one after the other, we tell the workers on
the avenue x1 to look for a dormitory on the most western avenue with some spare
capacity—and this avenue will be y1 = T

1
K (x1) = Ĝ

−1 ◦ F̂ (x1). Once everybody has a
designated avenue where to �nd a bed, we proceed likewise to assign a street, and
its intersection with the avenue will yield the dormitory’s position: starting from
the north and moving southward, we tell people working in x = (x1 , x2) to go to the
most northern dormitory they can �nd on the avenue y1 = T 1

K (x1) with some beds
left, which will be at the intersection with the street y2 = T

2
K (x1 , x2) = Ĝ

−1
y1 ◦ F̂x1 (x2),

with F̂x1 and Ĝy1 the (normalized) cumulative distributions of workers and beds on
the avenues x1 and y1 respectively. The Knothe–Rosenblatt rearrangement is the
mapping we thus obtain, TK = (T 1

K ,T
2
K ); see �gure B, on the next page. Sadly, as

this transport map deals with each dimension in a certain order, on which the result
strongly depends, it is anisotropic, and thus unsuitable for many applications—e.g., in
image processing—because it creates artifacts.
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Figure B: Construction of the Knothe–Rosenblatt rearrangement (y1 ,y2) = TK (x1 , x2), de-
�ned by y1 = T 1

K (x1) and y2 = T 2
K (x1 , x2). For each dimension, the hashed zones

have the same areas, respectively F 1 (x1) = G
1 (y1), and F 2

x1 (x2) = G
2
y1 (y2).
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The starting point of the theory I will present in chapter 3 is that this mapping
would however be optimal, should the price of a north–south displacement be a lot
less expensive than a weast–east one—i.e., the rearrangement would be optimal for a
transportation cost cε (x ,y) = |x1 −y1 |

2 + ε |x2 −y2 |
2, with ε in�nitesimally small. But,

increasing ε little by little and updating the optimal mapping accordingly, we could get
back the optimal map for a regular quadratic cost, at least if we can get to ε = 1. This
was achieved by Guillaume Carlier, Alfred Galichon, and Filippo Santambrogio [19],
under the assumption the target measure is discrete—that is, when the dormitories
are scattered.

Pursuing their work, I was able to deal with more di�use distributions [10]. They
had found a di�erential equation satis�ed by the Kantorovich potential S ; I therefore
sought to do the same. We have seen that, for a cost equal to the squared distance,
c (x ,y) = |x1 − y1 |

2 + |x2 − y2 |
2, the optimal transport map is:

T (x ) = x − ∇S (x ) = x −

 ∂1S (x )

∂2S (x )

 .
But for a cost cε (x ,y) = |x1 − y1 |

2 + ε |x2 − y2 |
2, the optimal map can be written as

Tε (x ) = x −

 ∂1Sε (x )

∂2Sε (x )/ε

 = x − A−1
ε ∇Sε (x ) with Aε =

 1 0
0 ε

 .
Since Tε must still send the measure µ onto the measure ν , that is,

ν (A) =

∫
y∈A

д(y) dy =
∫
Tε (x )∈A

f (x ) dx = µ (T −1
ε (A)) for any area A,

the following equality, called a Monge–Ampère equation, must always hold:

f (x ) = д(Tε (x )) det(DTε ) = д(x − A−1
ε ∇Sε (x )) det(Id −A−1

ε ∇
2Sε (x )). (a)

This equation, along with the further condition Aε − ∇
2Sε > 0 (to force uniqueness),

completely determines the potential Sε . The implicit function theorem then allows us
to get information on its regularity in the following way: First, for u smooth enough
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such that Aε − ∇
2u > 0, we set

F (ε ,u) := f − д(Id−A−1
ε ∇u) det(Id −A−1

ε ∇
2u),

so that F (ε ,u) = 0 if and only if u = Sε . Then, the di�erential with respect to u,
denoted by DuF, is a second-order, strictly elliptic di�erential operator, which is
invertible; hence, ε 7→ Sε is at least C 1. Di�erentiating the equation (a) with respect
to ε , we therefore get a second-order, elliptic partial di�erential equation:

div
(
f

[
Id −A−1

ε ∇
2Sε

] −1
A−1
ε

(
∇Ṡε − ȦεA

−1
ε ∇Sε

))
= 0. (b)

The dotted symbols, Ṡε and Ȧε , represent the derivatives with respect to ε ; the target
density д is here hidden in the determinant of Id −A−1

ε ∇
2Sε .

As long as ε stays away from zero, this last equation can be solved, and Ṡε is the
unique solution. So, if we know Sε0 for some ε0 > 0, we can get S1 back, since we can
obtain Ṡε by solving the elliptic equation (b), and then compute S1 = Sε0 +

∫ 1
ε0
Ṡε dε .

This is akin to the continuation method, which was used by Philippe Delanoë [23]
and John Urbas [60] from a theoretical point of view, and by Grégoire Loeper and
Francesca Rapetti [40] for numerical computations.

But what happens when ε is in�nitesimally small, and tends to zero? On the one
hand, we know Tε converges to be the Knothe–Rosenblatt rearrangement,

y = TK (x ) = (T 1
K (x1),T

2
K (x1 , x2)).

On the other hand, when ε is in�nitesimally small but still nonzero,

y = Tε (x ) = x − (∂1Sε (x ), ∂2Sε (x )/ε ).

To reconcile this with the previous expression, and cancel the 1/ε , maybe we can
write Sε (x ) = S 1

ε (x1) + εS2
ε (x1 , x2). Then,

Tε (x ) = x −

 ∂1S
1
ε (x1) + ε∂1S

2
ε (x1 , x2)

∂2S
2
ε (x1 , x2)

 −→
ε→0

x −

 ∂1S
1
0 (x1)

∂2S
2
0 (x1 , x2)

 = TK (x ),
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so this viewpoint covers the case ε = 0 as well. This turns out to be the correct
approach: in some sense, S 1

ε and S2
ε are uniquely determined by their initial conditions

S 1
0 and S2

0 , which come from the Knothe rearrangement TK = Id−(∂1S
1
0 , ∂2S

2
0 ).

However, while the implicit function theorem was enough when ε stayed away
from zero, results on the behavior of Sε = S 1

ε + εS2
ε when ε goes to zero prove a lot

more di�cult to get. The �rst idea that comes to mind is to try to apply the implicit
function theorem once more, but this time to

G (ε ,u1 ,u2) := F (ε ,uε ) = f − д(Id−A−1
ε ∇uε ) det(Id −A−1

ε ∇
2uε ) ,

de�ned for ε > 0, with uε := u1 + εu2; when ε = 0, we can set

G (0,u1 ,u2) := f − д(Id−∂u) det(Id −∇∂u) where ∂u := (∂1u
1 , ∂2u

2).

The problem is, even though it is possible to solve

D(u1 ,u2)G (0, S 1
0 , S

2
0 ) (v

1 ,v2) = q,

foru1 ,u2 ∈ C k+2 andq ∈ C k , the best we can get for the solution (v1 ,v2) isv1 ∈ C k+2,
which is good, and ∂2 ,2v

2 ∈ C k , which is very bad: we need v2 ∈ C k+2. There is,
therefore, a loss of regularity, which prevents us from applying the implicit function
theorem again. To get around such a di�culty, a solution is to work with C∞ maps,
so as to have an in�nite source of smoothness. But then, we cannot use the implicit
function theorem any longer, as C∞ is not a Banach space; we need instead to use
the stronger Nash–Moser theorem, which I will present in chapter 2.

After the theoretical aspects presented in chapter 3, I will show how this method
can allow us e�ectively to compute Brenier’s map for the regular quadratic cost,
y = T1 (x ), in chapter 4. The idea is the go backward, starting from ε = 0 and going
up to ε = 1. This numerical material is new, and was not present in my original
paper [10]. It is, however, still sketchy: there is yet a considerable amount of work to
be done in order to obtain something that can be used practically.

Finally, in the last chapter, a second problem, of a di�erent kind, is introduced;
it is however born out of the same overall approach. Since the optimal transport map
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is so easy to compute in dimension one, and so di�cult to get in higher dimensions,
the image processing community has devised a way to build another transport map,
using only unidimensional mappings [49, 50]—not unlike Knothe’s rearrangement
therefore, but without its greatest �aw, which is its being anisotropic. Experimentally,
it works well enough.

Let us again denote by f and д the densities of our two measures, µ and ν , on
R2. Given any orthonormal basis (e1 , e2), we can de�ne

f̂e1 (x1) :=
∫

f (x1e1 + x2e2) dx2 and д̂e1 (y1) :=
∫

д(y1e1 + y2e2) dx2.

Those are similar to the f̂ and д̂ de�ned in the �rst step of the construction of the
Knothe rearrangement; they are, in fact, the same when e is the canonical basis,
e1 = (1, 0) and e2 = (0, 1). Then, we have two unidimensional measures, so we know
how to send one onto the other—thanks to the mapTe1 = Ĝ

−1
e1 ◦ F̂e1 , where F̂e1 and Ĝe1

denote again the cumulative distributions. This map should also be a good indicator of
how we need to move the original measure µ along the direction e1 to get ν . Likewise,
we can get a map Te2 for the direction e2, and then combine those two maps into

Te (x ) := Te1 (〈e1 |x〉) e1 +Te2 (〈e2 |x〉) e2 (c)

It is important to say, however, that this Te does not send µ onto ν . It sends µ onto
another measure—let us denote it by µ1—, which should nevertheless be closer to ν .
We can iterate the procedure, with µ1 instead of µ and using a di�erent basis e , and
thus get another map Te ; then we de�ne µ2 as the measure obtain from µ1 through
the new Te , and start again. In the end, if all the bases are well chosen, no particular
direction should be privileged, and µn should converge toward ν . Notice that, at each
step, there is a transport map sending µ onto µn , which is the composition of all the
intermediate Te .

This algorithm was introduced by François Pitié, Anil C. Kokaram, and Rozenn
Dahyot [49], who called it the Iterative Distribution Transfer algorithm. To this day, a
proper mathematical study is still lacking though. Numerical experiments suggest
µn converges to ν , but it has not been proved yet—except in a very particular case,
when the target measure ν is Gaussian. But even though the transport map between
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µ and µn does not necessarily converge toward the optimal map between µ and ν , it
has nevertheless been successfully used as a replacement [50].

I will present in the last chapter some steps toward a more complete under-
standing. This algorithm seems to be connected to a gradient �ow in the space of
probability measures—in the sense of the theory developed by Luigi Ambrosio, Nicola
Gigli, and Giuseppe Savaré [3]—with what Marc Bernot called the sliced Wasserstein

distance as the functional,

SWp (µ , ν ) = SWp ( f ,д) :=
(?

Wp ( f̂e1 , д̂e1 )
p de

) 1/p
,

the usual Wasserstein distance1 being the pth root of the minimum value of the
Monge–Kantorovich problem for the cost c (x ,y) = |x − y |p :

Wp (µ , ν ) :=
(
min
γ

∫
|x − y |p dγ (x ,y)

) 1/p
.

Indeed if, instead of de�ning the transport map T between µn and µn+1 by (c) with a
random basis e , and hoping for the randomness to homogenize the procedure, we
would rather de�ne

T (x ) :=
?

Te (〈e1 |x〉) de;

then, assuming the measures are sums of N Dirac masses—and therefore assimilable
to vectors of Rd ×N—, we obtain that the measure µn+1 is given by

µn+1 := µn − ∇F (µn ) with F (µ ) :=
1
2

SW2 (µ , ν )
2.

This is nothing but the explicit Euler scheme for the gradient �ow equation

µ̇t := −∇F (µt ).

1How the name “Wasserstein” came to be associated to this object is a bit strange. According to Ludger
Rüschendorf [53], the distance was used in a 1969 paper by Leonid N. Vaserstein [61] and the term
“Vasershtein distance” appears a year later, in a paper by Roland Dobrushin [24]. Today, the term
“Kantorovich–Rubistein distance” is often used for the case p = 1, as the two mathematicians proved
the distance could be extended into a norm. The name “Earth Mover’s distance” is also frequent in
image processing [52]. See Cédric Villani’s book [63, chapter 6, bibliographical notes].
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Following the variational method devised by Richard Jordan, David Kinderlehrer,
and Felix Otto [34], and investigated by Luigi Ambrosio, Nicola Gigli, and Giuseppe
Savaré [3], we can de�ne an implicit Euler scheme,

µn+1 = µn − h∇F (µn+1),

by taking
µn+1 ∈ arg min

µ

{ 1
2h

W2 (µn , µ )
2 +

1
2

SW2 (µ , ν )
2
}
.

The Wasserstein distance here replaces the usual Euclidean distance, which is used
to de�ne the classical implicit scheme on Rd . Notice this de�nition works even
if the measures are no longer assumed to be discrete. In any case, the sequences
(µn )n∈N converge in some sense to a curve (µt )t≥0 when the time step tends to 0.
This viewpoint could yield a theoretical justi�cation of the algorithm, if we were
able to prove the convergence of µt toward ν when t tends to in�nity; to do so will,
however, require more work still.
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Chapter 1

Optimal transportation

1.0.1. The aim of this chapter is to recall some well-known facts that shall be needed
later on. The presentation has therefore been tailored with a further use in mind,
and proofs are only given when they are either very short or of a special interest.
Notations are also set here.

For a general introduction to optimal transportation, the reader should rather
refer to Cédric Villani’s summae [62, 63] or Filippo Santambrogio’s forthcoming
lecture notes [54]. For a more abstract and more general exposition, see also the
monograph by Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré [3, chapters 5–7].

1.1 The Monge–Kantorovich problem

1.1.1. Monge’s problem. Given two probability measures µ and ν on Rd and a cost
function c : Rd × Rd → [0,∞], the problem that was �rst introduced by Gaspard
Monge [45] can be stated in modern terms as follows:

�nd T : Rd → Rd

such that ν = T#µ and
∫

c (x ,T (x )) dµ (x ) is minimal. (1.1.1.a)

The former condition, ν = T#µ, means that T should transport µ onto ν ; that is, ν
should be the push-forward of µ byT : for any ξ ,

∫
ξ (y) dν (y) =

∫
ξ (T (x )) dµ (x ). The

latter asks the total cost of transportation to be minimal.
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Chapter 1. Optimal transportation

1.1.2. Monge–Kantorovich problem. Depending on the measures, there might be
no transport map sending µ onto ν , for instance if µ is discrete and ν is uniform.
Hence, the following generalization was proposed by Leonid Kantorovich [35, 36]:
instead of looking for a mapping,

�nd a measure γ ∈ Γ(µ , ν ) such that
∫

c (x ,y) dγ (x ,y) is minimal, (1.1.2.a)

where Γ(µ , ν ) stands for the set of all transport plans between µ and ν , i.e. the
probability measures on Rd ×Rd with marginals µ and ν . This problem really extends
Monge’s, for any transport map T sending µ onto ν yields a measure γ ∈ Γ(µ , ν ),
which is γ = (Id,T )#µ, i.e. the only measure γ on Rd × Rd such that

∀ ξ ∈ Cb (R
d × Rd ),

∫
ξ (x ,y) dγ (x ,y) =

∫
ξ (x ,T (x )) dµ (x ) ,

and the associated costs of transportation are the same. However, unlike in Monge’s
problem, for which there might be no admissible transport map—not to mention an
optimal one—, in Kantorovich’s version there is always a transport plan, for instance
µ ⊗ ν . Even better, it is not di�cult to show there is always a solution:

1.1.3. Proposition. Let µ , ν be two Borel probability measures on Rd
. If the cost

function c : Rd × Rd → [0, +∞) is lower semicontinuous, then there is a solution to the

Monge–Kantorovich problem (1.1.2.a). We denote by Γo (µ , ν ) the set of all such solutions.

Proof. On one hand, as µ and ν are inner regular, the set Γ(µ , ν ) is tight and thus,
being obviously closed, compact according to Prokhorov’s theorem. On the other
hand, as c is lower semicontinuous, the map γ 7→

∫
c (x ,y) dγ (x ,y) is also lower

semicontinuous; for if

cn (x ,y) := inf
x̄ ,ȳ

{
c (x̄ , ȳ) + n

(
|x − x̄ |2 + |y − ȳ |2

)}
,

then cn is continuous, cn (x ,y) ≤ c (x ,y), and cn converges pointwise to c , and this,
as soon as γk → γ , implies∫

c dγ ≤ lim inf
n→∞

∫
cn ∧ n dγ ≤ lim inf

n→∞
lim inf
k→∞

∫
cn ∧ n dγk ≤ lim inf

k→∞

∫
c dγk
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Chapter 1. Optimal transportation

Thus, any minimizing sequence converges, up to an extraction, to a minimizer. �

1.1.4. Dual formulation. As will be shown in proposition 1.1.6 on the following
page, there is a form of duality between the Monge–Kantorovich problem and the
following other problem:

�nd ψ ,φ ∈ C0 (R
d ) such that ψ (x ) + φ (y) ≤ c (x ,y)

and
∫
ψ dµ +

∫
φ dν is maximal. (1.1.4.a)

This is often called the dual or sometimes primal problem, because they are linked (see
proposition 1.1.6 on the next page), and the space of signed Radon measures—where
the Monge–Kantorovich problem is de�ned—is the dual of the space of continuous
functions vanishing at in�nity—where this new problem is de�ned, even though the
condition to vanish at in�nity is irrelevant. Whatever the naming, the requirement
ψ ,φ ∈ C0 (R

d ) can be relaxed, so that (1.1.4.a) becomes:

�nd ψ ∈ L1 (µ ),φ ∈ L1 (ν ) such that ψ (x ) + φ (y) ≤ c (x ,y)

and
∫
ψ dµ +

∫
φ dν is maximal. (1.1.4.b)

1.1.5. Kantorovich potential and c-transform. Its seems natural to look for a
solution of the new problem (1.1.4.b) among the pairs (ψ ,φ) that saturate the condition,
and therefore satisfy

φ (y) = inf
x

{
c (x ,y) −ψ (x )

}
and ψ (x ) = inf

y

{
c (x ,y) − φ (y)

}
.

The �rst equality, when holding, will be written φ = ψ c , where ψ c is called the
c-transform ofψ . Similarly, for the second we shall writeψ = φc . If both are veri�ed—
that is, ifψ = ψ cc—, thenψ is said to be c-concave. Then, the problem (1.1.4.b) becomes

�nd ψ ∈ L1 (µ ) such that
∫
ψ dµ +

∫
ψ c dν is maximal. (1.1.5.a)

Any solutionψ is called a Kantorovich potential between µ and ν .
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Chapter 1. Optimal transportation

1.1.6. Proposition. Let µ , ν be two Borel probability measures on Rd
. If the cost

function c : Rd × Rd → [0, +∞) is lower semicontinuous and"
c (x ,y) dµ (x ) dν (y) < ∞,

then there is a Borel map ψ : Rd → R that is c-concave and optimal for (1.1.5.a).
Moreover, the resulting maximum is equal to the minimum of the Monge–Kantorovich

problem (1.1.2.a):

min
γ ∈Γ(µ ,ν )

∫
c (x ,y) dγ (x ,y) = max

φ∈L1 (µ )

{∫
φ (x ) dµ (x ) +

∫
φc (y) dν (y)

}
.

If γ ∈ Γ(µ , ν ) is optimal, thenψ (x ) +ψ c (y) = c (x ,y) almost everywhere for γ .

For a proof of this proposition, see the monograph by Luigi Ambrosio, Giuseppe
Savaré, and Nicola Gigli [3, Theorem 6.1.5].

1.2 Solution on the real line

1.2.1. In dimension one—that is, when µ and ν are probability measures on the
real line—, a solution to the Monge–Kantorovich problem (1.1.2.a) can very often
be explicitly computed, and turns out to be a solution of Monge’s problem (1.1.1.a)
as well. As we will see in chapter 3, my computation of the solution relies on the
unidimensional case.

1.2.2. Cumulative distribution and generalized inverse. If µ is a probability
measure on R, its cumulative distribution is the map F : R→ [0, 1] de�ned by

F (x ) := µ ((−∞, x]).

Its is an nondecreasing and right-continuous function. For such a map, it is possible
to de�ne a generalized inverse F −1, also called quantile function, by setting

F −1 (y) := min
{
x ∈ [−∞,∞]

 y ≤ F (x )
}
.
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The values of F −1 give the di�erent quantiles: for instance, F −1 (3/4) yields the third
quartile—hence the alternate name.

1.2.3. Lemma. If F is a cumulative distribution, then y ≤ F (x ) if and only if F −1 (y) ≤

x .

Proof. Since the minimum in the de�nition of F −1 is attained, y ≤ F (F −1 (y)) for any
y. Thus, if F −1 (y) ≤ x for some x , then y ≤ F (F −1 (y)) ≤ F (x ), as F is nondecreasing.
Conversely, if y ≤ F (x ), then the de�nition of F −1 implies F −1 (y) ≤ x . �

1.2.4. Proposition. Let h ∈ C 1 (R) be a nonnegative, strictly convex function. Let µ

and ν be Borel probability measures on R such that"
h(x − y) dµ (x ) dν (y) < ∞. (1.2.4.a)

If µ has no atom, and F and G stand for the respective cumulative distribution of µ

and ν , then T := G−1 ◦ F solves Monge’s problem for the cost c (x ,y) = h(x − y).

If γ is the induced transport plan, that is, γ := (Id,T )#µ, then γ is optimal for the

Monge–Kantorovich problem.

Proof. To begin with, notice T is well de�ned almost everywhere for µ. Indeed, there
might be a problem only when F (x ) = 0, forG−1 (0) = −∞. But F = 0 only on (−∞, a]
for some a ∈ R, and, by the very de�nition of F , we have µ ((−∞, a]) = F (a) = 0.

Notice also that, as F and G are nondecreasing,T must be nondecreasing as well.
Then, lemma 1.2.3 on this page applied to the cumulative distribution G yields

T −1 ((−∞,y]) =
{
x ∈ [−∞, +∞]

 G−1 (F (x )) ≤ y
}

=
{
x ∈ [−∞, +∞]

 F (x ) ≤ G (y)
}
.

First, this set has to be an interval, as T is nondecreasing. Second, since µ has no
atom, F is increasing and continuous, so this interval must be closed. Thus, if x is its
supremum, we must have F (x ) = G (y), and therefore

µ (T −1 ((−∞,y])) = µ ((−∞, x]) = F (x ) = G (y) = ν ((−∞,y]).
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This is enough to show ν = T#µ.
Now, let us prove T is optimal. On the one hand, if u ≥ x , then, as T and h′ are

nondecreasing, h′(u −T (u)) ≤ h′(u −T (x )). Integrating between x and some y ≥ x ,
we get ∫ y

x
h′(u −T (u)) du ≤

∫ y

x
h′(u −T (x )) du

≤ h(y −T (x )) − h(x −T (x )).

On the other hand, if u ≤ x , then h′(u −T (u)) ≥ h′(u −T (x )); integrating bewteen x

and y ≤ x , we again get∫ y

x
h′(u −T (u)) du ≤ −

∫ x

y
h′(u −T (x )) du ≤ h(y −T (x )) − h(x −T (x )).

Thus, if we set
ψ (y) :=

∫ y

0
h′(u −T (u)) du ,

then, in any case,ψ (y) −ψ (x ) ≤ h(y −T (x )) − h(x −T (x )), which implies

ψ c (T (x )) := inf
y

{
h(y −T (x )) −ψ (y)

}
= h(x −T (x )) −ψ (x ),

and this yieldsψ is c-concave. On the other hand, the condition (1.2.4.a) ensures that
there are x0 and y0 such that∫

h(x − y0) dµ (x ) < ∞ and
∫

h(x0 − y) dν (y) < ∞.

Since h(x − y0) − ψ
c (y0) ≥ ψ (x ), and h(x0 − T (x )) − ψ (x0) ≥ ψ c (T (x )), and also

ψ (x ) ≥ −ψ c (T (x )), we have

h(x − y0) −ψ
c (y0) ≥ ψ (x ) ≥ −h(x0 −T (x )) +ψ (x0)
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and as T#µ = ν , this impliesψ ∈ L1 (µ ). Similarly,ψ c ∈ L1 (ν ). Therefore, integrating
the equalityψ (x ) +ψ c (x ) = h(x −T (x )) with respect to µ gives∫

ψ (x ) dµ (x ) +
∫

ψ c (y) dν (y) =
∫

c (x ,T (x )) dµ (x ).

Since ψ (x ) +ψ c (y) ≤ c (x ,y) for all pair (x ,y), if γ is any other transport plan, the
associated total transport cost is necessarily greater, and thus T is optimal. �

1.3 Yann Brenier’s map and its regularity

1.3.1. Gaspard Monge [45] formulated his original problem in the 1780s with the
distance as a cost function. But for such a cost, the question is particularly di�cult:
to give an idea, his characterization of the transport rays was rigorously proved only
a century later, by Paul Appell [5, 6]; and in the 1970s, Vladimir Sudakov [58] claimed
to have proved the existence of an optimal mapping, but a point in his demonstration
was unconvincing—it was corrected by Luigi Ambrosio in 2000 [2], just after another
method had been successfully used by Lawrence C. Evans and Wilfrid Gangbo, with
stronger assumptions [27].

For a strictly convex cost, however, things are somewhat easier. At the end of
the 1980s, Yann Brenier [13, 14] gave a general answer when the cost function is the
squared Euclidean distance, and showed the key role convex functions play in that
case. Since, his theorem has been extended to arbitrary, strictly convex cost functions,
and for measures de�ned on a variety of domains; those cases will be studied in
section 1.4 on page 31.

1.3.2. Subdi�erential of a convex function. Let φ : Rd → (−∞, +∞] be a convex,
lower semicontinuous function. Then, it follows from the Hahn–Banach theorem
applied to the epigraph of φ that, if x belongs to the interior of the domain of φ, there
is p ∈ Rd such that

∀y ∈ Rd , φ (y) ≥ φ (x ) + 〈p |y − x〉.
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The set of all those p’s is called the subdi�erential of φ at x , and is denoted by ∂φ (x ). It
can be shown that φ is locally Lipschitz on the interior of its domain, and therefore is
di�erentiable almost everywhere on it. Should that be the case in x , the subdi�erential
is then a singleton: ∂φ (x ) = {∇φ (x )}.

1.3.3. Theorem (Brenier). Let µ and ν be two Borel probability measures on Rd
with

�nite second-order moments—that is, such that∫
|x |2 dµ (x ) < ∞ and

∫
|y |2 dν (y) < ∞.

Then, if µ is absolutely continuous, there is a unique T : Rd → Rd
such that ν = T#µ

and ∫
|x −T (x ) |2 dµ (x ) = min

γ ∈Γ(µ ,ν )

∫
|x − y |2 dγ (x ,y).

Moreover, there is only one optimal transport plan γ , which is thus necessarily (Id,T )#µ,
and T is the gradient of a convex function φ, which is therefore unique up to an additive

constant. There is also a unique (up to an additive constant) Kantorovich potential ψ ,

which is locally Lipschitz and linked to φ through the relation

φ (x ) =
1
2
|x |2 −ψ (x ).

Proof. We know from proposition 1.1.6 on page 25 that, for a cost c (x ,y) = 1
2 |x − y |

2,
there is a c-concave functionψ such that∫

ψ (x ) dµ (x ) +
∫

ψ c (y) dν (y) =
1
2

∫
|x − y |2 dγ (x ,y) (1.3.3.a)

for some optimal transport plan γ ∈ Γ(µ , ν ). We set

φ (x ) :=
1
2
|x |2 −ψ (x ).

Then, since ψ cc = ψ , this function φ is convex and lower semicontinuous, being a
supremum of a�ne maps:

φ (x ) =
1
2
|x |2 −ψ cc (x )

29



Chapter 1. Optimal transportation

= sup
y

{ 1
2
|x |2 −

1
2
|x − y |2 +ψ c (y)

}
= sup

y

{
〈y |x〉 −

( 1
2
|y |2 −ψ c (y)

)}
.

This computation also yields the Legendre transform of φ, which is

φ∗ (x ) =
1
2
|x |2 −ψ c (x ).

As φ is convex and lower semicontinuous, it is di�erentiable almost everywhere in
the interior of its domain—that is, almost everywhere at least in the interior of the
convex hull of the support of µ, since µ is absolutely continuous. All we have to do
now is to show that the optimal transport map is

T (x ) = ∇φ (x ) = x − ∇ψ (x ).

Notice that equality (1.3.3.a) translates into∫
φ (x ) dµ (x ) +

∫
φ∗ (y) dν (y) =

∫
〈y |x〉 dγ (x ,y).

As φ (x ) + φ∗ (y) ≥ 〈y |x〉, this implies that for γ -a.e. pair (x ,y), there is equality. Thus,

∀z ∈ Rd , 〈y |z〉 − φ (z) ≤ 〈y |x〉 − φ (x ),

which, in turn, means y ∈ ∂φ (x ). But φ is di�erentiable for a.e. x in the support of
µ, and in that case the subdi�erential is reduced to ∇φ (x ). Therefore, γ = (Id,∇φ)#µ.
This also shows the uniqueness of γ and T = ∇φ. This φ is unique up to an additive
constant as well, and so isψ . �

1.3.4. Monge–Ampère equation. Regularity results regarding the convex map φ
and the optimal mapT = ∇φ have been obtained, most notably by Luis A. Ca�arelli [16,
17, 18], using the Monge–Ampère equation: if we denote by f and д the respective
densities of µ and ν , then, if it is smooth enough, φ must solve

f (x ) = д(∇φ (x )) det(∇2φ (x )).
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1.3.5. Theorem (Ca�arelli). LetU and V be two bounded, open subsets of Rd
, and

let µ and ν be two probability measures respectively onU and V , with densities f and д.

If those densities are bounded and bounded away from 0, and if V is convex, then φ is

strictly convex and C 1 ,α
onU . Moreover, if f and д are C k

with k ≥ 1, then φ is C k+2
.

If both U and V are strictly convex with smooth boundaries, the regularity of φ

holds even on the boundary of U . In that case, ∇φ and ∇φ∗ are di�eomorphisms, and

inverse of each other.

1.4 Extension to the torus

1.4.1. Existence of an optimal map. Following Yann Brenier’s article, an alternate,
more general proof was found by Robert J. McCann [42], who then extended it to
cover the case of measures de�ned on a Riemannian manifold1 [43].

1.4.2. Theorem (McCann). Let µ and ν be two probability measures on a compact,

connected,C 3
manifold without boundary, with µ absolutely continuous. If d(x ,y) stands

for the Riemannian distance between x and y, then there is a unique optimal transport

plan γ ∈ Γ(µ , ν ) for the cost c (x ,y) = 1
2 d(x ,y)2, which is induced by the transport map

T (x ) = expx [−∇ψ (x )], withψ Lipschitz and c-concave2. The Kantorovich potentialψ

is unique up to an additive constant.

1.4.3. Regularity. The regularity of the Kantorovich potential, for an arbitrary cost,
is also very di�cult question. During the past decade, a lot of progress has been made:
a quite general theorem has been obtained by Xi-Nan Ma, Neil S. Trudinger, and
Xu-Jia Wang [41]; a more speci�c result, on products of spheres, has been recently
proved by Alessio Figalli, Young-Heon Kim, and Robert J. McCann [29].

Fortunately, chapter 3 does not require a very abstract theory: all we need is
contained in the next theorem (§1.4.5, on page 33), based on Dario Cordero-Erausquin’s
pioneering work [21]. It gives the existence and regularity of the Kantorovich potential

1Dario Cordero-Erausquin [21] had already provided an extension to periodic measures.
2On a Riemannian manifold M, for any v ∈ TxM, the point expx (v ) is de�ned as the value at time 1 of

the geodesic starting from x with initial velocity v .
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for a quadratic cost c : Td × Td → [0,∞) induced by c̄ : Rd × Rd → [0,∞) given by

c̄ (x ,y) := inf
k∈Zd

1
2
A(x − y − k )2 ,

where A ∈ S++
d is a symmetric, positive-de�nite matrix, and Az2 is a shorthand for

〈Az |z〉. Such a cost arises when one changes the usual metric on Td with the one
induced by A in the canonical set of coordinates, and then takes half the resulting
squared distance as a cost function.

Before stating and proving the theorem, we however need to adapt Yann Brenier’s
convex point of view to the torus. We have seen in section 1.3 thatψ is a c-concave map
if and only if φ (x ) := 1

2 |x |
2 −ψ (x ) is a lower semicontinuous convex map. Something

similar is going on here for a quadratic cost, namely:

1.4.4. Lemma. A mapψ : Td → R is c-concave for the cost c induced by A ∈ S++
d , if

and only if φ (x ) := 1
2Ax

2 −ψ (x ) is lower semicontinuous and convex on Rd
. Then,

ψ c (y) =
1
2
Ay2 − φ∗ (y),

where φ∗ is the Legendre transform of φ for the scalar product induced by A. Ifψ is C 2

and such that A − ∇2ψ > 0, then x 7→ x − A−1∇ψ (x ) is a di�eomorphism Td → Td
.

Proof. If ψ is c-concave, then φ is convex and lower semi-continuous, for it can be
written as a Legendre transform:

φ (x ) =
1
2
Ax2 −ψ cc (x )

=
1
2
Ax2 − inf

y∈Td

{
c (x ,y) −ψ c (y)

}
= sup
y∈Rd

sup
k∈Z2

{ 1
2
Ax2 −

1
2
A(x − y − k )2 +ψ c (y)

}
= sup
y∈Rd

{
〈Ax |y〉 −

[ 1
2
Ay2 −ψ c (y)

]}
.

This also shows φ∗ (y) = 1
2Ay

2 −ψ c (y).
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Conversely, if φ is convex and lower semi-continuous, then it is equal to its
double Legendre transform:

φ (x ) = sup
y∈Rd

〈Ax |y〉 − sup
z∈Rd

[
〈Az |y〉 − φ (z)

] .
Therefore,

ψ (x ) =
1
2
Ax2 − sup

y∈RN

〈Ax |y〉 − sup
z∈Rd

[
〈Az |y〉 − φ (z)

]
= inf
y∈Rd

 1
2
A(x − y)2 −

1
2
Ay2 + sup

z∈Rd

[
〈Az |y〉 − φ (z)

]
= inf
y∈Rd

{
1
2
A(x − y)2 − inf

z∈Rd

[ 1
2
A(z − y)2 −ψ (z)

]}
,

i.e. ψ (x ) = ψ cc (x ).
Ifψ is C 2 and such that A − ∇2ψ > 0, then A − ∇2ψ ≥ ε Id for some ε > 0. Thus,

as φ is convex with a super-linear growth, ∇φ : Rd → Rd is a di�eomorphism, and
so is the mapT : x 7→ x −A−1∇ψ (x ). Notice that, if k ∈ Zd , thenT (x +k ) = T (x ) +k ;
therefore, T induces a di�eomorphism Td → Td . �

1.4.5. Proposition. Let µ and ν be two probability measures on Td
with smooth,

strictly positive densities, and let c be the quadratic cost on Td × Td
induced by a de�nite-

positive, symmetric matrix A. Then there is a unique c-concave function ψ : Td → R

with

∫
ψ dµ = 0 such thatT : Td → Td

de�ned byT (x ) := x −A−1∇ψ (x ) sends µ onto

ν . The functionψ is a Kantorovich potential; it is smooth, and φ : x 7→ 1
2Ax

2 −ψ (x ) is a

smooth, strictly convex function on Rd
. Moreover, the transport mapT is optimal for the

cost c , and there is no other optimal transport plan but the one it induces.

Proof. Let us denote by ∇A the gradient for the metric induced by A. Then according
to Robert J. McCann’s theorem (§1.4.2, on page 31), there is a Lipschitz function
ψ : Td → R that is c-concave and such that T : x 7→ expx [−∇Aψ (x )] pushes
µ forward to ν . It is uniquely de�ned if the condition

∫
ψ dµ = 0 is added, and

moreover it is optimal for the Monge–Kantorovich problem. Here on the torus,
expx [−∇Aψ (x )] = x − A−1∇ψ (x ).
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For any x ∈ Rd , let φ (x ) := 1
2Ax

2 − ψ (x ). Then T (x ) = A−1∇φ (x ) sends µ
onto ν , seen as periodic measures on Rd . Moreover, according to lemma 1.4.4 on
page 32, φ is a convex function. Now, let V be an open, convex subset of Rd , and
de�ne U = (∇φ)−1 (V ). Then ∇φ sends µ |U onto A#ν |V , and both measures are still
absolutely continuous with smooth, bounded, strictly positive densities. Therefore
we are entitled to apply Luis A. Ca�arelli’s theorem (§1.3.5, on page 31), and thus we
get that φ is strictly convex and smooth on U . As U is arbitrary, φ is strictly convex
and smooth on Rd . Thus,ψ is also smooth, and T is a di�eomorphism. �

1.5 The Wasserstein space

1.5.1. Wasserstein distanceWp . If µ and ν are two probability measures on a space
X, which will be either the Euclidean space or a Riemannian manifold, then the
minimal value for the Monge–Kantorovich problem de�nes a distance, dubbed the
Wasserstein distance, when the cost is c (x ,y) = d(x ,y)p with d the distance of X:

Wp (µ , ν ) :=
(

min
γ ∈Γ(µ ,ν )

∫
d(x ,y)p dγ (x ,y)

) 1/p
.

1.5.2. Wasserstein space Pp (X). For the Wasserstein distance between µ and ν to
be �nite, it is enough for them to have �nite pth-order moments. In other words, Wp

is a distance on the following subset of the space P (X) of Borel probability measures
on X:

Pp (X) :=
{
µ ∈ P (X)

∀x0 ∈ X ,
∫

d(x , x0)
p dµ (x ) < ∞

}
.

Thanks to the triangular inequality, the condition “for all x0” can be replaced by “there
is at least one x0”.

1.5.3. Proposition. For any µ , ν ∈ P1 (X),

W1 (µ , ν ) := inf
ψ ∈Lip1 (X)

∫
ψ d(µ − ν ).

Proof. This follows from proposition 1.1.6 on page 25, for if ψ is 1-Lipschitz, then
−ψ (y) ≤ d(x ,y) −ψ (x ) for any x , and thusψ c = −ψ . �
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1.5.4. Proposition. A sequence (µn )n∈N converges for the Wasserstein distance if and

only if it narrowly converges and the pth-order moments converge as well. Therefore, if

is X compact, then Pp (X) = P (X) is also compact.

Proof. See Cédric Villani’s �rst book [62, Theorem 7.12]. �

As will be shown by the next three propositions, optimal transport lies at the
heart of the properties of the Wasserstein distance.

1.5.5. Proposition. Let µ0 , µ1 ∈ Pp (R
d ). Then, any γ ∈ Γ(µ , ν ) optimal for the

Monge–Kantorovich problem induces a constant-speed geodesic (µt )t ∈[0 ,1], de�ned by

µt := [(1 − t )X + tY]# γ ,

where X(x ,y) := x and Y(x ,y) := y; that is,

∀ ξ ∈ Cb ,

∫
ξ (z) dµt (z) =

∫
ξ ((1 − t )x + ty) dγ (x ,y).

Conversely, any constant-speed geodesic between µ0 and µ1 is induced by an optimal

transport plan γ ∈ Γ(µ , ν ). Therefore, if µ0 is absolutely continuous, there is an optimal

transport map T between µ0 and µ1, and the geodesic is µt := [(1 − t ) Id +tT ]# µ0.

This shows the Wasserstein space is a length space: the Wasserstein distance
coincides with the distance induced by the geodesics.

Proof. Let γ be an optimal transport plan between µ0 and µ1. Let also t ∈ [0, 1], and
de�ne Zt := (1 − t )X + tY. Then, µt = [Zt ]#γ , and, for any s ∈ [0, 1], (Zs ,Zt )#γ is a
transport plan between µs and µt . Therefore,

Wp (µs , µt )
p ≤

∫ ∣∣∣[(1 − s )x + sy
]
−

[
(1 − t )x + ty

] ∣∣∣p dγ (x ,y)

≤ |t − s |p Wp (µ0 , µ1)
p ,

that is Wp (µs , µt ) ≤ |t − s |Wp (µ0 , µ1). Were that inequality to be strict for a pair (s , t ),
the triangular inequality would yield Wp (µ0 , µ1) < Wp (µ0 , µ1), which is obviously not
possible. Thus,

Wp (µs , µt ) = |t − s |Wp (µ0 , µ1).
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Conversely, if (µt )t ∈[0 ,1] is a constant speed geodesic, then, for any t ∈ [0, 1], it
is possible to “glue” together two optimal transport plans to form π ∈ Γ(µ0 , µt , µ1)

such that (X, Y)#π and (Y, Z)#π are optimal plans between, respectively, µ0 and µt on
the one hand, and µt and µ1 on the other hand—where

X(x ,y , z) = x , Y(x ,y , z) = y , Z(x ,y , z) = z.

We refer to Cédric Villani’s �rst book on optimal transportation [62, Lemma 7.6] for
a proof of this gluing lemma3. Then,

Wp (µ0 , µ1) ≤ ‖X − Z‖Lp (π ) ≤ ‖X − Y‖Lp (π ) + ‖Y − Z‖Lp (π )

≤ Wp (µ0 , µt ) + Wp (µt , µ1) ≤ Wp (µ0 , µ1).

Thus, all the inequalities are, in fact, equalities. This implies (X, Z)#π is optimal and
there is α ∈ [0, 1] such that Y = (1 − α )X + αZ in Lp (π ). Therefore, Wp (µ0 , µt ) =

tWp (µ0 , µ1) yields α = t . �

1.5.6. Proposition. Let µ , ν ∈ P (K ), with K a compact subset of Rd
or a compact

manifold. Then, for any µ̄ ∈ P (K ), there is a Kantorovich potentialψ between µ and ν

for the cost c (x ,y) = d(x ,y)p/p such that:

lim
ε→0+

W2 ((1 − ε )µ + εµ̄ , ν )2 −W2 (µ , ν )
2

2ε
=

∫
ψ d(µ̄ − µ ).

A priori, the potentialψ may depend on µ̄. However, it is obviously no longer
the case if the Kantorovich potential is uniquely de�ned—e.g. if µ or ν is absolutely
continuous and strictly positive.

Proof. Letψε be a Kantorovich potential between (1 − ε )µ + εµ̄ and ν :∫
ψε d[(1 − ε )µ + εµ̄] +

∫
ψ c
ε dν =

1
2

W2 ((1 − ε )µ + εµ̄ , ν )2.

3The same lemma allows to prove Wp is a distance
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Then,
W2 ((1 − ε )µ + εµ̄ , ν )2 −W2 (µ , ν )

2

2ε
≤

∫
ψε d(µ̄ − µ ).

Sinceψε is c-concave,

ψ (x ) = inf
y

{ 1
2
d (x ,y)2 −ψ c (y)

}
,

and consequently, as K is bounded, ψε is Lipschitz with a constant that does not
depend on ε ; so isψ c

ε . By the Arzelà–Ascoli theorem, the family {(ψε ,ψ c
ε )} is therefore

relatively compact. Let (ψ ,φ) be a limit point such that

lim sup
ε→0+

∫
ψε d(µ̄ − µ ) =

∫
ψ d(µ̄ − µ ).

Then, sinceψ (x ) + φ (y) ≤ 1
2 |x − y |

2, we have

1
2

W2 (µ , ν ) ≤ lim inf
ε→0+

1
2

W2 ((1 − ε )µ + εµ̄ , ν )2

= lim inf
ε→0+

{∫
ψε d((1 − ε )µ + εµ̄ ) +

∫
ψ c
ε dν

}
≤

∫
ψ dµ +

∫
φ dν

≤
1
2

W2 (µ , ν )
2.

Thus,ψ is a Kantorovich potential between µ and ν , and

lim sup
ε→0+

W2 ((1 − ε )µ + εµ̄ , ν )2 −W2 (µ , ν )
2

2ε
≤ lim sup

ε→0+

∫
ψε d(µ̄ − µ )

≤

∫
ψ d(µ̄ − µ ).

On the other hand,

1
2

W2 ((1 − ε )µ + εµ̄ , ν )2 ≥
∫

ψ d((1 − ε )µ + εµ̄ ) +
∫

ψ c dν

≥
1
2

W2 (µ , ν )
2 + ε

∫
ψ d(µ̄ − µ ),
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and this yields

lim inf
ε→0+

W2 ((1 − ε )µ + εµ̄ , ν )2 −W2 (µ , ν )
2

2ε
≥

∫
ψ d(µ̄ − µ ). �

1.5.7. Proposition. Let µ , ν ∈ P (K ), with K a compact subset of Rd
or K = Td

,

and assume µ is absolutely continuous. Letψ is the (unique up to an additive constant)

Kantorovich potential between µ and ν for the cost c (x ,y) = d(x ,y)p/p. If ζ is a

di�eomorphism of K , then

lim
ε→0

W2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
=

∫
〈∇ψ |ζ 〉 dµ .

Proof. Asψ is a Kantorovich potential between µ and ν ,

W2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
≥

∫
ψ (x + εζ (x )) −ψ (x )

ε
dµ (x ).

Since ψ is Lipschitz (because K is compact), it is di�erentiable almost everywhere.
Thus, Lebesgue’s dominated convergence theorem yields

lim inf
ε→0+

W2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
≥

∫ 〈
∇ψ (x )

∣∣∣ ζ (x )〉 dµ (x ).

Conversely, Id−∇ψ is an optimal map between µ and ν , so (Id +εζ , Id−∇ψ )#µ is a
transport plan between [Id +εζ ]#µ and ν , and thus

W2 ([Id +εζ ]#µ , ν )
2 ≤

∫ ∣∣∣[x + εζ (x )] −
[
x − ∇ψ (x )

] ∣∣∣2 dµ (x )

≤

∫ {∣∣∣x − [
x − ∇ψ (x )

] ∣∣∣2 + 2ε
〈
∇ψ (x )

∣∣∣ ζ (x )〉 + ε2 |ζ (x ) |2
}

dµ (x )

≤ W2 (µ , ν )
2 + ε

∫ 〈
∇ψ (x )

∣∣∣ ζ (x )〉 dµ (x ) + ε2
∫
|ζ (x ) |2 dµ (x ).

Hence

lim sup
ε→0+

W2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
≤

∫ 〈
∇ψ (x )

∣∣∣ ζ (x )〉 dµ (x ). �

38



Chapter 1. Optimal transportation

1.6 The Benamou–Brenier formula

1.6.1. According to proposition 1.5.5 on page 35, the geodesics in Pp (Rd ) are all
induced by optimal transport plans. Jean-David Benamou and Yann Brenier [7] found
another characterization, namely that the geodesics should minimize the average
kinetic energy of the particles through the transport. That is, the geodesics should
minimze

(µt )t ∈[0 ,1] 7−→

∫ 1

0

∫
|vt (x ) |

2 dµt (x ) dt ,

among all the absolutely continuous curves (µt )t ∈[0 ,1] with (vt )t ∈[0 ,1] the associated
velocity �eld given by the continuity equation:

dv
dt

+ div (vµ ) = 0.

From this, they derived a method to numerically solve the Monge–Kantorovich
problem.

1.6.2. Metric derivative. If (µt )t ∈I is an absolutely continuous curve in Pp (X ), i.e.
if there is д ∈ L1 (I ) such that

∀ s , t ∈ I , Wp (µs , µt ) ≤

∫
[s ,t]

д(ω) dω ,

then, for almost every t ∈ I , the limit

|µ̇ |t := lim sup
h→0

Wp (µt , µt+h )

|h |

exists, and is called the metric derivative or µ. Then, |µ̇ | ≤ д and Wp (µs , µt ) ≤
∫ t
s |µ̇ |.

Proof. Let {tn}n∈N be a dense subset of I , and let dn (t ) :=Wp (µtn , µt ). Then if s ≤ t ,
we have |dn (s ) − dn (t ) | ≤ Wp (µs , µt ) ≤

∫ t
s д, so dn is absolutely continuous and

|d ′n (t ) | ≤ д(t ). We set e (t ) := sup |d ′n (t ) |. If all the dn are di�erentiable in t—this is
the case almost everywhere—, then

e (t ) = sup
n∈N
|d ′n (t ) | = sup

n∈N
lim
h→0

|dn (t ) − dn (t + h) |

|h |
≤ lim inf

t→0

Wp (µt , µt+h )

|h |
.
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But {tn} is dense in I , so

Wp (µt , µt+h ) = sup
n∈N
|dn (t + h) − dn (t ) | ≤ sup

n∈N

∫
[t ,t+h]

|d ′n (ω) | dω ≤
∫

[t ,t+h]
e (ω) dω .

By the Lebesgue di�erentiation theorem, this shows that |µ̇ | exists almost everywhere,
|µ̇ | = e , and since Wp (µt , µt+h ) ≤

∫
[t ,t+h] д, this also shows |µ̇ | ≤ д. �

1.6.3. Lemma. Let (µt )t ∈I be an absolutely continuous curve in Pp (R
d ). Then, there is

a vector �eldv : I ×Rd → Rd
such that |µ̇ |t = ‖vt ‖Lp (µ t ) for almost all t ∈ I . Moreover,

in the distributional sense,

dµ
dt

+ div(vµ ) = 0.

Conversely, if there is a vector �eld v : I × Rd → Rd
such that, in the distributional

sense,

dµ
dt

+ div(vµ ) = 0 with

∫
I
‖vt ‖Lp (µ t ) dt < ∞,

then (µt )t ∈I is absolutely continuous, and |µ̇ |t ≤ ‖vt ‖Lp (µ t ) for almost all t ∈ I .

For the proof of this lemma, we refer to the monograph by Luigi Ambrosio,
Nicola Gigli, and Giuseppe Savaré [3, Theorem 8.3.1].

1.6.4. Theorem (Benamou–Brenier). Let p ∈ (1,∞) and µ0 , µ1 ∈ Pp (X) with

X = Rd
or X = Td

. Then

Wp (µ0 , µ1)
p = inf

v ,ρ

∫
[0 ,1]

∫
X
|vt (x ) |

p dµt (x ) dt ,

where the in�mum runs among all pairs (µ ,v ) such that (µt )t ∈[0 ,1] is a continuous curve

between µ0 and µ1, and v : [0, 1] × X → Rd
is a vector �eld such that vt ∈ Lp (µt ) for

almost all t ∈ [0, 1], and, in the distributional sense,

dµ
dt

+ div(vµ ) = 0.

Proof. The case X = Rd directly follows from lemma 1.6.3 on the current page,
equality being reached with a constant speed geodesic. Let us nevertheless give a
demonstration for X = Td , inspired from the original article by Jean-David Benamou
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and Yann Brenier [7], and the aforementioned book by Luigi Ambrosio, Nicola Gigli,
and Giuseppe Savaré [3, Chapter 8]. The reader may also refer to a proof by Kevin
Guittet [32].

1. Let (µt ) be a curve of absolutely continuous, smooth probability measures
on Td , and let v be a vector �eld smooth in space that, together with (µt ), solve the
continuity equation. Assume ∫ 1

0
‖vt ‖C 1 dt < ∞.

Then, the solution t 7→ Xs ,t (x ) of the equation dXs ,t/dt = vt (Xs ,t ), with Xs ,s (x ) = x ,
is de�ned for all t ∈ [0, 1] (if we were not working on a compact space without
boundary, there would be a di�culty here). For ξ ∈ C∞ ([0, 1] × Td ), we set

φ t (x ) := −
∫ 1

t
ξs (X t ,s (x )) ds .

Since X t ,s (X0 ,t (x )) = X0 ,s (x ),

dφ t
dt

(X0 ,t ) +
〈
vt (X0 ,t )

∣∣∣ ∇φ t (X0 ,t )
〉
=

d
dt

[
φ t (X0 ,t )

]
= ξt (X0 ,t ),

and as x 7→ X0 ,t (x ) is a di�eomorphism, this implies dφ/dt +
〈
v

∣∣∣ ∇φ〉 = ξ . Thus,∫ 1

0

∫ [
dφ t
dt

(x ) +
〈
vt (x )

∣∣∣ φ t (x )〉] dµt (x ) dt =
∫ 1

0

∫
ξt (x ) dµt (x ) dt .

On the other hand, since (µ ,v ) solves the continuity equation and φ1 = 0,∫ 1

0

∫ [
dφ t
dt

(x ) +
〈
vt (x )

∣∣∣ ∇φ t (x )〉] dµt (x ) dt = −
∫

φ0 (x ) dµ0 (x ).

This implies µt = [X0 ,t ]#µ0. Indeed, let µ̄t := [X0 ,t ]#µ0, and σ := µ̄ − µ. Then,
according to the previous computations, which also hold for µ̄, for any ξ ∈ C∞ ([0, 1]×
Td ), ∫ 1

0

∫
ξt (x ) dσt (x ) dt = −

∫
φ0 (x ) dσ0 (x ) = 0.
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Therefore, since [X0 ,1]#µ0 = µ1,

Wp (µ0 , µ1)
p ≤

∫
|X0 ,1 (x ) − x |

p dµ0 (x ) ≤

∫ ∫ 1

0
|X ′0 ,t (x ) |

p dt dµ0 (x )

and thus, as X ′s ,t = vt (Xs ,t ) and µt =
[
X0 ,t

]
# µ0,

Wp (µ0 , µ1)
p ≤

∫ 1

0

∫
|vt (X0 ,t (x )) |

p dµ0 (x ) dt ≤
∫ 1

0

∫
|vt (x ) |

p dµt (x ) dt .

2. We no longer assume anything about µ0 and µ1, but that they are probability
measures on Td . If (µt ) is a continuous curve between them, and if v is a vector �eld
solving the continuity equation, with vt ∈ Lp (µt ), then, taking a positive molli�er φε ,
we set µ εt = φε ∗ µt . As φε ∗ (vtµt ) is absolutely continuous, it has a density v εt with
respect to µ εt , which is positive. Thus, (µ ε ,v ε ) also solves the continuity equation,
and (µ εt ) is still a continuous curve. Moreover, settingmε = minφε ,

‖v εt ‖C 1 ≤
‖φε ∗ (vtµt )‖C 1 (mε + ‖µ εt ‖C 1

m2
ε

.

But, ‖µ εt ‖C 1 < Cε , and, as

φε ∗ (vtµt ) (x ) =

∫
φε (x − y)vt (y) dµt (y)

≤ ‖φε (x − · )‖Lq (µ t ) ‖vt ‖Lp (µ t )

≤ ‖φε ‖C 0 ‖vt ‖Lp (µ t ) ,

we must also have ‖φε ∗ (vtµt )‖C 1 ≤ Cε ‖vt ‖Lp (µ t ) . We can therefore assume

∫ 1

0
‖v εt ‖C 1 dt ≤ Cε

∫ 1

0
‖vt ‖Lp (µ t ) dt ≤ Cε

(∫ 1

0
|vt (x ) |

p dµt (x ) dt
) 1/p

< ∞.

Then, according to the previous computations,

Wp (µ
ε
0 , µ

ε
1 )

p ≤

∫ 1

0

∫
|v εt (x ) |

p dµ εt (x ) dt .
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According to Jensen’s inequality, since (a,b) 7→ |a |p/bp−1 is convex and homogeneous
of degree 1 on R × (0,∞), and φε (x − ·)µt is a bounded measure,

|v εt (x ) |
pµ εt (x ) =

∣∣∣∫ vt (y)φε (x − y) dµt (y)
∣∣∣p(∫

φε (x − y) dµt (y)
)p−1 ≤

∫
|vt (y) |

pφε (x − y) dµt (y).

Thus,

Wp (µ
ε
0 , µ

ε
1 )

p ≤

∫ 1

0

∫
|v εt (x ) |

p dµ εt (x ) dt ≤
∫ 1

0

∫
|vt (y) |

p dµt (y) dt .

Then, letting ε → 0, we �nally get

Wp (µ0 , µ1)
p ≤

∫ 1

0

∫
|vt (y) |

p dµt (y) dt .

3. Conversely, if µ0 and µ1 are absolutely continuous, with strictly positive,
smooth densities, then according to Yann Brenier’s theorem (§1.3.3, on page 29) and
Luis A. Ca�arelli’s theorem (§1.3.5, on page 31), there is a di�eomorphismT : Td → Td

such that µ1 = T#µ0. Then, if we set vt = (T − Id) ◦ [(1 − t ) Id +tT ]−1 and let µt be the
density of [(1 − t ) Id +tT ]# µ, we get

dµ
dt

+ div(vµ ) = 0 and Wp (µ0 , µ1)
p =

∫ 1

0

∫
|vt (x ) |

p dµt (x ) dt .

4. In the general case, let γ ∈ Γo (µ0 , µ1) be an optimal plan, and let (µt )t ∈[0 ,1] be
the geodesic induced by γ . De�ne then a probability measure π on [0, 1] × Td with∫

ξ (t , z) dπ (t , z) =
∫ 1

0

∫
ξ (t , z) dµt (z) dt

=

∫ 1

0

∫
ξ (t , (1 − t )x + ty) dγ (x ,y) dt .

Then, if ξ ∈ C∞c ((0, 1) × Td ),∫
{ξt+h (z) − ξt (z)} dπ (t , z)
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=

∫ 1

0

(∫
ξt (z) dµt−h (z) −

∫
ξt (x ) dµt (z)

)
dt

≤

∫ 1

0

∫ {
ξt ((1 − t + h)x + (t − h)y) − ξt ((1 − t )x + ty)

}
dγ (x ,y) dt

≤ h

∫ 1

0

∫ ∫ 1

0

〈
∇ξt ((1 − t + sh)x + (t − sh)y)

∣∣∣ x − y〉 ds dγ (x ,y) dt

≤ hWp (µ0 , µ1)

(∫ 1

0

" 1

0

∣∣∣∇ξt ((1 − t + sh)x + (t − sh)y)
∣∣∣q ds dγ (x ,y)dt

) 1/q

and thus, dividing by h and letting h → 0,∫
d

dt
ξt (z) dπ (t , z) ≤ Wp (µ0 , µ1)‖∇ξ ‖Lq (π ) .

For ξ ∈ C∞ ((0, 1) × Td ), we set

L(∇ξ ) := −
∫

d
dt
ξt (z) dπ (t , z),

then this L can be extended into a continuous linear form on Lq (π ). Thus, there is
v ∈ Lp (π ) such that ‖v ‖Lp (π ) ≤ Wp (µ0 , µ1) and

∀ ξ ∈ C∞ ((0, 1) × Td ),

∫ {
d

dt
ξt (z) +

〈
vt (z)

∣∣∣ ∇ξt (z)〉} dπ (t , z) = 0.

This implies that

dµ
dt

+ div(vµ ) = 0 and
∫ 1

0

∫
|vt (z) |

p dµt (z) dt ≤ Wp (µ0 , µ1)
p . �
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Chapter 2

The inverse function theorem
of Nash and Moser

2.0.1. The Nash–Moser theorem is an extension of the well-known inverse function
theorem to maps between Fréchet spaces. The �rst steps toward such a theorem were
made in 1956 by John Nash [48], in his proof that one could embed any Riemannian
manifold into some Euclidean space. A decade later, Jürgen Moser [46, 47] exposed a
general method, which has ever since known many applications and developments.
We will here follow the presentation made by Richard S. Hamilton [33], though
keeping only the elements required to come to a minimal working statement, which
is enough to satisfy our needs.

2.0.2. Compared with the standard inverse function theorem, two conditions need
to be added for a map ζ between two Fréchet spaces to be invertible near 0: �rst,
that Dζ itself be invertible on a whole neighborhood, since this does not follow any
longer from the invertibility of Dζ (0); second, there should be “reasonable” bounds on
ζ ,Dζ , and [Dζ ]−1, i.e. ‖ζ (u)‖n for instance should be bounded at most by 1 + ‖u‖n+r

for some constant r ≥ 0 independent of n. In mathematical terms, we will say that
ζ ,Dζ and [Dζ ]−1 need to satisfy some “tame” estimates.
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Chapter 2. The Nash–Moser inverse function theorem

If ζ (0) = 0, and v is �xed and close to 0, a way to get u such that v = ζ (u) is to
use a continuous version of Newton’s method1 and �nd a solution of the equation

u ′(t ) = λ[Dζ (u (t ))]−1 (v − ζ (u (t ))),

starting for instance from u (0) = 0, since then ζ (u (t )) = (1 − e−λt )v → v . As such
an ode might not have a solution if ζ is a map between Fréchet spaces, we will use a
smooth family of operators (St )t≥0 such that St → Id when t → ∞ and each St takes
its values in a �nite-dimensional subspace, and then solve

u ′(t ) = λ[Dζ (Stu (t ))]−1St (v − ζ (u (t ))).

The existence of an appropriate family of �nite-dimensional subspaces will be guaran-
teed by working on a particular class of Fréchet spaces, the so-called “tame” Fréchet
spaces. Fortunately, the Fréchet space we are interested in, namely C∞ (Td ), is tame—
as will be shown in the last section.

2.1 Definitions and statements

2.1.1. We will now state the theorem and its implicit-function corollary, but, before-
hand, we need to introduce a few de�nitions.

2.1.2. Graded Fréchet space. This is the name given to a Fréchet space F endowed
with a family of increasingly stronger seminorms (‖·‖n∈N ), so that

∀u ∈ F, ‖u‖0 ≤ ‖u‖1 ≤ · · · ≤ ‖u‖n ≤ · · · .

For any q ∈ N and ρ > 0, we set

Bq (ρ) :=
{
h ∈ F

‖h‖q < ρ} and Bq (ρ) :=
{
h ∈ F

‖h‖q ≤ ρ} .

1Ivar Ekeland recently showed this is not the only way, by proving a more general inverse function
theorem using his variational principle instead of Newton’s method [26].
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Chapter 2. The Nash–Moser inverse function theorem

2.1.3. Tame linear map, tame isomorphism. A tame linear map L : F → G is
a linear map between two graded Fréchet spaces such that, for some r ,b ∈ N, the
following tame estimate is satis�ed:

∀n ≥ b , ∃Cn > 0, ∀y ∈ F, ‖Lu‖Gn ≤ Cn‖u‖
F
n+r .

Such a map L is a tame isomorphism if it is invertible, and both L and L−1 are tame
linear maps.

2.1.4. Set of exponentially decreasing sequences Σ(E). For a Banach space
(E, ‖·‖E), the set of exponentially decreasing sequences in E is de�ned by:

Σ(E) :=
{
u ∈ EN

∀n ∈ N , ‖u‖n < ∞}
where ‖u‖n :=

∞∑
k=0

enk ‖uk ‖E

Endowed with the seminorms (‖·‖n )n∈N , it is a graded Fréchet space. Notice that the
seminorms could also be de�ned for n ≤ 0.

2.1.5. Tame Fréchet space. A graded Fréchet space F is called a tame Fréchet space
if there is a Banach space E and two tame linear maps L : F→ Σ(E) and K : Σ(E) → F
such that K ◦ L is the identity of F.

2.1.6. Tame map, tame estimate. Let F and G be two graded Fréchet spaces, and
Ω ⊂ F be an open subset. A map ζ : Ω → G is said to be tame if it is continuous and,
for every point u0 ∈ Ω, there is a neigkorhood U0 of u0 and some r ,b ∈ N such that

∀n ≥ b , ∃Cn > 0, ∀u ∈ U0 , ‖ζ (u)‖
G
n ≤ Cn

(
1 + ‖u‖Fn+r

)
.

2.1.7. Smooth tame map. Let F and G be two graded Fréchet spaces, and Ω ⊂ F be
an open subset. A map ζ : Ω → G is said to be a smooth tame map if it is smooth and
all its Gâteau derivatives are tame.

2.1.8. Theorem (Nash–Moser). Let F and G be two tame Fréchet spaces, and Ω ⊂ F
an open subset. Let ζ : Ω → G be a smooth tame map such that, for any u ∈ Ω,
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Dζ (u) : F→ G is invertible. If [Dζ ]−1 : Ω × G→ F is a smooth tame map, then ζ is

locally invertible, and, locally, its inverse is always a smooth tame map.

2.1.9. Corollary (implicit functions theorem). Let F, G and H be tame spaces,

U0 an open subset of F, V0 an open subset of G. Assume that ξ : U0 × V0 → H is a

smooth tame map, and that there are u0 ∈ U0, v0 ∈ V0 such that ξ (u0 ,v0) = 0. If, for
all u ∈ U0, v ∈ V0, w ∈ H, there is a unique h ∈ G such that Dvζ (u ,v )h = w , and

h, seen as a function of u, v and w , is a smooth tame map, then there are U ⊂ U0 an

open neighborhood of u0, V ⊂ V0 an open neighborhood of v0, and a smooth tame map

ν : U → V such that

∀u ∈ U , ∀v ∈ V , ξ (u ,v ) = 0 ⇔ v = ν (u).

Proof of the corollary. We de�ne a smooth tame map ζ : U0 × V0 → F × H by setting

ζ (u ,v ) = (u , ξ (u ,v )).

Then, for all (u ,v ) ∈ U0 × V0,

Dζ (u ,v ) =
 Id 0

Duζ (u ,v ) Dvζ (u ,v )


is invertible, and (u ,v ,q,w ) 7→ [Dζ (u ,v )]−1 (q,w ) is a smooth tame map. Therefore,
according to the Nash–Moser theorem, in a neighborhood U1 × V of (u0 ,v0), ζ is
invertible, and ζ −1 : ζ (U1×V ) → U1×V is a smooth tame map. LetU2×W ⊂ ζ (U1×V )

be a neighborhood of (u0 , 0), andU ×V ′ ⊂ ζ −1 (U2 ×W ) be a neighborhood of (u0 ,v0).
We then take ν : U → V such that

(u , ν (u)) = ζ −1 (u , 0). �

2.2 Organization of the proof

2.2.1. In the next paragraphs, let us simplify the proof we need to give by a sequence
of reductions to easier situations. The injectivity of ζ will then be proved in section 2.3
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(proposition 2.3.1 on page 51). In section 2.4, we will introduce the smoothing operators
that will allow us to prove the surjectivity in section 2.5 (proposition 2.5.7 on page 63).
At last, we will deal with the smooth-tameness of ζ −1 in section 2.6 (proposition 2.6.3
on page 66).

2.2.2. Lemma. It is possible to assume 0 ∈ Ω, with ζ (0) = 0, and F = G = Σ(E), for
some Banach space E.

Proof. Since Dζ (0) : F → G is linear tame and invertible, with an inverse map
[Dζ (0)]−1 : G → F which is also linear tame, F and G are isomorphic and can be
identi�ed. Since F is a tame Fréchet space, we can assume F = G = Σ(E) for some
Banach space E. �

2.2.3. Lemma. One can assume that there is r0 ∈ N such that, for all n ≥ 0, there is
Cn > 0 such that, if ‖u‖r0 ≤ 1, for all h, k ∈ Σ(E),

‖ζ (u)‖n ≤ Cn‖u‖n+r0 , (2.2.3.a)

‖Dζ (u)h‖n ≤ Cn
(
‖h‖n+r0 + ‖h‖0‖u‖n+r0

)
, (2.2.3.b)

‖D2ζ (u)h1h2‖n ≤ Cn
(
‖h1‖0‖h2‖n+r0 + ‖h1‖n+r0 ‖h2‖0 + ‖h1‖0‖h2‖0‖u‖n+r0

)
,

(2.2.3.c)

‖[Dζ (u)]−1k ‖n ≤ Cn
(
‖k ‖n + ‖k ‖0‖u‖n+r0

)
. (2.2.3.d)

Proof. Since ζ ,Dζ ,D2ζ and [Dζ ]−1 are all tame, there is a neighborhoodU0 of 0, and
r ,b ∈ N such that, if u ,h,h1 ,h2 , k ∈ U0, for any n ≥ b,

‖ζ (u)‖n ≤ Cn (1 + ‖u‖n+r ) ,

‖Dζ (u)h‖n ≤ Cn (1 + ‖h‖n+r + ‖u‖n+r ) ,

‖D2ζ (u)h1h2‖n ≤ Cn (1 + ‖h1‖n+r + ‖h2‖n+r + ‖u‖n+r ) ,

‖[Dζ (u)]−1k ‖n ≤ Cn (1 + ‖k ‖n+r + ‖u‖n+r ) .

This neighborhood U0 necessarily contains a small ball Ba (2ρ), and we can assume
a ≥ r . Then, since for any h ∈ Σ(E), the vector ρh/‖h‖a is in U0, we obtain that for
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any u ∈ Σ(E) such that ‖u‖a ≤ ρ and any h,h1 ,h2 , k ∈ Σ(E),

‖ζ (u)‖n ≤ Cn (1 + ‖u‖n+r ) ,

‖Dζ (u)h‖n ≤ Cn (‖h‖n+r + ‖h‖a ‖u‖n+r ) ,

‖D2ζ (u)h1h2‖n ≤ Cn (‖h1‖n+r ‖h2‖a + ‖h1‖a ‖h2‖n+r + ‖h1‖a ‖h2‖a ‖u‖n+r ) ,

‖[Dζ (u)]−1k ‖n ≤ Cn (‖k ‖n+r + ‖k ‖a ‖u‖n+r ) .

For any q ∈ Z, we de�ne τ : Σ(E) → Σ(E) by τq (u)k = eqkuk . Then,

‖τq (u)‖n =
∞∑
k=0

ek (n+q) ‖uk ‖ = ‖u‖n+q

Thus, τq is a tame linear map. So, for any p ,q ∈ Z, the map τp ◦ ζ ◦ τq is still smooth
tame, and

D (τp ◦ ζ ◦ τq ) (u)h = τp
(
[Dζ (τq (u))]τq (h)

)
,

D2 (τp ◦ ζ ◦ τq ) (u)h1h2 = τp
(
[D2ζ (τq (u))]τq (h1)τq (h2)

)
,

[D (τp ◦ ζ ◦ τq ) (u)]−1k = τ−q
(
[Dζ (τq (u))]−1τ−p (k )

)
.

Therefore, if we replace ζ with τp ◦ ζ ◦τq for some p ,q, and compose with a dilatation
so as to have an estimate on a ball of radius 1, then, if n + p ≥ b and n − q ≥ b and
‖u‖a+q ≤ 1,

‖ζ (u)‖n ≤ Cn
(
1 + ‖u‖n+p+r+q

)
,

‖Dζ (u)h‖n ≤ Cn
(
‖h‖n+p+r+q + ‖h‖a+q ‖u‖n+p+r+q

)
,

‖D2ζ (u)h1h2‖n ≤ Cn
(
‖h1‖n+p+r+q ‖h2‖a+q + ‖h1‖a+q ‖h2‖n+p+r+q

+ ‖h1‖a+q ‖h2‖a+q ‖u‖n+p+r+q
)
,

‖[Dζ (u)]−1k ‖n ≤ Cn
(
‖k ‖n−q+r−p + ‖k ‖a−p ‖u‖n−q+r+q

)
.
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Increasing a,b, and r if necessary, we will assume a = b = r . Then, for p = 2r , q = −r ,
we get that, if n ≥ b − p = −r and n ≥ q + b = 0, and if ‖u‖0 ≤ 1,

‖ζ (u)‖n ≤ Cn (1 + ‖u‖n+2r ) ,

‖Dζ (u)h‖n ≤ Cn (‖h‖n+2r + ‖h‖0‖u‖n+2r ) ,

‖D2ζ (u)h1h2‖n ≤ Cn (‖h1‖n+2r ‖h2‖0 + ‖h1‖0‖h2‖n+2r + ‖h1‖0‖h2‖0‖u‖n+2r ) ,

‖[Dζ (u)]−1k ‖n ≤ Cn (‖k ‖n + ‖k ‖−r ‖u‖n+r ) .

We then set r0 = 2r . As ζ (0) = 0,

ζ (u) =

∫ 1

0
Dζ (tu)u dt ,

and thus, if ‖u‖0 ≤ 1,

‖ζ (u)‖n ≤ Cn
(
‖u‖n+r0 + ‖u‖0‖u‖n+r0

)
≤ 2Cn‖u‖n+r0 . �

2.3 Injectivity

2.3.1. Proposition. If ζ satis�es the assumption of theorem 2.1.8 on page 47 and of

the previous section, then there exist ε > 0 and some C > 0 such that

∀u ,v ∈ Br0 (ε ), ‖u − v ‖0 ≤ C‖ζ (u) − ζ (v )‖0.

Proof. Let u ,v ∈ Br0 (ε ) for some ε ∈ (0, 1) that will be �xed later on. Then, according
to Taylor’s formula,

ζ (v ) = ζ (u) + Dζ (u) (v − u) +
∫ 1

0
D2ζ ((1 − t )u + tv ) (v − u)2 (1 − t ) dt .

This implies

v − u = [Dζ (u)]−1
{
ζ (v ) − ζ (u) −

∫ 1

0
D2ζ ((1 − t )u + tv ) (v − u)2 (1 − t ) dt

}
.

51



Chapter 2. The Nash–Moser inverse function theorem

Using (2.2.3.d), since ‖ (1 − t )u + tv ‖r0 ≤ ε we get

‖v − u‖0 ≤ C0 (1 + ε )
(
‖ζ (u) − ζ (v )‖0 +

∫ 1

0
‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 dt

)
.

(2.3.1.a)
According to (2.2.3.c),

‖D2ζ ((1 − t )u + tv ) (v − u)2‖0

≤ Cr0

(
2‖v − u‖0‖v − u‖r0 + ‖v − u‖20‖ (1 − t )u + tv ‖r0

)
,

which, since u ,v ∈ Br0 (ε ), implies

‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 ≤ Cε ‖v − u‖0. (2.3.1.b)

Thus, (2.3.1.a) becomes

‖v − u‖0 ≤ C (‖ζ (u) − ζ (v )‖0 + ε ‖v − u‖0) ,

and the result follows as soon as Cε < 1/2. Then, (2.3.1.b) becomes

‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 ≤ ‖v − u‖0.

�

Let us put the last inequality into

2.3.2. Lemma. If ε is given by proposition 2.3.1 on the preceding page, then

∀u ,v ∈ Br0 (ε ), ‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 ≤ ‖v − u‖0.

2.4 Smoothing operators

2.4.1. In this section, we introduce the operators (St )t≥0 that will enable us to prove
ζ is surjective in the next section. In particular, we will study the solutions of the
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equation
x ′(t ) + λStx (t ) = y (t ),

and give estimates on ‖x (t )‖n .

2.4.2. Smoothing operator. Let σ : R → [0, +∞) be a smooth function such that
σ (t ) = 0 when t ≤ 0 and σ (t ) = 1 when t ≥ 1, with σ strictly increasing on (0, 1).
The smoothing operator St : Σ(E) → Σ(E) is de�ned by:

(Stu)k := σ (t − k )uk for all k ∈ N and u ∈ Σ(E).

2.4.3. Lemma. Let n,q ∈ N. Then, for any u ∈ Σ(E),

∀ t ∈ R, ‖Stu‖n+q ≤ eqt ‖u‖n and ‖u − Stu‖n ≤ Cqe
−qt ‖u‖n+q .

Proof. Since σ ≤ 1 always, and σ (t − k ) = 0 as soon as t ≤ k ,

‖Stu‖n+q ≤
∑
k≤t

e (n+q)k ‖uk ‖ ≤ eqt
∑
k≤t

enk ‖uk ‖ ≤ eqt ‖u‖n .

On the other hand, since σ (t − k ) = 1 as soon as t − 1 ≥ k ,

‖u − Stu‖n ≤
∑
t−1≤k

enk ‖uk ‖ ≤ e−q(t−1)
∑
t−1≤k

e (n+q)k ‖uk ‖ ≤ eqe−qt ‖u‖n+q . �

2.4.4. Lemma. Let T > 0. Then for t ≤ T , the smoothing operator St takes its values

into a �nite-dimensional subspace ΣT (E) := Span{ei | i ≤ T }, where we have set

ei := (δk ,i )k∈N .

2.4.5. Lemma (Landau–Kolmogorov inequalities). Let p ,q ∈ N. Then, for any

θ ∈ (0, 1), if (1 − θ )p + θq ∈ N,

∀u ∈ Σ(E), ‖u‖ (1−θ )p+θq ≤ Cn ,p ,q ‖u‖
1−θ
p ‖u‖θq .

The name is usually used for such equalities in C∞ with ‖ f ‖n := ‖ f ‖C n or
‖ f ‖n := ‖ f ‖Hn .
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Proof. Let n = (1 − θ )p + θq, and assume p ≤ q. According to lemma 2.4.3 on the
previous page,

‖u‖n ≤ ‖Stu‖n + ‖u − Stu‖n ≤ C
(
e t (n−p) ‖u‖p + e−t (q−n) ‖u‖q

)
.

Then, if t is such that e t (n−p) ‖u‖p = e−t (q−n) ‖u‖q , i.e. e t (q−p) = ‖u‖q/‖u‖p , since
n − p = θ (q − p) and q − n = (1 − θ ) (q − p), we get the desired result. �

2.4.6. Lemma. Let λ > 0, x ∈ C 1 ([0,T ]; Σ(E)), and y ∈ C 0 ([0,T ]; Σ(E)) be such that

∀ t ∈ [0,T ], x ′(t ) + λStx (t ) = y (t ),

where St is the operator introduced in de�nition 2.4.2 on the preceding page. Then, for

any n,q ∈ N and assuming q ∈ (0, λ),∫ T

0
eqt ‖x (t )‖n dt ≤ Cq ,λ

(
‖x (0)‖n+q +

∫ T

0

{
‖y (t )‖n+q + eqt ‖y (t )‖n

}
dt

)
,

where the constant Cq ,λ does not depend on T .

Proof. We set ak (s , t ) := exp
(
−λ

∫ t
s σ (ω − k ) dω

)
for s < t . Then, since

ak (t , t ) = 1 and
d

ds
a(s , t ) = λSsa(s , t ) ,

the equation x ′(t ) + λStx (t ) = y (t ) yields

xk (t ) = ak (t , t )xk (t )

= ak (0, t )xk (0) +
∫ t

0

d
ds

[ak (s , t )xk (s )] ds

= ak (0, t )xk (0) +
∫ t

0
λSsak (s , t )xk (s ) + ak (s , t )x

′
k (s ) ds

= ak (0, t )xk (0) +
∫ t

0
ak (s , t )yk (s ) ds ,
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and therefore∫ T

0
eqt ‖x (t )‖n dt ≤

∫ T

0
eqt ‖a(0, t )x (0)‖n dt +

∫ T

0

∫ t

0
eqt ‖a(s , t )y (s )‖n ds dt .

(2.4.6.a)
First of all, notice that ak (s , t ) ≤ 1. But as σ (ω − k ) = 1 when ω ≥ k + 1,

• if s ≤ k + 1 ≤ t , then
∫ t
s σ (ω − k ) dω ≥ (t − k − 1) and ak (s , t ) ≤ e−λ(t−k−1)

• if k + 1 ≤ s , then ak (s , t ) ≤ e−λ(t−s ) .

Thus, assuming T > k + 1, and λ > q > 0,∫ T

0
eqtak (0, t ) dt ≤

∫ k+1

0
eqt dt +

∫ T

k+1
eqte−λ(t−k−1) dt

≤ Cq ,λ
{
eq(k+1) + eλ(k+1)e−(λ−q) (k+1)

}
≤ Cq ,λe

qk .

Therefore,∫ T

0
eqt ‖a(0, t )x (0)‖n dt =

∫ T

0
eqt

∞∑
k=0

eknak (0, t )‖xk (0)‖ ≤ Cq ,λ‖x (0)‖n+q .

All we have to do now is to bound the second part in (2.4.6.a). By Fubini’s theorem,∫ T

0

∫ t

0
eqt ‖a(s , t )y (s )‖n ds dt =

∫ T

0

∫ T

s
eqt ‖a(s , t )y (s )‖n dt ds . (2.4.6.b)

Let us �x s ∈ [0,T ] and k ∈ N. If s ≤ k + 1, then∫ T

s
e tqak (s , t ) dt ≤

∫ k+1

s
e tqak (s , t ) dt +

∫ +∞

k+1
e tqak (s , t ) dt

≤

∫ k+1

s
e tq dt +

∫ +∞

k+1
e tqe−λ(t−k−1) dt

≤ Cqe
qk +Cq ,λe

qk ,
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and if k + 1 ≤ s , ∫ T

s
e tqak (s , t ) dt ≤

∫ T

s
e tqe−λ(t−s ) dt ≤ Cq ,λe

qs

We can sum up the situation with the following bound,∫ T

s
e tqak (s , t ) dt ≤ Cq ,λ

{
eqk + eqs

}
.

Thus, ∫ T

s
eqt ‖a(s , t )y (s )‖n dt =

∫ T

s
eqt

∞∑
k=0

eknak (s , t )‖yk (s )‖ dt

=

∞∑
k=0

ekn‖yk (s )‖

∫ T

s
eqtak (s , t ) dt

≤ Cq ,λ
{
‖y (s )‖n+q + eqs ‖y (s )‖n

}
,

and this, injected into (2.4.6.b), completes the proof. �

2.5 Surjectivity

2.5.1. To show that, for every v̄ close to 0, there is ū, also close to 0, such that ζ (ū) = v̄ ,
we will solve the following ode:

u ′(t ) = λ[Dζ (Stu (t ))]−1St (v̄ − ζ (u (t ))),

and show that the solution u (t ) is de�ned on [0, +∞) and converges to some ū when t

tends to in�nity, with ζ (ū) = v̄ . The convergence will be proved thanks to a series of
estimates involving u (t ), x (t ) = v̄ − ζ (u (t )), and y (t ) = [Dζ (Stu (t )) −Dζ (u (t ))]u ′(t ).
It will be shown that

x ′(t ) + λStx (t ) = y (t )

and this second ode will provide useful estimates, thanks to lemma 2.4.6 on page 54.
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2.5.2. Lemma. Let us �x λ ∈ R. Then, possibly decreasing ε (initially given by

proposition 2.3.1 on page 51) and increasing r0 (from lemma 2.2.3 on page 49), for any

v̄ ∈ Br0 (ε ), for some δ > 0 there is a unique u ∈ C 1 ([0, δ );Br0 (ε )) such that

u (0) = 0 and u ′(t ) = λ [Dζ (Stu (t ))]−1 {
St (v̄ − ζ (u (t )))

}
for t ∈ [0, δ ).

Proof. We divide the proof in four steps.
1. If Φt (u) := (St (u), St (v̄ − ζ (u)) and Ψ(v )h := λ[Dζ (v )]−1h, then u (t ) is a

solution if and only if u ′(t ) = Ψ ◦ Φt (u (t )) and u (0) = 0.
2. According to lemma 2.4.4 on page 53, for any t ≤ T the smoothing operator

St : Σ(E) → Σ(E) takes its values into a �nite-dimensional subspace ΣT (E) where all
the seminorms are equivalent norms. Since DuΦ : [0,T ]×Ω×Σ(E) → ΣT (E) ×ΣT (E)
is a smooth tame map, increasing r0 and decreasing ε if necessary, for any t ∈ [0,T ],

∀u ∈ Br0 (2ε ), ∀h ∈ Br0 (2ρ), ‖DuΦt (u)h‖0 ≤ C
(
1 + ‖h‖r0 + ‖u‖r0

)
.

Then, as for any h ∈ Σ(E), we always have ρh/‖h‖r0 ∈ Br0 (2ρ), we can, more
generally, say that

∀u ∈ Br0 (2ε ), ∀h ∈ Σ(E), ‖DuΦt (u)h‖0 ≤ C ‖h‖r0 ,

and therefore,

∀u ,v ∈ Br (ε ), ‖Φt (u) − Φt (v )‖0 ≤ C‖u − v ‖r0 .

Notice that, if Φt (u) = (v ,h), then ‖v ‖0 = ‖St (u)‖0 ≤ ‖u‖0 ≤ ε , and

‖h‖0 ≤ ‖v̄ − ζ (u)‖0 ≤ ‖v̄ ‖0 +C‖u‖r0 ≤ C0ε .

Thus, maybe decreasing ε again, as Ψ : (ΣT (E)∩B0 (2ε )) × (ΣT (E)∩B0 (2C0ε ) → Σ(E)
is also smooth tame and all the seminorms are equivalent on ΣT (E), we could in the
same way show

∀v ,w , ∈ ΣT (E) ∩ B0 (ε ), ∀h, k ∈ ΣT (E) ∩ B0 (C0ε ),
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‖Ψ(v )h − Ψ(w )k ‖r0 ≤ C (‖v −w ‖0 + ‖h − k ‖0) .

3. If for some δ > 0 we set X = (ΣT (E) ∩ B0 (ε )) × (ΣT (E) ∩ B0 (C0ε ) and

Ξ(v ,h) (t ) := Φt

(∫ t

0
Ψ(v (s ))h(s ) ds

)
for v ,h ∈ C 0 ([0, δ ]; X),

then Ξ is well-de�ned and is a contraction, at least for δ small enough, since

‖Ξ(v ,h) − Ξ(w , k )‖∞ ≤ Cδ (‖v −w ‖∞ + ‖h − k ‖∞).

Moreover, if δ is small enough, then C 0 ([0, δ ]; X) is stable, as ‖v (s )‖r0 ≤ CT ‖v (s )‖0

and thus∥∥∥∥∥∥
∫ t

0
Ψ(v (s ))h(s ) ds

∥∥∥∥∥∥0
≤ C

∫ δ

0

(
‖h(s )‖0 + ‖h(s )‖0‖v (s )‖r0

)
ds ≤ Cδε ,

and we can take δ such that Cδ ≤ 1.
4. By the �xed-point theorem, there is a unique (v ,h) ∈ C 0 ([0, δ ]; X) such that

Ξ(v ,h) = (v ,h). Then the curve

u (t ) :=
∫ t

0
Ψ(v (s ))h(s ) ds

is such that (v (t ),h(t )) = Φt (u (t )), so u (t ) =
∫ t

0 Ψ ◦ Φs (u (s )) ds . This proves the
existence of a solution, at least on some interval [0, δ ]. Moreover, δ has also been
chosen so as to ensure u (t ) ∈ Br0 (ε ).

�

2.5.3. Lemma. Letu ∈ C 1 ([0,T ) , Br0 (ε )) be the curve given by lemma 2.5.2 on page 56,

de�ned on some interval [0,T ). Then, if x (t ) = v̄ − ζ (u (t )),

∀n ≥ 0, ∀q ∈ N , ∃Cn ,q > 0, ∀ t ∈ [0,T ),

‖u ′(t )‖n+q ≤ Cn ,q ,λe
qt

(
‖x (t )‖n + ‖u (t )‖n+r0 ‖x (t )‖0

)
.
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Since ‖u (t )‖r0 ≤ ε , this implies

‖u ′(t )‖q ≤ Cqe
qt ‖x (t )‖0.

There is no particular condition on q, and Cn ,q ,λ does not depend on T .

Proof. Let x (t ) = v̄ − ζ (u (t ). Then u ′(t ) = λ [Dζ (Stu (t ))]−1 Stx (t ). According to
(2.2.3.d), since ε < 1, for any n ≥ 0, we have

‖u ′(t )‖q = λ‖[Dζ (Stu (t ))]−1Stx (t )‖n+q

≤ λCn+q
(
‖Stx (t )‖n+q + ‖Stx (t )‖0‖Stu (t )‖n+q+r0

)
.

Now, the result follows from lemma 2.4.3 on page 53. �

2.5.4. Lemma. Letu ∈ C 1 ([0,T ), Br0 (ε )) be the curve given by lemma 2.5.2 on page 56,

de�ned on some interval [0,T ). Then, if

x (t ) := v̄ − ζ (u (t )) and y (t ) := [Dζ (Stu (t )) − Dζ (u (t ))]u ′(t ),

we have

∀q ≥ 0, ∃Cq > 0, ∀ t ∈ [0,T ) , ‖y (t )‖q ≤ Cq ‖u (t )‖q+r0 ‖x (t )‖0.

Once again, there is no condition on q, and the constant Cq does not depend on T .

Proof. Notice that:

[Dζ (v ) − Dζ (u)] =
∫ 1

0
D2ζ ((1 − ω)u + ωv ) (v − u) dω ,

therefore

y (t ) =

∫ 1

0
D2ζ ((1 − ω)u (t ) + ωStu (t )) (Stu (t ) − u (t ))u ′(t ) dω .

Using (2.2.3.c), we get that, for q ≥ 0,

‖y (t )‖q ≤ Cq
{
‖Stu (t ) − u (t )‖0‖u

′(t )‖q+r0
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+ ‖Stu (t ) − u (t )‖q+r0 ‖u
′(t )‖0

+ ‖Stu (t ) − u (t )‖0‖u ′(t )‖0‖u (t )‖q+r0

}
.

According to lemma 2.4.3 on page 53, ‖Stu (t ) − u (t )‖0 ≤ e−mt ‖u (t )‖m , and therefore

‖y (t )‖q ≤ C
{
e−(q+r0)t ‖u (t )‖q+r0 ‖u

′(t )‖q+r0 + ‖u (t )‖q+r0 ‖u
′(t )‖0

+ ‖u (t )‖0‖u ′(t )‖0‖u (t )‖q+r0

}
.

Now, lemma 2.5.3 on page 58 yields ‖u ′(t )‖m ≤ Cme
mt ‖x (t )‖0, and thus, as ‖u (t )‖r0 <

ε , we get:

‖y (t )‖q ≤ C
{
2‖u (t )‖q+r0 ‖x (t )‖0 + ε ‖x (t )‖0‖u (t )‖q+r0

}
. �

2.5.5. Lemma. Letu ∈ C 1 ([0,T ), Br0 (ε )) be the curve given by lemma 2.5.2 on page 56.

Then, if λ > r0 and if ‖v̄ ‖r0 is small enough,

∃C > 0,
∫ T

0
e r0t ‖x (t )‖0 dt ≤ C ‖v̄ ‖r0

The constant does not depend on T .

Proof. According to lemma 2.4.6 on page 54, as long as λ > r0 > 0,∫ T

0
e r0t ‖x (t )‖0 dt ≤ Cr0 ,λ

(
‖x (0)‖r0 +

∫ T

0

{
‖y (t )‖r0 + e r0t ‖y (t )‖0

}
dt

)
Notice that x (0) = v̄ . Thanks to lemma 2.5.4 on the preceding page, we get

∫ T

0
e r0t ‖x (t )‖0 dt

≤ Cr0 ,λ

(
‖v̄ ‖r0 +

∫ T

0

{
‖u (t )‖2r0 ‖x (t )‖0 + e r0t ‖u (t )‖r0 ‖x (t )‖0

}
dt

)
.

Since according to lemma 2.5.3 on page 58, ‖u ′(t )‖q ≤ Ceqt ‖x (t )‖0, we have

‖u (t )‖r0 ≤ Ce r0t
∫ t

0
e r0s ‖x (s )‖0 ds , ‖u (t )‖r0 ≤ C

∫ t

0
e r0s ‖x (s )‖0 ds .
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Thus,

∫ T

0
e r0t ‖x (t )‖0 dt ≤ C

‖v̄ ‖r0 + 2
(∫ T

0
e r0t ‖x (t )‖0 dt

)2 .
If we set κ :=

∫ T
0 e r0t ‖x (t )‖0 dt , then κ ≤ C (‖v̄ ‖r0 + 2κ2). Therefore, κ − 2Cκ2 ≤

C‖v̄ ‖r0 . But we always have κ − 2Cκ2 ≤ 1/8C with equality only for κ = 1/4C , so
if C‖v̄ ‖r0 ≤ 1/8C , we can ensure κ ∈ [0, 1/4C], as κ depends continuously on T and
κ = 0 for T = 0. But then

κ ≤
C‖v̄ ‖r0

1 − 2Cκ
≤ 2C‖v̄ ‖r0 . �

2.5.6. Lemma. Letu ∈ C 1 ([0,T ), Br0 (ε )) be the curve given by lemma 2.5.2 on page 56.

We assume λ > r0 + 1. Then, if ‖v̄ ‖r0 is small enough,

∀n ≥ r0 , ∀q ∈ N , ∃Cn ,q > 0, ∀ t ∈ [0,T ),
∫ t

0
‖u ′(s )‖n+q ds ≤ Cn ,qe

qt ‖v̄ ‖n .

There is no condition on q, and Cn ,q does not depend on T .

Proof. We proceed by induction on n, starting from n = r0.
According to lemma 2.5.3 on page 58, ‖u ′(t )‖r0+q ≤ Ce (r0+q)t ‖x (t )‖0; therefore,

assuming ‖v̄ ‖r0 small enough and using lemma 2.5.5 on the preceding page,∫ t

0
‖u ′(s )‖r0+q ds ≤ Ceqt

∫ t

0
e r0s ‖x (s )‖0 ds ≤ Ceqt ‖v̄ ‖r0 . (2.5.6.a)

The case n = r0 is thus proved.
Let us now proceed with the induction, and assume that, for some n ≥ r0, we

have
∫ t

0 ‖u
′(s )‖n+q ds ≤ Ceqt ‖v̄ ‖n for any q ≥ 0. From lemma 2.5.3 on page 58, as

n − r0 ≥ 0, we get∫ t

0
‖u ′(s )‖n+1+q ds ≤ C

∫ t

0

{
e (r0+q+1)s

(
‖x (s )‖n−r0 + ‖v̄ ‖n‖x (s )‖0

)}
ds . (2.5.6.b)
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Since λ > r0 + 1, lemma 2.4.6 on page 54 yields∫ t

0
e (r0+1)s ‖x (s )‖n−r0 ds ≤ C

(
‖v̄ ‖n+1 +

∫ t

0

{
‖y (s )‖n+1 + e (r0+1)s ‖y (s )‖n−r0

}
ds

)
.

But, using lemma 2.5.4 on page 59, as ‖u (s )‖n+m ≤ Cems ‖v̄ ‖n , we get

‖y (s )‖n+1 ≤ C‖u (s )‖n+1+r0 ‖x (s )‖0 ≤ Ce (r0+1)s ‖v̄ ‖n‖x (s )‖0 ,

‖y (s )‖n−r0 ≤ C‖u (s )‖n‖x (s )‖0 ≤ C‖v̄ ‖n‖x (s )‖0.

Thus, ∫ t

0
e (r0+1)s ‖x (s )‖n−r0 ds ≤ C

(
‖v̄ ‖n+1 + 2‖v̄ ‖n

∫ t

0
e (r0+1)s ‖x (s )‖0 ds

)
,

and (2.5.6.b) becomes∫ t

0
‖u ′(s )‖n+1+q ds ≤ Ceqt

(
‖v̄ ‖n+1 + 3‖v̄ ‖n

∫ t

0
e (r0+1)s ‖x (s )‖0 ds

)
. (2.5.6.c)

Using lemma 2.4.6 on page 54 once again, we obtain∫ t

0
e (r0+1)s ‖x (s )‖0 ds ≤ C0

(
‖v̄ ‖r0+1 +

∫ t

0

{
‖y (s )‖r0+1 + e (r0+1)s ‖y (s )‖0

}
ds

)
.

From lemma 2.5.4 on page 59, as ‖u (s )‖r0+m ≤ Cems ‖v̄ ‖r0 , it follows

‖y (s )‖r0+1 ≤ C0‖u (s )‖2r0+1‖x (s )‖0 ≤ C0e
(r0+1)s ‖v̄ ‖r0 ‖x (s )‖0 ,

‖y (s )‖r0 ≤ C0‖u (s )‖r0 ‖x (s )‖0 ≤ C0‖v̄ ‖r0 ‖x (s )‖0.

This yields∫ t

0
e (r0+1)s ‖x (s )‖0 ds ≤ C0

(
‖v̄ ‖r0+1 + ‖v̄ ‖r0

∫ t

0
e (r0+1)s ‖x (s )‖0 ds

)
.

Thus, if ‖v̄ ‖r0 is small enough,∫ t

0
e (r0+1)s ‖x (s )‖0 ds ≤ C‖v̄ ‖r0+1 ,
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and with this estimate, (2.5.6.c) becomes∫ t

0
‖u ′(s )‖n+1+q ds ≤ Ceqt

(
‖v̄ ‖n+1 + ‖v̄ ‖n‖v̄ ‖r0+1

)
.

However, setting θ = 1/(n + 1 − r0), as

r0 + 1 = (1 − θ )r0 + θ (n + 1) and n = θr0 + (1 − θ ) (n + 1),

we infer from lemma 2.4.5 on page 53 that

‖v̄ ‖r0+1‖v̄ ‖n ≤ ‖v̄ ‖r0 ‖v̄ ‖n+1 ≤ C‖v̄ ‖n+1. �

2.5.7. Proposition. For v̄ with ‖v̄ ‖r0 small enough, there is a unique ū ∈ Σ(E) such
that ζ (ū) = v̄ , and

∀n ≥ r0 , ‖ū‖n ≤ Cn‖v̄ ‖n .

Proof. Let v̄ ∈ Br0 (δ ) with δ small enough and λ > r0 + 1. If u ∈ C 1 ([0,T ), Br0 (ε )) is
given by lemma 2.5.2 on page 56, and is de�ned on a maximal interval [0,T ), then
according to lemma 2.5.6 on page 61 (u (t ))t ∈[0 ,T ) is Cauchy when t → T , and thus
converges to some uT . From lemma 2.5.6 on page 61, it follows that

∀n ≥ r0 , ‖ū‖n ≤ Cn‖v̄ ‖n .

Thus, by taking ‖v̄ ‖r0 small enough, we can ensure uT ∈ Br0 (ε/2). But this implies
T = ∞, since if it were not the case, by starting over from uT , we could extend u in
Br0 (ε ) beyond T , contradicting its maximality.

As u ′(t ) = λ[Dζ (Stu (t ))]−1 {
St (v̄ − ζ (u (t )))

}
, we get u ′(t ) also converges when

t tends to in�nity. On the other hand, since the constants from lemma 2.5.6 on page 61
do not depend onT ,

∫ ∞
0 ‖u

′(s )‖n ds < ∞, and therefore u ′(t ) → 0 when t → ∞. This,
in turn, implies ζ (u (t )) → v̄ = ζ (u∞).

Uniqueness follows from proposition 2.3.1 on page 51. �
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2.6 Smoothness and tame estimates

2.6.1. Lemma. Let ε > 0 be the radius given by proposition 2.3.1 on page 51. Then, for

all u ,v ∈ Br0 (ε ) and n ∈ N,

‖u − v ‖n ≤ Cn
[
‖ζ (u) − ζ (v )‖n +

(
‖u‖n+r0 + ‖v ‖n+r0

)
‖ζ (u) − ζ (v )‖0

]
.

Proof. As in the proof of proposition 2.3.1 on page 51, we start from Taylor’s formula,
which yields

v − u = [Dζ (u)]−1
{
ζ (v ) − ζ (u) −

∫ 1

0
D2ζ ((1 − t )u + tv ) (v − u)2 (1 − t ) dt

}
.

and, using (2.2.3.d), we get

‖v − u‖n ≤ Cn

[
‖ζ (u) − ζ (v )‖n +

∫ 1

0

∥∥∥D2ζ ((1 − t )u + tv ) (v − u)2
∥∥∥
n dt

+‖u‖n+r0

(
‖ζ (u) − ζ (v )‖0 +

∫ 1

0

∥∥∥D2ζ ((1 − t )u + tv ) (v − u)2
∥∥∥0 dt

)]
. (2.6.1.a)

On the one hand, from (2.2.3.c) it follows

∥∥∥D2ζ ((1 − t )u + tv ) (v − u)2
∥∥∥
n

≤ Cn
(
2‖u − v ‖0‖u − v ‖n+r0 + ‖u − v ‖20‖ (1 − t )u + tv ‖n+r0

)
≤ C

(
‖u‖n+r0 + ‖v ‖n+r0

)
‖u − v ‖0.

Thanks to the bounds from proposition 2.3.1 on page 51, this yields∥∥∥D2ζ ((1 − t )u + tv ) (v − u)2
∥∥∥
n ≤ Cn

(
‖u‖n+r0 + ‖v ‖n+r0

)
‖ζ (u) − ζ (v )‖0 , (2.6.1.b)

On the other hand, from lemma 2.3.2 on page 52 we get

‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 ≤ ‖v − u‖0 ≤ C‖ζ (v ) − ζ (u)‖0.

Putting the last two inequalities into (2.6.1.a), we get the result. �

64



Chapter 2. The Nash–Moser inverse function theorem

2.6.2. Lemma. Let ε > 0 be the radius given by proposition 2.3.1 on page 51. Then, for

u ,v ∈ Br0 (ε ), we have

∀n ≥ 0, ‖v − u − [Dζ (u)]−1 (ζ (v ) − ζ (u))‖n

≤ Cn
(
‖u − v ‖n+r0 ‖u − v ‖0 + ‖u‖n+r0 ‖u − v ‖

2
r0

)
.

Proof. Once again, we start from Taylor’s formula

ζ (v ) = ζ (u) + Dζ (u) (v − u) +
∫ 1

0
D2ζ ((1 − t )u + tv ) (v − u)2 (1 − t ) dt ,

which yields

v − u − [Dζ (u)]−1 (ζ (v ) − ζ (u))

= − [Dζ (u)]−1
(∫ 1

0
D2ζ ((1 − t )u + tv ) (v − u)2 (1 − t ) dt

)
,

Then, using (2.2.3.d), we get

‖v − u − [Dζ (u)]−1 (ζ (v ) − ζ (u))‖n

≤ Cn

(∫ 1

0
‖D2ζ ((1 − t )u + tv ) (v − u)2‖n (1 − t ) dt

+‖u‖n+r0

∫ 1

0
‖D2ζ ((1 − t )u + tv ) (v − u)2‖0 (1 − t ) dt

)
.

Thanks to (2.2.3.c),

‖D2ζ ((1 − t )u + tv ) (v − u)2‖n

≤ Cn
(
2‖v − u‖n+r0 ‖v − u‖0 + ‖ (1 − t )u + tv ‖n+r0 ‖v − u‖

2
0
)

≤ Cn
(
(2 + t ‖u − v ‖0)‖v − u‖n+r0 ‖v − u‖0 + ‖u‖n+r0 ‖v − u‖

2
0
)
,

and thus, since ‖u − v ‖r0 ≤ 2ε ,

‖D2ζ ((1 − t )u + tv ) (v − u)2‖n ≤ C
(
‖v − u‖n+r0 ‖v − u‖0 + ‖u‖n+r0 ‖v − u‖

2
0
)
.
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Now, (2.2.3.c) yields

‖D2ζ ((1 − t )u + tv ) (v − u)2‖0

≤ Cn
(
2‖v − u‖0‖v − u‖r0 + ‖ (1 − t )u + tv ‖r0 ‖v − u‖

2
0
)

≤ Cn (2 + ε )‖v − u‖2r0 . �

2.6.3. Proposition. For any v̄ let ū = ζ −1 (v̄ ) be the unique antecedent given by

proposition 2.5.7 on page 63. Then ζ −1
is smooth, and all its derivatives satisfy a tame

estimate.

Proof. From proposition 2.5.7 on page 63, we already know there is an estimate

∀n ≥ 2r0 , ‖ζ −1 (u)‖n ≤ Cn‖u‖n .

Then, lemma 2.6.1 on page 64 also shows that ζ −1 is continuous. Furthermore,
lemma 2.6.2 on page 64 yields

‖ζ −1 (u + h) − ζ −1 (u) − [Dζ (ζ −1 (u))]−1h‖n ≤ Cn
(
‖h‖n+r0 ‖h‖0 + ‖u‖n+r0 ‖h‖

2
r0

)
,

which proves that ζ −1 is Gâteaux-di�erentiable, and

Dζ −1 (u)h =
[
Dζ (ζ −1 (u))

] −1
h.

Thus ζ −1 is smooth, and the tames estimates for its derivatives follow from the tames
estimates of [Dζ ]−1 and ζ −1. �

2.7 Tameness of some usual spaces

2.7.1. This chapter would not be complete if we did not show that C∞ (Td ) is tame.
This is done in three steps: �rst, we introduce a space F and prove it is tame; then,
thanks to the Fourier transform, which sends the space C∞ (B) of smooth functions
over the closed unit ball B into F , we show C∞ (B) is also tame; at last, thanks to
Nash’s embedding theorem, we conclude that for any compact riemannian manifold
M , the space C∞ (M ) is also tame.
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2.7.2. Lemma. Let (X , µ ) be a measure space, and letw : X → R be a positive weight

function. For any map f ∈ L1 (µ ), we set ‖ f ‖n :=
∫
enw (x ) | f (x ) | dµ (x ). Then,

F :=
{
f ∈ L1 (µ )

∀n ∈ N , ‖ f ‖n < ∞}
is a tame space.

Proof. For any k ∈ N, let

Xk := { x ∈ X | k ≤ w (x ) < k + 1 } ,

and de�ne

L :

 F → Σ(L1 (µ ))

f 7→ (1Xk f )k∈N
and K :

 Σ(L1 (µ )) → F
( fk )k∈N 7→

∑
fk1Xk

.

Then, for any n ≥ 0, as w (x ) ≥ k for x ∈ Xk ,

‖1Xk f ‖L1 ≤ e−kn
∫

Xenw (x )
1Xk (x ) | f (x ) | dµ (x ).

This implies

‖Lf ‖n =
∞∑
k=0

ekn‖1Xk f ‖L1 ≤

∫
X
enw (x ) | f (x ) | dµ (x ) ≤ ‖ f ‖n ,

so L is a tame linear map. Conversely,

∥∥∥K (( fk )k∈N )
∥∥∥
n =

∫
X
enw (x )

∞∑
k=0

1Xk (x ) | fk (x ) | dµ (x )

≤

∞∑
k=0

∫
Xk

en(k+1) | fk (x ) | dµ (x )

≤ en
∑
k=0

ekn‖ fk ‖L1

≤ Cn‖ ( fk )k∈N ‖n ,

so K is also tame linear. Since K ◦ L = IdF, we conclude F is a tame space. �
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2.7.3. Lemma. Let B be the closed unit ball in Rd
. Then

C∞0 (B) :=
{
f ∈ C∞c

supp f ⊂ B
}

is a tame space, if endowed with

‖ f ‖n := max
|α | ≤n

sup
x ∈B

∣∣∣Dα f (x )
∣∣∣,

Proof. Let w (x ) = 1
2 ln(1 + |x |2). Then, if f ∈ C∞0 (B) and f̂ denotes the Fourier

transform of f , we have∫
enw (x ) | f̂ (x ) | dx =

∫
(1 + |x |2)n/2 | f̂ (x ) | dx .

Notice, however, that for any α ∈ Nd ,

|xα | | f̂ (x ) | =
1

2π

∣∣∣∣∣∫ e−2iπ 〈ξ |x〉Dαf (ξ ) dξ
∣∣∣∣∣ ≤ |B |2π

‖ f ‖ |α | ,

and therefore, for anym ∈ N,

(1 + |x |2)m | f̂ (x ) | ≤ Cm‖ f ‖2m .

Thus, ∫
enw (x ) | f̂ (x ) | dx ≤

∫
(1 + |x |2) (d+1+n)/2

(1 + |x |2) (d+1)/2
| f̂ (x ) | dx

≤ C d(d+1+n)/2e

∫
‖ f ‖2 d(d+1+n)/2e

(1 + |x |2) (d+1)/2
dx

≤ Cn‖ f ‖n+d+2.

This proves that the Fourier transform F : C∞0 (B) → F is tame, if F stands for the
tame space introduced in lemma 2.7.2 on the previous page. Conversely, if u ∈ F and
α ∈ Nd , ∣∣∣Dαû (ξ )

∣∣∣ = ∣∣∣∣∣∫ (−2iπx )αu (x )e−2iπ 〈ξ |x〉 dx
∣∣∣∣∣
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≤ Cα

∫
(1 + |x |2) |α |/2 |u (x ) | dx

≤ Cα ‖u‖ |α | ,

and this proves ‖F −1u‖n ≤ Cn‖u‖n . As F is a tame space, C∞0 (B) is also tame. �

2.7.4. Proposition. Let M be a compact Riemannian manifold. Then C∞ (M ) is a

tame space.

Proof. According to Nash’s embedding theorem, M can be isometrically embedded
into a bounded subset of Rd , for some d ∈ N. Thanks to Whitney’s extension
theorem, C∞ (M ) can therefore be tamely embedded into C∞0 (B), which is a tame
space according to lemma 2.7.3 on page 67. �
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Chapter 3

From Knothe’s rearrangement
to Brenier’s optimal map

3.0.1. A few years ago, Guillaume Carlier, Alfred Galichon, and Filippo Santam-
brogio [19] proved the existence of a connection between the Knothe–Rosenblatt
rearrangement (which will be de�ned in §3.1.3) and Yann Brenier’s map, in the form
of a di�erential equation—at least, when one of the two measures is discrete. In this
chapter, I extend their result to the case of absolutely continuous measures. Most of
what follows is taken from my article [10].

3.1 The Knothe–Rosenbla� rearrangement

3.1.1. As we have seen in section 1.2, if µ and ν are Borel probability measures on
R, with µ atomless, and F and G are their respective cumulative distributions, then
G−1 ◦ F sends µ onto ν . In greater dimensions, the Knothe–Rosenblatt rearrangement
is a mapping that intends to use this result to send a measure onto an other. To work
with unidimensional measures, we �rst need to disintegrate them both.

3.1.2. Disintegration of a measure. Let X = R or X = T . Any Borel measure µ on
Xd can then be disintegrated according to the axes: there exists a family {µ1 , . . . , µd },
with µk : Xk−1 → P (X) Borel, such that, for all ξ ∈ C 0

b (X
d ),∫

ξ (x ) dµ (x ) =
∫ (∫

· · ·

(∫
ξ (x ) dµdx1 , . . . ,xd−1

(xd )

)
· · · dµ2

x1 (x2)

)
dµ1 (x1).
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Chapter 3. From Knothe’s rearrangement to Brenier’s map

For the sake of clarity, let us now assume d = 2. If µ is absolutely continuous, and
f stand for its density, then the disintegrated measures µ1 , µ2

x1 also have densities,
namely:

f 1 (x1) :=
∫

f (x1 , x2) dx2 and f 2
x1 (x2) :=

f (x1 , x2)

f 1 (x1)
.

3.1.3. The Knothe–Rosenblatt rearrangement. This transport map was de�ned
in the 1950s, separately by Murray Rosenblatt [51] and by Herbert Knothe [38]. The
former had in mind applications to probability theory and statistics; the later used
it to study convex bodies and prove an improved isoperimetric inequality1—an idea
later popularized by Mikhail Gromov [44].

In dimension two, the rearrangement is de�ned as follows: Let µ and ν be two
absolutely continuous measures on X2, with X = R or X = T . Let {µ1 , µ2} and {ν 1 , ν2}

be their disintegrations, and let F 1 , F 2
x1 and G1 ,G2

y1 be the cumulative distributions of
µ1 , µ2

x1 and ν 1 , ν2
y1 . Then, we set

T 1
K (x1) :=

[
G1

] −1
◦ F 1 (x1), T 2

K (x1 , x2) :=
[
G2
T 1

K (x1)

] −1
◦ F 2

x1 (x2),

and TK := (T 1
K ,T

2
K ). The same procedure can be applied in any dimension.

3.1.4. Lemma. The rearrangement TK thus de�ned maps µ onto ν .

Proof. We give a proof only for d = 2. Let ξ ∈ C (X2). Then,∫
ξ (TK (x )) dµ (x ) =

∫ (∫
ξ
(
T 1

K (x1),T
2
K (x1 , x2)

)
dµ2

x1 (x2)

)
dµ1 (x1)

=

∫ (∫
ξ (T 1

K (x1),y2) dν2
T 1

K (x1)
(y2)

)
dµ1 (x1),

for T 2
K (x1 , x2) sends µ2

x1 onto ν2
T 1

K (x1)
. Likewise, as T 1

K sends µ1 onto ν 1, we get

∫
ξ (TK (x )) dµ (x ) =

∫ (∫
ξ (y1 ,y2) dν2

y1 (y2)

)
dν 1 (y1). �

1Brenier’s map turned out to be more suited to deal with the isoperimetric inequality than Knothe’s
rearrangement: Alessio Figalli, Francesco Maggi, and Aldo Pratelli [30, 55] were able to obtain a
sharp inequality using Optimal Transport.
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3.1.5. The starting point of our investigation is the proof, by Guillaume Carlier, Alfred
Galichon, and Filippo Santambrogio [19], that this “rearrangement” is the limit of
Brenier’s map when the quadratic cost degenerates. We have seen in section 1.4 that,
if µ and ν are probability measures on Td with strictly positive densities, and

At :=


1

λ1
t
. . .

λ1
t · · · λ

d−1
t


with λk : R→ [0, +∞) such that λkt = 0 only for t = 0, then, for any t > 0, there is a
unique optimal transport map Tt between µ and ν for the quadratic cost ct induced
by At , i.e.

ct (x ,y) := inf
k∈Zd

1
2
At (x − y − k )

2 =

d∑
k=1

λ1
t · · · λ

k−1
t

2
d(xk ,yk )2 ,

with d the usual distance on T .

3.1.6. Theorem (Carlier–Galichon–Santambrogio). When t tends to zero, the

map Tt converges in L2 (µ ) to the Knothe–Rosenblatt rearrangement.

Proof. As the proof is much easier for d = 2, we give a proof for d = 3 to account for
the additional di�culty in greater dimensions. We therefore work on the torus T3,
and proceed in 7 steps.

1. Let γt := (Id,Tt )#µ be the optimal transport plan for the quadratic cost ct ,
and let γK := (Id,TK)#µ be the plan corresponding to the rearrangement. Up to a
subsequence, γt converges narrowly to some γ ∈ Γ(µ , ν ). On the one hand, γt is
optimal for ct , so

∫ d(x1 ,y1)
2 + · · · +

∏
k<d

λkt d(xd ,yd )2
 dγt (x ,y)

≤

∫ d(x1 ,y1)
2 + · · · +

∏
k<d

λkt d(xd ,yd )2
 dγK (x ,y). (3.1.6.a)
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On the other hand,∫
d(x1 ,y1)

2 dγ (x ,y) = lim
t→0

∫
d(x1 ,y1)

2 dγt (x ,y).

Therefore, taking the limit,∫
d1 (x1 ,y1)

2 dγ (x ,y) ≤
∫

d1 (x1 ,y1)
2 dγK (x ,y).

Thus, denoting by Xk and Yk the projectors, we can say γ 1 := (X1 , Y1)#γ is optimal
between the �rst marginals of µ and ν . Let µ1 and ν 1 be those �rst marginals; then γ 1

is equal to γ 1
K := (X1 , Y1)#γK = (Id,T 1

K)#µ
1.

2. Since inequality (3.1.6.a) and the optimality of γ 1 = (X1 , Y1)#γK imply

∫
d(x1 ,y1)

2 dγK (x ,y)

+ λt
∫ d(x2 ,y2)

2 + · · · +
∏

1<k<d
λkt d(xd ,yd )2

 dγt (x ,y)

≤

∫
ct (x ,y) dγK (x ,y) ,

we also have ∫
d(x2 ,y2)

2 dγ (x ,y) ≤
∫

d(x2 ,y2)
2 dγK (x ,y). (3.1.6.b)

We now disintegrate γ 1 ,2 := ((X1 , X2), (Y1 , Y2))# γ :∫
T2
ξ dγ 1 ,2 =

"
ξ (x ,y) dγ 2

x1 ,y1 (x2 ,y2) dγ 1 (x1 ,y1).

Let us, for a moment, assume that for γ 1-almost all (x1 ,y1), the marginals of γ 2
x1 ,y1 are

µ2
x1 and ν2

y1 . Then, by the very de�nition of the rearrangement TK, since γ 1 = γ 1
K, for

γ 1-almost every pair (x1 ,y1),∫
d(x2 ,y2)

2 d
[
γK

]2
x1 ,y1

(x2 ,y2) ≤

∫
d(x2 ,y2)

2 dγ 2
x1 ,y1 (x2 ,y2). (3.1.6.c)
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If we then integrate this with respect to γ 1 = γ 1
K, we get∫

T3
d(x2 ,y2)

2 dγK (x ,y) ≤

∫
T2

d(x2 ,y2)
2 dγ 1 ,2 (x ,y).

But we have just seen the converse inequality, given by equation (3.1.6.b). This is only
possible if, γ 1-almost everywhere, there is equality in (3.1.6.c). Therefore for γ 1-almost
all (x1 ,y1), the measure γ 2

x1 ,y1 is also optimal. Thus, γ 1 ,2 = ((X1 , X2) , (Y1 , Y2))# γK.
3. We must still prove the marginals of γ 2

x1 ,y1 are µ2
x1 and ν2

y1 , at least almost
everywhere forγ 1. Since the measureγ 1 = γ 1

K is concentrated on the graphy1 = T
1
K (x1),

and µ1 is absolutely continuous, all there is to check is that

[X2]#γ
2
x1 ,T 1

K (x1)
= µ2

x1 and [Y2]#γ
2
x1 ,T 1

K (x1)
= ν2

T 1
K (x1)
,

for almost every x1. As ν 1 is absolutely continuous, T 1
K is a bijection; denoting by S 1

its inverse, the second equality can be replaced with

[Y2]#γ
2
S1 (y1) ,y1

= ν2
y1

which should stand for almost every y1. By symmetry, we thus need to check only
one of the two—for instance, that for almost every x1, for any continuous function
ξ = ξ (x2), ∫

ξ (x2) dγ 2
x1 ,T 1

K (x1)
(x2) =

∫
ξ (x2) dµ2

x1 (x2).

Equivalently, we need only to show that for all η = η(x1) belonging to a proper
countable subset of continuous functions, for all ξ = ξ (x2),"

η(x1)ξ (x2) dγ 2
x1 ,T 1

K (x1)
dµ1 (x1) =

"
η1 (x1)ξ (x2) dµ2

x1 dµ1 (x1).

It is now clear why the conclusion should holds, since"
η(x1)ξ (x2) dγ 2

x1 ,T 1
K (x1)

(x2) dµ1 (x1) =

∫
η(x1)ξ (x2) dγ (x ,y).
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4. We now proceed with the third component. Let γ 1 ,2
t be an optimal transport

plan between (X1 , X2)#µ and (Y1 , Y2)#ν for the cost

c1 ,2
t = |x1 − y1 |

2 + λ1
t |x2 − y2 |

2.

Then, if px1 ,x2 ,y1 ,y2 denotes an optimal plan between µ3
x1 ,x2 and ν3

y1 ,y2 , we de�ne a
transport plan πt ∈ Γ(µ , ν ) by setting∫

ξ (x ,y) dπt (x ,y) =
"

ξ (x ,y) dpx1 ,x2 ,y1 ,y2 (x3 ,y3) dγ 1 ,2
t (x1 , x2 ,y1 ,y2).

Now, ∫
T2
c1 ,2
t dγ 1 ,2

t + λ1
tλ

2
t

∫
T3
|x3 − y3 |

2 dγt (x ,y) ≤
∫
T3
ct dγt ≤

∫
T3
ct dπt ,

and ∫
T3
ct dπt =

∫
T2
c1 ,2
t dγ 1 ,2

t + λ1
tλ

2
t

"
|x3 − y3 |

2 dp (x3 ,y3) dγ̄t

=

∫
T2
c1 ,2
t dγ 1 ,2

t + 2λ1
tλ

2
t

∫
T2

W2 (µ
3
x1 ,x2 , ν

3
y1 ,y2 ) dγ̄t (x1 , x2 ,y1 ,y2).

Thus, ∫
T3
|x3 − y3 |

2 dγt (x ,y) ≤ 2
∫
T2

W2 (µ
3
x1 ,x2 , ν

3
y1 ,y2 )

2 dγ 1 ,2
t (x1 , x2 ,y1 ,y2).

Let us, for an instant, assume∫
|x3 − y3 |

2 dγ (x ,y) ≤ 2
∫

W2 (µ
3
x1 ,x2 , ν

3
y1 ,y2 )

2 dγ 1 ,2 (x ,y). (3.1.6.d)

We then disintegrate γ with respect to γ 1 ,2 = ((X1 , X2), (Y1 , Y2))# γ , so that∫
ξ (x ,y) dγ (x ,y) =

"
ξ (x ,y) dγ 3

x1 ,x2 ,y1 ,y2 (x3 ,y3) dγ 1 ,2 (x1 , x2 ,y1 ,y2).
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Then, assuming γ 3
x1 ,x2 ,y1 ,y2 ∈ Γ(µ

3
x1 ,x2 , ν

3
y1 ,y2 ), for any x1 , x2 ,y1 ,y2,

W2 (µ
3
x1 ,x2 , ν

3
y1 ,y2 )

2 ≤
1
2

∫
|x3 − y3 |

2 dγ 3
x1 ,x2 ,y1 ,y2 (x3 ,y3).

Thus, (3.1.6.d) implies there must be equality for γ 1 ,2-almost every x1 , x2 ,y1 ,y2. This,
in turn, means γ 3 is optimal almost everywhere, and thus γ = γK.

5. We therefore need to prove γ 3
x1 ,x2 ,y1 ,y2 ∈ Γ(µ3

x1 ,x2 , ν
3
y1 ,y2 ). This is done as

previously (see the 3rd step).
6. We must still prove (3.1.6.d). Let ε > 0. Since (x1 , x2) 7→ µ3

x1 ,x2 and (y1 ,y2) 7→

ν3
y1 ,y2 are measurable, according to Lusin’s theorem there is a compact K of T 1 such

that µ1 (K ) > 1 − ε and ν 1 (K ) > 1 − ε , and K × K → P (T 1)

(x1 , x2) 7→ µ3
x1 ,x2

and

 K × K → P (T 1)

(y1 ,y2) 7→ ν3
y1 ,y2

are continuous.

We now extend those two maps into two continuous maps µ̃3 and ν̃3 on T2, such that
µ̃3 = µ3 and ν̃3 = ν3 on K × K . Then,∫

T2
W2 (µ̃

3 , ν̃3)2 dγ 1 ,2
t →

∫
T2

W2 (µ̃
3 , ν̃3)2 dγ 1 ,2.

On the other hand, since W2 is bounded on P (T 1),∣∣∣∣∣∫
T2

W2 (µ̃
3 , ν̃3)2 dγ 1 ,2

t −

∫
T2

W2 (µ
3 , ν3)2 dγ 1 ,2

t

∣∣∣∣∣ ≤ Cγt (T
2 \ K × K )

and

γt (T
2 \ K × K ) ≤ γt

(
{K × T 1

)
+ γt

(
T 1 × {K

)
≤ µ

(
{K

)
+ ν

(
{K

)
≤ 2ε .

For the same reason,∣∣∣∣∣∫
T2

W2 (µ̃
3 , ν̃3)2 dγ 1 ,2 −

∫
T2

W2 (µ
3 , ν3)2 dγ 1 ,2

t

∣∣∣∣∣ ≤ 2Cε
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as well. Thus, ∫
T2

W2 (µ
3 , ν3)2 dγ 1 ,2

t →

∫
T2

W2 (µ
3 , ν3)2 dγ 1 ,2.

7. At last,∫
d(Tt (x ),TK (x ))

2 dµ (x ) =
∫

d(y ,TK (x ))
2 dγt (x ,y)

−→

∫
d(y ,TK (x ))

2 dγK (x ,y) = 0.

and this shows Tt converges to TK in L2. �

3.2 A PDE for positive times

3.2.1. We know from the theorem of Guillaume Carlier, Alfred Galichon, and Filippo
Santambrogio (§3.1.6, on page 72) that there is a link between Knothe’s rearrangement
and Brenier’s map for very degenerate costs. Before investigating this relationship
any further, we will now examine the dependency of the optimal map on the quadratic
cost.

According to proposition 1.4.5 on page 33, given two smooth, positive measures on
Td , for any cost matrixA ∈ S++

d , there is a smooth Kantorovich potential ΨA : Td → R.
What can we say of the regularity about Ψ : A 7→ ΨA? Since the optimal map
x 7→ x − A−1∇ΨA(x ) sends one measure onto the other, we know that a Monge–
Ampère equation is satis�ed: denoting by f and д the densities, we have

f (x ) = д
(
x − A−1∇ΨA(x )

)
det

(
I2 −A

−1∇2ΨA
)
.

Thus, to get any regularity of ΨA with respect to A, the implicit function theorem
seems a good idea. We therefore set

F (A,u) := f − д
(
Id−A−1∇u

)
det

(
I2 −A

−1∇2u
)
,

and intend to show DuF (A,ΨA) is an isomorphism.
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3.2.2. Zero-mean-value functional spaces. Since the potential is uniquely deter-
mined up to an additive constant, it seems more appropriate to work only with maps
with zero mean values. Likewise, F obviously takes it values in a space of zero-mean-
value maps. To be of zero mean value is thus a property we shall meet very often;
there is hence a need for a speci�c notation. Given any functional space X, we will
denote the space formed by the elements of X having a zero mean value with a �
subscript—for instance, C 2

� will be the space of all u ∈ C 2 such that
∫
u = 0.

3.2.3. Lemma. For any A ∈ S++
d , if u ∈ C 2

� (T
d ) is such that A − ∇2u > 0, then

F (u ,A) = 0 if and only if u is the Kantorovich potential between µ and ν for the cost

induced by A.

Proof. This follows from proposition 1.4.5 on page 33 and the characterization given
by lemma 1.4.4 on page 32. �

3.2.4. Lemma. The operator F is smooth. For any A ∈ S++
d , if u ∈ C 2

� (T
d ) is such

that A − ∇2u > 0, and v ∈ C 2
� (T

2), then

DuF (A,u)v = div
(
( f − F (A,u))

[
A − ∇2u

] −1
∇v

)
=

1
detA

div
(
д

(
Id−A−1∇u

) [
Co

(
A − ∇2u

)]∗
∇v

)
.

We denote by M∗ the transposed matrix of M , and by CoM its cofactor matrix—
that is, the matrix formed by the cofactors (�rst minors).

Proof. The smoothness of F is clear. By substitution, for any ξ ∈ C∞,∫
ξ

(
x − A−1∇u (x )

) [
f (x ) − F (A,u) (x )

]
dx =

∫
ξ (y)д(y) dy.

Therefore, if we conveniently set TAu (x ) := x − A−1∇u (x ) and di�erentiate the
previous equation with respect to u along the direction v , we get

−

∫ 〈
∇ξ (TAu)

∣∣∣ A−1∇v
〉
( f − F (A,u)) −

∫
ξ (TAu)DuF (A,u)v = 0.
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Since ∇[ξ ◦TAu] = [∇TAu]∗∇ξ (TAu),〈
∇ξ (TAu)

∣∣∣ A−1∇v
〉
=

〈
∇[ξ ◦TAu]

∣∣∣ [∇TAu]−1A−1∇v
〉

=
〈
∇[ξ ◦TAu]

∣∣∣ [Id −A−1∇2u]−1A−1∇v
〉
,

and this yields∫
ξ (TAu)DuF (A,ψA)v =

∫
ξ (TAu) div

(
( f − F (A,u)) [Id −A−1∇2u]−1A−1∇v

)
.

Therefore, as ξ ◦TAu is arbitrary, we get the �rst equality. Then, the second expression
quickly follows, thanks to the formula M−1 = [CoM]∗/ det(M ). �

3.2.5. Lemma. Let ε > 0 and A ∈ S++
d . If u ∈ C 2

� (T
d ) is such that

A − ∇2u > ε (detA)1/d−1 Id ,

then for any q ∈ [H1
�(T

d )]∗, there is a unique v ∈ H1
�(T

d ) such that

DuF (A,u)v = q. (3.2.5.a)

Moreover, ‖v ‖H1 ≤ Cε ‖q‖ (H1
�)
∗ , and the constant Cε does not depend upon u.

Proof. Since A − ∇2u > ε (detA)1/(d−1) Id , the lowest eigenvalue of Co (A − ∇2u) is
bounded by εd−1 detA. Since д > δ for some δ > 0, for any ξ ∈ C∞ (Td ),

εd−1 detA
∫ ∣∣∣∇ξ ∣∣∣2 ≤ ∫ 〈

[Co (A − ∇2u)]∗∇ξ
∣∣∣ ∇ξ 〉

≤
1
δ

∫
д

(
Id−A−1∇u

) 〈
[Co (A − ∇2u)]∗∇ξ

∣∣∣ ∇ξ 〉,
and thus ∫

|∇ξ |2 ≤ −
1

δεd−1

∫
ξDuF (A,u)ξ . (3.2.5.b)

Therefore, thanks to the existence of a Poincaré inequality for H1
�(T

d ), the map
(ξ ,η) 7→

∫
ηDuF (A,u)ξ induces a coercive, continuous bilinear form on H1

�. We are
thus entitled to apply the Lax–Milgram theorem, which yields the existence and the
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uniqueness, for every q ∈ (H1
�)
∗, of a v ∈ H1

� satisfying (3.2.5.a). Moreover, (3.2.5.b)
immediately gives us ‖v ‖H1 ≤ 1

δεd−1 ‖q‖ (H1
�)
∗ . �

3.2.6. Lemma. With the same assumptions and notations as in lemma 3.2.5, for any

n ≥ 1, if u ∈ C n+2
� and q ∈ Hn−1

� satisfy ‖u‖C 3 + ‖q‖ (H1
�)
∗ ≤ M , then v ∈ Hn+1

� , and

‖v ‖Hn+1 ≤ Cε ,M ,n
{
‖q‖Hn−1 + ‖u‖C n+2

}
. (3.2.6.a)

Proof. We proceed by induction. Let n ≥ 1, u ∈ C n+2
� , and q ∈ Hn

� such that

A − ∇2u > ε (detA)1/(d−1) Id and ‖u‖C 3 + ‖q‖ (H1
�)
∗ ≤ M .

Let us assume we already know the solution v is in Hn
� , and that

‖v ‖Hn ≤ Cε ,M ,n−1
{
‖q‖Hn−2 + ‖u‖C n+1

}
. (3.2.6.b)

(We do have such an inequality for n = 1, according to the previous lemma, but with
‖q‖ (H1

�)
∗ instead of ‖q‖H−1 .) Let us now show it implies v ∈ Hn+1

� and

‖v ‖Hn+1 ≤ Cε ,M ,n
{
‖q‖Hn−1 + ‖u‖C n+2

}
.

First, we set BAu := ( f − F (A,u))[A − ∇2u]−1, so that (3.2.5.a) now reads

DuF (A,u)v = div(BAu∇v ) = q. (3.2.6.c)

Next, for h ∈ Rd and ξ ∈ H1, we de�ne

τhξ (x ) := ξ (x + h) and δhξ (x ) :=
ξ (x + h) − ξ (x )

h
.

Then, δh (ηξ ) = ηδhξ + (δhη)τhξ , and ‖δhξ ‖L2 ≤ ‖ξ ‖H1 .
Let ν ∈ Nd be a d-index, with |ν | := ν1 + · · · + νd = n − 1, and assume h ∈ Rd is

small enough. We can apply the operator δh to (3.2.6.c), and thus obtain

div(BAu∇δhv ) = δhq − div [(δhBAu)∇τhv]
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Then, by applying ∂ν = ∂ |ν |/∂x ν1
1 · · · ∂x

νd
d , we get

div(BAu∇δh∂νv ) = δh∂νq −
∑

0≤α ≤ν

(
ν

α

)
div [(δh∂ν−αBAu) ∇τh∂αv]

−
∑

0≤α<ν

(
ν

α

)
div [(∂ν−αBAu) ∇δh∂αv] . (3.2.6.d)

According to lemma 3.2.5 on page 79, this implies

‖δh∂νv ‖H1 ≤ Cε ‖δh∂νq‖ (H1
�)
∗

+Cε
∑

0≤α ≤ν

(
ν

α

)
‖div [(δh∂ν−αBAu) ∇τh∂αv]‖ (H1

�)
∗

+Cε
∑

0≤α<ν

(
ν

α

)
‖div [(∂ν−αBAu) ∇δh∂αv]‖ (H1

�)
∗ .

Since ‖δh∂νq‖(H1
�)
∗ ≤ ‖∂νq‖L2 , this bound is uniform in h. Therefore, v ∈ Hn+1 and

‖v ‖Hn+1 ≤ C

‖q‖Hn−1 +
∑

0≤k≤n−1
(1 + ‖u‖C n−k+2 )‖v ‖Hk+1

 . (3.2.6.e)

When n > 1, the following inequalities hold:

‖u‖C n−k+2 ≤ Ck ,n‖u‖
1− k

n−1
C 3 ‖u‖

k
n−1
C n+2 ,

‖v ‖Hk+1 ≤ Ck ,n‖v ‖
k
n−1
H1 ‖v ‖

1− k
n−1

Hn .

These are Landau–Kolmogorov inequalities; we have already met them in lemma 2.4.5
on page 53. They can be easily proved by induction from

‖ξ ‖C 1 ≤
√

2‖ξ ‖C 0 ‖ξ ‖C 2 and ‖ξ ‖H1 ≤
√
‖ξ ‖L2 ‖ξ ‖H2 ,

for ξ smooth enough satisfying
∫
ξ = 0. Still, since a1−tb t ≤ (1 − t )a + tb, we get

‖u‖C n−k+2 ‖v ‖Hk+1 ≤
k

n − 1
‖u‖C 3 ‖v ‖Hn +

(
1 −

k

n − 1

)
‖u‖C n+2 ‖v ‖H1 ,

81



Chapter 3. From Knothe’s rearrangement to Brenier’s map

and therefore

‖v ‖Hn+1 ≤ C

{
‖q‖Hn−1 +

(
1 + ‖u‖C 3

)
‖v ‖Hn + ‖u‖C n+2 ‖v ‖H1

}
.

This last inequality also holds when n = 1, thanks to (3.2.6.e). As ‖v ‖H1 ≤ Cε ‖q‖H−1

and ‖u‖C 3 + ‖q‖H−1 ≤ M , using our assumption (3.2.6.b) we get

‖v ‖Hn+1 ≤ Cε ,M ,n
{
‖q‖Hn−1 + ‖u‖C n+2

}
. �

3.2.7. Lemma. Let α ∈ (0, 1). For any u ∈ C n+2 ,α
with A − ∇2u > 0, and any

q ∈ C n ,α
� (Td ), there is a unique v ∈ C n+2 ,α

� (Td ) such that

DuF (A,u)v = q.

Proof. If q ∈ C n ,α
� , then q ∈ Hn

� , and thus according to lemma 3.2.6 on page 80,
there is v ∈ Hn+2

� such that DuF (A,u)v = q in [H1
�]∗. But since

∫
q = 0, such an

equality in fact holds in H−1. Thus, locally, in a weak sense, DuF (A,u)v = q. Then,
since u ∈ C n+2 ,α , the coe�cients of the operator DuF (A,u) are C 0 ,α ; this implies
v ∈ C n+2 ,α (see for instance the monograph by David Gilbarg and Neil S. Trudinger
[31, Theorem 6.13 and 6.17 and 8.22]). �

3.2.8. Theorem. For any A ∈ S++
d , let ΨA be the Kantorovich potential between the

probability measures µ and ν , which are assumed to have smooth, strictly positive

densities. Then, for any n ≥ 0 and α ∈ (0, 1), the map

Ψ :

 S++
d −→ C n+2 ,α (Td )

A 7−→ ΨA
is C 1.

Proof. Let us denote by Ω be the set of all (A,u) ∈ S++
d × C n+2 ,α

� (Td ) such that
A − ∇2u > 0. Then Ω is open, the operator F : Ω → C n ,α

� (Td ), de�ned by

F (A,u) := f − д
(
Id−A−1∇u

)
det

(
I2 −A

−1∇2u
)
,
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is smooth and, according to lemma 3.2.7 on the preceding page,

DuF (A,ψA) : C n+2 ,α
� (Td ) → C n ,α

� (Td )

is a bijection. From the Banach–Schauder theorem, we infer it is an isomorphism.
Since F (A,ΨA) = 0, according to the implicit function theorem, there is a C 1 map
Φ such that, for any (u , B) ∈ U , we can have F (B,u) = 0 if and only if u = ΦB .
According to lemma 3.2.3 on page 78, necessarily then ΦB = ΨB . Thus, Ψ = Φ is a C 1

map S++
d → C n+2 ,α

� (Td ). �

3.2.9. We are now going to apply this result to a cost ct de�ned by

ct (x ,y) :=
1
2

d(x1 ,y1)
2 +

λ1
t

2
d(x2 ,y2)

2 + · · · +
λ1
t · · · λ

d−1
t

2
d(xd ,yd )2 ,

that is, a cost induced by the diagonal matrix At := diag(1, λ1
t , λ

1
tλ

2
t , . . . ,

∏
λit ). We

assume λ1 , . . . , λd−1 : R→ [0, +∞) are smooth, with λkt = 0 if and only if t = 0.
For now, we are only interested in positive times. The behavior when t = 0 will

be studied in the next section.

3.2.10. Proposition. The mapψ : t 7→ ΨAt is C 1
on (0, +∞), and satis�es:

div
{
f

[
At − ∇

2ψt
] −1 (
∇ψ̇t − ȦtA

−1
t ∇ψt

)}
= 0. (3.2.10.a)

Moreover, if u : (0, +∞) → C n+2 ,α (Td ) is C 1
and satis�es

At − ∇
2u > 0 and div

{
f

[
At − ∇

2ut
] −1 (
∇u̇t − ȦtA

−1
t ∇ut

)}
= 0 (3.2.10.b)

for all t ∈ (0, +∞), and ut0 = ψt0 for some t0 > 0, then ut = ψt for any t > 0.

Proof. Ifψt := ΨAt , then F (At ,ψt ) = 0 for all t > 0. If we di�erentiate with respect
to t , we get

DuF (At ,ψt )ψ̇t + DAF (At ,ψt )Ȧt = 0.
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On the one hand, it follows from lemma 3.2.4 on page 78 that

DuF (At ,ψt )ψ̇t = div
(
f

[
At − ∇

2ψt
] −1
∇ψ̇t

)
.

On the other hand, a direct computation yields

DAF (At ,ψt )Ȧt = − div
(
f

[
At − ∇

2ψt
] −1

ȦtA
−1∇ψt

)
.

We thus get (3.2.10.a).
Conversely, if u : (0, +∞) → C n+2 ,α (Td ) is C 1 and satis�es (3.2.10.b), with ut0 =

ψt0 for some t0 > 0, then F (At ,ut ) must be constant and equal to F (At0 ,ut0 ) = 0.
Thus, according to lemma 3.2.3 on page 78, ut = ΨAt for all times. �

3.3 Initial condition in two dimensions

3.3.1. Due to the very technical nature of the proofs in this section we will only deal
with the dimension 2. Then, in section 3.4, we shall explain what changes in higher
dimensions.

3.3.2. Let λ : R→ [0, +∞) be a smooth function such that λt = 0 if and only if t = 0.
From now on, we will only consider the cost induced by

At :=
 1 0

0 λt

 ,
which is

ct (x ,y) :=
1
2

d(x1 ,y1)
2 +

λt
2

d(x2 ,y2)
2.

For t nonzero, letψt be the associated Kantorovich potential between the probability
measures µ and ν . We assume they have the same properties as before—that is, they
are absolutely continuous with strictly positive, smooth densities. Let Tt be the
corresponding optimal transport map. Then, according to proposition 3.2.10 on the
preceding page, t 7→ ψt and t 7→ Tt are C 1 on R \ {0}. Moreover, we know from the
theorem of Guillaume Carlier, Alfred Galichon, and Filippo Santambrogio (page 72),
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that, as t tends to zero, the mapTt converges to the Knothe–Rosenblatt rearrangement
R in L2 (µ ).

3.3.3. Potentials for Knothe’s map. By construction, the Knothe–Rosenblatt rear-
rangement can be written as TK (x1 , x2) = (T 1

K (x1),T
2
K (x1 , x2)), where x1 7→ T 1

K (x1) is
the optimal map between µ1 and ν 1, and x2 7→ T 2

K (x1 , x2) is the optimal map between
µ2
x1 and ν2

T 1
K (x1)

. Recall {µ1 , µ2} and {ν 1 , ν2} are the disintegrations of, respectively, µ
and ν (de�nition 3.1.2 on page 70). Thus, there must exist Kantorovich potentials
x1 7→ ϕ1 (x1) and x2 7→ ϕ2 (x1 , x2) such that

T 1
K (x1) = x1 − ∂1ϕ

1 (x1),

T 2
K (x1 , x2) = x2 − ∂2ϕ

2 (x1 , x2).

Those potentials are normalized so that
∫
ϕ1 (x1) dx1 = 0, and

∫
ϕ2 (x1 , x2) dx2 = 0 for

almost all x1.

3.3.4. As t tends to zero, the optimal mapTt = Id−(∂1ψt , ∂2ψt/λt ) converges toward
TK = Id−(∂1ϕ

1 , ∂2ϕ
2). A �rst-order expansion might therefore be ∂2ψt ∼ λt∂2ϕ

2.
Since ϕ1 does not depend on x2, we could simply haveψt ∼ ϕ

1 + λtϕ2. This leads us
to a priori write:

ψt (x1 , x2) = ψ 1
t (x1) + λtψ 2

t (x1 , x2),

with

ψ 1
t (x1) :=

∫
ψt (x1 , x2) dx2 and ψ 2

t (x ) :=
1
λt

(
ψt (x ) −ψ

1
t (x1)

)
.

Thus, ∫
ψ 1
t (x1) dx1 = 0 and

∫
ψ 2
t (x1 , x2) dx2 = 0.

Such a decomposition allows us to extend our analysis up to t = 0.

3.3.5. Notations. Let us denote by E the set of all (t ,u1 ,u2) ∈ R×C∞ (T 1) ×C∞ (T2)

such that ∫
u1 (x1) dx1 = 0 and

∫
u2 (x1 , x2) dx2 = 0,
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and by Ω the open subset of E formed by the tuples (t ,u1 ,u2) such that:
• either t , 0, and then At − ∇

2 (u1 + λtu2) > 0;
• or t = 0, and then 1 − ∂1 ,1u

1 > 0 and 1 − ∂2 ,2u
2 > 0.

Next, we de�ne an operator G : Ω → C∞ (T2). When t is nonzero,

G (t ,u1 ,u2) := F (At ,u
1 + λtu2), (3.3.5.a)

where F is the operator introduced in section 3.2:

F (A,u) = f − д
(
Id−A−1∇u

)
det

(
I2 −A

−1∇2u
)
.

We then extend G to include the case t = 0; indeed, notice

A−1∇(u1 + λtu2) =

 ∂1u
1 + λt∂1u

2

∂2u
2


and A−1∇2 (u1 + λtu2) =

 ∂1 ,1u
1 + λt∂1 ,1u

2 λt∂1 ,2u
2

∂1 ,2u
2 ∂2 ,2u

2

 .
If we use the shorthand ∂u := (∂1u

1 , ∂2u
2), then TK = Id−∂ϕ, and

G (0,u1 ,u2) = f − д (Id−∂u) det (I2 −D∂u) . (3.3.5.b)

Thus, we can just takeψ 1
0 := ϕ1 andψ 2

0 := ϕ2.

3.3.6. Lemma. For any (t ,u1 ,u2) ∈ Ω, we have G (t ,u1 ,u2) = 0 if and only if u1 = ψ 1
t

and u2 = ψ 2
t .

Proof. As u1 ,u2 are uniquely determined by the values of ut := u1 + λtu2, thanks to
the formulae

u1 (x1) :=
∫

ut (x1 , x2) dx2 and u2 (x ) :=
1
λt

(
ut (x ) − u

1 (x1)
)
,

the lemma follows directly from lemma 3.2.3 on page 78. �
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3.3.7. Alas, the continuity method here seems to fail us: we cannot do the same
as in the previous section and apply the implicit function theorem, for if we solve
DuG (0,ψ 1

0 ,ψ
2
0 ) (v

1 ,v2) = q, then a priori the solutionv2 is not smooth enough. Indeed,
as we will see later, if q ∈ Hn , then v1 ∈ Hn+2, but we can only get v2 ∈ Hn . We can,
however, bypass this di�culty by considering C∞ functions, so as to have an in�nite
source of smoothness, and use the Nash–Moser implicit function theorem (§2.1.9, on
page 48) instead of the usual implicit function theorem.

3.3.8. We need only to use this theorem in a neighborhood of (0,ψ 1
0 ,ψ

2
0 ) ∈ Ω. Let us

de�ne this neighborhood, which we denote by Ω0, in the following way: �rst, take
ε > 0 such that 1 − ∂1 ,1ψ

1
0 > ε and 1 − ∂2 ,2ψ

2
0 > ε ; then, de�ne Ω0 as the set of all

(t ,u1
t ,u

2
t ) ∈ Ω such that:

if t = 0, then

 1 − ∂1 ,1u
1 > ε

1 − ∂2 ,2u
2 > ε ,

(3.3.8.a)

if t , 0, then

 1 − ∂1 ,1u
1 − λt∂1 ,1u

2 > ε

At − ∇
2 (u1 + λtu2) > ελ1/2

t I2 .
(3.3.8.b)

3.3.9. Zero mean value w.r.t. the 2nd variable. Recall that we denote with a �
subscript the sets of maps with zero mean value: C∞� is thus the set formed by the
smooth functions u such that

∫
u = 0. When dealing with a space of functions with

two variables, we also denote by a “∗, �” subscript, as in C∞∗ ,�(T
2) the set formed by

the ξ such that
∫
ξ (·, x2) dx2 = 0.

3.3.10. Theorem. For all (t ,u1 ,u2) ∈ Ω0, for any q ∈ C∞� (T2), there is a unique

(v1 ,v2) ∈ C∞� (T 1) × C∞∗ ,�(T
2) such that

DuG (t ,u
1 ,u2) (v1 ,v2) = q, (3.3.10.a)

Moreover, the inverse operator

S :

 Ω0 × C∞� (T2) → C∞� (T 1) × C∞∗ ,�(T
2)(

(t ,u1 ,u2),q
)
7→ (v1 ,v2)

is smooth tame.
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See de�nition 2.1.7 on page 47 for the precise de�nition of a smooth tame map.

Proof. We report the proof of the existence of (v1 ,v2) and of the following “tame”
estimate

‖v1‖Hn+2 + ‖∂2v
2‖Hn ≤ Cn

(
‖u1‖C n+3 + ‖u2‖C n+3 + ‖q‖Hn

)
,

to the next two subsections. Let us conclude from that point on. Then, all that remains
to show is that S is continuous, and that al the derivatives DkS are tame.

First, if (tk ,u1
k ,u

2
k ,qk ) ∈ Ω0 converges toward (t ,u1 ,u2 ,q) ∈ Ω0, for each k

let (v1
k ,v

2
k ) be the corresponding inverse. Thanks to the tame estimate (which we

have not proved yet), v1
k and v2

k are bounded in all the spaces Hn . Hence, compact
embeddings provide convergence, up to an extraction, to somev1 ,v2 as strongly as we
want, which, as DG is continuous, must be the solution of DG (t ,u1 ,u2) (v1 ,v2) = q.

Then, all the derivative DkS are also tame, since they give the solution to the
same kind of equation as (3.3.10.a). Indeed, by di�erentiating (3.3.10.a), we get

DuG DS = Dq − D (DuG)S. �

3.3.11. Corollary. The map

 R → C∞� (T 1) × C∞∗ ,�(T
2)

t 7→ (ψ 1
t ,ψ

2
t )

is smooth.

Proof. On some interval (−τ , τ ), this is a direct consequence of corollary 2.1.9 on
page 48, theorem 3.3.10 on the preceding page, and lemma 3.3.6 on page 86. For larger
t , it follows from theorem 3.2.8 on page 82. �

3.3.12. Theorem. The curve formed by the Kantorovich potentials (ψt ) is the only

curve in C 2
� (T

2) de�ned on R such that, for t , 0,

At − ∇
2ψt > 0 and div

(
f

[
At − ∇

2ψt
] −1 (
∇ψ̇t − ȦtA

−1
t ∇ψt

))
= 0, (3.3.12.a)

and that can be decomposed into two smooth curves (ψ 1
t ) and (ψ 2

t ) such that

ψt (x1 , x2) = ψ
1
t (x1) + λtψ 2

t (x1 , x2),

withψ 1
0 andψ

2
0 the Kantorovich potentials for the Knothe rearrangement.
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Proof. Let ut = u1
t + λtu2

t be such a curve, and let us check that ut = ψt . Since u1
0 and

u2
0 are the potentials for the Knothe rearrangement, (0,u1

0 ,u
2
0) ∈ Ω0, so (t ,u1

t ,u
2
t ) is

in Ω0 at least for t small. For t , 0, (3.3.12.a) is equivalent to

DuF (t ,ut )u̇t + DtF (t ,ut ) = 0,

and therefore
DuG (t ,u

1
t ,u

2
t ) (u̇

1
t , u̇

2
t ) + DtG (t ,u

1
t ,u

2
t ) = 0.

By assumption, G (0,u1
0 ,u

2
0) = 0. Integrating in time, we get G (t ,u1

t ,u
2
t ) = 0. There-

fore, according to lemma 3.3.6 on page 86, we have u1
t = ψ

1
t and u2

t = ψ
2
t , i.e. ut = ψt .

For larger t ’s, we apply proposition 3.2.10 on page 83. �

Proof of the invertibility

3.3.13. Let us recall F (A,u) = f − д
(
Id−A−1∇u

)
det

(
I2 −A

−1∇2u
)
, and

G (t ,u1 ,u2) := F (At ,u
1 + λtu2) with At :=

 1 0
0 λt

 . (3.3.13.a)

We want to prove the invertibility of DuG (t ,u
1 ,u2). The �rst lemma (§3.3.14, on the

current page) will consider the case t , 0, the second (§3.3.15, on the following page)
the case t = 0.

3.3.14. Lemma. For any (t ,u1 ,u2) ∈ Ω0 with t , 0, for all q ∈ C∞� (T2), there is a

unique (v1 ,v2) ∈ C∞� (T 1) × C∞∗ ,�(T
2) such that

DuG (t ,u
1 ,u2) (v1 ,v2) = q. (3.3.14.a)

Proof. If we set ut := u1 + λtu2, then lemma 3.2.7 on page 82 tells us that there is a
unique vt ∈ C∞� (T2) such that

div
((
f − G (t ,u1 ,u2)

) [
I2 −A

−1
t ∇

2ut
] −1

A−1
t ∇vt

)
= q. (3.3.14.b)
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Let us de�ne

v1 (x1) :=
∫

vt (x1 , x2) dx2 and v2 (x1 , x2) :=
1
λt

(
vt (x1 , x2) − v

1 (x1)
)
.

Then, by construction, (v1 ,v2) is the unique pair solving (3.3.14.a). �

3.3.15. Lemma. For any (0,u1 ,u2) ∈ Ω0, for all q ∈ C∞� (T2), there is a unique

(v1 ,v2) ∈ C∞� (T 1) × C∞∗ ,�(T
2) such that

DuG (0,u1 ,u2) (v1 ,v2) = q.

Proof. By substitution, for any ξ ∈ C∞, from (3.3.5.b) we get∫
ξ (x − ∂u (x ))

[
f (x ) − G (0,u1 ,u2) (x )

]
dx =

∫
ξ (y)д(y) dy ,

with ∂u := (∂1u
1 , ∂2u

2). Therefore, if we di�erentiate this with respect to u along the
direction v , we get

−

∫ 〈
∇ξ (Id−∂u)

∣∣∣ ∂v〉 (
f − G (0,u1 ,u2)

)
−

∫
ξ (Id−∂u)DuG (0,u1 ,u2) (v1 ,v2) = 0.

Since ∇[ξ ◦ (Id−∂u)] = [I2 −D∂u]∗∇ξ (Id−∂u), we have

〈
∇ξ (Id−∂u)

∣∣∣ ∂v〉 = 〈
∇[ξ ◦ (Id−∂u)]

∣∣∣ [I2 −D∂u]−1∂v
〉

and this yields

DuG (0,u1 ,u2) (v1 ,v2) = div
((
f − G (0,u1 ,u2)

)
[I2 −D∂u]−1 ∂v

)
.

Notice, then,

(
f − G (0,u1 ,u2)

)
[I2 −D∂u]−1 = д (Id−∂u)

 1 − ∂2 ,2u
2 0

∂1 ,2u
2 1 − ∂1 ,1u

1

 .
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Thus,

DuG (0,u1 ,u2) (v1 ,v2)

= ∂1
[
д (x − ∂u (x ))

(
1 − ∂2 ,2u

2 (x )
)
∂1v

1 (x1)
]

+ ∂2
[
. . . . . . . . .

]
.

Therefore, if DuG (0,u1 ,u2) (v1 ,v2) = q, integrating with respect to x2 yields∫
∂1

[
д (x − ∂u (x ))

(
1 − ∂2 ,2u

2 (x )
)
∂1v

1 (x1)
]

dx2 =

∫
q(x ) dx2 ,

which then brings about

∂1

[{∫
д (x − ∂u (x ))

(
1 − ∂2 ,2u

2 (x )
)

dx2

}
∂1v

1 (x1)

]
=

∫
q(x ) dx2. (3.3.15.a)

As
∫
q(x ) dx = 0, there is a smooth Q : T 1 → R such that ∂1Q (x1) =

∫
q(x1 , x2) dx2,

and it is unique if we require Q (0) = 0. Thus, taking a primitive of (3.3.15.a), we
obtain [∫

д (x − ∂u (x ))
(
1 − ∂2 ,2u

2 (x )
)

dx2

]
︸                                             ︷︷                                             ︸

G (x1)

∂1v
1 (x1) = Q (x1) + c ,

for some c ∈ R. Since G (x1) > 0, we get

∂1v
1 =

Q + c

G
,

and this yields the unique possible value for c , since the integral with respect to x1 of
the right hand side must be zero. Combined with the condition

∫
v1 dx1 = 0, we thus

have completely characterized v1.
Now, let us do the same for v2. We have to solve the equation

∂2
[
д (Id−∂u)

(
1 − ∂1 ,1u

1
)
∂2v

2
]

= q − ∂1
[
д (Id−∂u)

(
1 − ∂2 ,2u

2
)
∂1v

1
]
− ∂2

[
д (Id−∂u) ∂1 ,2u

2∂1v
1
]
,

and this is exactly the same kind of equation as (3.3.15.a). If we �x x1 ∈ T
1, the same

reasoning can be applied , and in this way we get v2 as well. �
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Proof of the tame estimates

3.3.16. We refer to de�nition 2.1.6 on page 47 for a precise de�nition of what a tame
estimate is. Basically, our aim here is to show that, locally on (t ,u1 ,u2) ∈ Ω0 and
q ∈ C∞� (T2), for any n ∈ N, there is a constant Cn > 0 such that, if

DuG (t ,u
1 ,u2) (v1 ,v2) = q (3.3.16.a)

for some (v1 ,v2) ∈ C∞� (T 1) × C∞∗ ,�(T
2), then

‖v1‖Hn+2 + ‖v2‖Hn ≤ Cn
(
1 + |t | + ‖u1‖Hn+3 + ‖u2‖Hn+3 + ‖q‖Hn

)
.

In fact, we will prove something slightly stronger:

‖v1‖Hn+2 + ‖∂2v
2‖Hn ≤ Cn

(
‖u1‖C n+3 + ‖u2‖C n+3 + ‖q‖Hn

)
. (3.3.16.b)

Indeed, as
∫
v2 (x1 , x2) dx2 = 0, a Poincaré inequality implies

‖v2‖Hn ≤ cn‖∂2v
2‖Hn .

Notice also that (3.3.16.b) would by itself yields uniqueness in lemma 3.3.14 on page 89.

3.3.17. We start with the case t , 0. As the bound for ‖v1‖Hn+2 simply follows from
lemma 3.2.6 on page 80 and an integration with respect to x2, we just have to �nd a
bound for ‖∂2v

2‖Hn . Let us begin with ‖∂2v
2‖L2 ; we will then proceed by induction.

3.3.18. Lemma. LetM , ε > 0. There is a constant C , which depends onM and ε , such

that, for any (t ,u1 ,u2) ∈ Ω0 with t , 0 and for all q ∈ C∞� (T2) satisfying

‖q‖L2 + ‖u1‖C 3 + ‖u2‖C 3 ≤ M , (3.3.18.a)

if (v1 ,v2) ∈ C∞� (T 1) × C∞� (T2) is a solution of (3.3.16.a), then

‖∂2v
2‖L2 ≤ C . (3.3.18.b)
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Proof. We set ut := u1
t + λtu

2
t and vt := v1

t + λtv
2
t . Then, DuF (At ,ut )vt = q, and

(3.3.8.b) in the de�nition of Ω0 ensures we an apply lemma 3.2.6 on page 80 and get

‖vt ‖H2 ≤ Cε ,M ,1
{
‖q‖L2 + ‖ut ‖C 3

}
≤ C . (3.3.18.c)

We now set

Bt :=
(
f − G (t ,u1 ,u2)

) [
I2 −A

−1
t ∇

2ut
] −1

A−1
t

=
f − G (t ,u1 ,u2)

det(At − ∇2ut )

[
Co (At − ∇

2ut )
]∗

=
д(Id−A−1

t ∇ut )

detAt

[
Co (At − ∇

2ut )
]∗

so that, according to (3.3.13.a) and lemma 3.2.4 on page 78, (3.3.16.a) becomes

div(Bt∇vt ) = q.

Notice detAt = λt and

Co (At − ∇
2ut ) =

 λt − λt∂2 ,2u
2 λt∂1 ,2u

2
t

λt∂1 ,2u
2
t 1 − ∂1 ,1u

1
t

 .
Therefore, we can write

Bt = Ut +Vt/λt (3.3.18.d)

with Ut := д(Id−A−1
t ∇ut )

 1 − ∂2 ,2u
2 ∂1 ,2u

2

∂1 ,2u
2 0

 , (3.3.18.e)

Vt := д(Id−A−1
t ∇ut )

 0 0
0 1 − ∂1 ,1ut

 . (3.3.18.f)

Thus,
q = div(Bt∇vt ) = div(Ut∇vt ) +

1
λt

div(Vt∇vt ).
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As ∂2v
1 = 0, we have Vt∇v1 = 0. Since vt = v1 + λtv2, we get

div(Ut∇vt ) + div(Vt∇v2) = q,

that is,

∂2
[
д(Id−A−1

t ∇ut ) (1 − ∂1 ,1ut )∂2v
2
]
= q − div(Ut∇vt ). (3.3.18.g)

Since д > δ for some δ , and as (3.3.8.b) in the de�nition of Ω0 means 1 − ∂1 ,1ut > ε ,
allowing the constant C to change from line to line we get

‖∂2v
2‖2L2 ≤

C

δε

∫
д(Id−A−1∇ut ) (1 − ∂1 ,1ut ) |∂2v

2 |2

≤ C

∫ [
q − div(Ut∇vt )

]
v2

≤ C (‖q‖L2 + ‖Ut∇vt ‖H1 ) ‖v2‖L2 .

However,
∫
v2 (x1 , x2) dx2 = 0 implies ‖v2‖L2 ≤ C‖∂2v

2‖L2 . Therefore,

‖∂2v
2‖L2 ‖v2‖L2 ≤ C‖∂2v

2‖2L2 ≤ C (‖q‖L2 + ‖Ut∇vt ‖H1 ) ‖v2‖L2 .

Thus, since ‖Ut ‖C 1 ≤ C (1 + ‖u1‖C 3 + ‖u2‖C 3 ) ≤ C follows from (3.3.18.e), we obtain

‖∂2v
2‖L2 ≤ C

{
‖q‖L2 + ‖vt ‖H2

}
.

Then, using (3.3.18.c), we get the result. �

3.3.19. Lemma. Under the same assumptions as in the previous lemma, for any n ∈ N,

there is a constant Cn = Cn (M , ε ) such that

‖∂2v
2‖Hn ≤ Cn

(
‖q‖Hn + ‖u1‖C n+3 + ‖u2‖C n+3

)
. (3.3.19.a)

Proof. Let us assume (3.3.19.a) has been proved for some n ∈ N, and let us show it
holds even for n + 1. Let ν ∈ N2 be such that |ν | := ν1 + ν2 = n + 1. Recall (3.3.18.g):

∂2
[
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )∂2v

2
]
= q − div(Ut∇vt ).
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We already know from lemma 3.2.7 on page 82 thatvt = v1 +λtv2 is smooth, therefore,
if we apply ∂ν = ∂ |ν |/∂x ν1

1 · · · ∂x
νd
d , we get

∂2
[
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )∂2∂νv

2
]

= −
∑

0≤α<ν

(
ν

α

)
∂2

[
∂ν−α

{
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )

}
∂2∂αv

2
]

+ ∂νq − ∂ν div(Ut∇vt ).

On the other hand, since д > δ and 1 − ∂1 ,1ut > ε , we have

‖∂2∂νv
2‖2L2 ≤

1
δε

∫
д(Id−A−1∇ut ) (1 − ∂1 ,1ut ) |∂2∂νv

2 |2

≤ −
1
δε

∫
∂2

[
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )∂2∂νv

2
]
∂νv

2.

Thus,

‖∂2∂νv
2‖2L2

≤
∑

0≤α<ν

(
ν

α

) ∫ [
∂ν−α

{
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )

}
∂2∂αv

2
]
∂2∂νv

2

−
1
δε

∫ [
∂νq − ∂ν div(Ut∇vt )

]
∂νv

2 ,

and therefore

‖∂2∂νv
2‖2L2

≤
∑

0≤α<ν
C

∥∥∥∥∂ν−α {
д(Id−A−1∇ut ) (1 − ∂1 ,1ut )

}
∂2∂αv

2
∥∥∥∥L2

∥∥∥∂2∂νv
2
∥∥∥L2

+C
∥∥∥∂νq − ∂ν div(Ut∇vt )

∥∥∥L2

∥∥∥∂νv2
∥∥∥L2 .

As ‖∂νv2‖L2 ≤ c‖∂2∂νv
2‖L2 , we get

‖∂2∂νv
2‖L2 ≤ C

∑
0≤k≤n

∥∥∥д(Id−A−1∇ut ) (1 − ∂1 ,1ut )
∥∥∥
C n+1−k

∥∥∥∂2v
2
∥∥∥Hk

+C
{
‖q‖Hn+1 + ‖Ut∇vt ‖Hn+2

}
. (3.3.19.b)
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On the one hand, we can use the same Landau–Kolmogorov inequalities as in the
proof of Lemma 3.2.6, and a1−tb t ≤ (1 − t )a + tb, to get, for 0 ≤ k ≤ n, the following
bound:

∥∥∥д(Id−A−1∇ut ) (1 − ∂1 ,1ut )
∥∥∥
C n+1−k

∥∥∥∂2v
2
∥∥∥Hk

≤ cn
(∥∥∥д(Id−A−1∇ut ) (1 − ∂1 ,1ut )

∥∥∥
C n+1

∥∥∥∂2v
2
∥∥∥L2

+
∥∥∥д(Id−A−1∇ut ) (1 − ∂1 ,1ut )

∥∥∥
C 1

∥∥∥∂2v
2
∥∥∥Hn

)
.

Recall we have assumed (3.3.19.a) holds true for n; therefore, using (3.3.18.a), we get

∥∥∥д(Id−A−1∇ut ) (1 − ∂1 ,1ut )
∥∥∥
C n+1−k

∥∥∥∂2v
2
∥∥∥Hk

≤ cn
(
1 + ‖q‖Hn + ‖u1‖C n+3 + ‖u2‖C n+3

)
. (3.3.19.c)

On the other hand,

‖Ut∇vt ‖Hn+2 = ‖Dn+1 (Ut∇vt )‖H1

≤ C {‖Ut ‖C n+2 ‖∇vt ‖H1 + ‖Ut ‖C 1 ‖∇vt ‖Hn+2 } ,

which, since ‖u1‖C 3 + ‖u2‖C 3 ≤ M , implies

‖Ut∇vt ‖Hn+2 ≤ C
{(

1 + ‖u1‖C n+4 + ‖u2‖C n+4

)
‖vt ‖H2 + ‖vt ‖Hn+2

}
.

Then, using Lemma 3.2.6 we get

‖Ut∇vt ‖Hn+2 ≤ cn
(
‖q‖Hn + ‖u1‖C n+4 + ‖u2‖C n+4

)
. (3.3.19.d)

Bringing together (3.3.19.b), (3.3.19.c), and (3.3.19.d), we get the estimate we seek. �

3.3.20. Lemma. The result of lemma 3.3.19 on page 94 still stands when t = 0, with
the same constants.

Proof. Let (0,u1 ,u2) ∈ Ω0 and q ∈ C∞� (T2) such that

‖q‖L2 + ‖u1‖C 3 + ‖u2‖C 3 ≤ M , (3.3.20.a)
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Then, since (s ,u1 ,u2) ∈ Ω0 for s small enough, we can proceed by approximation.
Indeed, if (v1

s ,v
2
s ) is the solution to DuG (s ,u

1 ,u2) (v1
s ,v

2
s ) = q, where u1 ,u2 ,q have

been all �xed, then all the Hn norms of v1
s ,v

2
s are bounded according to lemma 3.3.19

on page 94. Up to an extraction, there is convergence, which by compact embedding
is as strong as we want. But the convergence can only be toward the solution of
DuG (0,u1 ,u2) (v1 ,v2) = q, hence estimate (3.3.19.a) is still valid for the limit. �

3.4 Higher dimensions

3.4.1. The di�culty in extending those results in higher dimension only comes
from the technical nature of section 3.3. We need a decomposition, not only of the
potential, but also of the matrix �eld B, extending (3.3.18.d). The existence of such a
decomposition is the only additional di�culty.

Se�ing and notations

3.4.2. Cost matrix. We consider d − 1 smooth maps λ1 , . . . , λd−1 : R → [0, +∞)

such that λkt = 0 if and only if t = 0. We then de�ne

At :=



1
λ1
t

λ1
tλ

2
t
. . . ∏

i<d

λit


.

3.4.3. New decomposition of the potential. In that setting, the decomposition of
the Kantorovich potentialψt becomes

ψt (x1 , . . . , xd ) = ψ 1
t (x1) + λ1

tψ
2
t (x1 , x2) + . . . +

∏
i<d

λit

ψ d
t (x1 , . . . , xN ).
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whereψ k
t depends only on the k �rst variables x1 , . . . , xk , and is such that

∀x1 , . . . , xk−1 ,

∫
ψ k
t (x1 , . . . , xk−1 ,yk ) dyk = 0.

For convenience, we set

ψ̂ k := ψ k + λkψ k+1 + . . . +
 ∏
k≤i<d

λi
ψ d ,

so that we may have

ψ̂ 1 := ψ , ψ̂ k = ψ k + λkψ̂ k+1 , ψ̂ d = ψ d ,

and

∀x1 , . . . , xk−1 ,

(
ψ̂ k
t (x1 , . . . , xk−1 ,yk , . . . ,yd ) dyk . . . dyd = 0.

For instance, if d = 3,

ψ = ψ 1 + λ1ψ 2 + λ1λ2ψ 3 and


ψ̂ 1 = ψ 1 + λ1ψ 2 + λ1λ2ψ 3

ψ̂ 2 = ψ 2 + λ2ψ 3

ψ̂ 3 = ψ 3.

3.4.4. Domain. We denote by E the set of all (t ,u1 , . . . ,ud ) ∈ R ×
∏

C∞ (T k ) such
that

∀k ∈ {1, . . . ,d },
∫

uk dxk = 0.

Then, if (t ,u1 , . . . ,ud ) ∈ E, we set

ûd := ud , ûk := uk + λkûk+1 , u := û1.
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This is consistent with the previous notation. Notice

∇u =



∂1û
1

λ1∂2û2

λ1λ2∂3û
3

...∏
λk∂dû

d


and A−1∇u = ∂û =



∂1û
1

∂2û
2

∂3û
3

...

∂dû
d


,

and thus,

A−1∇2u = D∂û =


∂1 ,2û

1 0 · · · 0

∂1 ,2û
2 ∂2 ,2û

2 . . .
...

...
...

. . . 0
∂1 ,dû

d ∂2 ,dû
d · · · ∂d ,dû

d


. (3.4.4.a)

We de�ne Ω as the open subset of E formed by the (t ,u) such that:
• either t , 0, and then At − ∇

2u > 0;
• or t = 0, and then 1 − ∂k ,kuk > 0 for all k .

As previously, we need only to work on a neighborhood Ω0 of the tuple (0,u1
0 ,u

2
0),

with u1
0 and u2

0 the Kantorovich potentials for the Knothe–Rosenblatt rearrangement.
This neighborhood will be de�ned later on.

Invertibility

3.4.5. We want to solve, for (0,u) ∈ Ω0, the equation DuG (0,u)v = q. For t > 0,

DuG (t ,u)v = div
(
( f − G (t ,u))

[
Id −A−1∇2u

] −1
A−1∇v

)
.

Replacing A−1∇2u and A−1∇v with D∂û and ∂v̂ , we get

DuG (t ,u)v = div
(
( f − G (t ,u)) [Id −D∂û]−1 ∂v̂

)
.

When t = 0, we have ûk = uk and ∂û = ∂u, so this becomes

q = DuG (0,u)v = div
(
( f − G (0,u)) [Id −D∂u]−1 ∂v

)
.
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The trick is to integrate with respect to xk+1 , . . . , xd to get an equation on v1 , . . . ,vk .
If v1 , . . . ,vk−1 have already been found, [Id −D∂u]−1 being lower triangular thanks
to (3.4.4.a), the resulting equation on vk is of the same kind as the one we have dealt
with in lemma 3.3.15 on page 90. The same reasoning can thus be applied.

Tame estimate

3.4.6. As in the two-dimensional case, we need only to �nd a tame estimate when t

is nonzero for the solution (v1 , . . . ,vd ) of

q = div(B∇v ) with B :=
д(Id−A−1∇u)

detA
[
Co (A − ∇2u)

]∗
.

First, by integrating with respect to xd , we obtain the same problem as in dimension
d − 1. Therefore, we can proceed by induction on d .

So let us assume we already have a tame estimate for v1 , . . . ,vd−1. To get an
estimate for vd = v̂d , we will �nd one for each v̂k , this time by induction on k . Since
v̂1 = v satis�es a nice strictly elliptic equation, and thus comes with a tame estimate,
we need only to show how to get one for v̂k if we have one for v̂1 , . . . , v̂k−1.

3.4.7. The key lies in the following decomposition of the matrix B: for any k ,

B = B1 +
1
λ1B

2 +
1

λ1λ2B
3 + . . . +

1
λ1 · · · λk−2B

k−1 +
1

λ1 · · · λk−1 B̂
k ,

where the coe�cients (b iα ,β ) of Bi are zero except when min(α , β ) = i , and where
the coe�cients (b̂kα ,β ) of B̂k are zero except for min(α , β ) ≥ k :

Bi =


b ii ,i · · · b ii ,d
...

b id ,i


, B̂k =


b̂kk ,k · · · b̂kk ,d
...

. . .
...

b̂kd ,k · · · b̂kd ,d


.

The point is that all the coe�cients b iα ,β , b̂
k
α ,β can be bounded in C n by the norms of

the u i in C n+2 uniformly in t , at least for small t .
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3.4.8. Let us assume such a decomposition exists; then,

div(B∇v ) =
∑
i<k

1
λ1 · · · λi−1 div(Bi∇v )

 +
1

λ1 · · · λk−1 div(B̂k∇v ),

and thus, since

v = v1 + λ1v2 + . . . + λ1 · · · λk−2v
k−1 + λ1 · · · λk−1v̂k ,

with ∂iv j = 0 if i > j and as that implies ∂iv = λ1 · · · λi−1∂iv̂
i , we have

div(B∇v ) =
∑
i<k

div(Bi∇v̂ i )

 + div(B̂k∇v̂k ). (3.4.8.a)

On the one hand, the matrix B̂k is symmetric and non-negative, and we can chose
the neighborhood Ω0 so that to ensure

∀ ξ ∈ Rd , ε

∑
i≥k

|ξi |
2

 ≤ 〈B̂kξ |ξ 〉.

On the other hand, since

∀x1 , . . . , xk−1 ,

∫
· · ·

∫
v̂k (x1 , . . . , xd ) dxk . . . dxd = 0,

we have a Poincaré inequality:∥∥∥v̂k∥∥∥2
L2 ≤ C

∑
i≥k

∥∥∥∂iv̂k∥∥∥2
L2 .

Therefore, ∥∥∥v̂k∥∥∥2
L2 ≤

C

ε

∫
〈B̂k∇v̂k |∇v̂k〉 ≤

C

ε

∥∥∥div(B̂k∇v̂k )
∥∥∥L2

∥∥∥v̂k∥∥∥L2 ,

and this shows how we can deduce a L2 estimate for v̂k from (3.4.8.a) and a series of
estimates for v̂ i , for i < k . Estimates for the norms Hn , n > 0, easily follow, by the
same reasoning as in lemma 3.3.19 on page 94.
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3.4.9. Thus, all we need to do is to prove the existence of the following decomposition:

B = B1 +
1
λ1B

2 +
1

λ1λ2B
3 + . . . +

1
λ1 · · · λd−1B

d ,

with

Bi =


b ii ,i · · · b ii ,d
...

b id ,i


.

Remember
B :=

д(Id−A−1∇u)

detA
[
Co (A − ∇2u)

]∗
,

and detA = λ1
(
λ1λ2

)
· · ·

(
λ1 · · · λd−1

)
. Therefore, all we have to do is to show how

in Co (A − ∇2u) we can gather the λk so as to get the decomposition we seek. Since
∂i , ju = λ

1 · · · λmax (i , j )−1∂i , jû
max (i , j ) ,

[
Co (A − ∇2u)

]
i , j
=

∑
σ ∈Sd
σ (i )=j

ε (σ )
∏

1≤k≤d
k,i

(A − ∇2u)k ,σ (k )

=
∑
σ ∈Sd
σ (i )=j

ε (σ )
∏

1≤k≤d
k,i

λ1 · · · λmax(k ,σ (k ))−1
(
δk ,σ (k ) − ∂k ,σ (k )û

max(k ,σ (k ))
)
.

Thus, for i ≤ j, we set ωα ,β = λα · · · λmax(α ,β )−1
(
δα ,β − ∂α ,βû

max(α ,β )
)
. Then,

[
Co (A − ∇2u)

]
i , j
=

∑
σ ∈Sd
σ (i )=j

ε (σ )
∏

1≤k≤d
k,i

λ1 · · · λk−1ωk ,σ (k )

=
∑
σ ∈Sd
σ (i )=j

ε (σ )

λ1 · · · λi−1

 ∏
1≤k≤d

λ1 · · · λk−1




∏
1≤k≤d
k,i

ωk ,σ (k )


=

detA
λ1 · · · λi−1

∑
σ ∈Sd
σ (i )=j

ε (σ )
∏

1≤k≤d
k,i

ωk ,σ (k ) .

Since we have assumed i ≤ j, this is exactly what we wanted.
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3.5 An open problem

3.5.1. In this chapter, we have studied the behavior of the optimal transport map
when the cost matrix degenerates. But we have done so only for a diagonal cost matrix.
It would, however, be possible to consider more general situations; for instance, we
could take a cost matrix A that is diagonal in another base {u1 , · · · ,ud }.

In dimension two, this other base can be written as

u1 := (cosθ , sinθ ), u2 := (− sinθ , cosθ ).

Then, the following matrix is diagonal in this basis:

Aλ :=
 cosθ − sinθ

sinθ cosθ


 1 0

0 λ


 cosθ sinθ
− sinθ cosθ

 ,
that is,

Aλ =

 (cosθ )2 + λ(sinθ )2 (1 − λ) cosθ sinθ
(1 − λ) cosθ sinθ λ(cosθ )2 + (sinθ )2

 .
Let us assume θ ∈ (−π/2, π/2), and set χ = tanθ . Then,

Aλ = (cosθ )2
 1 + λχ 2 (1 − λ)χ
(1 − λ)χ λ + χ 2

 .
We must then pay 1 for each length unit we travel in the direction u1, and λ in the
direction u2. The associated transport cost is thus

cλ (x ,y) = inf
k∈Z2

1
2
Aλ (x − y − k )

2 = inf
k∈Z2

1
2
〈u1 |x − y − k〉

2 +
λ

2
〈u2 |x − y − k〉

2.

3.5.2. If χ is rational, e.g. χ = p/q, then the situation remains basically the same.
Indeed, considering our two measures as Z2-periodic measures de�ned on R2 and
setting Z =

√
p2 + q2 (Zu1 + Zu2), we can see they are also Z -periodic. Then the

results of this chapter apply verbatim on R2/Z .
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θ
u1u2

Figure 3.a: When χ = tanθ is rational, we can work on a bigger torus.
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3.5.3. But when χ is irrational, then the trajectory Ru2 is dense in T2. As moving
along that direction costs less and less as λ tends to zero, the associated cost tends to
zero as well:

3.5.4. Proposition. If tanθ ∈ R \Q, then cλ (x ,y) → 0 when λ → 0.

Proof. Without loss of generality, we can assume y = 0. Then,

cλ (x , 0) = inf
k∈Z2

1
2

[
〈u1 |x − k〉

2 + λ〈u2 |x − k〉
2
]

= inf
k∈Z2

(cosθ )2

2
[
(x1 + χx2 − k1 − χk2)

2 + λ (x2 − χx1 − k2 + χx1)
2
]
.

Thus, for any ε > 0, we can �nd k1 , k2 such that |x1 + χx2 − k1 − χk2 |
2 ≤ ε , because

Z + χZ is dense in R. Then, taking λ small enough, we get cλ (x , 0) ≤ ε (cosθ )2. �

3.5.5. On the other hand, the associated optimal transport map is bounded in L2. So
what are its limit points? Is there convergence?

One approach could be to study the Γ-convergence2 of the functionals

Fλ :

 Γ(µ , ν ) → [0,∞),

γ 7→
∫
cλ (x ,y) dγ (x ,y).

Sadly, even though there are Γ-limit points—there always are—, to identify one of
them is not trivial at all. The nature of the irrationality of χ seems to be of some
importance, but that makes the problem quite complex.

For more information about Γ-convergence, we refer to Andrea Braides’s book
on the subject [12].

2The Γ in “Γ-convergence” has nothing to do with the set Γ(µ , ν )!
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Numerical computations

4.0.1. When both the source and target measures are discrete, many algorithms
already exist for computing the solution to the optimal transport problem, the most
famous perhaps being the auction algorithm due to Dimitri Bertsekas [9]. This al-
gorithm was also used by Damien Bosc [11] to deal with continuous measures, by
approximation. When only one of the two measures is discrete, Guillaume Carlier, Al-
fred Galichon, and Filippo Santambrogio [19] showed the optimal transport map could
be computed by solving an ode, starting from the Knothe–Rosenblatt rearrangement.
In the general case, Jean-David Benamou and Yann Brenier [7] proposed a method
based on their formula (see theorem 1.6.4 on page 40). Sigurd Angenent, Steven Haker,
and Allen Tannenbaum [4] developed a steepest-descent algorithm, also starting from
the Knothe–Rosenblatt rearrangement. Grégoire Loeper and Francesca Rapetti [40],
on the other hand, were able to compute the solution using Newton’s method, which
is akin to a continuation method.

4.1 A new method

4.1.1. The results exposed in chapter 3 can e�ectively be applied to compute Brenier’s
optimal map. This section intends to show how, at least when the underlying space is
the torus T2 and the target measure is uniform. More general cases should be within
our reach, even though their implementation is a bit more complex.
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4.1.2. As Sigurd Angenent, Steven Haker, and Allen Tannenbaum [4], we start from
the Knothe–Rosenblatt rearrangement TK, which is given by two Kantorovich poten-
tials ϕ1, ϕ2:

TK (x1 , x2) =

 x1 − ∂1ϕ
1 (x1)

x2 − ∂2ϕ
2 (x1 , x2)

 .
Then, as Grégoire Loeper and Francesca Rapetti [40], we use a continuation method:
we �rst set u0 = ϕ

1 and v0 = ϕ
2; we then increase t little by little, and update ut and

vt in such a way that ut + tvt is always the Kantorovich potential for the cost

ct (x ,y) :=
1
2
∣∣∣x1 − y1

∣∣∣2 +
t

2
∣∣∣x2 − y2

∣∣∣2.
Thus, for t = 1 we get the Kantorovich potential for the usual quadratic cost, and at
that point Brenier’s map is just TB := Id−∇(u1 +v1).

In order to update ut and vt , we follow the same method as in chapter 3: we use
the Monge–Ampère equation. Denoting by f the density of the initial measure, for
any t , we should have

f = (1 − ∂2
1 ,1ut − t∂

2
1 ,1vt ) (1 − ∂

2
2 ,2vt ) − t (∂

2
1 ,2vt )

2.

Therefore, the time derivatives u̇t , v̇t are given by the following linearized Monge–
Ampère equation:

(1 − ∂2
2 ,2vt )∂

2
1 ,1u̇t

+ t (1 − ∂2
2 ,2vt )∂

2
1 ,1v̇t + (1 − ∂2

1 ,1ut − t∂
2
1 ,1vt )∂

2
2 ,2v̇t − 2t∂2

1 ,2vt∂
2
1 ,2v̇t

= (∂2
1 ,2vt )

2 − (1 − ∂2
2 ,2vt )∂

2
1 ,1vt . (4.1.2.a)

This equation, with the aforementioned initial condition, can be broken down as
follows:  ∂2

1 ,1u̇t (x1) =
∫
pt (x1 , x2) dx2 ,

div(At∇v̇t ) = qt ,
(4.1.2.b)

with  pt = det(∇2vt ) + t div
( [

Co∇2vt
]∗
∇v̇t

)
,

qt = det(∇2vt ) − (1 − ∂2
2 ,2vt )∂

2
1 ,1u̇t − ∂

2
1 ,1vt ,

(4.1.2.c)
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and

At =

 t (1 − ∂2
2 ,2v ) t∂2

1 ,2v

t∂2
1 ,2v 1 − ∂2

1 ,1u − t∂
2
1 ,1v

 ,
under the conditions∫

ut (x1) dx1 = 0 and
∫

vt (x1 , x2) dx2 = 0. (4.1.2.d)

We therefore have four unknown—that is, ut ,vt , u̇t , v̇t—and four equations, given by
(4.1.2.b) and (4.1.2.d).

4.1.3. Discretization. We proceed with an explicit discretization with respect to
time. Given a time step h > 0 such that 1/h ∈ N, we compute four sequences of maps:
(Un ) and (U̇n ), depending only on the variable x1, and (Vn ) and (V̇n ), depending on x1

and x2. The mapsUn andVn will represent unh and vnh , and U̇n and V̇n will represent
u̇nh and v̇nh , for n ∈ {0, . . . , 1/h}. To that end, we �rst set U0 = ϕ1 ,

V0 = ϕ2 ,
and

 U̇0 = 0,
V̇0 = 0.

The values of U̇0 and V̇0 are, in fact, of no consequence. Then, by induction, given the
values of Un , U̇n ,Vn , V̇n , we solve ∂2

1 ,1U̇ n+1 =
∫
pn dx2

div
(
An∇V̇ n+1

)
= qn

(4.1.3.a)

with  pn = det
(
∇2Vn

)
+ nh div

( [
Co∇2Vn

]∗
∇V̇n

)
,

qn = det
(
∇2Vn

)
− ∂2

1 ,1Vn − (1 − ∂2
2 ,2Vn )

(
∂2

1 ,1
∫
pn dx2

)
,

(4.1.3.b)

and

An =

 nh(1 − ∂2
2 ,2Vn ) nh∂2

1 ,2Vn

nh∂2
1 ,2Vn 1 − ∂2

1 ,1Un − nh∂
2
1 ,1Vn

 ,
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under the conditions∫
U̇n+1 (x1) dx1 = 0 and

∫
V̇n+1 (x1 , x2) dx2 = 0. (4.1.3.c)

The last requirement can be a bit di�cult to enforce numerically. However, the
following lemma allows us to get U̇n+1 and V̇n+1 from any pair (

¯
U̇n+1 , ¯

V̇n+1) solving
(4.1.3.a):

4.1.4. Lemma. Let (
¯
U̇n+1 , ¯

V̇n+1) solve ∂2
1 ,1¯
U̇n+1 =

∫
pn dx2 ,

div
(
An∇¯

V̇n+1
)
= qn ,

(4.1.4.a)

without any further condition. Then, (4.1.3.c) is satis�ed by

U̇n+1 :=
¯
U̇n+1 −

∫
¯
U̇n+1 dx1 + nh

(∫
¯
V̇n+1 dx2 −

"
¯
V̇n+1 dx1 dx2

)
V̇n+1 :=

¯
V̇n+1 −

∫
¯
V̇n+1 dx2.

Proof. We set

¯̄
U̇n+1 :=

¯
U̇n+1 −

∫
¯
U̇n+1 dx1 + nh

(∫
¯
V̇n+1 dx2 −

"
¯
V̇n+1 dx1 dx2

)

¯̄
V̇n+1 :=

¯
V̇n+1 −

∫
¯
V̇n+1 dx2.

Then, if
¯
In+1 :=

∫
¯
V̇n+1 dx2, since (

¯
U̇n+1 , ¯

V̇n+1) is a solution of (4.1.4.a), we have

∂2
1 ,1 ¯̄
U̇n+1 = ∂

2
1 ,1¯
U̇n+1 + nh∂2

1 ,1 ¯
In+1 =

∫
pn dx2 + nh∂2

1 ,1 ¯
In+1 ,

qn = div
(
An∇¯

V̇n+1
)
= div

(
An∇

¯̄
V̇n+1

)
+ div(An∇¯

In+1) .

Notice that, if w is a function of x1 only, then

div(Anw ) = nh(1 − ∂2
2 ,2Vn ) (∂

2
1 ,1w ).

109



Chapter 4. Numerical computations

Therefore,

div
(
An∇U̇ n+1

)
= nh(1 − ∂2

2 ,2Vn )

(
∂2

1 ,1

∫
pn

)
div

(
An∇

¯̄
U̇n+1

)
= nh(1 − ∂2

2 ,2Vn )

(
∂2

1 ,1

∫
pn dx2 + nh∂2

1 ,1̄In+1

)
div

(
An∇

¯̄
V̇n+1

)
= qn − nh(1 − ∂2

2 ,2Vn )
(
∂2

1 ,1̄In+1
)
.

Then, using (4.1.3.b), we get

div
(
An∇

[
¯̄
U̇n+1 + nh

¯̄
V̇n+1

] )
= div

(
An∇

[
U̇ n+1 + nhV̇ n+1

] )
.

Since An is a positive-de�nite, symmetric matrix, and both
¯̄
U̇n+1 + nh

¯̄
V̇n+1 and U̇ n+1 +

nhV̇ n+1 have a zero mean value, they must be equal. Then, it follows from (4.1.3.c)
that

U̇ n+1 =
¯̄
U̇n+1 and V̇ n+1 =

¯̄
V̇n+1. �

4.1.5. Thus, we obtain algorithm 4.a, on the next page. How to compute the potentials
for the Knothe–Rosenblatt rearrangement is not detailed, as it as been explained
elsewhere (see §3.3.3 on page 85).

4.2 Results

4.2.1. FreeFem++. The following results have been obtained with FreeFem++. It is
a free software1 developed at the Jacques-Louis Lions laboratory, in Paris. Its purpose
is to solve partial di�erential equations using the �nite-element method. Roughly,
this method allows to numerically solve an equation

div(A∇u) = q, u ∈ H1
0 (4.2.1.a)

1FreeFem++ is free in the sense that it can be obtained free of charge, but it also means it is open-source
and can be freely shared, studied and modi�ed. It is released under the gnu lesser general public
license.
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Require: f . Source density
Require: N . Number of time iterations
t ← 0
U ,V ← KnothePotentials( f , 1) . Target is the uniform density
dU ,dV ← 0, 0 . This does not really matter
for k from 0 to N − 1 do

p ← det(∇2V ) + t div(
[
Co∇2V

]∗
∇dV )

dU ← Solve(∂2
1 ,1dU =

∫
p dx2) . No control over the result

q ← det(∇2V ) − ∂2
1 ,1V − (1 − ∂2

2 ,2V ) (∂2
1 ,1

∫
p dx2)

A← Matrix([[t (1 − ∂2
2 ,2V ), t∂2

1 ,2V ], [t∂2
1 ,2V , 1 − ∂

2
1 ,1U − t∂

2
1 ,1V ]])

dV ← Solve(div(A∇dV ) = qn ) . No control over the result
dU ← dU −

∫
dU dx1 + t

∫
dV dx2 − t

!
dV dx1 dx2

dV ← dV −
∫
dV dx2

U ← U + dU /N
V ← V + dV /N
t ← t + 1/N

end for

returnU +V

Algorithm 4.a: Computation of the potential for Brenier’s map, TB = Id−∇(U +V )

by looking at its variational formulation

u ∈ arg min
v∈H1

0

{
1
2

∫
〈A∇v |∇v〉 −

∫
qv

}
.

(If we work on the torus, there is a priori no boundary condition.) The set H1
0 is then

replaced with a �nite-dimensional subspace V ⊂ H1
0, for if this subspace V is well

chosen, then

uV ∈ arg min
v∈V

{
1
2

∫
〈A∇v |∇v〉 −

∫
qv

}
should be a good approximation of the real solution. Then, if we denote by e1 , . . . , eN

an orthonormal basis of V , the problem is then equivalent to solve a system
a1 ,1 · · · a1 ,N
...

. . .
...

aN ,1 · · · aN ,N




u1
...

uN

 =


q1
...

qN

 , (4.2.1.b)

111



Chapter 4. Numerical computations

Figure 4.b: A 10 × 10 mesh on the torus. The space P1 on this mesh is of dimension N = 100.

with
ai , j =

∫
〈A∇ei |∇e j〉, uk =

∫
〈∇ek |∇u〉, qk =

∫
qek ,

because
u =

∑
ukek and q =

∑
qke

∗
k .

Solving (4.2.1.a) is therefore reduced to solving the (rather big) linear system (4.2.1.b).
The space V used here is P1, the set of continuous map u over T2 that are a�ne on
each of the cells of a given mesh—as the one represented on �gure 4.b, on this page.

4.2.2. We have tested our algorithm on a 24 × 24 mesh, with a time step h = 1/200,
with four initial densities:

1. The �rst one is a tensor product,

f (x ,y) =

(
1 +

sin(2πx )
2

) (
1 +

sin(2πy)
2

)
.

On �gure 4.c, on page 114, it is possible to compare this density f and the
density we get with our computation of Brenier’s map, that is det(∇TB). It
is not di�cult to check that the Knothe–Rosenblatt rearrangement is then
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theoretically optimal. Indeed, we see on �gure 4.d that Brenier’s map is very
close. The L2 error that is given is

ε :=
‖ f − det(∇T )‖L2

‖ f ‖L2
.

2. The second initial density the algorithm was tested with is:

f (x ,y) = 1 −
cos(2πx ) + cos(2πy)

3
.

Notice on �gure 4.f, on page 115 that the computation of Brenier’s map is
symmetric, as it should, while Knothe’s rearrangement is not. We can see an
artifact the left, which is unaccounted for.

3. The third initial density is

f (x ,y) = 1 +
sin(2πx ) sin(2πy)

2
.

This case is interesting, because the projections on the �rst axis are constant,∫
f (x ,y) dy ≡ 1,

and as a consequence the Knothe–Rosenblatt rearrangement’s �rst component
is zero (see �gure 4.h, on page 116). As can be seen on �gure 4.g, there are
more pronounced artifacts on the left and right boundaries, which are hard to
explain since all the computations are made on the torus.

4. For the last initial density, we have taken two Gaussian measures that have
been made periodic. Artifacts are still present (see �gure 4.i, on page 117).

All the FreeFem++ scripts can be found on my website:
h�p://www.normalesup.org/~bonno�e/thesis/
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Figure 4.c: The density is f (x ,y) = (1 + sin(2πx )/2) (1 + sin(2πy)/2). Left: initial density.
Right: density reconstructed using the computed potential. The error in L2 is
ε = 1.4%.

Figure 4.d: As the density is a tensor product, the Knothe rearrangement (gray) is already
optimal: nothing changes much, the result of the computations (black) is close.
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Figure 4.e: The density is f (x ,y) = 1 − (cos(2πx ) + cos(2πy))/3. Left: initial density. Right:
density reconstructed using the computed potential. The error in L2 is ε = 7.2%.

Figure 4.f: The Knothe rearrangement (gray) is close to be optimal, but is not ; compare with
the computation of Brenier’s map (black), which is symmetric.
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Figure 4.g: The density is f (x ,y) = 1 + sin(2πx ) sin(2πy)/2. Left: initial density. Right:
density reconstructed using the computed potential. The error in L2 is ε = 13%.

Figure 4.h: Since
∫
f (x ,y) dy = 1 for any x , the Knothe rearrangement (gray) has a zero

�rst component ; this is not the case with Brenier’s map (black).

116



Chapter 4. Numerical computations

0 5 10 15 20
0

5

10

15

20

0 5 10 15 20
0

5

10

15

20

Figure 4.i: Two gaussians, turned periodic. Left: initial density. Right: density reconstructed
using the computed potential. The error in L2 is ε = 1.7%.

Figure 4.j: The Knothe rearrangement (gray) was not symmetric; Brenier’s map (black) is.
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4.3 Open questions

In order to have a proper evaluation of this method, four questions need to be ad-
dressed:

1. Where do the artifacts come from? Why do they appear on the left and right
boundaries, whilst the domain is periodic? An explanation might come from
our using an explicit discretization in time; an implicit discretization would
probably better, but the computations would become a lot harder.

2. Those numerical experiments presented here were always obtained for a uni-
form target measure. Is it possible to deal with more general situations? In that
case, both the di�erential equation and the initial condition satis�ed by the
Kantorovich potential are much more complex, and may need to be carefully
handled.

3. Does this method give better results than other algorithms? It would be specially
interesting to compare it with the methods of Sigurd Angenent, Steven Haker,
and Allen Tannenbaum [4] on the one hand, and Grégoire Loeper and Francesca
Rapetti [40] on the other, since both compute the optimal transport map as
well. A comparison with the method of Jean-David Benamou and Yann Brenier
[7], which computes the geodesic rather than the optimal map, would be less
straightforward.

4. At last, numerical convergence and numerical stability are two crucial issues
that have been left entirely untouched.
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An isotropic version
of the IDT algorithm

5.0.1. In image processing, it is often necessary to transfer the color palette of a
reference picture to a target picture—for instance, to homogenize the aspect of a series
of shots, e.g. in a �lm. The two color palettes can be described by measures on the space
of all the colors, and any transport map between them yields a possible transfer of
coloring. In 2006, François Pitié, Anil C. Kokaram, and Rozenn Dahyot [49] proposed
an algorithm to compute such a transfer, which they called “Iterative Distribution
Transfer” algorithm. It is based on a succession of unidimensional optimal matching
between the projections of the distributions along di�erent axes.

The idea was later taken up by Marc Bernot, who noticed the procedure could
be somehow homogenized—indeed, the result of the initial idt algorithm seems
to depend very much on the particular set of axes chosen at each iteration. His
remedy was, at each step, to compute matchings for all the axes—instead of selecting
a particular subset—, and then average the result. This new version, brie�y exposed
in a paper he wrote with Julien Rabin, Gabriel Peyré, and Julie Delon [50], can be
seen as an explicit Euler scheme for the squared sliced Wasserstein distance. Alas, no
proof exist for the general convergence of the algorithm toward the target measure,
neither for the original nor the homogenized—i.e. isotropic—version.

In this chapter, I would like to present a continuous version of the isotropic
idt algorithm, de�ned as a gradient �ow for the squared sliced Wasserstein distance
in the space of probability measures, in the sense of the theory developed by Luigi
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Ambrosio, Nicola Gigli and Giuseppe Savaré [3]. I was unable to get convergence
toward the target measure, but this point of view might still provide a way to get it.

5.1 The sliced Wasserstein distance

5.1.1. Sliced Wasserstein distance. For any direction θ ∈ Sd−1, let us denote by
θ ∗ the orthogonal projection on Rθ , that is, θ ∗ (x ) := 〈θ |x〉. Given two probability
measures µ and ν , the sliced Wasserstein distance between them is de�ned as

SWp (µ , ν ) :=
[?

Sd−1
Wp (θ

∗
#µ , θ

∗
#ν )

p dθ
] 1/p
.

At �rst sight, the adjectif “sliced” does not seem to properly describe what
the distance represents. It might be more appropriate to talk about a “projected
Wasserstein distance” or “Radon–Wasserstein distance”, as the projections θ ∗#µ and
θ ∗#ν are sometimes called the Radon transforms of µ and ν . However, in Fourier mode,
it does result in a slicing, since F (θ ∗#µ ) (s ) = Fµ (sθ ). This is quite convenient, as we
can see in the proof of the next statement.

5.1.2. Proposition. The sliced Wasserstein distance is, indeed, a distance.

Proof. The triangular inequality is trivial; all there is to show is that SWp (µ , ν ) = 0
implies µ = ν . But if SWp (µ , ν ) = 0, then θ ∗#µ = θ ∗#ν for almost every θ ∈ Sd−1, and
this, in turn, yields

Fµ (sθ ) =

∫
Rd

e−2iπs〈θ |x〉 dµ (x ) = F (θ ∗#µ ) (s ) = F (θ
∗
#ν ) (s ) = Fν (sθ ).

Since the Fourier transform is injective, we get µ = ν . �

5.1.3. Proposition. It µ , ν ∈ Pp (Rd ), then SWp (µ , ν )
p ≤ cd ,pWp (µ , ν )

p
, with

cd ,p =
1
d

?
Sd−1
|θ |

p
p dθ ≤ 1.

Notice cd ,p ≤ 1/d as soon as p ≥ 2.
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Proof. Let γ ∈ Γo (µ , ν ) be an optimal transport plan. Then (θ ∗ ⊗ θ ∗)#γ is a transport
plan between θ ∗#µ and θ ∗#ν , so

Wp (θ
∗
#µ , θ

∗
#ν )

p ≤

∫ ∣∣∣〈θ |x〉 − 〈θ |y〉∣∣∣p dγ (x ,y)

Hence, as
>
〈θ |z〉p dθ =

1
d
|z |p

>
|θ |

p
p dθ = cd ,p |z |p ,

SWp (θ
∗
#µ , θ

∗
#ν )

p ≤

∫ (? ∣∣∣〈θ |x〉 − 〈θ |y〉∣∣∣p dθ
)

dγ (x ,y)

≤ cd ,p

∫ ∣∣∣x − y∣∣∣p dγ (x ,y)

≤ cd ,pWp (µ , ν )
p . �

5.1.4. Lemma. There is a constant Cd > 0 such that, for all µ, ν supported in B (0, R),

W1 (µ , ν ) ≤ CdR
d/(d+1) SW1 (µ , ν )

1/(d+1) .

Proof. First, let us recall proposition 1.5.3 on page 34:

W1 (µ , ν ) = sup
{∫

ψ d (µ − ν )
ψ ∈ Lip1 (R

d )

}
.

Then, if we take φ ∈ C∞c (Rd ) such that φ is radial, φ ≥ 0, suppφ ⊂ B (0, 1) and∫
φ = 1, and set φλ (x ) := φ (x/λ)/λd , and µλ := φλ ∗ µ, and νλ := φλ ∗ν , then, denoting

also by f̂ the Fourier transform of f ,∫
ψ d (µλ − νλ ) =

∫
ψ̂ (ξ )

[
µ̂ (ξ ) − ν̂ (ξ )

]
φ̂ (λξ ) dξ

=

∫
Sd−1

∫ ∞

0
ψ̂ (rθ )

[
µ̂ (rθ ) − ν̂ (rθ )

]
φ̂ (λr )r d−1 dr dθ

=
1
2

∫
Sd−1

∫
R

ψ̂ (rθ )
[
F (θ ∗#µ ) (r ) − F (θ

∗
#ν ) (r )

]
φ̂ (λr )r d−1 dr dθ ,

which implies
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∫
ψ d (µλ − νλ )

=
1
2

∫
Sd−1

∫
R

[
ψ̂ (rθ )e2iπru − ψ̂ (rθ )e2iπrv

]
φ̂ (λr )r d−1 dr dγθ (u ,v ) dθ , (5.1.4.a)

where, for each θ , we have taken γθ ∈ Γo (θ
∗
#µ , θ

∗
#ν ) optimal. However,

∫
R

[
ψ̂ (rθ )e2iπru − ψ̂ (rθ )e2iπrv

]
φ̂ (λr )r d−1 dr

=

" [
ψ (x )e2iπr (u−〈θ |x〉) −ψ (x )2iπ (v−〈θ |x〉)

]
φ̂ (λr )r d−1 dx dr .

Dividing the integral in two parts, and replacing x with x + uθ in the �rst part, and x

with x +vθ in the second part, we get∫
R

[
ψ̂ (rθ )e2iπru − ψ̂ (rθ )e2iπrv

]
φ̂ (λr )r d−1 dr

=

" [
ψ (x + uθ ) −ψ (x +vθ )

]
e−2iπr 〈θ |x〉φ̂ (λr )r d−1 dx dr .

Since γθ is supported in [−R , R]2, and µλ , νλ are supported in B (0, R + λ), we can
assume the map x 7→ ψ (x + uθ ) −ψ (x +vθ ) is supported in B (0, 2R + λ) for almost
every u ,v , and∣∣∣∣∣∫

R

[
ψ̂ (rθ )e2iπru − ψ̂ (rθ )e2iπrv

]
e−πλr

2
r d−1 dr

∣∣∣∣∣
≤ (2R + λ)d |Sd−1 |

∫
|u − v |φ̂ (λr ) |r |d−1 dr

≤
(2R + λ)d |Sd−1 |

λd

(∫
φ̂ (r ) |r |d−1 dr

)
|u − v |

≤
(2R + λ)dCd

λd
|u − v |.

Thanks to (5.1.4.a), this yields

W1 (µλ , νλ ) = sup
ψ

∫
ψ d (µλ − νλ ) ≤

Cd (2R + λ)d

λd
SW1 (µ , ν ), (5.1.4.b)

although perhaps with a di�erent constant Cd .
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Let us now �nd an upper bound on W1 (µ , ν ) −W1 (µλ , νλ ). Notice∫
ψ d (µ − ν ) −W1 (µλ , νλ ) ≤

∫
ψ d (µ − ν ) −

∫
ψ d (µλ − νλ )

≤

∫
(ψ − φλ ∗ψ ) d (µ − ν ).

But ∫
(ψ − φλ ∗ψ ) d (µ − ν ) =

" [
ψ (x ) −ψ (x − y)

]
φλ (y) dy d (µ − ν ) (x )

=

" [
ψ (x ) −ψ (x − λy)

]
φ (y) dy d (µ − ν ) (x ),

and for any y ∈ B (0, 1),∫ [
ψ (x ) −ψ (x − λy)

]
d (µ − ν ) (x ) ≤

∫ ∣∣∣ψ (x ) −ψ (x − λy)∣∣∣ d (µ + ν ) (x )

≤ 2λ |y |,

thus ∫
ψ d (µ − ν ) −W1 (µλ , νλ ) ≤ 2λ

∫
|y |φ (y) dy.

Taking the supremum overψ , we get W1 (µ , ν ) −W1 (µλ , νλ ) ≤ Cdλ.
Combining this last inequality with (5.1.4.b), we obtain

W1 (µ , ν ) ≤ Cd

(
(2R + λ)d

λd
SW1 (µ , ν ) + λ

)
.

If we take λ = Rd/(d+1)SW1 (µ , ν )
1/(d+1) , we get

W1 (µ , ν ) ≤ Cd

(
(2R + λ)d

Rd
+ 1

)
Rd/(d+1)SW1 (µ , ν )

1/(d+1) .

As SW1 (µ , ν ) ≤ 2R, we have λ ≤ 21/(d+1)R, hence the announced inequality, with
maybe yet another constant Cd . �
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5.1.5. Theorem (Equivalence of SWp and Wp). There is a constant Cd ,p > 0 such

that, for all µ, ν ∈ P (B (0, R)),

SWp (µ , ν )
p ≤ cd ,pWp (µ , ν )

p ≤ Cd ,pR
p−1/(d+1) SWp (µ , ν )

1/(d+1) .

Proof. This follows from the previous lemma, as on the one hand,

Wp (µ , ν )
p ≤ (2R)p−1W1 (µ , ν ),

and on the other hand
SW1 (µ , ν ) ≤ SWp (µ , ν ). �

Notice the exponent p − 1/(d + 1) on R is the only one for which the inequality
would be preserved by dilations, given the exponent on SWp .

5.1.6. Proposition. Let µ , ν ∈ P (K ), with K a compact subset of Rd
, and assume ν

absolutely continuous. Then, for each direction θ ∈ Sd−1
, there is a Kantorovich potential

ψθ between θ
∗
#µ and θ

∗
#ν for the cost cθ (s , t ) = |s − t |

2/2, and, if µ̄ ∈ P (K ),

lim
ε→0+

SW2 ((1 − ε )µ + εµ̄ , ν )2 − SW2 (µ , ν )
2

2ε
=

?
Sd−1

∫
K
ψθ (〈θ |x〉) d(µ̄ − µ ) (x ) dθ .

This is to be compared to proposition 1.5.6 on page 36, which dealt with a similar
result for the usual Wasserstein distance.

Proof. Since ν is absolutely continuous, for each θ the projected measure θ ∗#ν is also
absolutely continuous on θ ∗ (K ); therefore, there is indeed a Kantorovich potentialψθ
between θ ∗#µ and θ ∗#ν . Sinceψθ is, a priori, not optimal between (1 − ε )µ + εµ̄ and ν ,

lim inf
ε→0+

SW2 ((1 − ε )µ + εµ̄ , ν )2 − SW2 (µ , ν )
2

2ε
≥

? ∫
ψθ (〈θ |x〉) d(µ̄ − µ ) (x ) dθ .

Conversely, letψ ε
θ be a Kantorovich potential between θ ∗# (1 − ε )µ + εµ̄ and θ ∗#ν ,

with
∫
ψ ε
θ dθ ∗# [(1 − ε )µ + εµ̄] = 0. Then,

1
2

SW2 ((1 − ε )µ + εµ̄ , ν )2 −
1
2

SW2 (µ , ν )
2 ≥ ε

? ∫
ψ ε
θ (〈θ |x〉) d(µ̄ − µ ) (x ) dθ .
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As in the proof of proposition 1.5.6 on page 36,ψ ε
θ uniformly converges, when ε → 0

to a Kantorovich potential for the pair (θ ∗#µ , θ
∗
#ν ). Then, by Lebesgue’s dominated

convergence theorem,

lim sup
ε→0+

SW2 ((1 − ε )µ + εµ̄ , ν )2 − SW2 (µ , ν )
2

2ε
≤

? ∫
ψθ (〈θ |x〉) d(µ̄ − µ ) (x ) dθ . �

5.1.7. Proposition. Let µ and ν ∈ P (K ), with K a compact subset of Rd
, and assume

µ is absolutely continuous. For any θ ∈ Sd−1
, let ψθ is the (unique up to an additive

constant) Kantorovich potential between θ ∗#µ and θ ∗#ν . If ζ is a di�eomorphism of K ,

then

lim
ε→0

SW2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
=

∫ ?
ψ ′θ (〈θ |x〉) 〈θ |ζ (x )〉 dθ dµ (x ).

This is the sliced equivalent of proposition 1.5.7 on page 38.

Proof. Asψθ is a Kantorovich potential between θ ∗#µ and θ ∗#ν ,

SW2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε

≥

∫ ?
ψθ (〈θ |x + εζ (x )〉) −ψ (〈θ |x〉)

2ε
dθ dµ (x ).

Since ψ is di�erentiable almost everywhere, Lebesgue’s dominated convergence
theorem ensures

lim inf
ε→0+

SW2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
≥

∫ ?
ψ ′θ (〈θ |x〉) 〈θ |ζ (x )〉 dθ dµ (x ).

Conversely, let γθ ∈ Γo (θ
∗
#µ , θ

∗
#ν ) be an optimal plan. Then, we can extend γθ into

πθ ∈ Γ(µ , ν ) such that (θ ∗ ⊗ θ ∗)#πθ = γθ ; for instance, by disintegrating µ ⊗ ν with
respect to θ ∗ ⊗ θ ∗,∫

ξ (x ,y) d(µ ⊗ ν ) (x ,y)

=

∫ (∫
ξ (uθ + x̂ ,vθ + ŷ) d[µ ⊗ ν]u ,v (x̂ , ŷ)

)
d[(θ ∗ ⊗ θ ∗)# (µ ⊗ ν )](u ,v ),
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and then replacing (θ ∗ ⊗ θ ∗)# (µ ⊗ ν ) with γθ :∫
ξ (x ,y) dπθ (x ,y) =

∫ (∫
ξ (uθ + x̂ ,vθ + ŷ) d[µ ⊗ ν]u ,v (x̂ , ŷ)

)
dγθ (u ,v ).

Now, [(θ ∗ + εθ ∗ (ζ )) ⊗ θ ∗]#πθ is a transport plan between θ ∗# [Id +εζ ]#µ and θ ∗#ν ; hence,

SW2 ([Id +εζ ]#µ , ν )
2 − SW2 (µ , ν )

2

≤

? ∫ ∣∣∣〈θ |x + εζ (x ) − y〉
∣∣∣2 − ∣∣∣〈θ |x − y〉∣∣∣2 dπθ (x ,y) dθ .

But for πθ -almost every pair (x ,y), we have 〈θ |y〉 = 〈θ |x〉 −ψ ′θ (〈θ |x〉), so

SW2 ([Id +εζ ]#µ , ν )
2 − SW2 (µ , ν )

2

≤

? ∫ ∣∣∣ψ ′θ (〈θ |x〉) − ε〈θ |ζ (x )〉∣∣∣2 − ∣∣∣ψ ′θ (〈θ |x〉)∣∣∣2 dπθ (x ,y) dθ .

This immediately yields

lim sup
ε→0+

SW2 ([Id +εζ ]#µ , ν )
2 −W2 (µ , ν )

2

2ε
≤

∫ ?
ψ ′θ (〈θ |x〉) 〈θ |ζ (x )〉 dθ dµ (x ). �

5.2 The Iterative Distribution Transfer algorithm

5.2.1. The algorithm proposed by François Pitié, Anil C. Kokaram, and Rozenn
Dahyot [49] starts from a given measure µ, and, for any target measure ν , builds a
sequence (µn )n∈N such that µ0 = µ and µn seems to tend to ν when n tends to in�nity.
Convergence, however, is assured only empirically, as the authors were able to prove
it only when ν is a Gaussian measure.

If µn has been set, then µn+1 is de�ned as follows. First, chose an orthogonal
basis Bn = (en1 , . . . , e

n
d ) in Rd , and take the projections eni

∗

#µn and eni
∗

#ν . For each axis
i , there is an unidimensional optimal matching between the projections, which we
will denote by teni : R→ R. Let

Tn (x ) :=
d∑
i=1

teni (〈e
n
i |x〉)e

n
i ,
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and set µn+1 := Tn#µn . Then eni
∗

#µn+1 = 〈e
n
i |Tn〉#µn = [teni ◦ e

n
i
∗]#µn = eni

∗

#ν . Thus,
µn+1 should be closer to ν than µn .

5.2.2. Theorem (Pitié–Kokaram–Dahyot). We assume µ is absolutely continuous,

and ν is a Gaussian measure. Then,

1. If Bn are independent, uniform random variables on the set of all orthonormal

basis, i.e. on O(d ), then µn → ν almost surely.

2. Alternatively, if the bases Bn are dense, then µn → ν .

It may be said that the original proof by François Pitié, Anil C. Kokaram, and
Rozenn Dahyot lacks in precision, on two counts:

• The absolute continuity of the measures µn is crucial, but not proved.
• The reader might be misled into believing some kind of uniform continuity for
(θ , µ ) 7→ Ent(θ#µ |θ#ν ) is used, which, of course, is not possible.

The following proof addresses both issues.

Proof. The �rst thing to check is that the measures µn are always absolutely continu-
ous. If we know µn is absolutely continuous, then the transport mapTn , which is such
that µn+1 = Tn#µn , is W1 ,1. Moreover, it is easy to check from its de�nition that Tn is
injective on the support of µn . Then, there is a µn-negligible set Nn and a sequence
(Ak )k∈N of disjoint Borel sets such that

Rd = Nn ∪
⋃
k∈N

Ak and Tn
∣∣∣
Ak
= ak

with ak ∈ C 1 and |det(Dak ) | ≥ εk µn-a.e.,

see the book by Lawrence C. Evans & Ronald F. Gariepy [28, Section 6.6.3]. Thus, if
N is a negligible set for the Lebesgue measure, and ρn stands for the density of µn ,

µn+1 (N ) ≤
∑
k∈N

1
εk

∫
Ak

1N (ak (x ))ρn (x ) |det(Dak ) | dx = 0.

Therefore, µn+1 is also absolutely continuous.
Now, the key property of ν is that, being a Gaussian measure, it enjoys a tensoriza-

tion property: for any basis B = (e1 , . . . , ed ), we always have ν = e∗1 #ν ⊗ · · · ⊗ e
∗
d#ν .
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Therefore, if (xi ) are the coordinates of x in the base B and if we denote by fn , fn ,i ,
and д, дi the respective densities of µn , e∗i #µn , and ν , e∗i #ν , we get

Ent (µn
ν ) = ∫

fn ln
[

fn
fn ,1 · · · fn ,d

]
+

∫
fn ln

[
fn ,1 · · · fn ,k
д1 · · ·дk

]
= Ent

(
µn

e∗1 #µN ⊗ · · · ⊗ e
∗
d#µn

)
+

d∑
i=1

Ent
(
e∗i #µn

e∗i #ν
)
.

If B is now the basis chosen to build µn+1, i.e. B = Bn = (en1 , . . . , e
n
d ), we have

Ent
(
eni
∗

#µn+1
eni ∗#ν ) = 0.

On the other hand,

Ent
(
µn+1

en1 ∗#µn+1 ⊗ · · · ⊗ e
n
d
∗

#µn+1
)
=

∫
ln

[
fn+1 (y)∏
fn+1 ,i (yi )

]
dµn+1 (y)

=

∫
ln

 fn+1 (T (x ))∏
fn+1 ,i (teni (xi ))

 dµn (x ),

and as DT is diagonal, with t ′en1
, . . . , t ′end

on the diagonal, and fn ,i = ( fn+1 ,i ◦ te in )t
′

e in
,

we get

fn+1 (T (x )) =
fn (x )

det DT (x )
=

fn (x )

t ′en1
(x1) . . . t

′
end
(xd )

= fn (x )
d∏
k=1

fn+1 ,i (teni (xi ))

fn ,i (xi )
.

This implies Ent(µn+1 |e
n
1
∗
#µn+1 ⊗ · · · ⊗ e

n
d
∗

#µn+1) = Ent(µn |en1
∗
#µn ⊗ · · · ⊗ e

n
d
∗

#µn ). Hence,

Ent (µn+1
ν ) = Ent

(
µn+1

en1 ∗#µn+1 ⊗ · · · ⊗ e
n
d
∗

#µn+1
)

+
d∑
i=1

Ent
(
eni
∗

#µn+1
eni ∗#ν )

= Ent
(
µn

en1 ∗#µn ⊗ · · · ⊗ end ∗#µn)
= Ent (µn

ν ) − d∑
i=1

Ent
(
eni
∗

#µn
eni ∗#ν ) .
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As the entropy is nonnegative, Ent(µn |ν ) is nonincreasing, and so converges. But,
according to Michel Talagrand’s inequality [59],

W2 (e
n
i
∗

#µn , e
n
i
∗

#ν )
2 ≤ C Ent

(
eni
∗

#µn
eni ∗#ν ) .

Thus,
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2 ≤ C (Ent (µn

ν ) − Ent (µn+1
ν )) −→

n→∞
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Then:

1. If Bn = (en1 , . . . , e
n
d ) is independent from µn , with a uniform law on O(d ), then

E
[
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2µn] = SW2 (µn , ν )

2 ,

and thus, by Lebesgue’s dominated convergence theorem, E[SW2 (µn , ν )
2]→ 0.

2. The sequence (µn )n≥1 is tight, because for any n ≥ 1,

∫
|y |2 dµn (y) =

∫ d∑
k=1

∣∣∣∣ten−1
k

(〈en−1
k |x〉)

∣∣∣∣2 dµn−1 (x ) =

∫
|y |2 dν (y).

Let µ be a limit point. If all the bases (Bn ) form a dense subset of all orthogonal bases
of Rd , then for any θ ∈ Sd−1 we can �nd an extraction nk → ∞ such that enk1 → θ ,
and µnk → µ still. Let ε > 0, then for nk big enough,

W2
(
enk1

∗

#µnk , e
nk
1
∗

#ν
)
< ε and W2 (µnk , µ ) < ε ,

and since en1 can be as close to θ as we may desire, we can also impose

W2
(
enk1

∗

#ν , θ
∗
#ν

)
< ε and W2

(
enk1

∗

#µ , θ
∗
#µ

)
< ε

as well. Because W2
(
enk1

∗

#µnk , e
nk
1
∗

#µ
)
< W2 (µnk , µ ), we get

W2 (θ#µ , θ#ν ) < 4ε .
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Chapter 5. Isotropic IDT algorithm

Letting ε → 0, we obtain SW2 (µ , ν ) = 0. �

5.2.3. If we work only with discrete measures that are sums of N Dirac masses, as

µ =
1
N

N∑
k=1

δxk , with xk ∈ R
d ,

then, setting x := (x1 , . . . , xN ), we get a vector of (Rd )N . Letting δ1 , . . . , δN be the
canonical basis of RN , we can write

x =
N∑
k=1

xk ⊗ δk .

We will write the correspondence between µ and x as µ ∼ x.

5.2.4. Lemma. The solution to the Monge–Kantorovich problem between two discrete

measures µ ∼ x and ν ∼ y is given by a transport map T , such that

T (xk ) = yσT (k ) .

for an optimal permutation σT ∈ SN , such that

W2 (µ , ν )
2 =

N∑
k=1

∣∣∣xk − yσT (k ) ∣∣∣2 = min
σ ∈SN

N∑
k=1

∣∣∣xk − yσ (k ) ∣∣∣2.
Proof. This follows immediately from Choquet’s and Birkho�’s theorems (see Cédric
Villani’s book [62, p. 5]). �

We will conveniently set yσ = (yσ (1) , . . . ,yσ (N ) ) for any σ ∈ SN , so that, in
particular, W2 (µ , ν )

2 = |x − yσT |
2/2. Notice ν ∼ yσ as well.

5.2.5. If µ is the sum of N Dirac masses, then, for any θ ∈ Sd−1, the projected measure
θ ∗#µ is also a sum of Dirac masses:

θ ∗#µ =
1
N

N∑
k=1

δ〈θ |xk 〉 ,
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and, with our notation, we can write

θ ∗#µ ∼
N∑
k=1
〈θ |xk〉δk =

N∑
k=1

(θ ∗ ⊗ IN ) (xk ⊗ δk ) = (θ ∗ ⊗ IN )x.

The idt algorithm builds a sequence µn ∼ xn , from an initial point µ0 ∼ x0 and
a reference target measure ν ∼ y, by setting µn+1 := Tn#µn with

Tn :=
d∑
i=1

(teni ◦ e
n
i
∗)eni ,

where teni is the optimal map between eni
∗

#µn and eni
∗

#ν . The basis en = (en1 , . . . , e
n
d )

changes at each iteration.

5.2.6. Lemma. Let Pσ denote the permutation matrix associated to a permutation σ ,

de�ned by Pσδk = δσ (k ) . Then, yσ = (Id ⊗P −1
σ )y. If σθ is the optimal permutation

between θ ∗#µ ∼ (θ ∗ ⊗ IN )x and θ ∗#ν ∼ (θ ∗ ⊗ IN )y ∼ (θ ∗ ⊗ IN )yσθ , we have

W2 (θ
∗
#µ , θ

∗
#ν )

2 =
∣∣∣(θ ∗ ⊗ IN ) (x − yσθ )

∣∣∣2.
Proof. Let σ ∈ SN . Then,

yσ =
N∑
k=1

yk ⊗ δσ −1 (k ) =

N∑
k=1

yk ⊗ P −1
σ δk =

N∑
k=1

(Id ⊗P −1
σ ) (yk ⊗ δk ) = (Id ⊗P −1

σ )y.

As the optimal map tθ between θ ∗#µ and θ ∗#ν is given by a permutation σθ ∈ SN , such
that 〈θ |xk〉 is sent to tθ (〈θ |xk〉) = 〈θ |yσθ (k )〉, we have

W2 (θ
∗
#µ , θ

∗
#ν )

2 =

N∑
k=1

∣∣∣〈θ |xk − yσθ (k )〉∣∣∣2 = ∣∣∣(θ ∗ ⊗ IN ) (x − yσθ )
∣∣∣2. �

5.2.7. Proposition. We set, for all x ∈ (Rd )N and σ ∈ Sd
N and any basis e ,

Fe (x, σ ) =
1
2

d∑
i=1

∣∣∣(e∗i ⊗ IN ) (x − yσi )
∣∣∣2.
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Then, if en is the basis which allows us to de�ne µn+1
from µn , we have

Fen (xn , σen ) = min
σ ∈SdN

Fen (xn , σ ) =
1
2

d∑
i=1

W2 (e
n
i
∗

#µn , e
n
i
∗

#ν )
2.

If σen represent the sequence of optimal permutations, then

xn+1 = xn − ∇xFen (xn , σen ) and

1
2
∣∣∣xn+1 − xn

∣∣∣2 = Fen (xn , σen ).
Thus, the idt algorithm can be seen as a kind of steepest-descent method. If it

were not to depend on an ever-changing basis en , it would be (close to) an explicit
Euler scheme for a gradient �ow.

Proof. On the one hand, xn+1 is de�ned by

xn+1
k := T (xnk ) =

d∑
i=1

teni (〈e
n
i |x

n
k 〉) e

n
i =

d∑
i=1
〈eni |yσeni (k )

〉eni =
d∑
i=1

eni e
n
i
∗yσeni (k )

,

where σeni is the optimal permutation associated to teni . Thus,
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N∑
k=1

d∑
i=1

(eni e
n
i
∗yσeni (k )

) ⊗ δk =
d∑
i=1

N∑
k=1

(eni e
n
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∗
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=
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n
i
∗
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(eni e
n
i
∗
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)y.

On the other hand,

∇xFe (x, σ ) =
d∑
i=1

(ei ⊗ IN )∗ (e∗i ⊗ IN )
(
x − yσi

)
=

d∑
i=1

(eie
∗
i ⊗ IN )

(
x − yσi
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=
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132



Chapter 5. Isotropic IDT algorithm

=

x − d∑
i=1

(eie
∗
i ⊗ P −1

σi )y

 .
Thus, ∇xFen (xn , σen ) = (xn − xn+1). Moreover,

1
2
∣∣∣xn − xn+1

∣∣∣2 = 1
2

d∑
i=1

∣∣∣∣∣(eie∗i ⊗ IN )
(
xn − yσeni

)∣∣∣∣∣2
=

1
2

d∑
i=1

∣∣∣∣∣e∗i ⊗ IN
(
xn − yσeni

)∣∣∣∣∣2
= Fen (xn , σen ). �

5.3 Marc Bernot’s isotropic definition

5.3.1. To remove the dependence vis-à-vis the bases en , Marc Bernot suggested to
replace Fe with

F (x,σ ) :=
1
2

?
Sd−1

∣∣∣(θ ∗ ⊗ IN ) (x − yσ θ )
∣∣∣2 dθ ,

de�ned for x ∈ (Rd )N and σ : Sd−1 →SN . In other words,

F (x,σ ) =
1

2d

?
O(d )
Fe (x, (σ e1 , . . . ,σ ed )) de .

Then, if µ ∼ x and ν ∼ y,

min
σ
F (x,σ ) =

1
2

SW2 (µ , ν )
2.

We can introduce a parameter h > 0, and de�ne a sequence (xn ) by

xn+1 := xn − h∇xF (xn ,σ n ), (5.3.1.a)

where σ n
θ is the optimal permutation between θ ∗#µn and θ ∗#ν , such that

1
2

SW2 (µ , ν ) = F (xn ,σ n ).
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5.3.2. Lemma. We have, for any h ∈ (Rd )N ,

F (xn + h,σ n ) = F (xn ,σ n ) +
?
Sd−1

〈
(θθ ∗ ⊗ IN ) (xn − yσ θ )

∣∣∣ h〉 dθ +
1

2d
|h|2.

Therefore

xn+1 =

(
1 −

h

d

)
xn + h

?
Sd−1

(θθ ∗ ⊗ P −1
σ n
θ
)y,

and SW2 (µn , ν ) is nonincreasing if h < 2d .

Proof. The expression for xn+1 comes from
>
θθ ∗ dθ = Id /d , and

∇xF (xn ,σ n ) =

?
(θθ ∗ ⊗ IN )

(
xn − yσ n

θ

)
dθ

=
1
d
xn −

?
(θθ ∗ ⊗ IN ) (Id ⊗P −1

σ θ )y dθ

=
1
d
xn −

?
(θθ ∗ ⊗ P −1

σ θ )y dθ .

As for the nonincreasingness of SW2 (µn , ν ),

1
2

SW2 (µn+1 , ν )
2 = min

σ
F (xn+1 ,σ )

≤ F (xn − h∇xF (xn ,σ n ),σ n )

≤ F (xn ,σ n ) − h
∣∣∣∇xF (xn ,σ n )

∣∣∣2 +
h2

2d
∣∣∣∇xF (xn ,σ n )

∣∣∣2. �

5.4 Implicit version

5.4.1. Equation (5.3.1.a) de�nes an explicit Euler scheme for the sliced Wasserstein
distance. On Rd , given a smooth functional F : Rd → R, the explicit Euler scheme
yields a sequence (xn )n∈N , given a starting point x0 and a time step h > 0, by setting

xn+1 := xn − h∇F (xn ).

The implicit Euler scheme, on the other hand,

xn+1 := xn − h∇F (xn+1),
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can be obtained by, at each step, taking

xn+1 ∈ arg min
x

{ 1
2h
|x − xn |

2 + F (x )
}
.

In our case, we can de�ne a sequence µn ∼ xn using such an implicit scheme, by
taking

xn+1 ∈ arg min
xn

{ 1
2h

∣∣∣x − xn
∣∣∣2 + min

σ
F (x,σ )

}
.

This corresponds to ours setting

µn+1 ∈ arg min
µ

{ 1
2h

W2 (µ , µn )
2 +

1
2

SW2 (µ , ν )
2
}
. (5.4.1.a)

5.4.2. One of the di�culties of working discrete measures, is that the (sliced) Wasser-
stein distance is given by an optimal map—or many, for the sliced distance—, but a
bijection on a discrete space can only be a permutation. It is hard to �nd any smooth-
ness of the optimal map with respect to the measures under such circumstances.
Things are simpler when the measures are absolutely continuous, as there is some
regularity (see the article by Grégoire Loeper [39]). Furthermore, (5.4.1.a) does not
lose any meaning if we drop the assumption the measures are all discrete—that is
even the starting point of the theory of gradient �ows in the space of probability
measures, as developed by Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré [3].

In the rest of this section, we will therefore show that, given two absolutely
continuous measures µ0 and ν , we can de�ne a sequence (µn )n∈N with

µn+1 ∈ arg min
µ

{ 1
2h

W2 (µ , µn )
2 + F (µ )

}
,

where h > 0 is a time step and

F (µ ) :=
1
2

SW2 (µ , ν )
2.

We will work on the closed unit ball B = B (0, 1), and assume ν has a strictly positive,
smooth density on B. As the algorithm may force µn to venture out of B, we will
allow it to be de�ned on rB, with r >

√
d .
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5.4.3. Lemma. Let us �x a time step h > 0, and a radius r >
√
d . For a probability

measure µ0 on rB = B (0, r ) that is absolutely continuous with a strictly positive, smooth

density ρ0, there is a probability measure µ on rB minimizing

G (µ ) := F (µ ) +
1

2h
W2 (µ , µ0)

2 + δH (µ ) ,

with H (µ ) :=


∫
rB
ρ (x ) ln ρ (x ) dx if dµ (x ) = ρ (x ) dx ,

+∞ otherwise.

Moreover, this optimal µ has a Lipschitz density ρ, which is strictly positive on rB and

such that

‖ρ‖L∞ ≤
(
1 + h/

√
d
)d
‖ρ0‖L∞ .

Proof. We follow methods developed by Guillaume Carlier and Filippo Santambro-
gio [20], and Giuseppe Buttazzo and Filippo Santambrogio [15].

It is well known the entropy H is lower semicontinuous for the Wasserstein
distance (see, for instance, the article by Richard Jordan, David Kinderlehrer, and Felix
Otto [34, Proposition 41]). Therefore, if (µn )n∈N is a minimizing sequence in P (rB),
then, up to an extraction, it converges toward a minimizer µ, which must necessarily
have a density ρ.

We denote by ψθ the Kantorovich potential between θ ∗#µ and θ ∗#ν , and φ the
Kantorovich potential between µ and µ0.

Let µ̄ be another probability measure on rB, absolutely continuous with a density
ρ̄. Then, proposition 1.5.6 on page 36 and proposition 5.1.6 on page 124 together yield

lim sup
ε→0+

H (µ ) − H ((1 − ε )µ + εµ̄ )
ε

≤
1
δ

∫
rB

Ψ(x ) (ρ̄ (x ) − ρ (x )) dx

where Ψ(x ) :=
?
Sd−1

ψθ (〈θ |x〉) dθ +
1
h
φ (x ).

Since t 7→ t ln t is convex, setting ρε = (1 − ε )ρ + ερ̄, we can write

ρ ln ρ − ρε ln ρε ≥ ε (1 + ln ρε ) (ρ − ρ̄).
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If ρ (x ) ≥ ρ̄ (x ), then ρε (x ) ≥ ρ̄ (x ), and thus

ρ ln ρ − ρε ln ρε ≥ ε (1 + ln ρ̄) (ρ − ρ̄).

Where ρ (x ) ≤ ρ̄ (x ), this last inequality still holds, because then ln ρε (x ) < ln ρ̄ (x ),
and ρ (x ) − ρ̄ (x ) < 0.

In particular, if we take µ̄ uniform on rB, i.e. ρ̄ (x ) = 1/(r d |B |), then,

ρ ln ρ − ρε ln ρε ≥ ε |1 + ln ρ̄ |(ρ + ρ̄) when ρ > 0,

ρ ln ρ − ρε ln ρε ≥ −(1 + ln(ε̄ρ))ερ̄ when ρ = 0.

Integrating, since ρ̄ is constant we get

H (µ ) − H ((1 − ε )µ + εµ̄ )
ε

≥ −2|1 + ln ρ̄ | − (1 + ln(ερ̄))
|{ρ = 0}|
r d |B |

.

As we have an upper bound when ε → 0, necessarily |{ρ = 0}| = 0, i.e. ρ > 0 almost
everywhere.

Now, let ρ̄ = ηρ with η ∈ L∞. Then,

ln(ρ + ε (ρ̄ − ρ)) = ln((1 + ε (η − 1))) + ln(ρ).

Therefore, thanks to Lebesgue’s dominated convergence theorem,∫
rB
(1 + ln ρ) (ρ − ρ̄) = lim

ε→0

∫
(1 + ln ρε ) (ρ − ρ̄)

≤ lim sup
ε→0

H (µ ) − H ((1 − ε )µ + εµ̄ )
ε

≤
1
δ

∫
Ψ(ρ̄ − ρ),

and this yields∫ [
Ψ(x ) + δ ln ρ (x )

]
ρ̄ (x ) dx ≥

∫ [
Ψ(x ) + δ ln ρ (x )

]
ρ (x ) dx .
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We set m = ess inf {Ψ + δ ln ρ}. For any m′ > m, by de�nition, A := {m′ >
Ψ + δ ln ρ} has a nonzero measure, so we can take η = λ1A with λ such that ηρ is still
a probability measure. Then, the previous inequality gives

m′ ≥

∫ [
Ψ + δ ln ρ

]
ηρ ≥

∫ [
Ψ + δ ln ρ

]
ρ ≥ m.

Lettingm′ converge towardm, we get Ψ + δ ln ρ is constant, and equal tom almost
everywhere. This implies

ρ = exp((m − Ψ)/δ ).

As Ψ is Lipschitz, so is ρ. It then follows from theorem 1.3.5 on page 31 that the
potential φ between µ and µ0 is C 2, and Id −D2φ > 0 and 1 −ψ ′′θ > 0.

Let us denote by fθ and дθ the densities of θ ∗#µ and θ ∗#ν , and Fθ and Gθ their
cumulative distributions. Ifmf andmд stand for the minima of f and д, and Mf and
Mд for their maxima, then

mf
√

1 − t2 ≤ fθ (t ) ≤ Mf
√

1 − t2 ,

mд
√

1 − s2 ≤ дθ (s ) ≤ Mд
√

1 − s2.

Let Fθ and Gθ be the cumulative distributions of fθ and дθ . If we de�ne

Uε :=
{
x ∈ rB

 ∀θ ∈ Sd−1 , Fθ (〈θ |x〉) ∈ (ε , 1 − ε )
}
,

Vε :=
{
y ∈ B

 ∀θ ∈ Sd−1 ,Gθ (〈θ |y〉) ∈ (ε , 1 − ε )
}
,

then fθ and дθ are uniformly bounded and bounded above on θ ∗ (Uε ) and θ ∗ (Vε )

respectively. Moreover, it follows from the de�nition of the optimal map, tθ := G−1
θ ◦Fθ ,

that tθ (〈θ |x〉) ∈ θ ∗ (Vε ) for any x ∈ Uε . Then, thanks to theorem 1.3.5 on page 31 again,
we get that ψθ ◦ θ ∗ is C 2 on Uε , and 1 − ψ ′′θ > 0. Since tθ = Id−ψ ′θ = G−1

θ ◦ Fθ , we
also haveψθ ◦ θ ∗ is C 1 ,α on rB, up to the boundary. By a consequence of Lebesgue’s
dominated convergence theorem, Ψ = φ/h

>
ψθ ◦ θ

∗ dθ is C 2 on Uε , and C 1 ,α up to
the boundary. Moreover,

∇Ψ(x ) =
∇φ

h
+

?
ψ ′θ (〈θ |x〉)θ dθ ,
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∇2Ψ(x ) =
∇2φ

h
+

?
ψ ′′θ (〈θ |x〉)θ ⊗ θ dθ .

Therefore, ρ = exp((m − Ψ)/δ ) is C 2 in the interior, C 1 ,α up to the boundary, and

∇ρ = −ρ
∇Ψ

δ
and ∇2ρ = ρ

∇Ψ ⊗ ∇Ψ

δ 2 − ρ
∇2Ψ

δ
.

If ρ is maximum in x0 on the boundary, i.e. for |x0 | = r , then, as t 7→ ρ (tx0) is maximal
for t = 1, we must have 〈∇ρ (x0) |x0〉 ≥ 0. Thus,

〈∇Ψ(x0) |x0〉 ≤ 0 (5.4.3.a)

But, the transport map Id−∇φ between µ and µ0 takes its values in supp µ0 = rB, so

r 2 ≥ |x0 − ∇φ (x0) |
2

≥ |x0 |
2 + |∇φ (x0) |

2 − 2〈∇φ (x0) |x0〉

≥ r 2 − 2〈∇φ (x0) |x0〉.

Hence, 〈∇φ (x0) |x0〉 ≥ 0. Likewise, for any direction θ , the map tθ = Id−ψ ′θ takes its
values in θ ∗ (B) = [−1, 1], so〈?

ψ ′θ (〈θ |x0〉)θ dθ
∣∣∣∣∣ x0

〉
=

?
ψ ′θ (〈θ |x0〉)〈θ |x0〉 dθ

≥
1
2

?
|〈θ |x0〉|

2 − |〈θ |x0〉 −ψ
′
θ (〈θ |x0〉) |

2 dθ

≥
1
2

(?
|〈θ |x0〉|

2 dθ − 1
)

≥
1
2

(
r 2

d
− 1

)
.

As we have assumed r >
√
d , we �nally get 〈∇Ψ(x0) |x0〉 > 0, and this contradicts

(5.4.3.a). Thus, ρ is maximum in a point x0 in the interior. Since ∇ρ (x0) = 0 and
∇2ρ (x0) ≤ 0, we must have ∇2Ψ(x0) ≥ 0. Hence, asψ ′′θ < 1,

∇2φ (x0) ≥ −h

?
ψ ′′θ (〈θ |x0〉)θ ⊗ θ dθ

139



Chapter 5. Isotropic IDT algorithm

≥ −h

?
θ ⊗ θ dθ

≥ −
h
√
d

Id .

This, in turn, yields:

‖ρ‖∞ = ρ (x0) = ρ0 (x0 − ∇φ (x0)) det
(
Id −∇2φ (x )

)
≤

(
1 +

h
√
d

)d
‖ρ0‖∞ , �

5.4.4. Proposition. For any time step h > 0, and any probability measure µ0 ∈

P (rB) that is absolutely continuous with a density ρ0 ∈ L∞, there is µ ∈ P (rB)

minimizing

F (µ ) +
1

2h
W2 (µ , µ0)

2 ,

which is absolutely continuous, with a density ρ ∈ L∞ such that

‖ρ‖L∞ ≤
(
1 + h/

√
d
)d
‖ρ0‖L∞ .

Proof. Let us �rst assume ρ0 ∈ C∞ (rB). Then, according to lemma 5.4.3 on page 136,
for any δ > 0, there is µδ minimizing

µ 7→ F (µ ) +
1

2h
W2 (µ , µ0)

2 + δH (µ ),

with a Lipschitz density ρδ such that

‖ρδ ‖L∞ ≤
(
1 + h/

√
d
)d
‖ρ0‖L∞ .

Up to an extraction, we can assume µδ converges toward µ in P (rB) and ρδ converges
toward ρ for the weak-star topology of L∞, with ρ the density of µ. Then, ‖ρ‖L∞ ≤
(1 + h/

√
d )d ‖ρ0‖L∞ , and this implies

H (µ ) ≤
[
1 +

(
1 + h/

√
d
)d
‖ρ0‖L∞

]
ln

[
1 +

(
1 + h/

√
d
)d
‖ρ0‖L∞

]
< ∞,

because t 7→ t ln t is increasing on (1/e ,∞) and positive on (1,∞).
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Let µ̄ be such that F (µ̄ ) + W2 (µ̄ , µ0)
2/(2h) is minimal, and let et be the heat

kernel, et (x ) = exp(−π |x |2/t )/
√
t . We set µ̄t = et ∗ µ̄. Then, µ̄t → µ̄ in P (rB), and if

H (µ̄ ) = ∞, then H (µ̄t ) → ∞ as well. Let tδ be such that H (µ̄tδ ) < 1/
√
δ ; then,

F (µ ) +
1

2h
W2 (µ , µ0)

2 ≤ lim inf
δ→0

{
F (µδ ) +

1
2h

W2 (µδ , µ0)
2 + δH (µδ )

}
≤ lim inf

δ→0

{
F (µ̄tδ ) +

1
2h

W2 (µ̄tδ , µ0)
2 + δH (µ̄tδ )

}
≤ F (µ̄ ) +

1
2h

W2 (µ̄ , µ0)
2.

Thus, µ is a minimizer as well.
We now drop the assumption ρ0 ∈ C∞. Then, for any t > 0, there is a minimizer

µt ∈ P (rB) for µ 7→ F (µ ) + W2 (µ , µt )
2/(2h), which has a density ρt ∈ L∞ with

‖ρt ‖L∞ ≤ (1 + h/
√
d )d ‖ρ0‖L∞ . Up to an extraction, µt converges toward µ in P (rB)

and ρt converges toward ρ for the weak-star topology of L∞. This implies

‖ρ‖L∞ ≤
(
1 + h/

√
d
)d
‖ρ0‖L∞ .

And if µ̄ is a minimizer for µ 7→ F (µ ) + W2 (µ , µ0)
2/(2h), then

F (µ ) +
1

2h
W2 (µ , µ0)

2 ≤ lim inf
δ→0

{
F (µt ) +

1
2h

W2 (µt , et ∗ µ0)
2 + δH (µt )

}
≤ lim inf

δ→0

{
F (µ̄ ) +

1
2h

W2 (µ̄ , et ∗ µ0)
2 + δH (µ̄ )

}
≤ F (µ̄ ) +

1
2h

W2 (µ̄ , µ0)
2.

So µ is a minimizer as well. �

5.5 Continous version

5.5.1. Generalized minimizing movements. Given a metric space X, a functional
F : [0,∞) × N × X × X → [−∞,∞], and an initial point x0 ∈ X, a minimizing
movement (mm) relative to F and starting from x0 is a curve x : [0,∞) → X that is
pointwise limit of a family xh : [0,∞) → X indexed by h > 0 such that:

• xh (0) = x0 for every h > 0;
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• xh is constant on each interval [nh, (n + 1)h), so x (t ) = x (nh) for n = bt/hc;
• xh (t + h) minimizes y 7→ F (h,n,y , x (t )), if n = bt/hc.

When x is limit of only a sequence xhk , with hk → 0, then x is called a generalized
minimizing movement (gmm).

5.5.2. The concept of minimizing movements was introduced by Ennio de Giorgi
[22], and developed furthermore by Luigi Ambrosio [1]. It is a fundamental tool for
the theory of gradient �ows in metric spaces, as developed by the latter with Nicola
Gigli and Giuseppe Savaré [3, 57].

Indeed, a gradient �ow ẋ = −∇F (x ) inRd is the limit of the Euler implicit scheme:
if xh (t +h) = xh (t ) −h∇F (x (t )), with xh constant on each interval [nh, (n + 1)h), then
xh (t ) → x (t ); and xh (t + h) is just obtained from xh (t ) as a minimizer of

y 7→ F (h,n,y , xh (t )) with F (h,n,y , x ) =
1

2h
|y − x |2 + F (y).

Thus, a gradient �ow in Rd is a minimizing movement. But, unlike di�erentiation,
minimization can be performed in quite a general framework, as in a metric space.
There it is enough to replace the Euclidean distance with the metric distance in the
previous expression of F .

5.5.3. Theorem. Let ν be a probability measure on B = B (0, 1), with a strictly positive,
smooth density. Given an absolutely continuous measure µ0 ∈ P (rB), with a density

ρ0 ∈ Lp , there is a Lipschitz generalized minimizing movement (µt )t≥0 inP (rB) starting

from µ0 for the functional

F (h,n, µ+ , µ−) :=
1

2h
W2 (µ+ , µ−)

2 + F (µ+), with F (µ+) =
1
2

SW2 (µ+ , ν )
2.

Moreover, for each time t ≥ 0, the measure µt has a density ρt ∈ Lp , and

‖ρt ‖Lp ≤ e t
√
d/q ‖ρ0‖Lp .

Proof. For any time step h > 0, we use proposition 5.4.4 on page 140 to build a curve
(µht )t≥0 of absolutely continuous measures by induction, such that:

• µh0 = µ0;
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• µht is constant on [nh, (n + 1)h);
• µht+h minimizes µ 7→ F (µ ) + W2 (µ , µ

h
t )

2/(2h);
• denoting by ρht the density of µht , and n = bt/hc,

‖ρht ‖Lp ≤
(
1 + h/

√
d
)nd/q

‖ρ0‖Lp . (5.5.3.a)

For an arbitrary T > 0, we de�ne a measure µh on [0,T ] × rB with

∀ ξ ∈ C 0 ,

∫
[0 ,T ]×rB

ξ (t , x ) dµh (t , x ) =
∫

[0 ,T ]

∫
rB
ξ (t , x ) dµht (x ) dt ;

and it has a density ρh ∈ Lp ([0,T ] × rB), de�ned by ρh (t , x ) = ρht (x ). Then, there is
hn → 0 such that µhn → µ in P (rB); moreover, the limit µ has necessarily a density
ρ, and ρh weakly converges to ρ in Lr for any �nite r ∈ [1,p], with a weak-star
convergence in L∞ when p is in�nite.

Let ρt (x ) := ρ (t , x ). We want to show µht converges P (rB), and ρht weakly
converges to ρt in Lr for all t ∈ [0,T ] and for any �nite r ∈ [1,p] (even though
we might have to rede�ne µt and ρt on a negligible set of times t ). First, there is a
measure µt whose density is ρt , at least for almost any t , since

1 =
1

2δ

∫ t+δ

t−δ

∫
ρht (x ) dx dt −→

h→0

∫ t+δ

t−δ

∫
ρt (x ) dx dt ,

and this implies ρt is indeed a probability density. Next, we show µht must converge
to µt . If ξ ∈ C 1 (rB),

∣∣∣∣∣∫ ξ dµhnt −
∫

ξ dµhmt
∣∣∣∣∣

≤

∣∣∣∣∣∣
∫
ξ dµhnt −

1
2δ

∫ t+δ

t−δ

∫
ξ dµhns ds

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
ξ dµhmt −

1
2δ

∫ t+δ

t−δ

∫
ξ dµhms ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
2δ

∫ t+δ

t−δ

∫
ξ dµhns ds −

1
2δ

∫ t+δ

t−δ

∫
ξ dµhms ds

∣∣∣∣∣∣. (5.5.3.b)
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But, by taking γ ∈ Γo (µ
h
t , µ

h
s ), we can �rst obtain∣∣∣∣∣∫ ξ dµht −

∫
ξ dµhs

∣∣∣∣∣ ≤ ∫ ∣∣∣ξ (x ) − ξ (y)∣∣∣ dγ (x ,y) ≤ ‖∇ξ ‖∞W2 (µ
h
t , µ

h
s );

then, as µht = µhhnt for nt = bt/hc, and

F (µhh(n+1) ) +
1

2h
W2 (µh(n+1) , µhn )

2 ≤ F (µhhn ) for every n,

we get

W2 (µ
h
t , µ

h
s )

2 = W2 (µ
h
hnt
, µhhns )

2

≤
[∑

W2
(
µhh(k+1) , µ

h
hk

)]2

≤ |nt − ns |
∑

W2
(
µhh(k+1) , µ

h
hk

)2

≤ 2h |nt − ns |
∣∣∣F (µht ) − F (µhs )

∣∣∣
≤ Ch |nt − ns |W2 (µ

h
t , µ

h
s )

≤ C ( |t − s | + h) W2 (µ
h
t , µ

h
s ),

which implies
W2 (µ

h
t , µ

h
s ) ≤ C ( |t − s | + h) . (5.5.3.c)

Thus, ∣∣∣∣∣∣
∫
ξ dµht −

1
2δ

∫ t+δ

t−δ

∫
ξ dµhs ds

∣∣∣∣∣∣ ≤ 1
2δ

∫ t+δ

t−δ

∣∣∣∣∣∫ ξ dµht −
∫
ξ dµhs

∣∣∣∣∣ ds
≤

C‖∇ξ ‖∞
2δ

∫ t+δ

t−δ
( |t − s | + h) ds

≤ C‖∇ξ ‖∞ (δ + h) .

Because µhn converge to µ,

1
2δ

∫ t+δ

t−δ

∫
ξ dµhns ds −→

1
2δ

∫ t+δ

t−δ

∫
ξ dµs ds;
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therefore, (5.5.3.b) shows
∫
ξ dµhnt is Cauchy. But for almost all t ∈ [0,T ], the limit

can only be
∫
ξ dµt . Thus, µhnt converges to µt , and this, with (5.5.3.a), implies the

densities ρhnt weakly converge to ρt in all Lr for all �nite r ∈ [1,p], with

‖ρt ‖Lp ≤ e t
√
d/q ‖ρ0‖Lp .

Moreover, (5.5.3.c) yields

W2 (µs , µt ) ≤ lim inf
n→∞

W2 (µ
hn
s , µ

hn
t ) ≤ C |t − s |. �

5.6 Continuity equation

5.6.1. Theorem. Let (µt )t≥0 be a generalized minimizing movement given by theo-

rem 5.5.3 on page 142. We denote by ρt the density of µt . As previously, letψt ,θ stand for

the Kantorovich potential between θ ∗#µt and θ
∗
#ν such that

∫
ψt ,θ dθ ∗#µt = 0. Then, in a

weak sense,

∂ρt
∂t

+ div(vtρt ) = 0 with vt (x ) := −
?
Sd−1

ψ ′t ,θ (〈θ |x〉)θ dθ .

More precisely, for any ξ ∈ C∞c ([0,∞) × B (0, r )),

∫ ∞

0

∫
B (0 ,r )

[
∂ξ

∂t
(t , x ) −

?
Sd−1

ψ ′t ,θ (〈θ |x〉)〈θ |∇ξ (t , x )〉 dθ
]
ρt (x ) dx dt

= −

∫
B (0 ,r )

ξ (0, x )ρ0 (x ) dx .

The vector �eld vt is a tangent vector for the Riemannian structure of P (Rd );
see the book by Luigi Ambrosio, Nicolas Gigli and Giuseppe Savaré [3, chapter 8] for
de�nitions. Indeed, sinceψt ,θ is Lipschitz, if we set

Ψt (x ) :=
?
Sd−1

ψt ,θ (〈θ |x〉) dθ ,

then Ψt is also Lipschitz, and vt = −∇Ψt .

Proof. We will proceed in four steps.
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1. On the one hand, since µhn → µ for some sequence hn → 0,∫ ∞

0

∫
B (0 ,r )

∂ξ

∂t
(t , x )ρhnt (x ) dx dt −→

∫ ∞

0

∫
B (0 ,r )

∂ξ

∂t
(t , x )ρt (x ) dx dt .

On the other hand,∫ ∞

0

∫
B (0 ,r )

∂ξ

∂t
(t , x )ρhnt (x ) dx dt

=

∞∑
k=0

∫ (k+1)hn

khn

∫
B (0 ,r )

∂ξ

∂t
(t , x )ρhnt (x ) dx dt

=

∞∑
k=0

∫
B (0 ,r )

[ξ ((k + 1)hn , x ) − ξ (khn , x )] ρhnkhn (x ) dx dt ,

because ρh is constant on each interval [kh, (k + 1)h). Then,

∫ ∞

0

∫
B (0 ,r )

∂ξ

∂t
(t , x )ρhnt (x ) dx dt

= −

∫
ξ (0, x )ρhn0 (x ) dx −

∞∑
k=1

∫
ξ (khn , x )

[
ρhnkhn (x ) − ρ

hn
(k−1)hn

(x )
]

dx dt ,

and this means, if we set ξ nk (x ) := ξ (khn , x ),

∫
ξ (0, x )ρ0 (x ) dx +

∫ ∞

0

∫
∂ξ

∂t
(t , x )ρt (x ) dx dt

∼
n→∞

−hn

∞∑
k=1

∫
ξ nk (x )

ρhnkhn (x ) − ρ
hn
(k−1)hn

(x )

hn
dx dt . (5.6.1.a)

2. For any θ ∈ Sd−1, we can �nd

γθ ,h ,t ∈ Γ(θ ∗#µ
h
t , θ

∗
#µt , θ

∗
#ν )

such that, ifu , ū ,v stand for the variables and U, Ū, V for the corresponding projectors,
then (U, V)#γθ ,h ,t and (Ū, V)#γθ ,h ,t and (U, Ū)#γθ ,h ,t are all optimal; indeed, if F ,G ,H
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stand for the cumulative distributions of the three 1d measures, then we can just take

γθ ,h ,t := (F −1 ,G−1 ,H −1)#L
1.

Then, γθ ,h ,t can then be extended into a measure πθ ,h ,t ∈ Γ(µht , µt , ν ): �rst, take
a measure π̃ ∈ Γ(µht , µt ) optimal between µht and µt ; next, disintegrate π̃ ⊗ ν with
respect to (θ ∗ , θ ∗ , θ ∗) into a family

{
[π̃ ⊗ ν]u ,ū ,v

}
, such that, for any η,∫

η(x , x̄ ,y) d[π̃ ⊗ ν](x , x̄ ,y)

=

∫
R3

(∫
(Rd−1)3

η(uθ + x̂ , ūθ + ˆ̄x ,vθ + v̂ ) d[π̃ ⊗ ν]u ,ū ,v (x̂ , ˆ̄x , ŷ)
)

d[(θ ∗ , θ ∗ , θ ∗)# (π̃ ⊗ ν )](u , ū ,v );

then de�ne πθ ,h ,t by replacing (θ ∗ , θ ∗ , θ ∗) with γθ ,h ,t in the previous expression:∫
η(x , x̄ ,y) dπθ ,h ,t (x , x̄ ,y)

=

∫
R3

(∫
(Rd−1)3

η(uθ + x̂ , ūθ + ˆ̄x ,vθ + v̂ ) d[π̃ ⊗ ν]u ,ū ,v (x̂ , ˆ̄x , ŷ)
)

dγθ ,h ,t (u , ū ,v ).

Now, letψ h
t ,θ be the Kantorovich potential between θ ∗#µht and θ ∗#ν , and, taking back

the same ξ as in the �rst point, set

Ih ,t :=
∫
B (0 ,r )

?
Sd−1

(
ψ h
t ,θ

) ′
(〈θ |x〉) 〈θ |∇ξ (t , x )〉 dθ dµht (x ),

It :=
∫
B (0 ,r )

?
Sd−1

(
ψt ,θ

) ′ (〈θ |x̄〉) 〈θ |∇ξ (t , x̄ )〉 dθ dµt (x̄ );

we can write

Ih ,t =

? ∫
〈θ |x − y〉 〈θ |∇ξ (t , x )〉 dπθ ,h ,t (x ) dθ ,

It =

? ∫
〈θ |x̄ − y〉 〈θ |∇ξ (t , x̄ )〉 dπθ ,hn ,t (x ) dθ .

147



Chapter 5. Isotropic IDT algorithm

We conveniently de�ne Φθ ,h ,t ,y (x ) := 〈θ |x − y〉〈θ |∇ξ (t , x )〉; then,

∣∣∣Ih ,t − It ∣∣∣2 ≤ ? ∫ ∣∣∣Φθ ,h ,t ,y (x ) − Φθ ,h ,t ,y (x̄ )
∣∣∣2 dπθ ,h ,t (x , x̄ ,y) dθ

≤ Cξ

? ∫
|x − x̄ |2 dπθ ,h ,t (x , x̄ ,y) dθ

≤ Cξ

? ∫
2|〈θ |x − x̄〉|2 + 2|x̂ − ˆ̄x |2 dπθ ,h ,t (x , x̄ ,y) dθ ,

where x = 〈θ |x〉θ + x̂ and x̄ = 〈θ |x̄〉θ + ˆ̄x . Thus,

∣∣∣Ih ,t − It ∣∣∣2 ≤ C

? (∫
|u − ū |2 dγθ ,h ,t (u , ū ,v ) +

∫
|x − x̄ |2 dπ̃θ ,h ,t (x , x̄ )

)
dθ

≤ C
(
SW2 (µ

h
t , µt )

2 + W2 (µ
h
t , µt )

2
)
.

As supp ξ ⊂ [0,T ] × B (0, r ),∫ ∞

0

∣∣∣Ihn ,t − It ∣∣∣2 dt ≤ C

∫ T

0
W2 (µ

hn
t , µt )

2 dt ,

and since W2 (µ
hn
t , µt ) tends to zero, by Lebesgue’s dominated convergence theorem

we get
∫
It dt ∼

∫
Ihn ,t dt , which means

∫ ∞

0

∫ ? (
ψt ,θ

) ′ (〈θ |x̄〉) 〈θ |∇ξ (t , x̄ )〉 dθ dµt (x̄ ) dt

∼
n→∞

∫ ∞

0

∫ ? (
ψ hn
t ,θ

) ′
(〈θ |x〉) 〈θ |∇ξ (t , x )〉 dθ dµhnt (x ) dt .

Recall µhnt is constant on each interval [khn , (k + 1)hn ); hence,

∫ ∞

0

∫ ? (
ψt ,θ

) ′ (〈θ |x̄〉) 〈θ |∇ξ (t , x̄ )〉 dθ dµt (x̄ ) dt

∼
n→∞

hn

∞∑
k=1

∫ ? (
ψ hn
khn ,θ

) ′
(〈θ |x〉) 〈θ |∇Ξn

k (x )〉 dθ dµhnkhn (x ),

where we have set

Ξn
k (x ) :=

1
hn

∫ (k+1)hn

khn
ξ (t , x ) dt .
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However,

∣∣∣∇ξ (khn , x ) − ∇Ξn
k (x )

∣∣∣ ≤ 1
hn

∫ (k+1)hn

khn

∣∣∣∇ξ (khn , x ) − ∇ξ (t , x ) dx
∣∣∣ dt

≤ Cξhn ,

so, since ξ nk (x ) := ξ (khn , x ),

∫ ∞

0

∫ ? (
ψt ,θ

) ′ (〈θ |x̄〉) 〈θ |∇ξ (t , x̄ )〉 dθ dµt (x̄ ) dt

∼
n→∞

hn

∞∑
k=1

∫ ? (
ψ hn
khn ,θ

) ′
(θ ∗) 〈θ |∇ξ nk 〉 dθ dµhnkhn . (5.6.1.b)

3. Using to proposition 1.5.7 on page 38 and proposition 5.1.7 on page 125 and the
optimality of µhkh , if φhk denotes the Kantorovich potential between µhkh and µh

(k−1)h ,

1
hn

∫ 〈
∇φhnk

∣∣∣∣ ∇ξ nk 〉 dµhnkhn = −
∫ ? (

ψ hn
khn ,θ

) ′
(θ ∗) 〈θ |∇ξ nk 〉 dθ dµhnkhn .

Let γ be an optimal transport plan between µhkh and µh
(k−1)h ; then,

∫
ξ nk (x )

ρhnkhn (x ) − ρ
hn
(k−1)hn

(x )

hn
dx =

1
hn

∫ {
ξ nk (y) − ξ

n
k (x )

}
dγ (x ,y),

1
hn

∫ 〈
∇φhnk (x )

∣∣∣∣ ∇ξ nk (x )〉 dµhnkhn (x ) = −
1
hn

∫
〈∇ξ nk (x ) |y − x〉 dγ (x ,y).

and, since
∣∣∣ξ nk (y) − ξ nk (x ) − 〈∇ξ nk (x ) |y − x〉∣∣∣ ≤ C |x − y |2,∫ ∣∣∣ξ nk (y) − ξ nk (x ) − 〈∇ξ nk (x ) |y − x〉∣∣∣ dγ (x ,y) ≤ CW2

(
µhn
(k−1)hn

, µhnkhn

)2
;

so, using (5.5.3.c), we get∣∣∣∣∣∣∣∣
∫

ξ nk (x )
ρhnkhn (x ) − ρ

hn
(k−1)hn

(x )

hn
dx +

∫ ? (
ψ hn
khn ,θ

) ′
(θ ∗)〈θ |∇ξ nk 〉 dθ dµhnkhn

∣∣∣∣∣∣∣∣
≤ Chn .
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This immediately yields

hn

∞∑
k=1

∫ ? (
ψ hn
khn ,θ

) ′
(θ ∗) 〈θ |∇ξ nk 〉 dθ dµhnkhn

∼
n→∞

−

∞∑
k=1

hn

∫
ξ nk (x )

ρhnkhn (x ) − ρ
hn
(k−1)hn

(x )

hn
dx (5.6.1.c)

4. Combining (5.6.1.a), (5.6.1.b), and (5.6.1.c), we get the result. �

5.7 Open questions

5.7.1. The �rst and main question that still need to be investigated, is the convergence
of µt toward the target measureν when t tends to in�nity. When working with discrete
measures only, we should not expect any convergence, as symmetry is preserved
by the algorithm and a discrete solution might require it to be broken. Nonetheless,
convergence might still happen when the measures are absolutely continuous.

The �rst step toward convergence could be to study the stationary points. We
know from theorem 5.6.1 on page 145 that

∂µt
∂t

+ div(vtµt ) = 0 with vt (x ) := −
?
Sd−1

ψ ′t ,θ (〈θ |x〉)θ dθ .

But, does
>
ψ ′t ,θ (θ

∗)θ dθ = 0 implies µt = ν? An answer can easily be given though,
if µt is absolutely continuous with a strictly positive density:

5.7.2. Lemma. For any µ ∈ P (B (0, r )), if µ is absolutely continuous with a strictly

positive density, then µ = ν if and only if∫
Sd−1

ψ ′θ (〈θ |x〉)θ dθ = 0 for µ-a.e. x ,

withψθ the unidimensional Kantorovich potential between θ ∗#µ and θ
∗
#ν .

Proof. If µ = ν , obviously the integral is zero. Conversely, let

Ψ(x ) :=
?
Sd−1

ψθ (〈θ |x〉) dθ .
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Then, Ψ is Lipschitz, di�erentiable almost everywhere, and

∇Ψ(x ) =

?
Sd−1

ψ ′θ (〈θ |x〉)θ dθ .

Thus, if ∇Ψ = 0 almost everywhere, Ψ is constant, and∫
Ψ dµ =

?
Sd−1

∫
ψθ (u) d[θ ∗#µ](u) dθ = 0,

yields Ψ ≡ 0. On the other hand,

1
2

W2 (θ
∗
#µ , θ

∗
#ν )

2 =

∫
ψθD [θ ∗#µ] +

∫
ψ c
θ d[θ ∗#ν], (5.7.2.a)

and
∀u ,v ∈ [−r , r ], ψθ (u) +ψ c

θ (v ) ≤
1
2
|u − v |2.

Taking u = v = 〈θ |y〉 and averaging the last inequality with respect to θ , we get

∀y ∈ B (0, r ), Ψ(y) +
?
Sd−1

ψ c
θ (θ
∗ (y)) dθ ≤ 0.

Then, since Ψ ≡ 0, integrating with respect to ν we get∫ ?
ψ c
θ (θ
∗ (y)) dθ dν (y) ≤ 0.

Then, averaging (5.7.2.a) with respect to θ , we also obtain

1
2

SW2 (µ , ν )
2 =

∫ ?
ψ c
θ (θ
∗ (y)) dθ dν (y) ≤ 0.

As the sliced Wasserstein distance is a distance, this implies µ = ν . �

5.7.3. Another question, although a less important one, regards uniqueness. To obtain
the generalized minimizing movement (µt )t≥0, we have used the compactness of
P (B (0, r )) so many times, that there could be a great number of such curve for any
given starting point µ0 and any target measure ν . For gradient �ows in the space of
probability measures, uniqueness often comes from the convexity of the functional.
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Chapter 5. Isotropic IDT algorithm

However, like the usual Wasserstein distance, it is not di�cult to show the sliced
Wasserstein distance is 2-concave along geodesics: if (µt ) is a geodesic between µ0

and µ1, then

SW2 (µt , ν )
2 ≥ (1 − t )SW2 (µ0 , ν )

2 + tSW2 (µ1 , ν )
2 − t (1 − t )W2 (µ0 , µ1)

2.

This does not prevent uniqueness, but if there is only one possible curve (µt ), we will
have to prove it by other means.
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Synthèse

Beaucoup d’illustrations ont déjà été proposées pour présenter simplement le pro-
blème du transport optimal. On a pu parler de tas de sables à déplacer [45, 62], de
cafés parisiens à fournir en pain [63], de charbon à amener depuis les mines jusqu’aux
centrales électriques [56], etc. Dans un soucis d’originalité, qu’il soit permis d’ajouter
à cette liste l’exemple suivant.

Il existe en Chine de gigantesques complexes industriels, regroupant plusieurs
centaines de milliers d’ouvriers sur quelques kilomètres carrés [25]. Ceux-ci sont logés
sur place, dans des dortoirs. Dans un soucis d’e�cacité, il convient donc d’attribuer à
chaque ouvrier un lit qui ne soit pas trop éloigné de son lieu de travail. Admettons
qu’assigner à quelqu’un travaillant sur la ligne de montage x un lit dans le dortoir y
engendre pour l’entreprise un cout c (x ,y), correspondant par exemple aux frais de
fonctionnement d’un système de navettes. Quelle est alors la meilleure manière de
loger tous les employés ?

La répartition des travailleurs et celle des lits peuvent être représentées par deux
mesures µ et ν, de sorte que µ(A) représente le nombre d’ouvriers travaillant dans la
zone A et ν(B) le nombre de lits disponibles dans la zone B. Supposons qu’il n’y ait
pas de logements super�us, et que la capacité des dortoirs corresponde exactement
aux besoins d’accueil ; cela se traduit par l’égalité∫

dµ(x ) =
∫

dν(y).

Nous pouvons donc considérer que µ et ν sont des mesures de probabilité. La solution
à notre problème est à rechercher sous la forme d’une mesure de probabilité γ sur
l’espace produit, telle que γ(A × B) donne le nombre — ou plutôt, la proportion —
d’ouvriers travaillant dans la zone A et logeant dans la zone B ; ceci implique que µ et

153



ν doivent être les marges de γ :

µ(A) =

∫
x ∈A

dγ(x ,y) et ν(B) =
∫
y∈B

dγ(x ,y).

Notons Γ(µ, ν) l’ensemble de ces mesures γ, appelés « plans de transport ». Le dépla-
cement quotidien des ouvriers entre leur dortoir et leur poste de travail entrainera
alors toujours une dépense au moins égale à

inf
γ∈Γ(µ ,ν)

∫
c (x ,y) dγ(x ,y). (a)

Il n’est pas di�cile de montrer que cet in�mum est toujours atteint : il existe toujours
au moins un plan de transport γ correspondant à une allocation optimale des lits. Il
est cependant très di�cile de caractériser a priori les solutions ; l’enjeu est justement
de calculer un plan γ optimal.

C’est à Leonid Kantorovitch, mathématicien soviétique et récipiendaire du prix
Nobel d’économie en 1975, que l’on doit cette formulation du problème du transport
optimal — non pas en termes d’ouvriers, mais de mesures de probabilité. Pour continuer
dans la veine industrielle chinoise, Kantorovitch a montré dans les années quarante
[35, 36] que le problème pouvait en quelque sorte être transféré sur les employés. Il
su�t en e�et de leur faire porter le coût du transport, de leur faire payer un loyer
pour leur logement, et de compenser cela pour eux par une subvention. Il ne s’agit
pas de gagner de l’argent ainsi, mais d’inciter les ouvriers à trouver eux-même le
lit le mieux placé ; le prix du transport sera donc égal à son cout de fonctionnement
c (x ,y). Notons S(x ) la subvention accordée aux employés de la chaine de montage x ,
et L(y) le loyer d’un lit dans le dortoir y ; Kantorovitch a montré que la valeur des
subventions S et celle des loyers L peuvent être �xées judicieusement, de telle sorte
que :

— les travailleurs reçoivent toujours moins que ce qu’ils ont à dépenser, c’est-à-dire
S(x ) 6 L(y) + c (x ,y) quels que soient x et y ;

— chaque ouvrier peut cependant trouver un lit idéal qui ne lui fera pas perdre
d’argent, pour lequel S(x ) = L(y) + c (x ,y) ;

— il est possible que les employés réussissent tous à trouver un lit idéal.

154



Kantorovitch a montré que, dans ce cas, le cout total de l’opération pour l’entreprise,
qui est donné par la di�érence entre le montant total des subventions et la somme
récupérée par les loyers, est alors∫

S(x ) dµ(x ) −
∫

L(y) dν(y) = min
γ∈Γ(µ ,ν)

∫
c (x ,y) dγ(x ,y).

Les potentiels S et L sont alors appelés des « potentiels de Kantorovitch ».
Notons que si les chaines de montages sont de petits ateliers qui ne sont pas trop

concentrés, il est envisageable que les ouvriers travaillant ensemble en x puissent se re-
trouver dans le même dortoir y = T(x ). Une telle application T fait alors correspondre
µ et ν, ce qui se traduit par

ν(B) = µ(T−1 (B)) quel que soit B,

ou encore ∫
ξ(y) dν(y) =

∫
ξ(T(x )) dµ(x ) ;

on dit alors que T envoie µ sur ν, et l’on note ν = T#µ. Notons qu’à une telle application
est associé un plan de transport γT, dé�ni par

γT (A × B) = µ(A ∩ T−1 (B)).

L’intuition que le transport optimal prend la forme d’une telle application si la source
est su�samment di�use se traduit mathématiquement par un résultat démontré par
Yann Brenier [13, 14] à la �n du xxe siècle : si le cout de transport est égal au carré
de la distance, c (x ,y) = |x − y |2, et si µ est absolument continue, alors il existe une
application T envoyant µ sur ν qui résout le problème du transport optimal, c’est-à-dire
que le plan de transport γT est optimal, et le coût total de transport est

min
γ∈Γ(µ ,ν)

∫
c (x ,y) dγ(x ,y) =

∫
c (x ,y) dγT (x ,y) =

∫
c (x , T(x )) dµ(x ).
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De plus, les potentiels de Kantorovitch S et L sont alors reliés à l’application T par les
relations

y = T(x ) = x − ∇S(x ) et x = T−1 (y) = y + ∇L(y).

Celles-ci traduisent le fait que, pour trouver un logement, il est intéressant d’aller dans
la direction des subventions décroissantes, puisque les subventions sont moindres
lorsque des dortoirs sont proches. Inversement, des loyers plus élevés signalent une
plus grande demande, et donc un plus grand nombre d’ateliers.

Le résultat de M. Brenier résout ainsi un problème ancien, posé d’abord par
Gaspard Monge [45] à la �n du xviiie siècle. Celui-ci avait en e�et essayé de résoudre
le problème du transport optimal en cherchant la solution, non pas sous la forme
d’un plan de transport γ comme Kantorovitch plus tard, mais sous la forme d’une
application T. Le coût total de transport est alors au minimum

inf
ν=T#µ

∫
c (x , T(x )) dµ(x ). (b)

Puisque chaque application T qui fait correspondre µ et ν donne un plan de transport
γT, le problème de Kantorovitch (a) est en fait une extension du problème initial de
Monge (b). Cependant, à l’inverse du premier, le second peut ne pas avoir de solution ;
il peut même ne pas y avoir d’application T telle que ν = T#µ, par exemple si µ est
discrète et que ν est uniforme. Mais si µ est absolument continue, et pour un coût
quadratique, l’application de M. Brenier est solution du problème de Monge, et résout
aussi le problème de Kantorovitch.

Il faut noter qu’en dimension un, il est très facile de résoudre le problème de
Monge. S’il l’on note par F et G les fonctions de répartition de µ et ν respectivement,

F(x ) := µ(] − ∞, x]) et G(y) := ν(] − ∞,y]) ,

alors la solution au problème de Monge pour n’importe quel cout strictement convexe,
c’est-à-dire n’importe quel cout dé�ni par c (x ,y) = h(y − x ) avec h positive et
strictement convexe, est

T(x ) := G−1 (F(x )). (c)
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En dimension plus grande, il est beaucoup plus di�cile de calculer cette solution.
Quelques méthodes ont cependant été développées au �l des années :

— lorsque les mesures de départ et d’arrivées sont discrètes, un algorithme célèbre
a été mis au point par Dimitri Bertsekas [9] ;

— cet algorithme a ensuite été utilisé par Damien Bosc [11] pour traiter le cas de
mesures continues, par approximation ;

— toujours dans le cadre continu, Jean-David Benamou et Yann Brenier [7] ont
aussi proposé une méthode, basée sur une interprétation en termes de méca-
nique des �uides ;

— Sigurd Angenent, Steven Haker et Allen Tannenbaum [4] ont, eux, réussi à
utiliser une méthode de descente de gradient ;

— en�n, Grégoire Loeper et Francesca Rapetti [40] ont pu utiliser avec succès la
méthode de Newton.

Il y a quelques années, Guillaume Carlier, Alfred Galichon et Filippo Santam-
brogio [19] ont cependant proposé une nouvelle méthode pour calculer l’application
optimale de M. Brenier. Leur approche repose sur l’introduction d’un paramètre
t ∈ [0, 1] dans la fonction de cout : par exemple, en dimension deux,

ct (x ,y) = |x1 ,y1 |
2 + t |x2 − y2 |

2.

Ceci revient à dire qu’un déplacement suivant l’axe vertical (nord-sud) coute moins
qu’un déplacement suivant l’axe horizontal (est-ouest). La solution au problème du
transport optimal pour le cout ct est encore donnée par une application, que l’on
notera Tt . Pour t = 1, il s’agit bien entendu de l’application de M. Brenier ; pour
t ∈]0, 1], cette application est aussi reliée à un potentiel de Kantorovitch St via la
relation

Tt (x ) = x − A−1
t ∇St (x ) avec At =

 1 0
0 t

 .
MM. Carlier, Galichon et Santambrogio ont montré que, lorsque t tend vers zéro, Tt

converge vers le réarrangement de Knothe–Rosenblatt.
Ce « réarrangement », introduit dans les années cinquante séparément par Her-

bert Knothe [38] et Murrey Rosenblatt [51], envoie encore µ sur ν, et s’obtient par une
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succession de transformations unidimensionnelles. Par exemple, en dimension deux,
si f (x1 , x2) et д(y1 ,y2) sont les densités de µ et ν, alors

x1 7→

∫
f (x1 , t ) dt et y1 7→

∫
д(y1 , t ) dt

sont deux mesures de probabilité sur la droite réelle, et nous savons comment envoyer
la première sur la seconde, grâce à la formule (c) ; notons x1 7→ T1

K (x1) l’application
ainsi obtenue. Alors,

x2 7→
f (x1 , x2)∫
f (x1 , t ) dt

et y2 7→
д(T1

K (x1),y2)∫
д(T1

K (x1), t ) dt

sont aussi deux mesures de probabilités ; si l’on note x2 7→ T2
K (x1 , x2) l’applica-

tion envoyant l’une sur l’autre, alors le réarrangement de Knothe–Rosenblatt est
TK (x1 , x2) := (T1

K (x1), T2
K (x1 , x2)).

Contrairement à l’application de M. Brenier, ce réarrangement est donc très
facile à calculer explicitement. MM. Carlier, Galichon et Santambrogio ont pourvé que,
lorsque l’une des deux mesures est discrète, l’évolution de l’application Tt entre le
réarrangement et l’application de M. Brenier est guidée par une équation di�érentielle.

La première partie de cette thèse a été consacrée à l’extension de leurs résultats
aux cas de mesures absolument continues. Le problème gagne alors notablement en
complexité.

Tant que t demeure strictement positif, il n’y a pas de grande di�culté. Notons
f et д les densités respectives de µ et ν. Puisque Tt (x ) = x − ∇St (x ) envoie µ sur ν,
pour n’importe quelle fonction test ξ nous avons∫

ξ(y)д(y) dy =
∫

ξ(y) dν(y) =
∫

ξ(Tt (x ))µ(x ) =

∫
ξ(Tt (x )) f (x ) dx .

Un changement de variable donne alors une équation de Monge–Ampère :

f (x ) = д (x − ∇St (x )) det
(
I −A−1

t ∇
2St (x )

)
.

Appliquer le théorème des fonctions implicites permet d’obtenir que t 7→ St est
régulière, et dériver l’équation de Monge–Ampère donne alors une équation aux
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dérivées partielles :

div
(
f

[
Id −A−1

t ∇
2St

] −1
A−1
t

(
∇Ṡt − ȦtA−1

t ∇St
))
= 0. (d)

Cette équation devient cependant singulière lorsque t s’annule, puisque A−1
t est une

matrice diagonale dont les coe�cients font intervenir 1/t .
Ce problème de singularité peut cependant être contourné en faisant un dévelop-

pement de St au premier ordre vis-à-vis du paramètre t . Supposons que nous soyons en
dimension deux ; puisque l’application Tt = Id−A−1

t ∇St converge vers le réarrange-
ment de Knothe-Rosenblatt, et que celui peut s’écrire TK (x1 , x2) = (T1

K (x1), T2
K (x1 , x2)),

nous écrirons
St (x1 , x2) = ut (x1) + tvt (x1 , x2).

Cette décomposition est unique si l’on impose∫
ut (x1) dx1 =

∫
St (x ) dx et

∫
vt (x ) dx2 = 0,

car dans ce cas

ut (x1) :=
∫

St (x1 , x2) dx2 et st (x1 , x2) :=
St (x1 , x2) − ut (x1)

t
.

Alors

Tt (x1 , x2) = Id−
 ∂1ut (x1) + t∂1vt (x1 , x2)

∂2ut (x1 , x2)

 ,
et l’équation (d) perd sa singularité. Elle peut alors être étudiée lorsque t tends vers
zéro. Notons que ce raisonnement se peut transposer en n’importe quelle dimension
d > 2.

Il faut noter que l’aspect le plus délicat de cette étude lorsque t tends vers zéro
provient alors d’une perte de régularité vis-à-vis de la seconde variable, qui empêche
d’appliquer le théorème des fonctions implicites classique comme précédemment.
Cette di�culté peut être contournée en utilisant une version plus forte du théorème,
due à John Nash et Jürgen Moser ; celle-ci nécessite néanmoins de ne plus travailler
qu’avec des mesures extraordinairement régulières, absolument continues, strictement
positives et de classe C∞.
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Il a cependant été possible d’utiliser cette méthode pour calculer numériquement
le transport optimal. L’équation (d), où St (x1 , x2) a été remplacé parut (x1)+tvt (x1 , x2),
peut être décomposé, ce qui donne le système suivant : ∂2

1 ,1u̇t (x1) =
∫
pt (x1 , x2) dx2 ,

div(At∇v̇t ) = qt ,

avec  pt = det(∇2vt ) + t div
( [

Co∇2vt
]∗
∇v̇t

)
,

qt = det(∇2vt ) − (1 − ∂2
2 ,2vt )∂

2
1 ,1u̇t − ∂

2
1 ,1vt ,

Le potentiel St = ut + tvt n’étant dé�ni qu’à une constante près, les deux équations
suivantes peuvent être ajoutées :∫

ut (x1) dx1 = 0 et
∫
vt (x1 , x2) dx2 = 0.

Une discrétisation explicite en temps permet alors d’obtenir les résultats présentés
dans le chapitre 4.

Dans la dernière partie de cette thèse, nous avons étudié l’algorithme idt (Itera-
tive Distribution Transfer), développé par François Pitié, Anil C. Kokaram et Rozenn
Dahyot [49]. Cet algorithme construit une application de transport su�samment
proche de celle de M. Brenier pour convenir à la plupart des applications [50]. Cepen-
dant, ses caractéristiques mathématiques sont encore assez mal connues.

Considérons une mesure de référence ν sur Rd de densité д, et �xons une mesure
de départ µ0 de densité f0, ainsi qu’une première base orthonormale e0 = (e0

1 , . . . , e
0
d )

de Rd . Il est possible de projeter chacune des deux mesures sur les axes donnés par
e0 ; nous obtenons ainsi d couples de mesures unidimensionnelles f 0

i et д0
i , qui sont

données par

e0
i #µ0 = f 0

i (t ) =

∫
x i=t

dµ0 (x ) et e0
i #ν = д

0
i (t ) :=

∫
yi=t

dν(y).
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Nous savons envoyer l’une sur l’autre, grâce à une application t0
i ; posons alors

T0 (x ) :=
d∑
i=1

t0
i (xi )e

0
i .

Cette application n’envoie pas µ0 sur ν, mais la mesure image µ1 := T0#µ0 semble
néanmoins plus proche de ν que µ0. Nous pouvons alors choisir une suite de base (en )

et, en répétant l’opération, construire une suite d’applications (Tn ) et une suite de
mesures (µn ) telles que µn+1 := Tn#µn , où l’application Tn a été construite à l’aide de la
base en , et les mesures µn semblent alors se rapprocher empiriquement de ν si les bases
(en ) forment une suite dense dans l’espace des bases. La convergence mathématique
n’a pu cependant être démontrée par MM. Pitié, Kokaram et Dahyot [49] que dans le
cas de mesures gaussiennes.

Il se trouve que l’algorithme idt peut être interprété en termes de �ot de gradients
pour une fonctionnelle faisant intervenir une certaine distance. En e�et, dans le
problème du transport optimal, la valeur minimale du cout de transport induit une
distance, appelée distance de Wasserstein, entre les deux mesures µ et ν ; notamment,
lorsque ce cout est égal au carré de la distance euclidienne, on dé�nit

W2 (µ, ν)
2 := min

Γ(µ ,ν)

∫
|x − y |2 dγ(x ,y).

L’algorithme idt correspond alors à un schéma d’Euler explicite pour un �ot de
gradients pour la fonctionnelle

F (µ) = d

?
Sd−1

W2 (θ#µ, θ#ν)
2 dθ,

où la fonctionnelle F est aussi discrétisée à chaque étape n et approchée par

F (µ) ≈
d∑
i=1

W2 (e
n
i #µ, e

n
i #ν)

2.

Il se trouve que

SW2 (µ, ν)
2 :=

?
Sd−1

W2 (θ#µ, θ#ν)
2 dθ,
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dé�nit une nouvelle distance, appelée distance de Wasserstein projetée (ou distance
de Super-Wasserstein), qui est équivalente avec la distance de Wasserstein usuelle —
comme je l’ai démontré dans le théorème 5.1.5 (page 123).

Les dernières sections sont consacrées à l’étude du �ot de gradients pour la fonc-
tionnelle F dans l’espace des mesures de probabilité, au sens de la théorie développée
par Luigi Ambrosio, Nicola Gigli et Giuseppe Savaré [3]. Ce �ot, dé�ni comme étant
la limite d’un schéma d’Euler implicite pour F , pourrait en e�et permettre de mieux
comprendre le comportement de l’algorithme idt.
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