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Abstract

The mean age at which parents give birth is an important notion in
demography, ecology and evolution, where it is used as a measure of gener-
ation time. A standard way to quantify it is to compute the mean age of
the parents of all offspring produced by a cohort, and the resulting measure
is thought to represent the mean age at which a typical parent produces
offspring. In this note, I explain why this interpretation is problematic. I
also introduce a new measure of the mean age at reproduction and show
that it can be very different from the mean age of parents of offspring of
a cohort. In particular, the mean age of parents of offspring of a cohort
systematically overestimates the mean age at reproduction, and can even
be greater than the expected lifespan of parents.

1 Introduction

The mean age at reproduction is a central notion in the study of the evolution of
reproductive timing and of the slow-fast continuum. It also plays an important role
in demography. However, as with many descriptors of populations, it is not clear
how it should be defined – let alone quantified in practice. A standard measure of it
is themean age of parents of offspring produced by a cohort, also frequently referred
to as the cohort generation time. To obtain it, consider all offspring produced by
a cohort of newborns over its lifetime; for each of these offspring, record the age
that their parents (mother, in the case of a female-based model) had when the
offspring was born; finally, take the average of these ages.

It is straightforward to compute this quantity from complete census data. In prac-
tice however, it is usually estimated from life-tables using the following formula:

µ1 =
∫+∞

0 tm(t) `(t) dt∫+∞
0 m(t) `(t) dt

. (1)
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In this expression, the survivorship function ` gives the probability that an individ-
ual of the chosen cohort reaches age t, and the age-specific fertility m represents its
rate of offspring production in such a way that, assuming the individual remains
alive between ages a and b, the expected number of offspring it will produce in that
interval of time is

∫ b
a m(t) dt. There is also a discrete-time version of formula (1):

µ1 =
∑+∞
t=1 t `tmt∑+∞
t=1 `tmt

, (2)

where `t is the probability that an individual survives to age t and mt is the
expected number of offspring produced at age t by individuals who reach that
age.

Formulas (1) and (2) go back a long way and are ubiquitous in the literature.
They have been popularized by classic references such as Keyfitz (1968) and Coale
(1972) in demography, and Charlesworth (1994) and Caswell (2001) in biology.
They can also be found in more recent works of reference, including Jørgensen and
Fath (2008), Rockwood (2015) and Kliman (2016).

A consensus interpretation of µ1 is that it represents the mean age at which a
typical parent produces offspring. The aim of this note is to show that this inter-
pretation is inaccurate and can be problematic in practice. To do so, I introduce a
more direct measure of the mean age at reproduction of a typical parent. Consider
a typical parent, and compute the average of the ages at which it gives birth to
its offspring. The expected value of this average is what we term the mean age at
reproduction. Under standard assumptions, it is given by

τ = 1
c

∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

(
1− e−

∫ t

0 m(s) ds
)
f(t) dt , (3)

where f denotes the probability density function of the lifespan of an individual
and the constant

c =
∫ +∞

0

(
1− e−

∫ t

0 m(s) ds
)
f(t) dt (4)

is the fraction of individuals that produce offspring during their lifetime. As with
µ1, there is a discrete-time formula for τ :

τ = 1
c

∑
t>1

∑t
s=1 sms∑t
s=1 ms

(
1−

t∏
s=1

e−ms

)
pt , (5)

where pt = `t− `t+1 is the probability mass function of the lifespans of individuals
and

c =
∑
t>1

(
1−

t∏
s=1

e−ms

)
pt . (6)

Using the expressions of µ1 and of τ , we show that these two quantities can dif-
fer greatly, even in the most simple models. We also prove that µ1 is always
greater than τ , and that the difference between the two can be arbitrarily large.
Finally, comparing the two measures numerically for 3871 real-world models from
the Compadre and Comadre databases, we obtain an average discrepancy of
20.6% and find than in one model out of four they differ by more than 30%.
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2 Interpretation of the expressions of µ1 and τ

The detailed derivations of the expressions of µ1 and τ can be found in the Ap-
pendix. A brief overview of some of the mathematical notions on which they rely
is provided in the Online Supplements. Here, we present the assumptions behind
the formulas and explain what the quantities µ1 and τ correspond to. Note that,
although they are seldom made explicit, the following mathematical assumptions
are essential to the expressions of µ1 given in the introduction.

In the continuous-time setting, we assume (1) that the lifetimes of individuals are
independent copies of a random variable T such that P(T > t) = `(t); and (2)
that births are punctual random events that occur while individuals are alive (but
are independent of everything else), and that there exists a function m such that
the expected number of offspring produced by any individual alive between ages
a and b is

∫ b
a m(t) dt – in other words, that the birth events are the points of a

point process with intensity m. Such models are known as Crump-Mode-Jagers
processes (Crump and Mode, 1968, 1969; Jagers, 1969) and are also sometimes
referred to as generalized branching processes.

In the discrete-time setting, (2) is replaced by the assumption that at each age
t = 1, 2, . . . at which an individual is alive, it produces a random number of
offspring that is independent of everything else and has mean mt.

Under these hypotheses, if we let N be the random variable corresponding to the
number of offspring produced by a typical individual over its lifetime and S be
the sum of the ages at which it produces them, then the quantity µ1 given in
formulas (1) and (2) can rigorously be interpreted as

µ1 = E(S)
E(N) , (7)

where E( · ) denotes the expected value (see Appendix B for details). Contrary to
what is often claimed, this is neither the average of the ages at which the individual
produces offspring, which would be the random variable S/N , nor the expected
value of this average, which would be E(S/N). However, under the assumption
that individuals are independent, the average of the ages of the parents of the
offspring produced by a cohort goes to µ1 as the size of the cohort goes to infinity.
This justifies the interpretation of µ1 as the “mean age of parents of offspring
produced by a cohort”.

A natural measure for the mean age at reproduction would be the expected value
of S/N , the average age at which an individual produces offspring. However, this
average is well-defined only when the individual produces some offspring, i.e. when
N > 0. Thus, we define our measure τ to be the conditional expectation

τ = E(S/N |N > 0) . (8)

Equivalently, τ can be defined as follows: consider a typical parent (i.e. sample
an individual uniformly at random among all individuals that produce some off-
spring), and denote by Ñ its number of offspring and by S̃ the sum of the ages at
which it produces them. Then,

τ = E
(
S̃/Ñ

)
. (9)
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Assuming that birth events form a Poisson point process (or, in the discrete-time
setting, that individuals produce a Poissonian number of offspring), we prove in
Appendix C that τ is given by formula (3) (resp. (5) in discrete time). Observe
that while the interpretation of µ1 as an average on a large cohort hinges crucially
on the independence of individuals, this hypothesis is not used in the derivation
of τ because it is truly a characteristic of individuals, as opposed to µ1 which is a
property of the cohort.

Sometimes, especially when studying evolution, one is interested in the average
of a function z of the ages at which a parent produces offspring, rather than in
the average of the ages themselves.1 In that case, letting A be uniformly chosen
among the ages at which a typical parent produces offspring, for every function z,

E
(
z(A)

)
= 1

c

∫ +∞

0

∫ t
0 z(s)m(s) ds∫ t

0 m(s) ds

(
1− e−

∫ t

0 m(s) ds
)
f(t) dt , (10)

with the constant c given in equation (4).

Finally, expressions of µ1 are also available for more general population structures.
For instance, in matrix population models, if we let S be the survival matrix
and F be the fertility matrix (i.e. if we decompose the projection matrix A into
A = S + F to separate survival probabilities from fertilities) and denote by w the
stable distribution of the population (the dominant right-eigenvector of A) and
e = (1, . . . , 1) the row vector consisting only of ones, then we can use the following
modern version of the classic formula of Cochran and Ellner (1992), which can be
found in Ellner (2018):

µ1 = eF(I− S)−2Fw
eF(I− S)−1Fw

. (11)

Note that (I − S)−1 = ∑
t>1 St−1 and that (I − S)−2 = ∑

t>1 tSt−1, so that this
expression closely parallels (2). The entries of e represent the weight given to each
type of offspring when computing the average age of the parents. Should we wish
to give more importance to some offspring type, any vector with positive entries
could be used in place of e – in fact Cochran and Ellner (1992) suggest using the
reproductive values as weights. See Steiner et al. (2014) and Ellner (2018) for more
on this.

As explained in Appendix C, there does not seem to be a simple analogue of
equation (11) for τ . Nevertheless, its definition as the mean age at which a typical
parent produces offspring still applies in the context of matrix population models,
and it can be estimated numerically via individual-based simulations (see Online
Supplement S6).

1 This was pointed out by Mauricio González-Forero.
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3 Examples

3.1 Theoretical examples

Let us start with a simple but fundamental example, where individuals reproduce
at constant rate m. In that case,

µ1 =
E
(∫ T

0 msds
)

E
(∫ T

0 mds
) = 1

2
E(T 2)
E(T ) (12)

and

τ = E

∫ T̃0 msds∫ T̃
0 mds

 = 1
2 E

(
T̃
)
, (13)

where T is the lifespan of individuals and T̃ the lifespan of parents. The expression
of τ is unsurprising: when birth events are uniformly distributed on the lifetime
of individuals, on average they occur in the middle of their life. Also, since

E
(
T̃
)

=
E
(
T
(
1− e−mT

))
E(1− e−mT ) , (14)

and that for all t > 0, 1− e−mt increases to 1 as m goes to infinity, it follows from
the monotone convergence theorem that

E
(
T̃
)
→ E(T ) as m→ +∞ . (15)

By a similar argument (see Online Supplement S3), we also have

E
(
T̃
)
→ E(T 2)

E(T ) as m→ 0 . (16)

Furthermore, since E(T̃ ) is a decreasing function of m, we conclude that when
individuals reproduce at a constant rate,

1
2E(T ) 6 τ 6 µ1 . (17)

In fact, the inequality τ 6 µ1 holds for general age-specific fertility functions, as
shown in Online Supplements S4.

To make this example more concrete, let us further assume that individuals die at
constant rate η, so that T is an exponential variable and that `(t) = e−ηt. In that
case, we get

µ1 = 1
η

and τ = 1
2 η

(
1 + 1

1 +m/η

)
. (18)

Note that here µ1 is also equal to the expected lifespan in the population. Inter-
preting it as the mean age at which parents reproduce would therefore lead to a
contradiction, because – in the case where the fertility m is large enough, so that
most individuals get to reproduce during their lifetime and that the lifespan of a
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typical parent is not very different from that of a typical individual – this would
imply that, on average, the age at which an individual reproduces is the same
as the age at which it dies. This is absurd, because unless individuals reproduce
exactly when they die, the former has to be smaller than the latter.

From (18), we also see that for m/η large enough, µ1 ≈ 2τ . For m = η, which
corresponds to the minimum ratio m/η for a viable population, the difference is
already 25% of the value of µ1. The relative difference between µ1 and τ as a
function of m/η is plotted in Figure 1.
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Figure 1: Relative difference between µ1 and τ as a function of the parameters of the
models considered. Left, the continuous-time model in which individuals give birth
at constant rate m and die at constant rate η. Right, the discrete-time model in
which they survive from one year to the other with probability p and give birth to
Poisson(m) offspring each year. Dashed lines indicate values of the parameters for
which the population is not viable in the long term.

Now consider the closely related discrete-time model where individuals survive
from one year to the other with probability p and produce Poisson(m) offspring
at each age t > 1, so that

pt = (1− p) pt and `t = pt , (19)

After straightforward calculations, we find that the numerator in formula (2),
which corresponds to the mean sum of the ages at childbirth, is mp/(1− p)2 and
that the denominator is mp/(1− p). As a result,

µ1 = 1
1− p . (20)

Note that this model can also be seen as a 1 × 1 matrix population model with
survival matrix S = (p) and fertility matrix F = (m), so formula (11) can also be
used and gives the same result.

Because E(T ) = p/(1− p), we see that

µ1 = E(T ) + 1 , (21)
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which also corresponds to the expected lifespan of individuals that reach age 1.
For the same reason as before, this implies that µ1 is not credible as an estimate
of the mean age at which a typical parent produces offspring.

After standard calculations (see Online Supplement S5), we find that

τ = 1
2

(
1

1− p + 1
1− p e−m

)
. (22)

As previously, 1
2µ1 6 τ 6 µ1, but the difference between µ1 and τ can be quite

high, even for very reasonable values of p and m: for instance, with p = 0.5 and
m = 2 both measures differ by 23% of the value of µ1; for p = 0.9 and m = 2, by
44%. Again, this is illustrated in Figure 1.

3.2 Real-world examples

The examples of the previous section show that µ1 and τ can be very different,
even in the most simple models. But do they differ significantly in practice? To
answer this question, µ1 and τ were calculated for every model of the Compadre
Plant Matrix Database and Comadre Animal Matrix Database for which this
could be done. Because there is no formula for τ in matrix population models, it
was estimated numerically in such a way that, for each estimated value, the width
of the 95% confidence interval was less than 2% of the estimated value itself (see
Online Supplement S6 for details). Figure 2 gives the distribution of the relative
difference between the two quantities, computed as ∆% = 100(µ1 − τ)/µ1, and
Table 1 lists some statistics of this distribution. These conclusively show that the
measures µ1 and τ differ significantly for most real-world models. In particular,
the fact that the median of (µ1 − τ)/µ1 is of order 20% means that, by using µ1
to quantify the mean age at reproduction, one overestimates its actual value by
more than 25% in half of the cases.
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Figure 2: Distribution of the relative difference between µ1 and τ for the Compadre
and Comadre databases. The difference is given as a percentage of µ1; for instance,
a 30% difference means that τ = 0.7µ1.
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Mean 1st quartile Median 3rd quartile
Compadre 19.97 05.26 17.73 30.49
Comadre 22.16 12.54 22.60 31.14

Table 1: Statistics of the distribution of (µ1 − τ)/µ1 for the Compadre
and Comadre databases. All values are percentages.

For a detailed example of model in which µ1 and τ differ greatly, see the Online
Supplement S7. This example is particularly interesting because it illustrates the
fact that µ1 can be greater than the expected lifespan conditional on reproduction,
which decisively rules out its interpretation as the mean age at reproduction.

Before closing this section, let us comment on the fact that some models (152 out
of 3871) appear to have τ < µ1. These are in fact models for which τ is very
close to µ1, but because of the uncertainty in its estimation appears to be slightly
smaller than it. Indeed, for most of these models µ1− τ is very close to zero (only
ten of them have a relative difference ∆% < −1%). All things considered, the fact
that µ1 lies below the 95% confidence interval of τ for only 0.46% of all models
is consistent with the fact that τ 6 µ1 (it would have to be more than 2.5% to
constitute a contradiction).

Finally, the excess of models for which µ1 ≈ τ in Compadre compared to Co-
madre is due to (mostly 2× 2) models with very short generation times, presum-
ably corresponding to annuals plants in which the lifespans of individuals exhibit
little to no variation.

4 Discussion

The mean age of the parents of the offspring produced by a cohort µ1 and the
mean age at reproduction τ are two genuinely different notions. So why have
they not been recognized as such before? Probably because precise definitions of
these quantities are seldom given. For instance, in the references given above –
which are or have been among the most influential in the field – µ1 is variously
described as the “mean age at childbearing in the stationary population” 2 by
Keyfitz (1968); as the “mean age of childbearing in a cohort” by Coale (1972,
eq. (2.10) p. 19); as the “mean age at reproduction of a cohort of females” by
Charlesworth (1994, eq. (1.47a) p. 30); and as the “mean age of the mothers at the
time of their daughter’s birth” by Rockwood (2015, eq. (4.12) p. 98). Yet these
four definitions fail to detail how this “mean” should be computed, and could thus
be thought to refer to τ .

It is not obvious from the definitions of µ1 and τ how these two quantities are
related – or indeed why they should differ at all. One helpful way to think about
it is the following: µ1 can be seen as an offspring-centric measure of the mean age
of parents, whereas τ is a parent-centric measure of it. Indeed, to compute µ1 we
ask each newborn produced by a cohort “how old is your parent?”, while for τ

2 What Keyfitz calls the stationary population is actually a cohort.
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we ask a parent “how old are you going to be when you have offspring?” These
questions have distinct answers because they correspond to two different ways to
sample a parent.

Among other things, this explains why µ1 is greater than τ : indeed, parents that
live longer tend to have more offspring, and thus have a higher probability of being
sampled via their offspring than when the sampling is done uniformly at random.
As a result, they contribute more to µ1 than to τ . Since these parents with longer
lifespans are also those that tend to have a higher mean age at reproduction, this
biases µ1 upward compared to τ .

This also explains why the difference µ1 − τ goes to zero as the fertility becomes
vanishingly small (see Online Supplement S3): in that case, the proportion of
parents that give birth to more than one offspring during their lifetime goes to
zero, and as the result the two parent-sampling schemes become equivalent.

To close this series of remarks regarding the link between µ1 and τ , observe that,
from a purely mathematical point of view, the difference between the two can
be made arbitrarily large. Indeed, recall that, when individuals reproduce at
a constant rate m, µ1 = E(T 2)/E(T ) and τ → 1

2E(T ) as m → +∞. Thus, by
choosing an appropriate distribution for the lifespan T and taking m large enough,
we can make µ1 arbitrarily large and τ arbitrarily small.

Now that we have seen that µ1 and τ are two different concepts, that they differ
significantly in practice, and that we better understand the link between them,
one important question remains: which of µ1 or τ should be favored in which
context?

From a practical point of view, the expressions of τ are, admittedly, more complex
than those of µ1. This of course is not a problem for real-world applications, where
they are going to be evaluated numerically; for theoretical applications however,
this does make exact calculations harder, if possible at all.

Another important difference between both measures is their slightly different
domain of validity. While the interpretation of µ1 hinges on the assumption that
there are no interactions between individuals, the expression of τ relies on that
of Poissonian births. One might cynically argue that this is hardly a problem,
because both hypotheses are often used jointly in theoretical models, and never
met in real-world applications. Nevertheless, there is a real difference here that
should be taken into account when deciding which measure to choose.

Lastly, τ has the advantage of having a more direct interpretation than µ1. Judging
from the phrasing used by several authors, it seems that it is sometimes τ they have
in mind, even when working with µ1. Moreover, the interpretation of µ1 might not
be as intuitive as we usually assume; notably, the fact that it can be greater not
only than the expected lifespan but also than the expected lifespan conditional
on reproduction (as illustrated by the Medium density scenario for Astrocaryum
mexicanum in the Online Supplement S7) is likely to come as a surprise to many
researchers.
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Appendix

A An explicit model for the population

Here we recall and further detail the assumptions on which the expressions of µ1
and τ and their interpretations rely, and introduce some notation.

The setting that we use is that of a Crump-Mode-Jagers process (Crump and
Mode, 1968, 1969; Jagers, 1969), where the population consists of a discrete set of
individuals such that:

(i) Each individual i has a random lifespan Ti with distribution ν and which is
independent of everything else.

(ii) Individual i produces a new offspring at age t for every point of Pi at t such
that t 6 Ti, where Pi is a point process with intensity m on [0,+∞[ that is
independent of everything else.

Note that the point processes Pi are not homogeneous (m is a function of the age
of individuals) and that they do not have to be simple (an individual can give birth
to several offspring simultaneously). For mathematical tractability however, it is
often convenient to work with Poisson point processes. As explained in Section S1
of the Online Supplements, where a few useful results about Poisson point processes
can also be found, these allow to formalize the familiar idea that events “occur at
rate m”. While the assumption that Pi are Poisson point processes is not needed
in the study of µ1, it will be required to derive explicit formulas for τ .

In this setting, the definition and interpretation of the survivorship function and
of the age-specific fertility are straightforward. The survivorship is defined by 3

`(t) = P(Ti > t) = ν
(
[t,+∞[

)
. (A.1)

Working with the measure ν is convenient because it makes it possible to treat the
case where Ti is a continuous random variable and the case where it is a discrete
random variable simultaneously. However, in many applications Ti will have a
density f . Thus, we will do most of our calculations with ν but express our final
results in terms of f or `, as in formulas (1) and (3). Note that this essentially
consists in replacing dν(t) by f(t) dt in integrals, and that either of f and ` can
be deduced from the other, since `(t) = 1−

∫ t
0 f(s) ds and f(t) = −`′(t).

The age-specific fertility is the function m. If we denote by Mi(a, b) the integer-
valued random variable corresponding to the number of offspring produced by i
between ages a and b, then assuming that b 6 Ti we have, as expected,

E(Mi(a, b)) =
∫ b

a
m(t) dt . (A.2)

3 In probability theory and statistics, the survival function almost invariably refers to the
complementary cumulative distribution function of Ti, t 7→ P(Ti > t). Here, however, we will
stick to the convention used in biology.
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Obviously, the framework of Crump-Mode-Jagers processes is not meant to take
into account all phenomena that shape the structure and dynamics of real-world
populations. For instance, it assumes that individuals are independent and thus
excludes any kind of density dependence. Similarly, the (optional) assumption that
individuals reproduce at rate m is constraining, and in particular implies that they
cannot produce several offspring simultaneously. Nevertheless, this framework
is close to the minimal setting containing all the ingredients needed to define
most descriptors of populations, whilst being simple enough to remain tractable
and make it possible to derive explicit formulas for these descriptors. Moreover,
the hypotheses above correspond quite well to the assumptions that are made,
typically implicitly, to obtain the classic expressions of many of descriptors of
populations.

Finally, to obtain discrete-time equivalents of formulas (1) and (3) we will need to
consider the following version of the model, which allows simultaneous births:
we keep assumption (i) under the extra hypothesis that the lifespan Ti is an
integer-valued random variable, and we replace (ii) by the assumption that at
each age t = 1, . . . , Ti, individual i gives birth toM (i)

t new individuals. Again, this
corresponds quite well to the usual hypotheses on which many classic formulas
rely.

B The mean age of the parents of the offspring
produced by a cohort

We now give a rigorous interpretation of the quantity µ1 given by formulas (1)
and (2). As we will see, this interpretation is more subtle than what is usually
assumed. This is because µ1 does not correspond to the expected value of the
average of the ages of the parents of the offspring produced by a cohort, but only
to the limit of this average when the size of this cohort goes to infinity.

Let C denote a cohort, that is, a set of n individuals considered from the time
of their birth to the time of their death. Let Ti be the lifespan of individual i,
and Pi be the set of ages at which it produces offspring. Note that in our setting,
conditional on Ti, Pi is a point process with intensity m on [0, Ti].

The average of the ages of the parents of the offspring produced by the cohort over
its lifetime is

ZC =
∑
i∈C

∑
t∈Pi

t∑
i∈C

∑
t∈Pi

1 =
∑
i∈C Si∑
i∈C Ni

, (B.1)

where Ni = ∑
t∈Pi

1 is the number of offspring produced by individual i, and
Si = ∑

t∈Pi
t is the sum of the ages at which it produces them. Note that ZC

is well-defined only when ∑
i∈C Ni > 0, but that this happens with probability

arbitrarily close to one for a large enough cohort.

As we have already seen, the expected number of offspring produced by an indi-
vidual i whose lifespan is Ti = t is ∫ t

0
m(s) ds . (B.2)
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This quantity can be thought of as “E(Ni | Ti = t)”, even though this interpretation
is subject to some caution. At any rate, it follows that

E(Ni) =
∫ +∞

0

(∫ t

0
m(s) ds

)
dν(t) . (B.3)

Moreover, using Fubini’s theorem,∫ +∞

0

(∫ t

0
m(s) ds

)
dν(t) =

∫ +∞

0
m(s)

(∫ +∞

s
dν(t)

)
ds . (B.4)

Using that
∫+∞
s dν(t) = `(s), we get the well-known expression for R0, the mean

number of offspring produced by an individual during its lifetime:

R0 = E(Ni) =
∫ +∞

0
m(t) `(t) dt (B.5)

Using Campbell’s formula (equation (S1.11) in the Online Supplements) and the
exact same reasoning, we can express the mean sum of the ages at which an indi-
vidual produces offspring as

E(Si) =
∫ +∞

0
tm(t) `(t) dt (B.6)

Let N (resp. S) denote a random variable that has the common distribution of
the variables Ni (resp. Si). Then, as pointed out in most sources presenting the
measure µ1, we have

µ1 = E(S)
E(N) . (B.7)

This however does not establish a link between µ1 and ZC, the average age of
the parents of offspring produced by the cohort. To see how these two quantities
are related, observe that since the variables Ni (resp. Si) are independent, if we
denote by n = Card(C) the size of the cohort then by the law of large numbers, as
n→ +∞,

1
n

∑
i∈C

Ni → E(N) and 1
n

∑
i∈C

Si → E(S) . (B.8)

As a result,

ZC =
1
n

∑
i∈C Si

1
n

∑
i∈C Ni

−−−−−→
n→+∞

µ1 , (B.9)

where the convergence is almost sure, i.e. happens with probability 1.

Importantly, note that µ1 is not the expected value of Si/Ni or of ZC. In fact,
the expected value of Si/Ni (conditional on this variable being well-defined) is
precisely what we have termed the mean age at reproduction. We explain how to
compute it in the next section.
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C The mean age at reproduction τ

Recall that we have defined the mean age at reproduction to be the expected value
of the average of the ages at which a typical parent produces offspring. Formally,
assuming that individual i has some offspring, the average age at which it produces
them is

X̄i = 1
Ni

∑
t∈Pi

t , (C.1)

where, as before, Ni is the total number of offspring produced by i and Pi is the
set of ages at which it produces them. The mean age at reproduction is thus

τ = E
(
X̄i

∣∣∣Ni > 0
)
, (C.2)

which, given our assumptions, does not depend on i or on the composition of the
population.

To compute τ , let I be a “typical parent”, i.e. be uniformly sampled among the
individuals that produce offspring during their lifetime. We then have

E
(
X̄i

∣∣∣Ni > 0
)

= E
(
X̄I

)
. (C.3)

Moreover, letting T̃ denote the lifespan of I, X̄I is the average of a point process
with intensity m on [0, T̃ ]. As explained in Section S1 of the Online Supplements,
in the case of a Poisson point process, the expected value of this average is simply
the expected value of a random point of [0, T̃ ] with density t 7→ m(t)/

∫ T̃
0 m(s) ds.

The remarkable fact that it does not depend on the value of Ni is a consequence
of the absence of internal structure of Poisson point processes. From this, we get

E
(
X̄I

∣∣∣ T̃) =
∫ T̃

0 sm(s) ds∫ T̃
0 m(s) ds

. (C.4)

As a result,

τ =
∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

dν̃(t) , (C.5)

where ν̃ is the law of the lifespan T̃ of I. Note that it is different from ν, the
lifespan of a fixed individual, because conditioning on the fact that an individual
produces offspring biases its lifespan; for instance, if – as frequently the case in real
applications – there exists an age α such that m(t) = 0 for t < α, then individuals
that produce offspring all live longer than α, whereas it is not necessarily the case
for other individuals.

The last thing that we need to do in order to get an explicit formula for τ is thus
to determine ν̃. For this, note that

P
(
T̃ 6 t

)
= P(Ti 6 t |Ni > 0) (C.6)

= P(Ti 6 t, Ni > 0)
P(Ni > 0)

Conditioning on Ti, using the void probabilities of Poisson point processes (see
equation (S1.1) in the Online Supplements) for the probability that an individual
with lifetime s produces some offspring, and finally integrating against ν, we get
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P(Ti 6 t, Ni > 0) =
∫ t

0

(
1− e−

∫ s

0 m(r) dr
)
dν(s) . (C.7)

As a result,
dν̃(t) = 1

c

(
1− e−

∫ t

0 m(s) ds
)
dν(t) , (C.8)

where the constant c = P(Ni > 0) is given by

c =
∫ +∞

0

(
1− e−

∫ t

0 m(s) ds
)
dν(t) . (C.9)

Note that, by integrating by parts and using that `(t) → 0 as t → +∞, we can
also express c directly in terms of ` and m as

c =
∫ +∞

0
e−
∫ t

0 m(s) dsm(t) `(t) dt . (C.10)

Putting the pieces together in the case where Ti has a density f , we get formula (1):

τ = 1
c

∫ +∞

0

∫ t
0 sm(s) ds∫ t
0 m(s) ds

(
1− e−

∫ t

0 m(s) ds
)
f(t) dt . (C.11)

Note that neither the biological interpretation of τ nor the derivation of its ex-
pression depend on the assumption that individuals are independent.

Formula (10) for the average of a function z of the ages at which a parent produces
offspring is obtained similarly, except that we have to work with

W̄i = 1
Ni

∑
t∈Pi

z(t) (C.12)

instead of X̄i, and use equation (S1.10) instead of equation (S1.6) to get

E
(
W̄I

∣∣∣ T̃) =
∫ T̃

0 z(s)m(s) ds∫ T̃
0 m(s) ds

. (C.13)

The justification of the expression of τ for discrete age structures can be found
in Section S2 of the Online Supplements. It essentially consists in approaching
the discrete-time model with the continuous-time one by choosing appropriate
age-specific fertilities, and relies on the assumption that the number of offspring
produced each year by each individual follows a Poisson distribution. It should also
be pointed out that, because in the discrete-time setting individuals can produce
several offspring simultaneously, there are two possibilities to define the average
age at offspring production: counting all births equally, or weighting them by the
number of offspring produced. Formula (2) is obtained by weighting the ages by
the number of offspring produced when averaging them.

Finally, to obtain an equivalent of formula (5) for more general population struc-
tures, such as those allowed by matrix population models, one would need to (1)
find the law of the conditional trajectory of an individual in the life cycle given
that it produces offspring and (2) integrate the average of the ages at which it
produces offspring against this law. While the first of these steps is feasible 4, it is
unclear whether the resulting expression – if it can be obtained – would be simple
enough to be useful.

4 This was explained to me by Stephen Ellner– see e.g. Chapter 3 of Ellner et al. (2016).
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Online Supplements

S1 Basic facts about Poisson point processes

In this section we recall basic results about Poisson point processes, focusing on
the properties on which our calculations rely. Thus no attempt is made to state
the results in full generality, and we do not preoccupy ourselves with technical
conditions such as measurability. For a detailed presentation of Poisson point
processes, see e.g. Kingman (1992) or Daley and Vere-Jones (2003).

It is common in modelling to assume that an event occurs at rate r(t) at time t.
Loosely speaking, this means that the probability that the event happens between t
and t+ dt is independent of its previous occurrences, and is approximately r(t) dt.
The rigorous way to formalize this is to say that the events are distributed accord-
ing to an (inhomogeneous) Poisson point process with intensity r. Such a process
can be seen as a random set of points characterized by the following properties:
writing N(I) for the number of points that fall in a fixed set I ⊂ R,

(i) N(I) is a Poisson random variable with mean
∫
I r(t) dt.

(ii) N(I) and N(J) are independent whenever I and J are disjoint.

Note that the following useful fact is an immediate consequence of (i):

P(N(I) = 0) = exp
(
−
∫
I
r(t) dt

)
. (S1.1)

Property (ii), often known as the independent scattering property, essentially says
that Poisson point processes have a “completely random” structure.

From now on, we consider a fixed set I ⊂ R such that
∫
I r(t) dt < +∞. We let P

be a Poisson point process with intensity r on I and denote by N = Card(P ) its
number of points. Let X be a random point of I with density t 7→ r(t)/

∫
I r(t) dt,

i.e. whose distribution is characterized by

∀A ⊂ I, P(X ∈ A) =
∫
A r(t) dt∫
I r(t) dt

, (S1.2)

and note in passing that
E(X) =

∫
I t r(t) dt∫
I r(t) dt

. (S1.3)

Then, conditional on N = n, P consists of n independent copies of X – that is,
for every function ϕ,

E(ϕ(P ) |N = n) = E
(
ϕ({Xi : i = 1, . . . , n})

)
, (S1.4)

where Xi, i = 1, . . . , n, are independent copies of X.

A consequence of this is that the expected value of the average of the points in P
is E(X). Formally, if N > 0 then we can define a random variable X̄ by

X̄ = 1
N

∑
t∈P

t . (S1.5)
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We then have
E
(
X̄
∣∣∣N > 0

)
= E(X) . (S1.6)

Indeed,

E
(
X̄
∣∣∣N > 0

)
= 1
P(N > 0)

∑
n>1

E
(
X̄
∣∣∣N = n

)
P(N = n) , (S1.7)

and, for every n > 1,

E
(
X̄
∣∣∣N = n

)
= E

(
X1 + · · ·+Xn

n

)
= E(X) . (S1.8)

In fact, given a function f , the exact same reasoning can be applied to

W̄ = 1
N

∑
t∈P

f(t) (S1.9)

to show that
E
(
W̄
∣∣∣N > 0

)
= E(f(X)) . (S1.10)

We close this short overview with a fundamental result known as Campbell’s for-
mula. This formula states that, for every function f ,

E

(∑
t∈P

f(t)
)

=
∫
I
f(t) r(t) dt . (S1.11)

In contrast to (S1.6) and (S1.10), which are consequences of the independent scat-
tering property, Campbell’s formula is not specific to Poisson point processes.

S2 Expression of τ for discrete age structures

In discrete time, individual i has an integer-valued lifespan Ti and, at each age
t = 1, . . . , Ti, produces M (i)

t new individuals, where the variables M (i)
t are integer-

valued and independent of everything else. Here we will also need to assume that
each variable M (i)

t is a Poisson random variable with mean mt.

In that setting, the average X̄i of the ages at which individual i produces offspring
can be defined as

X̄i = 1
Ni

Ti∑
t=1

tM
(i)
t , (S2.1)

this definition being valid only when Ni = ∑Ti
t=1 M

(i)
t > 0. Note that, in this

expression, each age at which i produces offspring is weighted by the number of
offspring produced. This is similar to what is done for µ1, where each offspring
contributes to the average age of the parents. But another possibility would be to
weight all ages equally, that is, use the variable

Ȳi =
∑Ti
t=1 t I

(i)
t∑Ti

t=1 I
(i)
t

, (S2.2)

where I(i)
t = 1 if M (i)

t > 0 and 0 otherwise.
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Since X̄i = Ȳi when individuals cannot give birth to several offspring simulta-
neously (or, more generally, when the number of offspring produced is either 0
or some constant m), the two definitions were equivalent in the continuous-time
setting. But now, X̄i and Ȳi are two different and legitimate candidates for the
“average age at which i produces offspring”. However, Ȳi does not lend itself to
analysis as easily as X̄i and to obtain formula (5) – which is arguably the natural
discrete-time equivalent of formula (3) – it is X̄i that should be used. Therefore,
we define τ to be E

(
X̄i

∣∣∣Ni > 0
)
.

The reasoning that lead to (3) could be adapted to obtain an expression for τ .
However, it is also possible to deduce this expression directly from our results in
continuous time. Indeed, the calculations of Section C of the Appendix are valid
for general lifespans, including discrete ones: when ν is discrete, we simply have
for any function ϕ ∫ +∞

0
ϕ(t) dν(t) =

∑
t>1

ϕ(t) pt , (S2.3)

where pt = P(Ti = t).

Moreover, observe that if we let the age-specific fertility m be the piecewise con-
stant function defined by

m(t) =
∑
s>1

ms1]s−1,s](t) , (S2.4)

where 1]s−1,s] is the function that evaluates to 1 if t ∈ ]s− 1, s] and 0 otherwise,
then the number of offspring produced by an individual between ages (t − 1)
and t is a Poisson variable with parameter mt. Thus, the only difference with the
discrete setting is that the ages at which these offspring are produced are uniformly
distributed in ]t− 1, t] instead of all equal to t.

Now, if we take the age-specific fertility to be the function m(ε) defined by

m(ε)(t) =
∑
s>1

ms

ε
1]s−ε,s](t) , (S2.5)

then the number of offspring produced between ages (t− 1) and t is still a Poisson
variable with parameter mt, but this time the ages at which these offspring are
produced are uniformly distributed in ]t− ε, t]. Taking ε to zero, the mean age
at childbirth will therefore tend to that of the discrete-time model. We spare the
reader the straightforward but somewhat technical argument by which this can be
made rigorous. Noting that, for continuous functions g,∫ t

0
g(s)m(ε)(s) ds −−−→

ε→0

t∑
s=1

g(s)ms , (S2.6)

we obtain the following discrete-time equivalent of (3):

µ1 = 1
c

∑
t>1

∑t
s=1 sms∑t
s=1 ms

(
1−

t∏
s=1

e−ms

)
pt , (S2.7)

where pt = P(Ti = t) = `t − `t+1, and

c =
∑
t>1

(
1−

t∏
s=1

e−ms

)
pt . (S2.8)
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S3 Proof of E(T̃ )→ E(T 2)/E(T ) as m→ 0

In this section we prove that, when the lifespan T of a fixed individual has a
second moment – a condition that is always met in practice – and the age-specific
fertility is constant and equal to m, then the expected lifespan of individuals that
produce offspring during their lifetime converges to E(T 2)/E(T ) as m → 0. As
seen in the main text, it follows immediately that τ → µ1, both in the continuous
setting where offspring production occurs at a constant rate m during the lifetime
of individuals and in the discrete setting where individuals produce a Poisson(m)
number of offspring at each integer-valued age t > 1.

Proposition 1. Let T denote the lifespan of a fixed individual, and let T̃ have
the distribution of T conditional on reproduction in the model where reproduction
happens at constant rate (or in the model where individuals produce Poisson(m)
offspring at each integer age t > 1 at which they are alive), i.e.

E
(
T̃
)

=
E
(
T (1− e−mT )

)
E(1− e−mT ) . (S3.1)

Then, if E(T 2) < +∞,

E
(
T̃
)
→ E(T 2)

E(T ) as m→ 0 . (S3.2)

Proof. The following proof is due to Stephen P. Ellner and is a welcome simplifi-
cation of my original proof.

Let g(m, t) = (1− e−mt)/m, so that

E
(
T̃
)

= E(Tg(m,T ))
E(g(m,T )) . (S3.3)

Since
∂

∂m
g(m, t) =

(
1 +mt− emt

)e−mt
m2 (S3.4)

and that 1 + x 6 ex for all x, we see that g(m, t) increases to t as m decreases
to 0. By the monotone convergence theorem, it follows that E(g(m,T )) ↑ E(T )
and E(Tg(m,T )) ↑ E(T 2) as m ↓ 0. This terminates the proof.

S4 Proof of τ 6 µ1

In this section we prove that µ1, as defined by formulas (1) and (2), is always
greater than or equal to τ , as defined by formulas (3) and (5). This will be a
simple consequence of the following lemma.

Lemma 1. Let X be a positive random variable, and let g and h be positive
functions such that x 7→ g(x)/x is nondecreasing and x 7→ h(x)/x is nonincreasing.
Then,

E

(
g(X)h(X)

X

)
E(X) 6 E(g(X))E(h(X)) (S4.1)
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Proof. Let Y be a random variable with the same distribution as X and that is
independent of X. We have to show

E(g(X))E(h(Y ))− E
(
g(Y )h(Y )

Y

)
E(X) > 0

⇐⇒ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

))
> 0

⇐⇒ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X>Y }

)
(S4.2)

+ E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)
> 0

Since x 7→ g(x)/x is nondecreasing,(
g(X)
X
− g(Y )

Y

)
1{X<Y } 6 0 (S4.3)

and since x 7→ h(x)/x is nonincreasing,

0 6 Xh(Y )1{X<Y } 6 Y h(X)1{X<Y } . (S4.4)

As a result,

E

(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)

> E

(
Y h(X)

(
g(X)
X
− g(Y )

Y

)
1{X<Y }

)
(S4.5)

= −E
(
Xh(Y )

(
g(X)
X
− g(Y )

Y

)
1{X>Y }

)

Plugging this into (S4.2) finishes the proof.

Proposition 2. Let T denote the lifespan of a fixed individual. Define the random
variables M and M∗ by

M =
∫ T

0
m(s) ds and M∗ =

∫ T

0
sm(s) ds (S4.6)

in the case where reproduction occurs at a constant rate, and by

M =
T∑
s=1

ms and M∗ =
T∑
s=1

sms (S4.7)

in the case where it takes place at integer-valued ages t > 1, so that, in both cases

µ1 = E(M∗)
E(M) and τ =

E
(
M∗

M
(1− e−M)

)
E(1− e−M) . (S4.8)

Then, τ 6 µ1.
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Proof. First, observe that M∗ is actually a deterministic function of M . Indeed,
let ψ (resp. ψ∗) denote the function such that M = ψ(T ) (resp. M∗ = ψ∗(T )).
Since ψ is nondecreasing, if we define θ by

θ(x) = inf{t > 0 : ψ(t) > x} , (S4.9)

then we have M∗ = ψ∗(θ(M)). To see this, note that θ(M) 6 T by construction
and that θ(M) < T implies

∫ T
θ(M) m(s) ds = 0 (resp. ∑T

s=θ(M) ms = 0), which in
turn implies

∫ T
θ(M) sm(s) ds = 0 (resp. ∑T

s=θ(M) sms = 0). Thus, writing

g(x) = ψ∗(θ(x)) and h(x) = 1− e−x , (S4.10)

we have to prove

E(g(M))E(h(M)) > E

(
g(M)h(M)

M

)
E(M) . (S4.11)

Clearly, M is a positive random variable, and the functions g and h are positive.
Therefore, all we have to do to finish the proof is to show that x 7→ h(x)/x
is nonincreasing and that x 7→ g(x)/x is nondecreasing, so that we can apply
Lemma 1. First,

d

dx

(
h(x)
x

)
= e−x(1 + x)− 1

x2 6 0 , (S4.12)

since 1 + x 6 ex. Second,

g(x)
x

= ψ∗(θ(x))
ψ(θ(x)) = F (θ(x)) (S4.13)

where F : t 7→ ψ∗(t)/ψ(t). The function θ is nondecreasing by construction. The
fact that F is nondecreasing can be shown by straightforward calculations, e.g., in
the continuous case,

d

dt
F (t) =

m(t)
(∫ t

0(t− s)m(s) ds
)

(∫ t
0 m(s) ds

)2 > 0 . (S4.14)

However, it is more satisfying to see that F (t) can be interpreted as the expectation
of a random variable Xt with density ft(s) = m(s)1[0,t](s)/ψ(t) in the continuous
case, and with probability mass function p(t)

s = ms/ψ(t) for s = 1, . . . , t in the
discrete case. It then is easy to see that Xt is stochastically dominated by Xt′ for
t < t′, and so if follows immediately that F (t) = E(Xt) 6 E(Xt′) = F (t′).
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S5 Example of calculation of τ

In this section we detail the calculations of τ in the case where the lifespan T of a
fixed individual is a geometric variable such that for all t > 0, P(Ti = t) = (1−p)pt,
and the age-specific fertility is constant and equal to m for all ages t > 1.

First, since ∑t
s=1 sm∑t
s=1 m

= t+ 1
2 (S5.1)

we see that, writing T̃ for the lifespan conditional on reproduction,

τ = 1
2
(
E
(
T̃
)

+ 1
)
, (S5.2)

where

E
(
T̃
)

=
E
(
T (1− e−mT )

)
E(1− e−mT ) . (S5.3)

Now,

E
(
1− e−mT

)
= 1−

∑
t>0

e−mt (1− p) pt

= 1− 1− p
1− p e−m (S5.4)

= p (1− e−m)
(1− pe−m) .

Similarly,

E
(
T (1− e−mT )

)
=
∑
t>0

t (1− p) pt −
∑
t>0

t e−mt (1− p) pt

= p

1− p −
(1− p) p e−m

(1− p e−m)2 (S5.5)

= p (1− e−m)(1− p2e−m)
(1− p)(1− p e−m)2 .

As a result,
E
(
T̃
)

= 1− p2e−m

(1− p)(1− p e−m) (S5.6)

and finally,

τ = 1
2

(
1

1− p + 1
1− p e−m

)
. (S5.7)

– vii –



S6 Computing µ1 and τ for Compadre/Comadre

In this section, we detail how the data behind Figure 2 and Table 1 in the main text
were obtained. The code and the data are provided as an Online Enhancement to
the manuscript.

The Compadre Plant Matrix Database and Comadre Animal Matrix Database
each contain thousands of projection matrices for hundreds of species. However,
not all of these matrices are suitable to compute µ1 and τ . Indeed, for this we
need:

(i) The A = S + F decomposition of the projection matrix into its survival and
fertility components.

(ii) Non-zero S and F matrices.

(iii) A survival matrix S whose columns all sum to less than one, so that it can be
interpreted as a substochastic matrix and that (I−S)−1 is always guaranteed
to exist.

This leaves us with 3319 models in Compadre and 1245 models in Comadre.
For each of these, µ1 was computed with formula (11) and τ was estimated by
averaging several realizations of the random variable S/N described in the main-
text (conditional on N > 0). One such realization can be obtained thanks to the
following procedure, where w = (wi) denotes the stable distribution:

parent← False
while not parent do

i← random newborn stage chosen proportionally to the entries of (
∑
k fjkwk)j

age, N, S ← 0, 0, 0
alive← True
while alive do

age← age+ 1
offspring ← Poisson(

∑
j fji)

N ← N + offspring
S ← S + offspring · age
with probability 1−

∑
j sji do

alive← False
else do

i← random stage chosen proportionally the entries of (sji)j
end while
if N > 0 then

parent← True
end while
return S/N

Each estimate τ̂ is associated with a confidence interval [τ̂ − ε, τ̂ + ε], where ε =
2σ̂/
√
n with σ̂ the empirical standard deviation and

√
n the number of replicates.

In order to get reliable estimates, the number of replicates n was doubled until
ε < 0.01τ̂ .
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Because the probability of an individual producing some offspring during its life-
time can be arbitrarily small, this means that obtaining one realization of S/N
with the procedure above can take an arbitrarily long time. To avoid getting stuck
on a computation, all models for which τ̂ could not be computed with the desired
precision in a reasonable time were ignored, and 1182 models were thus rejected.
Because this is a non-negligible fraction of the 4564 models available, this has the
potential to bias our results. However, note that since those models for which the
probability of producing offspring during one’s lifetime is very small are precisely
those for which we expect µ1 to differ greatly from τ , if anything this will lead us
to underestimate the difference between µ1 and τ .

Finally, after performing these calculations, 11 models (0.28%) were discarded
for having biologically unrealistic descriptors (e.g, λ ≈ 200 or an average age of
mothers in the stable population Ā ≈ 10000), leaving us with numerical values of
µ1 and τ for 2706 models of Compadre and 1165 models of Comadre.

S7 Projection matrices for A. mexicanum

In this section, we detail a specific example of a real-world model in which µ1 and
τ differ greatly. These particular models were chosen because they have frequently
been used as examples of matrix population models. For instance, one of them is
shipped with the ULM software for studying population dynamics (Legendre and
Clobert, 1995).

The following projection matrices for the tropical palm Astrocaryum mexicanum
are from Appendix 6 of Cochran and Ellner (1992), who averaged them from
several projection matrices of Pinero et al. (1984). Note that there is a small typo
in the projection matrix for the Low density model given by Cochran and Ellner
(1992): the entry (9, 8) of the projection matrix given is 0.8775, when it should be
0.08775. Correcting this, we find the same descriptors as in their Table 4.

The model is mostly size-based. Stage 1 corresponds to seedlings; stages 2–4 to
non-reproducing juveniles and stages 5–10 to full-grown adults. In the matrices
below, entries in bold correspond to reproductive transitions.

Ahigh =



0 0 0 0 0 1.4792 8.1560 9.9513 14.259 23.594
0.037349 0.83093 0 0 0 0 0 0 0 0

0 0.015881 0.89666 0 0 0 0 0 0 0
0 0 0.048969 0.95944 0 0 0 0 0 0
0 0 0 0.029778 0.90496 0 0 0 0 0
0 0 0 0 0.082074 0.91348 0 0 0 0
0 0 0 0 0 0.086520 0.90553 0 0 0
0 0 0 0 0 0 0.094467 0.87733 0 0
0 0 0 0 0 0 0 0.088200 0.88642 0
0 0 0 0 0 0 0 0 0.11358 0.9950
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Amed. =



0 0 0 0 0.18385 4.222 8.41 8.8405 16.676 19.904
0.03629 0.84127 0 0 0 0 0 0 0 0

0 0.014582 0.91636 0 0 0 0 0 0 0
0 0 0.058131 0.93735 0 0 0 0 0 0
0 0 0 0.051565 0.91462 0 0 0 0 0
0 0 0 0 0.065923 0.8468 0 0 0 0
0 0 0 0 0 0.1424 0.8725 0 0 0
0 0 0 0 0 0 0.1200 0.84332 0 0
0 0 0 0 0 0 0 0.14800 0.913030 0
0 0 0 0 0 0 0 0 0.086966 0.9950



Alow =



0 0 0 0 0.33 0.918 8.0875 16.606 13.068 16.875
0.030332 0.850010 0 0 0 0 0 0 0 0

0 0.026738 0.93928 0 0 0 0 0 0 0
0 0 0.04966 0.94548 0 0 0 0 0 0
0 0 0 0.04804 0.9185 0 0 0 0 0
0 0 0 0 0.0815 0.9313 0 0 0 0
0 0 0 0 0 0.0687 0.86362 0 0 0
0 0 0 0 0 0 0.13637 0.91225 0 0
0 0 0 0 0 0 0 0.08775 0.87867 0
0 0 0 0 0 0 0 0 0.12133 0.9950



Table 2 lists some relevant descriptors of these models. The difference between µ1
and τ is significant in all three scenarios – a factor 2 in the Medium density model.
Finally, and most surprisingly, we see that in the High density case, µ1 is greater
than the expected lifespan conditional on reproduction. This counter-intuitive fact
casts serious doubts on the relevance of µ1 as a measure of reproductive timing in
the life-cycle.

High density Medium density Low density
µ1 275.2 261.8 275.5
τ 152.0 131.3 184.8
TR0 197.6 169.2 153.6
Ā 152.6 122.8 105.1
L 232.2 207.6 296.0

Table 2: Comparison of several measures of reproductive timing for three
real-world models for the demography of the tropical palm Astrocaryum mex-
icanum, in part taken from Table 4 of Cochran and Ellner (1992): TR0 denotes
the R0 generation time, which corresponds to the time it takes for the popu-
lation to grow by a factor of its net reproductive rate; Ā is the mean age of
parents of offspring in a population that has reached its stable distribution;
µ1 is computed as in formula (11); τ and L are estimates of the mean age at
reproduction and of the expected lifespan conditional on producing offspring,
respectively. All values are expressed in years.
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