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Exercises

1 Tropical algebra and geometry

Exercise 1
Prove the beginner’s dream formula (x⊕ y)n = xn ⊕ yn.

Exercise 2

1. Let P =
∑d

0 aix
i be a tropical polynomial of degree d. Prove that the graph has at most d

corners.

2. What conditions on the coefficients ai must hold in order for the graph of P to have exactly
d corners ? In this case, call x1, . . . , xd the x-coordinate of the corners.

3. Prove that P factors in linear factors : P (x) =
∏

(x⊕ xi).
4. How to make the statement true without the assumption ? (i.e. what should be the multi-
plicity of a root, and what is the multiplicity of the root −∞ ?)

Exercise 3
In analysis we define the exponential function as :

ex =
∞∑
0

xn

n!
.

Let us define the tropical exponential function by replacing all the operations by their tropical
counterparts (be careful : what do division, and factorials correspond to tropically ?).

1. Describe the graph of the tropical exponential and its roots.

2. What about the formulas ex+y = exey ? And exe−x = 1 ?

3. (after the valued fields and Kapranov’s theorem) How is this compatible with the fact that
the exponential has no zeros ?

Exercise 4

1. Is the graph of a tropical polynomial a tropical curve ?

2. What should we do to make it into one ?

3. Show that as in the classical case, where the graph of a polynomial P is defined by the
equation y − P (x) = 0, the tropical graph is defined by the tropical polynomial y ⊕ P (x).

Exercise 5
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Draw the tropical curves associated to the following polynomials and the dual subdivisions of
their Newton polygon.

1. f(x, y) = max(0, x, y, x+ y − 1)

2. f(x, y) = max(0,−x,−y, x− 1, y − 2)

3. f(x, y) = max(0, x, y, 2x− 3, 2y − 4, x+ y − 1)

4. f(x, y) = max(0, x, x+ y − 1, x+ 2y, 2x+ y − 2)

5. Draw a tropical curve of degree 3.

6. Draw a tropical curve of degree 3 with an edge of weight 2.

Exercise 6
Give an equation and the dual subdivision to the following tropical curves. (the bottom left
corner is 0.) Is the equation unique ? Up to which choice ?

2

2

(a) (b) (c)

Exercise 7

1. If Γ is a degree d tropical curve, show that the sum of the areas of the polygons in the dual
subdivision is equal to d2

2
.

2. Show that a degree d tropical curve has at most d2 vertices.

Exercise 8
Going in higher dimension.

1. What does a tropical plane look like ? (Defining a tropical plane as the corner locus of a
function max(a, x+ b, y + c, z + d) in R3.)

2. What should be the definition of a tropical curve in dimension 3 ? Try to draw a tropical line
in R3.

2 Geometry over a valued field

Exercise 9

1. Which of these expressions is a Puiseaux series ?

• c(t) = 1
t

+ t
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• c(t) = t1/2 + t1/3

• c(t) = t
√

2

• c(t) =
∑∞

0 ti

• c(t) =
∑∞

0 t−i

• c(t) =
∑∞
−5 t

i

• c(t) =
∑∞

1 t1/i

2. Let K be a field endowed with a valuation.
a) What is val(1) ?
b) If x 6= 0, how does val(1/x) compare to val(x) ?
c) What can you say about val(−x) ?

3. When they are, write down the valuations for all the Puiseaux series from first question.

4. Write an example of two Puiseaux series c1(t) and c2(t) such that

val(c1(t) + c2(t)) > min(val(c1(t)), val(c2(t))).

Exercise 10
Let D be the line of equation z = w + 1 in K2. Check Kapranov’s theorem for D : the image
of D by val : K2 → (R ∪ {−∞})2 is the tropical line of equation max(0, x, y).

Exercise 11

1. Let u and v be two vectors inside Z2. Prove that the index of the lattice that they span is
equal to their determinant | det(u, v)|.
2. If u1, . . . , un are n independent vectors inside Zn, show that the index of the lattice that they
span is equal to | det(u1, . . . , un)|.
3. ( ) If u1, . . . , ur are r independent vectors inside Zn. Let V be their R-span, and let
L = V ∩ Zn. Show that the index of the lattice spanned by u1, . . . , ur inside L is equal to the
integral length of the wedge product u1 ∧ · · · ∧ un ∈ ΛrZn.

Exercise 12 : around tropical Bezout’s theorem
We say that two tropical curves are transverse if they have a finite number of intersection
points and those intersection points are disjoint from vertices of the curves. If Γ1 and Γ2 are
two transverse tropical curves, and p ∈ Γ1 ∩ Γ2, let (Γ1 · Γ2)p = | det(u1, u2)|, where u1 and u2

are the vectors dual to the edges of Γ1 and Γ2 that contain p. We define the intersection number
of Γ1 and Γ2 to be

Γ1 · Γ2 =
∑

p∈Γ1∩Γ2

(Γ1 · Γ2)p.

1. Show that Γ1 ∪ Γ2 is a tropical curve. Assuming Γ1 and Γ2 are of respective degrees d1 and
d2, what is its degree ?

2. Assuming Γ1 and Γ2 are of respective degrees d1 and d2, prove that Γ1 · Γ2 = d1d2. (Ind. :
compute the area of the Newton polygon in different ways)
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Exercise 13 : tropical Bezout’s theorem in (P1)2

We say that a tropical curve is of bidegree (a, b) if it has a ends going in each of the directions
(0, 1) and (0,−1), and b ends in each of the directions (1, 0) and (−1, 0).

1. What is the Newton polygon of such a tropical curve ?

2. State and prove an analog to Bezout’s theorem for these curves : “two curves of bidegrees
(a1, b1) and (a2, b2) have · intersection points.”

Exercise 14 : tropical Bernstein-Kouchnirenko’s theorem
Let Γ1 and Γ2 be two tropical curves with respective Newton polygons ∆1 and ∆2. Show that
if the curves are transverse, they have A(∆1 + ∆2)−A(∆1)−A(∆2) intersection points.

3 Cone and fans

Exercise 15

1. Which of the following pictures represent a rational polyhedral cone ?

2. We did not give precise definitions of the notions of dimension of a cone, and face of a cone.
Given the intuitive discussions we have had about them, try and formulate precise definitions
for these concepts.

3. Which of the following pictures represent a rational polyhedral fan ? Which ones are pure
dimensional ?

4. Given a rational polyhedral fan Σ, we define the support of Σ, denoted |Σ|, to be the set of
points in Rn that belong to some cone of Σ. Decide which of the following statements are true :
a) The support of Σ is a linear subspace of Rn.
b) The support of Σ is a convex subset of Rn.
c) If x ∈ |Σ| and λ is a non-negative number, then λx ∈ |Σ|.
d) If |Σ1| = |Σ2|, then Σ1 = Σ2.
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Exercise 16

1. What does the balancing condition state if Σ is a one-dimensional fan ? What are the normal
vectors to a codimension one face of Σ ?

2. Let vτ = (1, 0, 0), v1 = (1, 1, 0), v2 = (2, 2, 2) and v3 = (1,−3,−2). Consider the two di-
mensional marked fan Σ ⊂ R3 where rays are directed by v1, v2, v3 and vτ , and we have the
2-dimensional cones σ1 = 〈vτ , v1〉, σ2 = 〈vτ , v2〉 and σ3 = 〈vτ , v3〉.
a) Compute the weights ωΣ(σi) for the three top dimensional cones
b) Compute the normal vectors and check that Σ is balanced at the face τ .

Exercise 17

1. For each of the pictures below, consider the identity function R2 → R2. Decide if it induces
a map of fans. If it does, show how the cones of Σ1 and Σ2 should be subdivided in order for
the map of fans to send cones to cones.

2. If Σ is a pure dimensional fan of dimension k, what is the dimension of f∗(Σ) ?

3. Consider the fan Σ ⊂ R2 consisting of four rays generated by ±e1,±e2.
a) What are the conditions on the weights on the four rays for Σ to be a balanced fan ?
b) Now consider the map f : R2 → R defined by f(x, y) = 2x+ 3y. Describe the fan f∗(Σ) and
check it is balanced.

Exercise 18
Show that the fan in the picture below is not irreducible, and further that it may be decomposed
as a sum of irreducible balanced fans in more than one way.
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Exercise 19
Suppose Σ1,Σ2 are two balanced fans of the same dimension, Σ1 is irreducible, and |Σ2| ⊂ |Σ1|.
Then, up to subdivision, there exists a positive rational number λ such that

Σ1 = λΣ2.

(Ind. : Weights on Σ2 extended by 0 also make Σ1 balanced)

Exercise 20
Let Σ ⊂ R3 be a pure two dimensional fan whose maximal cones consist of the twelve coordinate
orthants of R3.

1. Choose a marking on this fan that makes it into a balanced fan.

2. What are the weights of the maximal cones with your choice of marking ?

3. Consider the linear function f : R3 → R2 given by f(x, y, z) = (x+ y, 2y+ 3z). Describe the
fan f∗(Σ).

4 Abstract tropical curves and their moduli

Exercise 21

1. What are the topological types of abstract, rational, stable, n-pointed tropical curves, for
n = 3, 4, 5 ?

2. What are the minimum and maximum number of compact edges that an abstract rational
stable n-pointed tropical curve can have ?

3. ( ) We say that a tropical curve is of genus g if it is connected and the first Betti number of
the graph as topological space is g. What are the minimum and maximum number of compact
edges that an abstract genus g stable n-pointed tropical curve can have ?

Exercise 22
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1. Describe the space M trop
0,3 .

2. Understand that the space M trop
0,5 is two dimensional, and it is (combinatorially) represented

as the cone over the Petersen graph.

3. What is the dimension of M trop
0,n ? Give a combinatorial description of the tropical curves

parameterized by the top dimensional cones, and by the codimension one cones.

Exercise 23

1. Understand the forgetful morphism π5 : M trop
0,5 →M trop

0,4 .

2. Show that the tropical forgetful morphisms map cones to cones. Characterize which cones it
is bijective on, and which cones it con- tracts to lower dimensional cones.

Exercise 24

1. a) How many top-dimensional cones are there in M trop
0,n for n = 3, 4, 5 ?

b) What about M trop
0,6 ?

c) ( ) More generally, how many top-dimensional cones are there in M trop
0,n ? (Proceed by

induction using the forgetful morphism)

2. a) How many codimension 1 cones are there in M trop
0,n for n = 3, 4, 5 ?

b) What about M trop
0,6 ?

c) ( ) More generally, how many codimension 1 cones are there in M trop
0,n ? (Use the fact

that a codimension 1 cone is adjacent to three faces)

Exercise 25
Recall the map Φ : (ai) ∈ Rn 7−→ (ai + aj) ∈ R(n2 ) and Q the quotient R(n2 )/ImΦ. We have a
map

dist : M trop
0,n → Q,

that associates to a tropical curve the family of distances between its ends.

1. a) Study the function dist : M trop
0,4 → R6.

b) Show that it is injective, and linear on each cone of M trop
0,4 .

c) Show the image cannot be made into a balanced fan in R6.
d) Show that v12 + v13 + v14 lies in the image of Φ and conclude that M trop

0,4 can be made into
a balanced fan in Q.

2. Let Γ be an abstract, rational, tropical, n-pointed curve. Each edge e of Γ defines a two-part
partition Ie t Ice of the set of indices by considering the indices that lie on either side of the
edge. If we denote by l(e) the length of the edge e, show that we have :

dist(Γ) =
∑
e

l(e)vIe ∈ Q.

3. Given a topological type T , consider the cone CT ' Rm
>0 and denote by ei the standard basis

vector corresponding to the i-th edge ei. Show that

dist(ei) = vIei .
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Exercise 26

1. Show that for n > 4, Φ(1, n− 3, . . . , n− 3) =
∑
|I|=2,1/∈I vI .

2. Prove that dist : M trop
0,n → Q is injective.

3. Show that the forgetful map ftn+1 : M trop
0,n+1 →M trop

0,n is universal in the sense that ft−1
n+1(Γ) '

Γ.

Exercise 27
Prove that M trop

0,n is connected through codimension 1.

Exercise 28

1. Given 4 distinct points p1, p2, p3 and p4 on P1, prove we can choose a coordinate on P1

(making it into K ∪ {∞}) such that p1 = 0, p1 = 1, p3 =∞.
The coordinate λ of the remaining p4 is called the cross-ratio of the numbers. It is invariant by
an automorphism of P1 (a map of the form [z : w] 7→ [az+bw : cz+dw], where ( a bc d ) ∈ GL2(K).

2. Taking a coordinate on P1, map (P1
K , p1, p2, p3, p4) to (K∗)2 by the following map :

t ∈ P1\{p1, p2, p3, p4} 7−→
Å
t− p1

t− p3

,
t− p2

t− p4

ã
.

a) Check that this map is well-defined does not depend on the choice of a coordinate up to
multiplication by an element in (K∗)2. (One can use the fact that given two distinct points, there
is a unique rational function on P1 having zero and pole at these points up to multiplication)
b) The image is a curve of bidegree (1, 1).

3. Assuming that K is a valued field, the curve has a tropicalization, which is its image by the
valuation. What can it look like ?

4. If the tropical curve inside R2 has a bounded edge, prove that the valuation of the cross-ratio
of the points is equal to the length of this unique bounded edge of the curve.

5 Moduli spaces of tropical stable maps

Exercise 29
What is the degree and to which moduli space do these tropical curves belong to ?

•

•

•

•

•

•

2

2

(a) (b) (c)
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Exercise 30
We consider degree ∆ curves with n marked points, and the i-th evaluation map

evi : M trop
0,n (R2,∆)→ R2.

1. Given a combinatorial type, write down an expression for evi in a suitable basis of the
orthant.

2. We now choose as a basis the position of P1 and the natural coordinates (zij) inside R(n2 ).
Show that ev1((zij), x, y) = (x, y).

3. Using the same coordinates, show that for any i 6= 1,

evi((zij), x, y) = (x, y) +
1

2

∑
k 6=1,i

(z1k − zik)vk,

where k is any of the |∆|+ n marked points and vk is the slope for the k-th marked point.

Exercise 31
Let ∆ be a collection of primitive vectors inside Z2, and let M trop

0,n (R2,∆) be the moduli space
of rational tropical curves of degree ∆. We have the evaluation map

ev : M trop
0,n (R2,∆)→ (R2)n.

1. What are the dimensions of domain and codomain ? For which value of n do they agree ?

2. If the dimension of both spaces agree and Γ belongs to a top-dimensional cone ofM trop
0,n (R2,∆),

we define the multiplicity mΓ of Γ to be absolute value of the determinant of ev on the cone.
a) Picking a basis comprised of the image of vertex and the edge lengths of the curve, write
down the matrix of the evaluation map.
b) If we pick a different vertex, we get two different matrices. How are they related ?
c) Show that if Γ has a flat vertex or if the complement of marked points in Γ contains a string,
the multiplicity mΓ is 0.
d) Prove that mΓ =

∏
V | det(aV , bV )|, where the product is made over the trivalent vertices of

Γ, and aV , bV ,−aV − bV are the directing vectors of the edges adjacent to V .

3. Compute the multiplicity of the following tropical curves.

2

(a) (b) (c) (d)

Exercise 32
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We consider stable rational tropical curves of degree d inside R2.

1. Prove that the space of deformation of these curves is of dimension 3d− 1.

2. We consider a generic family P of 3d− 1 points inside R2.
a) Prove that only a finite number of degree d rational tropical curves can pass through P .
(Use the evaluation map)
b) Prove that each of these curve has only trivalent vertices and no flat vertices.
c) Let Γ be a curve passing through P . Prove that each component of the complement of marked
points in Γ contains a unique unbounded end.

Exercise 33 : higher genus curve
We consider genus g tropical curves of degree d inside R2.

1. Assume Γ is a simple tropical curve : only trivalent vertices, and no flat vertices.
a) Prove that Γ has 3g − 3 + 3d bounded edges.
b) Prove that each cycle not mapped to a line imposes 2 conditions on the edge lengths of the
curves.
c) Prove that the space of deformation of Γ is of dimension 3d− 1 + g.
We now consider the moduli space M trop

g,n (R2, d), with n = 3d − 1 + g marked points, and the
evaluation map.

2. a) If Γ is not simple, prove that its image under the evaluation map is of dimension strictly
smaller than 2n.
b) Deduce that if P is generic, there is a finite number of degree d genus g tropical curves
passing through P , and that they are simple.
c) Let Γ be a curve passing through P . Prove that each component of the complement of marked
points in Γ contains a unique unbounded end.

Exercise 34
We define N trop

∆ to be the degree of the evaluation map

ev : M trop
0,n (R2,∆)→ (R2)n,

where n = |∆| − 1. Try to compute N trop
∆ in the following cases :

1. ∆ = {(0,−1), (−1, 0), (1, 1)}
2. ∆ = {(0,−1)2, (−1, 0)2, (1, 1)2}
3. ∆ = {(0,−1), (−1, 0), (−1, 2), (2,−1)}
4. ∆ = {(0,−1)2, (−1, 0)2, (0, 1)2, (1, 0)2}

Exercise 35 : curves in (P1)2

We now consider curves inside the quadric surface P1 × P1. We say that a tropical curve is of
bidegree (a, b) if it has a ends in directions (1, 0) and (−1, 0), and b ends in directions (0, 1)
and (0,−1).

1. What is Bezout’s theorem for curves of bidegree (a, b) ?

2. What is the dimension of the moduli space of stable maps M trop
0,n (P1 × P1, (a, b)) of genus 0

curves of bidegree (a, b) with n marked points.
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3. If we choose n = 2a + 2b − 1 marked points in generic position, argue that there is a finite
number of curves, whose count with multiplicity mΓ does not depend on the choice of the
points. We denote it by Na,b.

4. What is the value of Na,0 ?

5. What is the value of Na,1 ?

6. ( ) What is the value of N2,2 ?

Exercise 36 : on the invariance of the degree
Recall that the multiplicity of a tropical curve is defined by mΓ =

∏
V mV .

1. We wish to prove by hand that the degree of ev is well-defined : the weighted number of
rational tropical curves passing through a point configuration P does not depend on the choice
of the points. To do this, we choose a generic path Pt between two generic point configurations
P0 and P1.
a) Prove that if Pt is generic, the count is locally invariant around Pt as each of the curves
passing through Pt can be deformed.
b) Prove that the “worse” thing that can happen when moving P is that a curve with a
quadrivalent vertex can appear. (Use a dimension argument)
c) Write down the possibilities of deformation around the quadrivalent vertex.
d) Prove that we have the local invariance around a curve with a quadrivalent vertex.
e) Conclude.

2. Prove similarly that the refined multiplicity MΓ =
∏

V (qmV /2 − q−mV /2) ∈ Z[q±1/2], which is
a Laurent polynomial, also provides an invariant count.

Exercise 37
Given ∆, is the naive number (i.e. without multiplicity) of degree ∆ rational tropical curves
passing through a generic point configuration P constant ?

6 Kontsevich’s formula and Mikhalkin’s theorem

Exercise 38
We have the map π : M trop

0,n (P2, d)→ R×R× (R2)n−2×M trop
0,4 that is comprised of evaluation of

the first coordinate of first marked point, second coordinate of second marked point, position
of the other marked points, and the image by the forgetful morphism remembering the relative
position of the first four marked points.

1. Taking n = 3d, prove that both spaces have dimension 6d− 1.

2. Prove that the degree of π is constant.

3. Give a geometric description of the preimage of (x0, y0, P3, . . . , Pn, γ).

Exercise 39
Consider the evaluation map ev : M trop

0,n (P2, d) → R × R × (R2)n−2, which is π without the

forgetful map to M trop
0,4 , where n = 3d, and consider the preimage of (x0, y0, P3, . . . , Pn).
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1. Let Γ be a tropical curve passing through P3, . . . , Pn. Prove that Γ contains a unique string :
a path from one unbounded end to another not meeting any point P3, . . . , Pn.

2. Assuming there are no contracted edge on Γ, argue that the curves in the preimage of
(x0, y0, P3, . . . , Pn) having the same combinatorial type of Γ are obtained by deforming the
string.

3. Prove that all the edges adjacent to the string either contain a marked point or are bounded.

4. Prove that unless the string contains no bounded edge, it is only possible to deform the string
in a bounded set. If the string contains no bounded edge, then one direction is unbounded.

5. Using the previous question, prove that the image of ev−1(x0, y0, P3, . . . , Pn) under ft :
M trop

0,n (P2, d)→M trop
0,4 is bounded.

6. Deduce that if γ is large enough, curves in π−1(x0, y0, P3, . . . , Pn, γ) have a contracted edge.

Exercise 40

1. Take a large coordinate γ on the cone 12//34 ofM trop
0,4 and Γ a curve in π−1(x0, y0, P3, . . . , Pn, γ).

It contains a unique bounded edge. Assume this edge is adjacent to a vertex itself adjacent to
the ends 1 and 2.
a) Argue that the image of Γ is in fact passing through 3d− 1 points.
b) Prove that the multiplicity of π at Γ is in fact mΓ.

2. We no longer assume that the contracted edge is adjacent to a vertex itself adjacent to ends
1 and 2.
a) Prove that the image of Γ is reducible. We write it Γ1 ∪ Γ2, of respective degrees d1 and d2.
b) How do the marked point dispatch on the two components ?
c) Show that the multiplicity of π at Γ is equal to

(Γ1 · R× {x0})p1(Γ1 · {y0} × R)p2(Γ1 · Γ2)pmΓ1mΓ2 ,

where p is the point to which the contracted edge is mapped, and p1 and p2 are first and second
marked points.
d) Conversely, compute the contribution of pairs of reducible solutions satisfying the assump-
tions found in the previous question.

3. We now take a large coordinate γ on the cone 13//24 ofM trop
0,4 and Γ a curve in π−1(x0, y0, P3, . . . , Pn, γ).

It still contains a contracted edge.
a) Prove that the image of Γ is reducible. We write it Γ1 ∪ Γ2, of respective degrees d1 and d2.
b) How do the marked point dispatch on the two components ?
c) Show that the multiplicity of π at Γ is equal to

(Γ1 · R× {x0})p1(Γ2 · {y0} × R)p2(Γ1 · Γ2)pmΓ1mΓ2 ,

where p is the point to which the contracted edge is mapped, and p1 and p2 are first and second
marked points.

4. As the degree of π is constant, equate the degrees at two well-chosen points and finish proving
Kontsevich’s formula.
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Exercise 41
The cohomology of P2 is generated by the neutral class 1 = h0, the class Poincaré dual to a
line h = h1, and its square h2 which is Poincaré dual to a point :

H∗(P2,Q) = Qh0 ⊕Qh1 ⊕Qh2.

Let 〈(h0)a0 , (h1)a1 , (h2)a2〉0,d be the number of degree d maps u : (P1, (pi), (qj), (rl))→ P2 up to
automorphisms such that :

- pi are mapped to fixed points Pi ∈ P2 for 1 6 i 6 a2,

- qj are mapped to fixed lines Lj ⊂ P2 for 1 6 j 6 a1,

- rl are mapped to P2,

if this number is finite. Otherwise, we put it equal to 0.

1. a) What is the image of a degree 0 map ?
b) How many marked points can it have ?
c) Show that the only non-zero invariants for d = 0 are obtained for (a0, a1, a2) = (1, 2, 0) and
(2, 0, 1).

2. Argue that if d > 1 and a0 > 0, the number is 0.

3. a) If d > 1, a0 = 0 and a1 > 1, prove that

〈(h1)a1 , (h2)a2〉0,d = d〈(h1)a1−1, (h2)a2〉0,d.

Deduce that you can assume a1 = 0 as well.
b) Show that 〈(h2)a2〉0,d = 0 unless a2 = 3d− 1, where the value is Nd.

4. We set

Φ(x0, x1, x2) =
∑

a0,a1,a2,d

xa00

a0!

xa11

a1!

xa22

a2!
〈(h0)a0 , (h1)a1 , (h2)a2〉0,d.

Show that we have

Φ(x0, x1, x2) =
1

2
(x0x

2
1 + x2

0x2) +
∑
d>1

Nd
x3d−1

2

(3d− 1)!
edx1 .

This series is called the Gromov-Witten potential. We use it in the next exercise.

Exercise 42
We consider the Gromov-Witten potential Φ from the previous question and the cohomology
of P2 with coefficients in the ring of power series Q[[x0, x1, x2]], whose base is given by h0, h1, h2.
Recall that as a (graded) algebra, we have

H∗(P2, K) ' K[h]/(h3).

We introduce on H∗(P2,Q[[x0, x1, x2]]) the following weird product

hi ∗ hj =
2∑

k=0

Φijkh
2−k,
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for 0 6 i, j 6 2, where Φijk is the third partial derivative of Φ.

1. Prove that when x0 = x1 = x2 = 0, we recover the usual cup-product on H∗(P2,Q) '
Q[h]/(h3).

2. Check that the only non-zero third partial derivatives involving a derivation with respect to
x0 are

Φ011 = Φ002 = 1.

3. Show that even for this weird product, h0 is the neutral element.

4. Compute the three products h1 ∗ h1, h2 ∗ h2 and h1 ∗ h2 in terms of the partial derivatives of
Φ.

5. Prove that the above product is associative if and only if one has the following equation :

Φ111Φ122 + Φ222 = Φ2
112.

(Notice one has only to check the associativity for h1 ∗ h1 ∗ h2 and h1 ∗ h2 ∗ h2 products.)

6. Prove the associativity using Kontsevich’s formula.

Exercise 43
We now consider curves inside the quadric surface P1×P1. Recall the definition of the numbers
Na,b. We consider the map

π : M trop
0,n (P1 × P1, (a, b))→ R× R× (R2)n−2 ×M trop

0,4 ,

as in the proof of Kontsevich’s formula : first coordinate of first marked point, second coordinate
of second marked point, evaluation of remaining marked points, cross-ratio of first four marked
points.

1. We take n = 2a+ 2b. Show that both spaces have the same dimension.

2. Recall that Na,b is the number of bidegree (a, b) rational curve passing through 2a + 2b− 1
points. Adapt the proof from Kontsevich’s formula to prove the following recursive formula

Na,b+
∑

a1+a2=a
b1+b2=b

a1b1(a1b2+a2b1)
(

2a+2b−4
2a1+2b1−1

)
Na1,b1Na2,b2 =

∑
a1+a2=a
b1+b2=b

a1b2(a1b2+a2b1)
(

2a+2b−4
2a1+2b1−2

)
Na1,b1Na2,b2 .

Proceed as follows :

- Notice that the degree of π is well-defined.

- Prove that points with a large coordinate on M trop
0,4 in type 12//34 and 13//24 have a

contracted edge.

- Compute the multiplicity of π at curves having a unique contracted bounded edge.

- Equate the degree of π at two points with large coordinate on M trop
0,4 in type 12//34 and

13//24.
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Exercise 44
The cohomology ring of (P1)2 is given by

H∗((P1)2,Q) = Q1⊕ (Qα⊕Qβ)⊕Qαβ,

where α2 = β2 = 0. As in the case of the projective plane, we consider the “Gromov-Witten
invariants” of (P1)2 :

〈1a0 , αaα , baβ , (αβ)a2〉0,(a,b)
is the up to automorphisms number of bidegree (a, b) maps u : P1 → (P1)2 mapping the
a0 + aα + aβ + a2 marked points to nothing/vertical lines/horizontal lines/points, or 0 if this
number is infinite.

1. Assume (a, b) = (0, 0). Prove that the only non-zero 〈1a0 , αaα , baβ , (αβ)a2〉0,(0,0) are obtained
for tuples

(2, 0, 0, 1), (1, 1, 1, 0).

2. a) Prove that if (a, b) 6= (0, 0) and a0 > 0, we have 〈1a0 , αaα , baβ , (αβ)a2〉0,(a,b) = 0.
b) Prove that if aα > 1, we have

〈αaα , baβ , (αβ)a2〉0,(a,b) = a〈αaα−1, baβ , (αβ)a2〉0,(a,b),

and if aβ > 1,
〈αaα , baβ , (αβ)a2〉0,(a,b) = b〈αaα , baβ−1, (αβ)a2〉0,(a,b).

Thus, we can assume aα = aβ = 0.
c) Prove that 〈(αβ)a2〉0,(a,b) = 0 unless a2 = 2a+ 2b− 1 where the value is Na,b.

3. We consider the Gromov-Witten potential

Φ(x0, xα, xβ, x2) =
∑

a0,aα,aβ ,a2,(a,b)

xa00

a0!

xaαα
aα!

x
aβ
β

aβ!

xa22

a2!
〈1a0 , αaα , βaβ , (αβ)a2〉0,(a,b).

Show that the series admits the following form :

Φ =
1

2
x2

0x2 + xaxb +
∑

(a,b)6=(0,0)

N(a,b)
x2a+2b−1

2

(2a+ 2b− 1)!
eaxα+bxβ .

4. We define the following weird product on the cohomology ring of (P1)2 with coefficients in
the ring of power series Q[[x0, xa, xb, x2]] : let PD(1) = αβ, PD(αβ) = 1, PD(α) = β and
PD(β) = α. Then, for h, h′ ∈ {1, α, β, αβ},

h ∗ h′ =
∑

k∈{1,α,β,αβ}

Φhh′kPD(k).

a) Show that 1 is still a neutral element for ∗.
b) As in the case of P2, show that it is associative using Kontsevich’s formula for (P1)2.

Exercise 45
Can you figure out a three dimensional version of Kontsevich’s formula ?
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