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Abstract
Consider any fixed graph whose edges have been randomly and indepen-

dently oriented, and write {S  i} to indicate that there is an oriented
path going from a vertex s ∈ S to vertex i. Narayanan (2016) proved that
for any set S and any two vertices i and j, {S  i} and {S  j} are
positively correlated. His proof relies on the Ahlswede-Daykin inequality, a
rather advanced tool of probabilistic combinatorics.

In this short note, I give an elementary proof of the following, stronger
result: writing V for the vertex set of the graph, for any source set S,
the events {S  i}, i ∈ V , are positively associated – meaning that the
expectation of the product of increasing functionals of the family {S  i}
for i ∈ V is greater than the product of their expectations.

1 Introduction

Oriented percolation is the study of connectivity in a random oriented graph. In
most settings, one starts from a graph with a fixed orientation and then keeps
each edge with a given probability. Classical such models include the north-east
lattice [3] and the hypercube [5].

Another broad and natural class of random oriented graphs is obtained by starting
from a fixed graph and then orienting each edge, independently of the orientations
of other edges. Note that, in the general case, the orientations of the edges need
not be unbiased: some edges can be allowed to have a higher probability to point
towards one of their ends than towards the other. Percolation on such randomly
oriented graphs has been studied, e.g. in [7], and more recently in [8], which mo-
tivated the present work.

In [8], Narayanan showed that if the edges of any fixed graph are randomly and
independently oriented, then writing {S  i} to indicate that there is an oriented
path going from a vertex s ∈ S to vertex i, we have

P(S  i, S  j) > P(S  i)P(S  j) .
The aim of this note is to strengthen and simplify the proof of this result. More
specifically, let V be the vertex set of the graph. We prove that the events {S  i},
i ∈ V , are positively associated, without resorting to advanced results such as the
Ahlswede–Daykin inequality [1].
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1.1 Positive association and related notions

There are many ways to formalize the idea of a positive dependence between the
random variables of a family X = (Xi)i∈I . A straightforward, weak one is to ask
that these variables be pairwise positively correlated, i.e.

∀i, j ∈ I, E(XiXj) > E(Xi)E(Xj) .

A much stronger condition, due to [4], is known as positive association. In the
following definition and throughout the rest of this note, we use bold letters to
denote vectors, as in X = (Xi)i∈I , and we write X 6 X′ to say that Xi 6 X ′i for
all i. Finally, a function f : RI → R is said to be increasing when X 6 X′ =⇒
f(X) 6 f(X′).

Definition 1.1. The random vector X = (Xi)i∈I is said to be positively associated
when, for all increasing functions f and g,

E(f(X)g(X)) > E(f(X))E(g(X))

whenever these expectations exist.

Without further mention, we only consider test functions f and g for which
E(f(X)), E(g(X)) and E(f(X)g(X)) exist.

We say that the events Ai, i ∈ I, are positively associated when the corresponding
vector of indicator variables (1Ai

)i∈I is positively associated. Similarly, a random
subset R of the fixed set I can be seen as the vector

R =
(
1{i∈R}

)
i∈I

,

so that R is said to be positively associated when the events {i ∈ R}, i ∈ I, are.
This is equivalent to saying that for any increasing functions f and g from the
power set of I to R,

E(f(R)g(R)) > E(f(R))E(g(R)) ,

where f being increasing is understood to mean that r′ ⊂ r =⇒ f(r′) 6 f(r).

Positive association is famous for the FKG theorem, which states that it is implied
by a lattice condition that can sometimes be very easy to check [6]. Another reason
why it is so useful is that it implies weaker positive dependence notions that have
to be checked in applications. One example of this is the existence of increasing
couplings and the corresponding notion of positive relation used in the Stein–Chen
method – see e.g, [2] and [9].

1.2 Notation

Let us fix some notation to be used throughout the rest of this document.

We study the simple graph G = (V,E). Unless explicitly specified otherwise, V is
assumed to be finite and we denote by |V | its cardinality. The edges of G have a
random orientation that is independent of the orientations of other edges and we
write {i→ j} to indicate that the edge {ij} is oriented towards j. Formally, we are
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thus given a family of events ({i→ j}, {ij} ∈ E) such that {i→ j} = {j → i}c

and for all {ij}, {i→ j} ⊥⊥ ({k → `}, {k`} 6= {ij}).

Finally, for every pair of vertices i and j, we write {i j} for the event that there
exists an oriented path going from i to j. Similarly, for every source set S we let
{S  i} = ⋃

j∈S{j  i} be the event that there is an oriented path from S to i,
and for every target set T we let {i T} = ⋃

j∈T{i j} be the event that there
is an oriented path from i to T . If there is an ambiguity regarding which graph is
considered for these events, we will specify it with the notation {i G j}.

2 Positive association of the percolation cluster

2.1 Preliminary lemma

Lemma 2.1. Let Γ be a finite set and let R be a positively associated random subset
of Γ. Let Xr

i , r ⊂ Γ and i ∈ V , be a family of events on the same probability space
as R with the property that

(i) r′ ⊂ r =⇒ Xr′
i ⊂ Xr

i , ∀i ∈ V .

(ii) For all r ⊂ Γ, (Xr
i )i∈V is positively associated and independent of R.

For all i ∈ V , define XR
i by

XR
i :=

⋃
r⊂Γ
{R = r} ∩Xr

i .

Then, the events XR
i , i ∈ V , are positively associated.

Proof. Let f and g be two increasing functions. We have

E
(
f(XR)g(XR)

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)1{R=r}

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)

)
P(R = r)

>
∑
r⊂Γ

E(f(Xr))E(g(Xr))P(R = r) ,

because Xr ⊥⊥ R and Xr is positively associated. Now, let u : r 7→ E(f(Xr)) and
v : r 7→ E(g(Xr)), so that the last sum is E(u(R)v(R)). Note that u and v are
increasing, since f and g are and, by hypothesis, r′ ⊂ r =⇒ Xr′

6 Xr. Therefore,
by the positive association of R,

E
(
u(R)v(R)

)
> E(u(R))E(v(R)) .

Finally, using again the independence of Xr and R, we have E(u(R)) = E(f(XR))
and E(v(R)) = E(g(XR)), which concludes the proof.
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2.2 Main result

Theorem 2.2. Let G be a finite graph with vertex set V , whose edges have been
randomly and independently oriented. Then, for any source set S, the events
{S  i}, i ∈ V , are positively associated, i.e., for all increasing functions f and
g and writing X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Our proof uses the same induction on the number of vertices as Narayanan’s.
The difference is that we use Lemma 2.1 rather than the Ahlswede–Daykin inequal-
ity to propagate the positive dependence.

The theorem is trivial for the graph consisting of a single vertex (a family of a
single variable being always positively associated) so let us assume that it holds
for every graph with strictly less than |V | vertices.

Let Γ be the neighborhood of S, i.e.

Γ =
{
v ∈ V \ S : ∃s ∈ S s.t. {vs} ∈ E

}
.

Then, let R be the random subset of Γ defined by

R =
{
v ∈ Γ : ∃s ∈ S s.t. s→ v

}
.

Observe that the events {i ∈ R}, i ∈ Γ are independent, so that the set R is
positively associated.

Next, let H be the subgraph of G induced by V \ S. Note that, for all i ∈ V \ S,{
S

G i
}

=
{
R

H i
}
.

For every fixed r ⊂ Γ, the family {r H i} for i ∈ V \S is independent of R because
it depends only on the orientations of the edges of H, while R depends only on
the orientations of the edges of G that go from S to Γ – and these two sets of
edges are disjoint. Moreover, by the induction hypothesis, the events {r H i},
i ∈ V \ S, are positively associated. Since for fixed sets r and r′ such that r′ ⊂ r,
{r′  i} =⇒ {r  i} for all vertices, we can apply Lemma 2.1 to conclude that
the events {R i}, i ∈ V \ S, are positively associated.

To conclude the proof, note that the events {S  i} are certain for i ∈ S and
that the union of a family of positively associated events and of a family of certain
events is still positively related.

2.3 Corollaries

Corollary 2.3. Let G be a finite graph with independently oriented edges. For
any target set T , the events {i T}, i ∈ V , are positively associated.

Proof. Consider the randomly oriented graph H obtained by reversing the orien-
tation of the edges of G, i.e. such that {i H→ j} = {j G→ i}. Then for all i ∈ V ,

{i G T} = {T H i} ,
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and we already know from Theorem 2.2 that the events {T H i}, i ∈ V , are
positively associated.

Corollary 2.4. Let G be an infinite graph with independently oriented edges. Let
f and g be increasing, non-negative functions on RV that depend only on a finite
number of coordinates (i.e. such that there exists a finite set U ⊂ V and f̃ : RU →
[0,+∞[ such that f = f̃ ◦ ϕ, where ϕ is the canonical surjection from RV to RU).
Then, for any source set S, letting X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Let Gn be an increasing sequence of finite graphs such that G = ⋃
n Gn,

and for all i ∈ V , let
X

(n)
i =

{
S

Gn i
}
,

so that X(n)
i ⊂ X

(n+1)
i and Xi = ⋃

n X
(n)
i . Since the functions f and g are in-

creasing, so are the sequences f(X(n)) and g(X(n)). Thus, using Theorem 2.2 and
monotone convergence,

E

(
lim

n
f
(
X(n)

)
g
(
X(n)

))
> E

(
lim

n
f
(
X(n)

))
E

(
lim

n
g
(
X(n)

))
.

Finally, if f and g depend on a finite number of eventsXi, then for every realization
of X we have limn f(X(n)) = f(X) and limn g(X(n)) = g(X).

Corollary 2.5 (Narayanan, 2016). For any (possibly infinite) graph with indepen-
dently oriented edges, for any source set S and for any two vertices i and j,

P(S  i, S  j) > P(S  i)P(S  j)

Proof. Take f : (xk)k∈V 7→ xi and g : (xk)k∈V 7→ xj in Corollary 2.4.

Corollary 2.6. Let G be a finite graph with independently oriented edges and
vertex set V . For any source set S, let

N =
∑

i∈V \S
1{S i}

denote the size of the oriented percolation cluster of G, and set λ = E(N). Then,

dTV
(
N, Poisson(λ)

)
6 min(1, λ−1)

Var(N)− λ+ 2
∑

i∈V \S
P(S  i)2

 ,

where dTV denotes the total variation distance.

Proof. This is a direct application of the Stein–Chen method to the positively
related variables 1{S i}, i ∈ V \ S – see e.g. Theorem 4.20 in [9].

The interest of Corollary 2.6 is that one only needs a suitable upper bound on
Cov(1{S i}, 1{S j}) to show that the size of the oriented percolation cluster is
Poissonian.
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