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Geophysical and astrophysical fluid flows are typically driven by buoyancy and
strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–
Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical
simulations (DNS) of such flows, but the accessible parameter space remains restricted to
moderately fast rotation rates (Ekman numbers Ek � 10−8), while realistic Ek for geo- and
astrophysical applications are orders of magnitude smaller. On the other hand, previously
derived reduced equations of motion describing the leading-order behaviour in the limit
of very rapid rotation (Ek → 0) cannot capture finite rotation effects, and the physically
most relevant part of parameter space with small but finite Ek has remained elusive.
Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations
(RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by
the scalings valid for Ek → 0, recently introduced by Julien et al. (2024) – to provide
full DNS of RRRBC at unprecedented rotation strengths down to Ek = 10−15 and below,
revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable
Ekman numbers (Ek ≈ 10−9). We also identify an overshoot in the heat transport as Ek
is varied at fixed R̃a ≡ RaEk4/3, where Ra is the Rayleigh number, associated with
dissipation due to ageostrophic motions in the boundary layers. The simulations validate
theoretical predictions based on thermal boundary layer theory for RRRBC and show
that the solutions of RRRiNSE agree with the reduced equations at very small Ek.
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These results represent a first foray into the vast, largely unexplored parameter space of
very rapidly rotating convection rendered accessible by RRRiNSE.

Key words: computational methods, rotating flows, turbulent convection

1. Introduction
The universe abounds with examples of turbulent flows that are driven by buoyancy and
constrained by rotation. These highly complex flows shape our environment across scales:
in protoplanetary disks, they mediate the formation of planetesimals (Lesur & Ogilvie
2010); in planetary atmospheres, including on Earth, they carry heat, momentum and
moisture, crucially impacting the climate (Emanuel 1994; Dauxois et al. 2021; Siegelman
et al. 2022); in the Earth’s oceans (Marshall & Schott 1999; Cheon & Gordon 2019),
they transport heat, carbon dioxide and nutrients, thereby crucially influencing biotopes
(Severin et al. 2014); in planetary and stellar cores, they are responsible for the generation
of large-scale magnetic fields via the dynamo instability (King et al. 2010; Jones 2011;
Schaeffer et al. 2017); in the subsurface oceans of the gaseous giants’ moons, they shape
the icy crusts of Europa, Enceladus, Titan, etc. (Pappalardo et al. 1998; Mitri & Showman
2008; Nimmo & Pappalardo 2016; Soderlund et al. 2024); in stars like the Sun (Miesch
2000; Fan 2021) they are responsible for large-scale magnetic fields as well as rich
dynamics such as the 22-year cycle in solar activity.

Such geo- and astrophysical flows, in spite of their differences, typically share two
important properties. Owing to their turbulent nature, their dynamics results from a broad
range of interacting spatial and temporal scales. Accordingly, advection by the flow dom-
inates over viscous forces when the Reynolds number is large, ReH = U H/ν � 1, based
here on the fluid layer depth H , a typical velocity of the flow U and kinematic viscosity
ν. Simultaneously, advection by the flow occurs on time scales much longer than the
planetary rotation period, as measured by small Rossby numbers RoH = U/(2Ω H) � 1,
where Ω is the planetary rotation rate.

Also of particular importance is the ratio of the viscous and Coriolis forces providing
an a priori external parameter referred to as the Ekman number Ek = RoH/ReH =
ν/(2Ω H2), as well as the Prandtl number σ = ν/κ characterising the fluid under
consideration, where κ is the thermal diffusivity. The strength of the thermal forcing is
controlled by the Rayleigh number Ra, which is proportional to the temperature drop �T
across the fluid layer. This number can be used to define an alternate a priori parameter, the
convective Rossby number Roconv = √

Ra/σ Ek, measuring the strength of the rotation
relative to thermal forcing.

Celestial bodies typically feature extreme values for the non-dimensional parameters
defined above, as summarised in table 1: rapid planetary rotation is reflected in very low
Ekman and Rossby numbers, whereas large Reynolds numbers indicate the highly
turbulent character of the flow. Such rapidly rotating, highly turbulent flows are
challenging to analyse and specifically to simulate numerically owing to the sheer number
of spatial and temporal degrees of freedom which they involve. One common approach
for obtaining theoretical predictions at geophysically relevant parameters (specifically,
Ek → 0) relies upon identifying transitions between different flow regimes in a region of
more moderate parameters (Ek � 10−8) that is amenable to direct numerical simulations
(DNS) or laboratory experiments, together with the scaling laws for transport coefficients
valid within each regime. These results are then extrapolated to extreme parameters on the
assumption that the regimes and scaling laws observed for accessible parameter values
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Celestial body Ek σ RoH ReH

Earth’s outer core 10−15 0.1 10−7 108

Mercury (core) 10−12 0.1 10−4 108

Jupiter (core) 10−19 0.1 10−10 109

Europa (ocean) 10−12 11.0 10−2.5–10−1.5 109.5–1010.5

Ganymede (ocean) 10−10–10−13 10.0 10−3.5–101.5 109.5–1011.5

Saturn (core) 10−18 0.1 10−9 109

Enceladus (ocean) 10−10–10−11 13.0 10−3.5–10−1 107.5–109

Titan (ocean) 10−11–10−12 10.0 10−3–1 109–1011

Neptune (core) 10−16 10.0 10−6 1010

Uranus (core) 10−16 10.0 10−6 1010

Sun (convection zone) 10−15 10−6 10−3 1012

Table 1. Non-dimensional parameter estimates for planetary (Schubert & Soderlund 2011), satellite (Soderlund
2019) and stellar interiors (Miesch 2000; Garaud & Garaud 2008). Estimates of the Rossby number are derived
from the relation RoH = ReH Ek.

extend to geo-/astrophysically relevant parameter values. Assuming that no non-trivial
transition occurs outside the observed moderate parameter interval is a particularly strong
assumption, akin to a leap of faith due to the current paucity of data at the most extreme
parameter values.

The dynamics of the fluid flows found in the celestial bodies listed in table 1 is
further rendered complex by additional ingredients such as spherical geometry, multiple
contributors to the density, compressibility and the presence of magnetic fields. Absent
such complexities, the quintessential paradigm for investigating rotationally influenced
buoyant flows is provided by rapidly rotating Rayleigh–Bénard convection (RRRBC).
A large number of studies have been published on this model system, which is very
well suited for detailed experimental, numerical and theoretical studies, see for example
Chandrasekhar (1953), Nakagawa & Frenzen (1955), Veronis (1959), Rossby (1969),
Boubnov & Golitsyn (1986), Zhong et al. (1991), Julien et al. (1996), Knobloch (1998),
Hart et al. (2002), Vorobieff & Ecke (2002), Boubnov & Golitsyn (2012), King et al.
(2012), Stevens et al. (2013) and the recent review by Ecke & Shishkina (2023). In
RRRBC, gravity is often taken to be antiparallel to the rotation axis on the assumption
that the Froude number FrΩ ≡ Ω2 H/g, where g is the gravitational acceleration, is
small. The resulting configuration is translation-invariant and believed to be relevant to
the polar regions of planets, moons and stars as well as to their interiors, although the case
of misaligned gravity and rotation axis has also been studied (Hathaway & Somerville
1983; Julien & Knobloch 1998; Julien et al. 2006; Miquel et al. 2018; Novi et al. 2019; Cai
2020; Currie et al. 2020; Julien et al. 2025).

A major obstacle in the study of rapidly rotating convection, even in the highly idealised
setting of RRRBC, is the difficulty, to date, of attaining the extremely low Ekman numbers,
typically 10−12 or smaller (cf. table 1), that characterise geo- and astrophysical flows. By
contrast, current state-of-the-art DNS of the full Navier–Stokes–Boussinesq equations that
describe RRRBC have been restricted to Ek � 10−8 (Kunnen et al. 2016; Guervilly et al.
2019; Song et al. 2024a,b), despite enormous computational effort. Inclusion of magnetic
fields in the simulations to capture the capability for dynamo action, as well as spherical
shell geometry, further limits the reported range of nearly all studies to Ek � 10−7,
ReH � 103 (Schaeffer et al. 2017; Cooper et al. 2020; Mason et al. 2022; Kolhey et al.
2022; Gastine & Aurnou 2023; Majumder et al. 2024); simulations down to Ek = 10−10
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are available for linearised dynamics only (He et al. 2022). State-of-the-art laboratory
experiments are likewise restricted to Ek � 10−8 (Shew & Lathrop 2005; Aurnou et al.
2015; Rajaei et al. 2017; Cheng et al. 2020; Lu et al. 2021; Hawkins et al. 2023; Pothérat
& Horn 2024) although the Eindhoven TROCONVEX experiment is, in principle, capable
of achieving yet lower Ek ∼ 5 × 10−9, cf. Cheng et al. (2018). These accessible parameter
values in numerical or laboratory experiments are orders of magnitude larger than the
estimates for realistic geo- and astrophysical applications. On the other hand, existing
reduced equations (Julien et al. 1998; Sprague et al. 2006), known as the non-hydrostatic
quasi-geostrophic (NHQG) equations, describe the dynamics in the limit Ek → 0, but
their applicability is, by construction, confined to asymptotically small values of Ek. This
leaves an unexplored gap corresponding to small but finite Ekman numbers, precisely the
regime that is most relevant for geo- and astrophysical applications.

It is extremely rare to have a numerical or laboratory approach that allows one to span
the parameter range from prototypical laboratory and DNS settings all the way to realistic
geophysical and astrophysical settings. Remarkably, taking advantage of the characteristics
of rapidly rotating thermal convection leads to a new numerical approach that relies on
appropriately rescaled equations, and enables exploration of this very wide parameter
range.

In the following section we describe the rescaled rapidly rotating Navier–Stokes
equations (RRRiNSE) and sketch the numerical method used to solve them, followed in
§ 3 by a description of the results obtained, focusing both on bulk transport properties and
the structure of the boundary layers at the top and bottom. The paper concludes in § 4 with
a discussion of the significance of the RRRiNSE reformulation and prospects for future
work. An Appendix provides additional details on the flow statistics and structure.

2. Methodology
In this section, we succinctly present the RRRiNSE, an equivalent reformulation of the
full Navier–Stokes–Boussinesq equations, informed by the scaling behaviour valid in the
limit of vanishing Ek (Julien et al. 1998; Julien et al. 2012b). The RRRiNSE formulation
is described in detail in a recent paper (Julien et al. 2024), where it was first introduced
and validated against existing results in the literature, and where the full details of the
numerical implementation are given.

In short, the RRRiNSE retain all terms in the Navier–Stokes–Boussinesq equations
while rescaling each variable according to its leading-order asymptotic scaling behaviour
valid for Ek → 0 in terms of the natural small parameter of rapidly rotating convection
ε ≡ Ek1/3 (Chandrasekhar 1953; Sprague et al. 2006). In particular, the rapid rotation
generates a high degree of anisotropy, which is explicitly incorporated in the RRRiNSE
formulation: vertical length scales are non-dimensionalised by the layer height H , while
horizontal length scales are significantly smaller, given by εH . Consequently, time is
measured in units of the viscous diffusion time based upon εH . As shown by Julien et al.
(2024), this procedure ensures an adequate preconditioning of the equations of motion at
small but finite Ek, thus facilitating DNS in this highly relevant but unexplored regime.

2.1. Rescaled Navier–Stokes equations
The convective fluid layer confined by horizontal surfaces separated by a distance H
is subjected to rotation around the vertical axis Ω = Ω êz and uniform gravity −gêz .
The temperature difference between the bottom and the top plate is �T > 0. In the
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Oberbeck–Boussinesq limit, the fluid density varies linearly with temperature ρ = ρ0[1 −
α(T − T0)] near a reference state (ρ0, T0), with both the thermal expansion coefficient α,
the fluid kinematic viscosity ν, and the temperature diffusivity κ considered constant. The
dimensional governing equations for the solenoidal velocity field U , the temperature T
and the pressure P are

∂t U + U · ∇U + 2Ω × U = − 1
ρ0

∇ P + αgT êz + ν�U, ∇ · U = 0, (2.1)

∂t T + U · ∇T = κ�T . (2.2)

As described in detail by Julien et al. (2024), the power behind the RRRiNSE formulation
lies in their use of rotation-influenced characteristic scales for non-dimensionalisation.
For convenience, we introduce the small parameter ε ≡ Ek1/3 = (ν/2Ω H2)1/3 and
measure lengths in units of the layer depth H in the vertical, but in units of �∗ = εH
in the horizontal, so that (X, Y, Z) = (εH x̃, εH ỹ, H z̃). In these coordinates, the rescaled
anisotropic gradient ∇ = ε−1 H−1

˜∇ε ≡ ε−1 H−1(∂x̃ , ∂ỹ, ε∂z̃) and the Laplace operator
becomes � = ε−2 H−2∇̃2

ε , where we have introduced the anisotropic diffusion operator
∇̃2

ε = ∂x̃ x̃ + ∂ỹ ỹ + ε2∂z̃ z̃ . All tildes will be dropped in the following. Time is non-
dimensionalised using a diffusive time scale based on the horizontal scale rather
than the layer depth alone: t∗ = �2∗/ν = ε2 H2/ν. Accordingly, the velocity scale is
U∗ = �∗/t∗ = ν/(εH), giving the non-dimensional velocity u = U/U∗ ≡ (u, v, w); the
pressure scale P∗ = ρ0U 2∗/ε = ρ0ν

2/(ε�2∗) is used to define the non-dimensional pressure
p ≡ P/P∗. This isotropic velocity scale, combined with our anisotropic coordinate system,
results in horizontally dominated material derivatives

D⊥,ε
t = ∂t + u∂x + v∂y + εw∂z = ∂t + u⊥ · ∇⊥ + εw∂z . (2.3)

Here, the perpendicular symbol ⊥ in the subscript denotes the projection upon the
horizontal plane: specifically, ∇⊥ = (∂x , ∂y, 0)� and u⊥ = u − w êz . The incompressibil-
ity condition becomes

∇⊥ · u⊥ + ε∂zw = 0. (2.4)

The (dimensional) temperature T is decomposed as the sum of three terms: an unstable
linear stratification, a vertical profile Θ(z), and horizontal fluctuations θ(x, y, z) with zero
horizontal mean

T − T0 = �T
[
1 − z + Θ(z) + εθ(x, y, z)

]
, (2.5)

where 0 � z � 1. We thus formally embed in our decomposition one hallmark of
rapidly rotating convection: horizontal temperature fluctuations are dominated by vertical
variations. With these elements, the dimensionless governing equations for the horizontal
fluctuations (∂x , ∂y) 
= (0, 0) of momentum and temperature are found to be

D⊥,ε
t u + ε−1 êz × u = −ε−1∇ε p + R̃a

σ
θ êz + ∇2

ε u, (2.6a)

D⊥,ε
t θ + w (∂zΘ − 1) = 1

σ
∇2

ε θ, (2.6b)

where R̃a = Ek4/3 Ra, and the Rayleigh number Ra is given by Ra = αgH3�T /(νκ) in
terms of the thermal expansion coefficient α of the fluid and gravitational acceleration g.
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By denoting the horizontal average of any quantity using an overline

qxy ≡ 1
Lx L y

∫ Lx

0
dx

∫ L y

0
dy q(x, y, z, t) , (2.7)

we write separately the equations governing the vertical profiles of horizontal velocity
(uxy, vxy) and temperature Θ

∂t u
xy + ε∂zwuxy − ε−1vxy = ε2∂zzuxy, (2.8a)

∂tv
xy + ε∂zwvxy + ε−1uxy = ε2∂zzv

xy, (2.8b)

ε−2∂tΘ + ∂zwθ
xy = 1

σ
∂zzΘ. (2.8c)

Equations (2.4), (2.6) and (2.8) form the RRRiNSE system, which is analytically
equivalent to the dimensional equations (2.1), (2.2) as we have only rescaled, but not
discarded any terms in the equations. Numerically, however, these equations differ
drastically in the sense that (2.4), (2.6) and (2.8) can be solved accurately for very
small values of Ekman number, whereas the poor conditioning of the unscaled equations
(2.1), (2.2) renders their solution impossible in practice whenever Ek � 10−9 for reasons
explained by Julien et al. (2024).

2.2. Asymptotically reduced non-hydrostatic quasi-geostrophic equations
In the limit of rapid rotation Ek, Ro → 0, one can derive a reduced set of governing
equations for the flow (presented below) in a systematic and controlled way using
asymptotic methods (Julien et al. 1998; Sprague et al. 2006; Julien & Knobloch 2007;
Julien et al. 2012b). Here, we emphasise, in a quick sketch, how the rescaled equations
(2.6) naturally lead to the reduced equations when the formal limit ε → 0 is considered.
Upon inspection, if the scaling employed for deriving the rescaled equations holds and all
dimensionless variables remain O(1), the leading-order terms at order O(ε−1) in (2.6a)
indicate geostrophic balance

êz × u⊥ = −∇⊥ p, (2.9)

so that the pressure serves as the geostrophic streamfunction

u = −∇ × (p êz) + w êz + O(ε) (2.10a)
= −∂y p êx + ∂x p êy + w êz + O(ε). (2.10b)

To obtain prognostic equations for p, w, θ , Θ we substitute expression (2.10) into the
rescaled momentum equation and project the result upon êz , obtaining at leading order
in ε

∂tw + J [p, w] + ∂z p = R̃a

σ
θ + ∇2⊥w, (2.11a)

where the Jacobian J [p, w] ≡ ∂x p∂yw − ∂y p∂xw indicates horizontal advection of w

and ∇2⊥ ≡ ∂xx + ∂yy emphasises that horizontal diffusion dominates. We complement the
vertical velocity equation with a governing equation for the streamfunction p obtained by
projecting the curl of the momentum equation on the vertical. Using incompressibility,
one proves êz ·∇ ×(̂ez × u) = −ε∂zw, so that the leading-order contribution of êz ·∇ ×
(2.6a) yields

∂t∇2⊥ p + J [p, ∇2⊥ p] − ∂zw = ∇4⊥ p. (2.11b)
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Finally, one readily obtains the leading-order contribution to the governing equation for
the temperature fluctuation θ and the mean temperature Θ

∂tθ + J [p, θ ] + w (∂zΘ − 1) = 1
σ

∇2⊥θ, (2.11c)

ε−2∂tΘ + ∂zwθ
xy = 1

σ
∂zzΘ. (2.11d)

Equations (2.11) constitute the reduced NHQG equations previously derived using a
multiple-scale asymptotic expansion (Julien et al. 1998; Sprague et al. 2006). These
equations filter out fast inertial waves and thin Ekman layers and govern the leading-order
geostrophically balanced flow.

The Ekman number dependence that remains in the governing equation (2.11d) for the
mean temperature reflects the fact that the time scale τ = ε2t associated with the evolution
of Θ is much slower than the convective time scale. Previous studies (Sprague et al.
2006; Julien et al. 2012b) have established that, in the limit of horizontally extended
domains where a large number of convective cells or plumes contribute to the horizontal
spatial averaging, this term can be omitted for the computation of global diagnostics of
a statistically stationary state ∂tΘ ≈ 0. This assumption can be justified based on the
following rationale: as the horizontal extent L⊥ = Lx = L y of the domain increases, so
does the number of independent plumes Np that feed back into the temperature profile. The
central limit theorem then suggests that, in the ergodic limit (time and ensemble averages
behave similarly), the amplitude of temporal fluctuations of the vertical temperature profile
Θ(z) should decrease like 1/

√
Np ≈ 1/L⊥, justifying the neglect of the term ∂tΘ . In the

context of the RRRiNSE formulation, this assumption has been successfully validated
and has proved to shorten the transient that leads to the stationary state (Julien et al.
2024). Thus in all simulations of the RRRiNSE (2.4), (2.6) and (2.8) and the NHQG
equations (2.11) described in this paper, ∂tΘ is set to zero, as is expected to be the case for
a sufficiently large horizontal extent L⊥ of the domain.

2.3. Details on the numerical method
We compute solutions to both the rescaled equations (2.4), (2.6) and (2.8) and the reduced
equations (2.11) using the pseudo-spectral code Coral (Miquel 2021), a flexible platform
for solving partial differential equations in a Cartesian domain. We assume periodicity in
(x, y) and thus decompose the problem variables using a Fourier basis in the horizontal,
whereas a Chebyshev expansion is used in the vertical in order to impose boundary
conditions on the bounding surfaces z = 0, 1 using a Galerkin basis recombination.
Differential operators are discretised using the quasi-inverse method (Clenshaw 1957;
Greengard 1991; Julien & Watson 2009) to optimise memory usage and accuracy. The
resolution was varied from 192 grid points in each direction (corresponding to 128 alias-
free modes) at the lowest values of R̃a, up to 768 grid points (512 Chebyshev modes) in
the vertical direction and 576 grid points (384 Fourier modes) in the horizontal directions
at larger R̃a. The time marching relies on the family of stable semi-implicit Runge–
Kutta schemes introduced by Ascher et al. (1997), specifically their four-stage, third-order
scheme, known as ARS443.

For some of the runs presented here, we have used low-amplitude noise as the initial
condition, and waited for the convective turbulent flow to settle into a statistically
stationary state after a transient period. However, for strongly supercritical flow, this
transient may prove much more turbulent than the stationary state itself. Hence, in some
cases, we resort to an alternative: instead of low-amplitude noise, the initial condition for
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a given run was taken from the solution computed at a neighbouring position in parameter
space. This procedure facilitates the computation of the transient.

Once the transient has subsided, we compute time averages of different diagnostic
quantities reported here. For instance, the barotropic vertical vorticity displayed in figure 2
is defined as

ωz(x, y) =
∫ 1

0
ωz dz, (2.12)

where the vertical vorticity is given by ωz = ∂xv − ∂yu. The Nusselt number is computed
in terms of a volume average as Nu(t) − 1 = σ 〈wθ〉vol , where the volume average is given
by

〈·〉vol = (·)xy = 1
Lx L y

∫ Lx

0
dx

∫ L y

0
dy

∫ 1

0
(·)dz, (2.13)

and the small-scale Reynolds number based on the vertical velocity and the horizontal
length scale is given, in the non-dimensional RRRiNSE formulation, by Re(t) ≡√〈w2〉vol . In addition, we denote the combined space and time average by

〈·〉 = 1
t2 − t1

∫ t2

t1
dt

1
Lx L y

∫ Lx

0
dx

∫ L y

0
dy

∫ 1

0
(·)dz. (2.14)

3. Results
Here, we present the first DNS of RRRBC at realistically small Ekman numbers for
planetary, satellite and stellar interiors, using the RRRiNSE formulation, and analyse the
physics of the flow in this extreme parameter range. Our extensive set of simulations was
performed using the pseudospectral solver Coral (Miquel 2021) for a periodic domain
of horizontal extent 10�c, where �c ≈ 4.82Ek1/3 is the critical wavelength in the limit
Ek → 0 (Chandrasekhar 1953). Specifically, we consider a fluid with σ = 1 subject to
stress-free boundaries (for simplicity) at top and bottom where constant temperatures
are imposed, and periodic boundary conditions in the horizontal directions. We explore
unprecedentedly small but finite Ekman numbers, as low as Ek = 10−15, values that are
more than six orders of magnitude smaller than those previously attainable in DNS or in
the laboratory.

3.1. Overview of parameter space
Figure 1(a) shows the parameter space explored in our simulations. The top panel shows
the estimates of these parameters for planetary interiors and oceans on icy satellites
given in table 1 in the plane spanned by the Ekman number Ek and the bulk Reynolds
number ReH , together with blue circles showing the values reached in our simulations,
indicating that we attain realistically small Ek equal to the estimated values for the
outer core of the Earth (Ek ≈ 10−15) and the convective zone of the Sun (not shown,
cf. table 1). We further indicate the approximate range of parameters reached in previous
numerical and laboratory studies, which are restricted to higher Ek. Dashed lines highlight
important regime boundaries where the Rossby number Ro equals unity in different
parts of the flow. The green dashed line is an estimate of where the bulk of the flow is
expected to become rotationally supported as the rotation rate increases, namely RoH = 1,
i.e. ReH = 1/Ek. In contrast, the rotation rate required to generate rotational support in
the thermal boundary layers at the top and bottom is much higher. This rotation rate is
determined by the condition that the local Rossby number in the thermal boundary layer
RoBL = 1 (red dashed line). As shown by Julien et al. (2012a) this condition is satisfied
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Figure 1. Overview of the parameter space. Panel a: estimates of the non-dimensional parameters for different
celestial objects (see table 1) shown in the plane spanned by the Ekman and Reynolds numbers. The parameters
reached in previous laboratory experiments and simulations are indicated by shaded regions. The dashed lines
indicate regime boundaries discussed in the text: the green dashed line corresponds to the bulk Rossby number
RoH = 1 while the red dashed line corresponds to the local Rossby number RoBL = 1 in the thermal boundary
layers (BLs). These lines are given by ReH = 1/Ek and ReH = Ek−3/5, respectively. The regime bounded by
these two dashed lines is characterised by unbalanced boundary layers and a balanced bulk flow. The symbols
refer to the simulations summarised in panel b: R̃a = const. (white diamonds), Ra = const. (black triangles)
and Ek = const. (blue plus signs). Panel b: overview of simulations (with symbols identical to panel a) in the
plane spanned by the reduced Rayleigh number R̃a = Ra Ek4/3 and the Taylor number T a = Ek−2. Dashed
lines represent regime boundaries corresponding to those in panel a.

when the convective Rossby number associated with the bulk flow Roconv = Ek1/5.
With velocity following the rotational free-fall scale, U = αg�T H2/(2Ω), we see that
ReH = Ro2

conv/Ek, cf. Julien et al. (2024), and hence that ReH = Ek−3/5 (red dashed
line in figure 1a).

In rapidly rotating flows, higher values of Ra are required to trigger convection as a
consequence of the Taylor–Proudman constraint (Proudman 1916). Specifically, the critical
Rayleigh number for convection in the limit of small Ek is proportional to Ek−4/3 as
shown by Chandrasekhar (1953). Therefore, it is natural to introduce R̃a ≡ RaEk4/3,
the reduced Rayleigh number, which measures the supercriticality of rapidly rotating
convection. Panel b of figure 1 shows an alternative representation of the parameter
space in terms of the reduced Rayleigh number R̃a and the Taylor number T a = Ek−2.
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We reach Taylor numbers up to 1030 and reduced Rayleigh numbers up to 300,
corresponding to rapidly rotating and highly turbulent flows. The associated bare Rayleigh
number Ra, indicated by colours in the background, ranges over a similarly wide interval
from O(103) to very large values in excess of 1020.

This wide array of numerical simulations allows us to probe, for the first time in
DNS, the physics of rotating convection from moderate Ekman numbers down to the
fully rotationally constrained regime, previously only accessible in asymptotically reduced
equations (Sprague et al. 2006; Julien et al. 2012a) within the Ek → 0 limit.

3.2. Flow morphology – bulk and boundary layers
An important feature of rapidly rotating flows is the formation of large-scale flow
structures (vortices or jets), associated with spectral condensation of kinetic energy at
the domain scale as a result of an inverse energy cascade (Favier et al. 2014; Guervilly
et al. 2014; Rubio et al. 2014). This behaviour, which is robust for rotating convection
in different domain geometries (Guervilly & Hughes 2017; Julien et al. 2018; Lin &
Jackson 2021), is also observed more broadly in anisotropic turbulent flows, such as stably
stratified rotating turbulence, turbulence subject to strong magnetic fields or geometric
confinement to a thin-layer geometry, among others (Alexakis & Biferale 2018; Alexakis
2023; van Kan 2024). In the case of a periodic, horizontally square Cartesian domain, the
condensate in the limit of asymptotically large rotation Ek → 0 takes the form of a large-
scale vortex dipole, first observed in the reduced equations (Julien et al. 2012b; Rubio
et al. 2014), resembling findings in two-dimensional turbulence (Boffetta & Ecke 2012).
In contrast, DNS of rotating convection at previously attainable moderately small Ekman
and Rossby numbers reveal an asymmetry between cyclones and anticyclones, namely
a preference for strong cyclonic structures and diffuse, weaker anticyclones (Favier et al.
2014). While a dominance of cyclones over anticyclones is also observed in stably stratified
flows at moderately small Rossby numbers (Roullet & Klein 2010; Gallet et al. 2014), the
transition from the moderately small Rossby number regime to very small Ek (relevant to
the celestial bodies listed in table 1), where the cyclone–anticyclone symmetry is expected
to be restored, could not previously be reached in RRRBC.

To address this question, we illustrate and analyse in figure 2 how the vertically
averaged (i.e. barotropic) vertical vorticity ωz(x, y) (see § 2) changes as Ek varies for
a fixed supercriticality R̃a = 120. At moderate rotation rates (Ek = 10−6 and Ro ≈ 0.4,
panel d), a striking asymmetry exists between the strong, coherent cyclone and a weak,
incoherent anticyclonic region. Here, the a posteriori Rossby number Ro is computed
as the root mean square of the ratio ‖u · ∇u⊥‖ /(2Ω ‖u⊥‖), where u⊥ = (u, v, 0). As
rotation increases (top row of figure 2, right to left), this asymmetry decreases but remains
visible for Ek = 10−8 (Ro ≈ 0.07, panel b), a value close to the current state of the art for
RRRBC studies. The anticipated cyclone–anticyclone symmetry present in the asymptotic
rapidly rotating limit Ek → 0 based on the NHQG equations is in fact observed for
Ek = 10−15 (Ro ≈ 8 × 10−5, panel a). To quantify this qualitative observation, we display
in figure 2(e) the skewness of the barotropic vertical vorticity

Skew(ωz) =
〈
(ωz − 〈ωz〉)3

〉/〈
(ωz − 〈ωz〉)2

〉3/2
. (3.1)

A finite positive value, indicating the prevalence of strong cyclones, is obtained for
Ek � 10−9, whereas an approximately vanishing skewness is observed at smaller Ekman
numbers, indicating a restored (statistical) cyclone–anticyclone symmetry, with a relatively
sharp transition between the two regimes.
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Figure 2. Top row: vertically averaged (i.e. barotropic) vertical vorticity field ωz(x, y) at Ek = 10−15

(panel a), 10−8 (panel b), 10−7 (panel c), 10−6 (panel d) and R̃a = 120 (all panels). Panel e: skewness of
the barotropic vorticity field versus Ek indicating a strong cyclone–anticyclone asymmetry for Ek � 10−9, and
an approximate (statistical) cyclone–anticyclone symmetry for Ek � 10−9.

In addition to the barotropic component of the flow, which informs us about the
bulk flow structure, the flow inside the thermal boundary layer near the stress-free,
constant-temperature boundaries at the top and bottom is of great importance. Figure 3(a)
shows visualisations of the flow inside the bottom thermal boundary layer (at height
z = δωz , defined thereafter, cf. figure 5) at R̃a = 120 for four distinct Ekman numbers
Ek = 10−15, 10−8, 10−7, 10−6 in terms of three fields: the vertical vorticity ωz , the
temperature perturbation θ away from the horizontally averaged temperature profile and
the vertical velocity w at the top of the (bottom) boundary layer, where the flow transitions
between qualitatively distinct regimes. Figure 3(b) shows histograms of each field at
the same Ekman numbers, while figure 3(c) displays the associated statistical skewness
versus Ek. At very low Ekman numbers, Ek = 10−15, where the bulk flow features two
large-scale vortices and displays an approximate statistical cyclone–anticyclone symmetry,
the same symmetry is obeyed in the boundary layer as evidenced by the approximately
vanishing skewness not only of ωz , but also θ and w (see also Supplementary Movies 1–3).
A near perfect correlation can be seen between the vertical vorticity and θ . We mention
that the RRRiNSE formulation remains numerically stable even when the Ekman number
is reduced further, as far as Ek = 10−24; the corresponding flow fields obtained from DNS
are shown in Appendix A.

As the Ekman number increases, the approximate symmetry of the histograms persists
up to Ek ≈ 10−9 (not shown). At Ek ≈ 10−8, where cyclone–anticyclone asymmetry and
cyclone dominance emerges in the barotropic mode, the boundary layer flow morphology
is also drastically altered: in addition to the trace of the strong large-scale cyclone,
similarly strong, albeit short-lived, anticyclonic vortices emerge in the boundary layer,
whose anticyclonic core is seen in some cases to be surrounded by a cyclonic shield
(see also Supplementary Movie 4). These strong vortices with anticyclonic cores have
a clear signature in the temperature fluctuation θ as strong, cold perturbations (in the

1010 A42-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.290
https://doi.org/10.1017/jfm.2025.290
https://doi.org/10.1017/jfm.2025.290
https://doi.org/10.1017/jfm.2025.290


A. van Kan, K. Julien, B. Miquel and E. Knobloch

–1000 0 1000 2000
10–8

10–6

10–4

10−2

10–4

10–2

10–12 10–8

P 
(ω
z)

10–6

10–4

10–2

P 
(w

)

P 
(θ

)

Ek = 10–15

Ek = 10–8

Ek = 10–7

Ek = 10–6

–100

–100

–50

0

50

100

–80

–40

0

40

80

–800

–400

0

400

800

–50 0 50

θωz
–250 –100 0 100 200

w

–1

0

1

S
k
ew

 (
ω
z)

–4

–2

0

2

4

S
k
ew

 (
θ)

Ek
10–12 10–8

Ek
10–12 10–8

Ek

–1.0

–0.5

0

0.5

1.0

S
k
ew

 (
w

)

0 Lx/2

Ly/2

Lx 0 Lx/2 Lx 0 Lx/2 Lx 0 Lx/2 Lx

Ly

0

Ly/2

Ly

0

Ly/2

Ly

ωz

w

θ

Ek = 10–15 Ek = 10–8 Ek = 10–7 Ek = 10–6
(a)

(b)

(c)

Ek = 10–15

Ek = 10–8

Ek = 10–7

Ek = 10–6

Ek = 10–15

Ek = 10–8

Ek = 10–7

Ek = 10–6

Figure 3. Panel a: overview of boundary layer flow morphology in terms of the vertical vorticity ωz ,
temperature perturbation θ and vertical velocity w at different Ek and R̃a = 120. Panel b: histograms of
ωz, θ, w at different Ek. Near-Gaussian statistics are observed at Ek = 10−15 with larger skewness at larger
Ek. Panel c: skewness of ωz, θ, w versus Ek. All results shown are obtained at z = δωz (top of the momentum
boundary layer near the bottom boundary) defined in figure 5(a).
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bottom boundary layer shown here, see Supplementary Movie 5), and also in the vertical
velocity w which shows descending flow inside the vortex core, surrounded by rising fluid
motion (see Supplementary Movie 6). As a result, the statistics of θ and w are skewed
towards negative values at this Ek. It is important to stress that the structures displayed
in figure 3 and discussed above are confined within the boundary layer, and do not extend
into the bulk flow. To the best of our knowledge, the strong, partially shielded, short-
lived anticyclonic vortices in the boundary layer with stress-free boundaries are described
here for the first time, although shielded structures have been previously observed in
various studies of rotating convection (Sprague et al. 2006; Julien et al. 2012b; Stellmach
et al. 2014; Song et al. 2024b). We also note that similar structures were predicted
based on Ekman layer theory for no-slip boundary conditions by Julien et al. (1996) in
response to a Gaussian temperature perturbation. As Ek is increased to 10−7 and 10−6,
cyclones clearly dominate the flow in the boundary layer (as in the bulk), while the
strong localised anticyclones become more diffuse, leading to a significant skewness in the
statistics of ωz . The responses in θ and w remain visible in the boundary layer, particularly
outside the large-scale cyclone, although their skewness decreases with further increase
in Ek.

3.3. Flow statistics
Going beyond the visualisations shown in figure 3, we display in figure 4 key quantitative
information on the flow in terms of important non-dimensional numbers. We define the
non-dimensional heat flux across the layer, measured by the Nusselt number Nu − 1 ≡
σ 〈wθ〉 where 〈·〉 is the combined volume and time average, and denote by Nu(t) the
instantaneous Nusselt number obtained by averaging only over the volume, not time.
In addition, we measure the small-scale Reynolds number Re, based on the horizontal
length scale and the root-mean-square vertical velocity, by taking the time average of
the instantaneous Reynolds number Re(t) = √〈w2〉vol (see § 2). Both Nu and Re are
commonly used to quantify turbulent convection since their statistics are known to
converge quickly in the nonlinear regime following the initial exponential growth phase
of the convective instability, see e.g. Maffei et al. (2021). This remains true even in the
presence of an inverse cascade leading to a slow growth in the horizontal kinetic energy.
Figure 4(a) displays the time series of the instantaneous Nusselt number at Ek = 10−10 for
three different reduced Rayleigh numbers R̃a = 40, 60, 80, showing increasing turbulent
heat flux (mean and fluctuations) with increasing R̃a. Rescaling the Nusselt numbers by
the well-known turbulent scaling law (Julien et al. 2012b) for rapidly rotating convection
Nu − 1 ∼ R̃a

3/2 (see panel b), the data collapse satisfactorily for R̃a = 60, 80, while
the least turbulent simulation at R̃a = 40 shows a small mismatch. The corresponding
theoretical scaling prediction for the Reynolds number is Re ∼ R̃a, which we use to rescale
our Reynolds number data.

Averaging over time series like those shown in the top row of figure 4, we obtain
the Nusselt and Reynolds number statistics in panels c and d of figure 4, shown versus
the Taylor number T a = Ek−2. Specifically, four sets of simulations at constant R̃a =
40, 60, 80, 120 are shown for a wide range of 102 � T a � 1030. Triangles in different
orientations for each R̃a show the observed average Nu and Re, while error bars
indicate the measured standard deviation about those mean values. Horizontal dashed
lines indicate, for each R̃a, the values corresponding to the reduced NHQG equations,
with a shaded region indicating the corresponding standard deviation measured in the
NHQG equations. At small T a (large Ek), for the given R̃a, the flow is only weakly
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Figure 4. Panel a: sample time series of Nu − 1 at Ek = 10−10 for R̃a = 40, 60, 80 in the statistically stationary
state, revealing turbulent fluctuations about a well-defined mean value. Both mean and amplitude of fluctuations
increase with R̃a. Panel b: same data, collapsed by rescaling the y axis by R̃a

3/2. Panel c: temporally averaged
Nu − 1 in the stationary state, compensated by R̃a

3/2, with error bars indicating standard deviation, vs Ta =
Ek−2. Here, Nu increases with T a at fixed R̃a up to a maximum, beyond which it decreases to converge
to a T a-independent constant, which agrees with the value obtained in the NHQG equations at the same
R̃a (horizontal dashed line), within one standard deviation (shaded area). Vertical dashed lines (same colour
scheme) correspond to Roconv = 1 and RoBL = 1. Panel d: corresponding data for the small-scale Reynolds
number Re ≡ √〈w2〉, compensated by R̃a, show a similar structure with an overshoot and eventual convergence
to the NHQG prediction at large T a. Panel e: a posteriori Rossby numbers versus Ek1/3 for the bulk and the
boundary layer, both of which exhibit collapse in panel f when shown versus Ek1/3 R̃a

5/4.

1010 A42-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.290


Journal of Fluid Mechanics

supercritical and therefore features only small Nu and Re. A break is seen in the curves
around T a = 106 (Ek = 10−3), where the bulk convective Rossby number equals one,
marked by faint vertical dashed lines, indicating that the bulk flow begins to be rotationally
constrained. The inverse cascade sets in around T a = 108 for R̃a = 40, and closer to
T a = 1010 for larger R̃a = 60, 80, 120 (hollow circular markers). This is in agreement
with the literature, see e.g. Favier et al. (2014). As T a increases (Ek decreases) further
from this point, an overshoot in Nu is observed leading to a maximum in the convective
heat transport for the given control parameter R̃a, whose amplitude and location depend on
R̃a. This is followed by convergence within one standard deviation to the value obtained
in the NHQG equations at yet larger T a, beyond a threshold indicated by a second set
of vertical dashed lines, one for each R̃a, corresponding to convective Rossby number
in the boundary layer of order unity, a condition equivalent to Ek = σ 3/2 R̃a

−15/4 (Julien
et al. 2012a), i.e. the rotation rate where the boundary layer also becomes rotationally
constrained. These regime boundaries are equivalent to those shown in the top panel of
figure 1. A similar structure is observed in the Reynolds number data, which collapse
slightly less satisfactorily under the rescaling (this is known to be a consequence of the
presence of the large-scale vortex (Maffei et al. 2021; Oliver et al. 2023)). At small T a, the
flow is only weakly supercritical and therefore the Reynolds number is small. It increases
with T a up to a maximum, beyond which it decreases to converge (within one standard
deviation) to the value obtained from the NHQG equations. Since Taylor numbers in most
laboratory experiments or unrescaled DNS have been limited to T a � 1014 − 1016, this Nu
and Re vs T a dependence has not previously been described. In particular, the presence of
a maximum in the heat transport and turbulence intensity at a finite Taylor (or equivalently,
Ekman) number as well as the statistical convergence to the NHQG equations are reported
here for the first time.

In addition to the a priori (bulk/boundary layer) convective Rossby numbers shown by
the dashed vertical lines in panels c and d of figure 4, panels e and f show the a posteriori
Rossby number Ro computed as the root mean square of the ratio ‖u · ∇u⊥‖ /(2Ω ‖u⊥‖)
in the bulk and in the boundary layer, where it takes distinct values (see Appendix A).
When shown versus ε = Ek1/3, the standard small parameter of rotating convection, the
data, while scattered, clearly show that the bulk Rossby number increases monotonically
with Ek as expected, crossing unity near the observed onset of the inverse cascade. It is
interesting that this occurs at Ekman numbers which are two orders of magnitude smaller
than what may naively be expected based on the convective Rossby number Roc = 1.
When the same data are plotted against the rescaled parameter Ek1/3 R̃a

5/4, it collapses
to a remarkable degree, both in the bulk and in the boundary layer. We stress that this
is somewhat surprising, since this effective small parameter is obtained explicitly from
the derivation of the reduced equations for the boundary layer (Julien et al. 2012a,b).
However, we note that the bulk flow develops cyclone–anticyclone symmetry at similar
Ekman numbers as the boundary layer, which is another empirical link between the bulk
and boundary layer flows observed here. The collapse of the data in figure 4(e,f ) implies
in particular that when Ek1/3 R̃a

5/4 = 1, below which the average Nusselt and Reynolds
numbers converge to the NHQG data, there is a well-defined associated critical Rossby
number in the boundary layer, which is found to be approximately 0.2. This is where the
boundary layer loses rotational constraint and becomes unstable to strong ageostrophic
motions with pronounced vertical gradients. These additional vertical gradients are
associated with additional dissipation contributions. In steady state, the dissipation rates
of kinetic energy and temperature variance are directly linked to the Nusselt number, via
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the so-called power integrals. In the RRRiNSE formulation, these read

〈|∇⊥θ |2〉 + ε2〈(∂zθ)2〉 + 〈(∂zΘ)2〉 =Nu − 1, (3.2a)

〈|∂x u|2 + |∂y u|2〉 + ε2〈|∂zu|2〉 = R̃a

σ 2 (Nu − 1), (3.2b)

where 〈·〉 is the combined time and volume average over the whole domain. Directly
measuring all contributions in our simulations, we find that both balances are
approximately satisfied (indicating that non-stationarity is weak, see Appendix A), with
important contributions to the dissipation of temperature variance originating in the
boundary layers near Ek1/3 R̃a

5/4 = 1. The increase in the Nusselt number away from
the small Ek NHQG limit can therefore be understood as a consequence of increased
dissipation due to enhanced (vertical and horizontal) gradients, at least in part due to
the strong anticyclonic vortical structures appearing in the boundary layer at Ek = 10−8

(which is near Ek1/3 R̃a
5/4 = 1 for R̃a = 120), cf. figure 3.

3.4. Boundary layer structure
From the above analysis, it is apparent that the boundary layers play a non-trivial role in
the transition from small to large Ek, controlling the departure from the NHQG branch.
To further characterise the boundary layer structure, we measure and analyse vertical root-
mean-square profiles of different quantities as a function of z. Figure 5(a) shows a log–log
plot of the thermal boundary layer depth δθ computed as the location of the maximum
in the root-mean-square vertical profile of θ (shown in the inset for different Ek at
R̃a = 120). At small Ekman numbers, δθ converges to a constant value for a given reduced
Rayleigh number, corresponding to the NHQG limit. Figure 5(c) confirms that the thermal
boundary layer depth scales with R̃a

−15/8, which is the scaling obtained from reduced
NHQG equations for the boundary layer (Julien et al. 2012a,b). As Ek is increased close
to the point where the boundary layer loses rotational support (Ek = σ 3/2 R̃a

−15/4, not
shown), the boundary layer depth undershoots before increasing with a power law not
far from Ek1/2 (and steeper than Ek1/3, not shown). Figure 5(b) shows an alternative
measure of the boundary layer thickness, based on the root-mean-square vertical profile
of ∂zωz . The inset shows sample profiles at R̃a = 120 for different Ekman numbers. A
local maximum is seen in these profiles, which we use to define a momentum boundary
layer thickness δωz . Since we are considering stress-free boundaries, where no linear
Ekman layer is present, the existence of this momentum boundary layer is non-trivial. We
interpret δωz as a measure of how far the effect of the stress-free boundary penetrates into
the bulk of the flow.

We have furthermore verified that the momentum boundary layer seen here in the
RRRiNSE formulation is also present in the reduced NHQG equations (not shown),
although to our knowledge this has not been described previously. Like δθ , at sufficiently
small Ek, δωz becomes constant, while at larger values of Ek, there is again an undershoot
followed by a power-law scaling regime where δωz increases approximately as Ek1/2.
The approximate Ek1/2 scaling, which is observed both in terms of δθ and in δωz and
is also observed for no-slip boundary conditions (Song et al. 2024b), is surprising in
the present case, given that we consider stress-free boundaries, which do not lead to the
formation of linear Ekman layers. While a boundary layer thickness proportional to Ek1/2

is theoretically predicted for the transitional thermal boundary layer (Julien et al. 2012b),
the presence of such a scaling at significantly larger Ekman numbers, where the boundary
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Figure 5. Boundary layer structure for a range of Ek and R̃a. Panel a: log–log plot of the non-dimensional
widths of the thermal boundary layer δθ /H , given by the location in z of the maxima in the vertical root-
mean-square (r.m.s.) profiles of θ shown in the inset, versus Ek for different R̃a. Dashed line indicates a Ek1/2

power law. Panel b: log–log plot of the momentum boundary layer thickness δωz /H based on the location of the
maxima of the r.m.s. profile of ∂zωz shown in the inset. Panel c: log–log plot of the non-dimensional thermal
boundary layer thickness δθ /H at Ek = 10−15 compared with the power law R̃a

−15/8 predicted by the NHQG
equations (Julien et al. 2012b).

layer flow is no longer rotationally dominated, goes beyond this prediction and the precise
origin of this scaling law remains to be elucidated.

3.5. Alternative cuts through parameter space
The results presented thus far were obtained along a particular cut through the physical
control parameter space, namely varying Ek at fixed R̃a. This is the natural approach in
the framework of the RRRiNSE. By contrast, keeping R̃a fixed in an experimental setup or
in an unrescaled DNS requires tuning two parameters. In such contexts, it is instead more
natural to vary Ra at fixed Ek (equivalent to varying R̃a at fixed Ek) or vary Ek at fixed
Ra (equivalent to varying R̃a at fixed Ra). To make contact with existing experimental
and numerical studies, the corresponding cuts through parameter space are shown in
figure 6. Panel a shows Nu − 1 versus R̃a for different sets of RRRiNSE simulations,
each with Ra fixed to a different value between Ra = 106 and Ra = 1010, as well as the
corresponding values from the NHQG equations (Ra → ∞) at the same R̃a. The NHQG
data approximately follow the turbulent R̃a

3/2 scaling law, cf. Figure 4, while at finite
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Figure 6. Nusselt number (panel a) and Reynolds number (panel b) versus the reduced Rayleigh number R̃a
at fixed bare Rayleigh number Ra. Dashed lines indicate intersection of a given Ra = const. set with the
asymptotic limit. Transitional Ekman number (panel c) and reduced Rayleigh number (panel d) versus the bare
Rayleigh number Ra. Nu − 1 (panel e) and Re (panel f ) versus R̃a at fixed Ekman number.

Ra, there is a well-defined transitional value R̃at of R̃a where Nu − 1 intersects the
Ra → ∞ limit, and subsequently follows a shallower slope. This structure of the Nusselt
number flattening out beyond a threshold R̃a = R̃at is robust among the datasets of runs
with different Ra. Qualitatively similar behaviour was recently reported for RRRBC with
no-slip boundaries (Song et al. 2024b), although the eventual low Ek regime remains
elusive in that case. Panel b shows the corresponding Reynolds number data for the same
simulations. As discussed earlier, the corresponding turbulent scaling law Re ∝ R̃a has
proved to be more elusive owing to the impact of the inverse cascade, see Maffei et al.
(2021), Oliver et al. (2023) and figure 4. Panel b shows a similar structure to panel a,
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in that the Re curves intersect the curve corresponding to the NHQG equations at
a (numerically slightly different) threshold value for each R̃a. Since these runs are
performed at constant Ra, each R̃a is equivalent to an Ekman number Ek. Therefore
Rat is equivalent to a transitional Ekman number Ekt .

Panel c shows Ekt , corresponding to the vertical dashed lines in panels a and b,
indicating that the data are quantitatively compatible with the scaling law Ekt ∝ Ra−5/8.
This scaling law corresponds to the theoretical prediction (Julien et al. 2012a) for the
Ekman number at which the boundary layer loses rotational support. Here, we recover
this scaling from a simple measurement of the Nusselt and Reynolds numbers. An
equivalent representation of the same data is shown in panel d in terms of the reduced
Rayleigh number R̃a versus the bare Rayleigh number Ra, which also reveals satisfactory
agreement with the corresponding theoretical scaling prediction R̃at ∝ Ra1/6.

Panels e and f of figure 6 show a third possible cut through the parameter space
of rotating convection (qualitatively resembling results presented in Song et al. 2024b),
holding Ek fixed and changing Ra (or equivalently changing R̃a). The turbulent scaling
laws with R̃a compare similarly well with these datasets and exhibit similar changes in
scaling in the Nusselt and Reynolds numbers with R̃a at finite Ek, up to Ek = 10−6,
while for Ek = 10−9 and Ek = 10−10 the values of R̃a attainable in our simulations were
not sufficiently high to observe a departure from the asymptotic curve corresponding to
the NHQG equations.

The flattening of the Nusselt number curves with increasing R̃a at finite Ekman numbers
is a robust signal that could potentially be reproduced in laboratory experiments. Our
results in figure 6 qualitatively resemble similar findings recently obtained for RRRBC
with no-slip boundaries (Song et al. 2024b).

4. Discussion
The results described above show that the RRRiNSE formulation, based on low Ekman
number asymptotics, allows efficient DNS far beyond the current state of art in laboratory
experiments or unrescaled DNS, down to Ek = 10−15 and below, which is comparable
to the estimated values of Ek in the outer core of the Earth and the convection zone
of the Sun. Specifically, this indicates that the RRRiNSE enable DNS at Ekman numbers
which are over six orders of magnitude smaller than the smallest value obtained previously,
in an impressive effort and at great computational cost, by means of unrescaled DNS
(Song et al. 2024a,b). Using the RRRiNSE formulation, we revealed rich new physics
in this previously inaccessible parameter regime. First, we uncovered a transition at
Ek ≈ σ 3/2 R̃a

−15/4 (Ek ≈ 10−9 for R̃a = 120) from a regime at larger Ek where the depth-
averaged flow features a strong large-scale cyclone and a weak diffuse anticyclone towards
a regime characterised by cyclone–anticyclone symmetry and a large-scale vortex dipole,
in agreement with the predictions of the NHQG equations. Second, we identified a non-
trivial transition in the boundary layer dynamics corresponding to the loss of rotational
support in the boundary layer (confirming a previously untestable theoretical prediction
of Julien et al. 2012b), a transition accompanied by the emergence of strong, albeit short-
lived, anticyclonic structures near the Ek threshold that weaken as Ek increases, leading
to dominance of strong cyclonic structures. It is interesting to note that the cyclone–
anticyclone symmetry breaking in the bulk approximately coincides in Ek with the
boundary layer transition, although a theoretical explanation of this observation remains
unavailable. While flows in the Earth’s atmosphere are characterised by only moderately
small Rossby numbers and are therefore dominated by strong cyclones, our results suggest
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that in the interior of the Earth or other celestial bodies, cyclones and anticyclones may be
statistically of equal strength.

We showed quantitatively that the time-averaged Nusselt and Reynolds numbers in
steady state reflect these regime transitions, taking values consistent with the NHQG
limit for Ek � σ 3/2 R̃a

−15/4, while overshooting as Ek is increased at fixed R̃a, reaching
a maximum at a bulk Rossby number much less than one, and decreasing to close to
zero as Ek increases further at fixed R̃a due to reduced supercriticality. The increase
in the Nusselt number was shown to be tied to increased dissipation associated with
a change in the boundary layer flow morphology. The boundary depth was quantified
in terms of the thermal fluctuations and vertical vorticity, revealing that, at Ek �
σ 3/2 R̃a

−15/4, the boundary layer depth becomes Ek-independent, taking the value
associated with the NHQG equations, but undershooting for Ek � σ 3/2 R̃a

−15/4 before
increasing approximately with an Ekman layer-like scaling Ek1/2 as Ek increases. Owing
to the presence of stress-free boundary conditions, this behaviour cannot be explained
by a linear Ekman layer and is therefore a nonlinear effect. Finally, we have considered
alternative cuts through the parameter space, with one set of runs varying Ek at fixed
Ra and another set of runs varying Ra at fixed Ek. This procedure revealed that at finite
Ekman numbers, the Nusselt and Reynolds numbers remain close to the values found in
the NHQG equations as R̃a increases, but start to deviate from them at a value of R̃a that
depends on Ra in a way consistent with boundary layer theory (Julien et al. 2012a). We
mention that the NHQG equations apply to systems with no-slip boundaries since in the
limit Ek → 0 the no-slip boundaries become effectively stress-free (Julien et al. 2012b). At
finite Ek, however, Ekman boundary layers and the associated Ekman pumping necessarily
modify the boundary layer structure, an effect that can be included in the NHQG equations
following Julien et al. (2016).

The results presented here are based on the RRRiNSE reformulation of the equations
and explain why previous state-of-the art DNS and laboratory experiments could not
reach the parameter regime for observing the transition to fully rotationally constrained
dynamics. The RRRiNSE formulation therefore opens the door to the further exploration
of the parameter regime of very small but finite Ekman and Rossby numbers, highly
relevant to planetary, satellite and stellar interiors. This is all the more timely since
current and future observational missions prompted by the last Planetary Decadal Survey
(National Academies of Sciences, Engineering, and Medicine 2023), including the
recently launched ESA JUICE (JUpiter Icy Moons Explorer) mission (Grasset et al. 2013)
and NASA’s Europa Clipper mission (Howell & Pappalardo 2020) will provide new data
requiring interpretation based on faithful model simulations at parameters as close as
possible to realistic values. Our results are a first step in this direction.

The RRRBC as studied here, with antiparallel gravity and rotation axis is an appropriate,
albeit idealised, model of the North Pole regions of the celestial bodies listed in
table 1. Owing to the latitudinal non-uniformity of rotating convection in spherical
shells (Gastine & Aurnou 2023), the RRRiNSE formulation cannot be straightforwardly
generalised to that setting, but an investigation of the RRRiNSE with misaligned gravity
and rotation axes could provide important insights in this regard. While RRRiNSE
enables simulations at realistic values of Ek, many challenges remain: the increasing
resolution constraint for increasing levels of turbulence cannot be circumvented, and for
simplicity our simulations considered stress-free boundaries as well as Prandtl number
σ = 1 while ignoring other important ingredients such as magnetic fields. To further test
the applicability of our findings to planets, icy moons and stars, future work must also
investigate how the regime transitions described in this study are influenced by additional
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effects, including fluids with Prandtl numbers different from one, compressibility, internal
heating (Barker et al. 2014; Bouillaut et al. 2021; Hadjerci et al. 2024) and strong
magnetic fields, as well as alternative choices of boundary conditions. The doors to
these explorations are now open thanks to the RRRiNSE formulation. Comparison of
the RRRiNSE numerical results with future laboratory experiments would also be highly
desirable.
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A. Additional details on flow statistics and structure
Supplementary Movies 1 to 3 show the evolution of the vertical vorticity ωz , the
temperature perturbation θ and the vertical velocity w, respectively, at the top of
the momentum boundary layer z = δωz for Ek = 10−15 and R̃a = 120. Supplementary
Movies 4 to 6 provide the same information for Ek = 10−8. At Ek = 10−15, all fields
display close to zero skewness and cyclones are of approximately equal strength and
structure as anticyclones. In contrast, at Ek = 10−8, the boundary layer is characterised
by the presence of strong, albeit short-lived, anticyclonic vortical structures typically
with a shielded structure that impose a clear signature on θ and w, associated with cold
spots in the centre where the fluid descends while rising within a surrounding ring.
Figure 7 shows an analysis of the dissipation budget predicted by the power-integral
relations given in (3.2) in the main text, as a function of the Taylor number T a ≡ Ek−2.
Panel a shows that in the statistically stationary state at R̃a = 120 the sum of the
dissipation contributions from the temperature variations due to gradients in the horizontal
and vertical directions sums up approximately to Nu − 1 as predicted by (3.2a). The
departure from the approximately constant Nusselt number at small Ek is seen to be
associated with an increase in dissipation due to both horizontal and vertical gradients.
Panel b shows the contributions from vertical gradients, which primarily stem from the
boundary layers near the departure from the NHQG limit. Panel c shows the kinetic
energy dissipation budget as a function of the Taylor number at R̃a = 120. The sum
of the dissipation of kinetic energy due to vertical and horizontal gradients shows a
satisfactory overall agreement with (Nu − 1)R̃a/σ 2, as predicted by (3.2b). However,
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Figure 7. Panel a shows the dissipation budget of the temperature variance arising from vertical flow variations
at R̃a = 120 versus T a = Ek−2, with ε⊥

θ ≡ 〈|∇⊥θ |2〉, ε
‖
θ ≡ ε2〈(∂zθ)2〉 and ε

‖
Θ ≡ 〈(∂zΘ)2〉, showing that the

power-integral equation (3.2a) of the main text is well satisfied and hence that a statistically steady state
has been reached. The overshoot in Nu − 1 is primarily due to increased ε⊥

θ and ε
‖
θ . Panel b shows the

dissipation due to vertical variations in θ at R̃a = 80, 120 versus T a = Ek−2 together with the boundary
layer contributions (marked by ×, integrated over a depth of 2δθ ). Panel c shows the kinetic energy budget
showing that the contributions from the horizontal (ε⊥

kin ≡ 〈|∇⊥u|2〉) and vertical gradients (ε‖
kin ≡ ε2〈|∂zu)|2〉)

approximately add up to (Nu − 1)R̃a/σ 2, as predicted by (3.2b) of the main text. A small mismatch is seen
at Ek � 10−5 since the emerging large-scale vortex has not fully saturated in amplitude. Panel d shows the
contribution from vertical variation to the kinetic energy dissipation versus T a at R̃a = 80, 120.

while for T a � 108, where no inverse energy cascade is observed, the agreement is close
to perfect, it is notable that for T a � 1010, the measured kinetic energy is slightly below
the value predicted by (3.2b). This is because the large-scale vortex is still slowly growing
in amplitude via the condensation process. Panel d shows the contributions from vertical
gradients, which show a similarly drastic transition from negligibly small to finite values,
contributing to the observed overshoot in the Nusselt number.

The RRRiNSE formulation remains numerically stable at even lower Ekman numbers
than those discussed in the main text. Figure 8 illustrates this in terms of the flow field
obtained for R̃a = 120 at Ek = 10−24. The flow morphology is indistinguishable from
that at Ek = 10−15. Specifically, in the boundary layer, there is no cyclone–anticyclone
asymmetry and the ωz and θ fields are nearly perfectly correlated. Moreover, the barotropic
vertical vorticity displays a counter-rotating vortex dipole at the domain scale, similar to
what is seen in two-dimensional turbulence. While the observed flow structure and the
associated flow statistics at Ek = 10−24 are close to Ek = 10−15 for the case considered
here, more analysis is needed to determine the lowest Ekman numbers attainable with
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Figure 8. Snapshots of the flow state obtained via DNS of the RRRiNSE at Ek = 10−24 and R̃a = 120 in
terms of ωz , w, θ at the top of the boundary layer z = δωz , and the depth-averaged vorticity field ωz revealing
a symmetric large-scale vortex dipole.
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Figure 9. Vertical profiles of the r.m.s. local Rossby number |u · ∇u|/(2Ω|u⊥|) versus non-dimensional
height at R̃a = 120 for Ekman numbers Ek = 10−15, 10−12, 10−9. Inset shows same data in log–log
representation, showing that bulk and boundary layer have distinct values of the Rossby number. At Ek = 10−9,
there is a local maximum in the Rossby number observed near the top of the thermal boundary layer. The values
shown in the main text are obtained by averaging over the thermal boundary layer volume.

RRRiNSE given finite machine precision, and to characterise the breakdown of the
method.

At a given Ekman number, the importance of the Coriolis force compared with
nonlinear acceleration is not uniform in the vertical direction. To illustrate this, figure 9
shows the vertical r.m.s. profiles of the Rossby number, computed based on the ratio

1010 A42-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.290


A. van Kan, K. Julien, B. Miquel and E. Knobloch

|u · ∇u⊥| /(2Ω|u⊥|). This quantity has a well-defined value in the bulk of the flow, but
assumes a distinct value in the boundary layer, as can be seen in the doubly logarithmic
representation in the inset. These two distinct values characterising the bulk flow and the
boundary layer are shown in panels e and f of figure 4 in the main text.
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