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We study the dynamical regime of wave turbulence of a vibrated thin elastic plate based on

experimental and numerical observations. We focus our study on the strongly nonlinear regime described

in a previous Letter by Yokoyama and Takaoka. At small forcing, a weakly nonlinear regime is compatible
with the weak turbulence theory when the dissipation is localized at high wave number. When the forcing
intensity is increased, a strongly nonlinear regime emerges: singular structures dominate the dynamics at
large scales whereas at small scales the weak turbulence is still present. A turbulence of singular structures

with folds and D cones develops that alters significantly the energy spectra and causes the emergence of

intermittency.
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A large ensemble of weakly nonlinear waves can
develop a state of turbulence for which analytical deriva-
tions of the energy transfer can be performed: the weak (or
wave) turbulence theory (WTT). Because of the hypothesis
of weak nonlinearities, the statistics remain close to
Gaussian and the WTT enables us to compute the so-called
kinetic equation for the evolution of the spectral content of
energy. The theory is appealing in the perspective of the
theoretical study of turbulence in general because exact
solutions of out-of-equilibrium dynamics can be derived
analytically. These solutions show an energy flux between
the large forcing scales and the small dissipation scales
analogous to the Kolmogorov similarity solution for hydro-
dynamic turbulence [1-3].

Vibrating elastic plates are a fruitful models for wave
turbulence study. WTT has been applied to this case in
Ref. [4] and advanced measurements have been imple-
mented that provided unprecedented results [5—10]. The
normal deformation of thin elastic plates follows the
Foppl-von Karman equations [11,12]:
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where ( is the transverse displacement, y the Airy
stress function, 4 the thickness, p the density, £ Young’s
modulus, and » the Poisson ratio. The operator L is
bilinear symmetric defined in Cartesian coordinates
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by L(f, g) = (9°f/0x*)(0%g/9y*) + (9*f/ay*)(0%g/9x?)
—2(9%f/0x0y)(9>g/0xdy). The theory predicts an energy
cascade from the forcing large scale to the small dissipative
one, the so-called Kolmogorov-Zakharov (KZ) spectrum,
following for the energy density
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with £ being the Fourier transform of the displacement,
P the energy flux within the cascade, and k™ a cutoff scale
related to the dissipation process [4].

While such scaling has been observed in numerical
simulations where the dissipation is concentrated at small
scales [4], experiments have shown a different behavior
following approximately E; « P%®k=33 [5,6]. Such dis-
crepancy between the WTT and the experiments is mostly
due to the real dissipation that is present at every scale so
that no truly transparent window is present [13,14].

Recently, numerical studies have shown that a new
strongly nonlinear regime emerges for intense forcing
[15]. In fact, when the forcing increases, one expects that
the assumption of weak nonlinearities fails, either at large
or small scales, leading a priori to a new dynamics [16,17].
Such regime is hard to handle and no general theory exists
yet. For instance, in systems allowing an inverse cascade, a
condensate can develop that strongly alters the direct en-
ergy transfer [18]. For water waves, new regimes of turbu-
lence have been identified for various forcing amplitudes
[19]. Here we report experimental and numerical studies of
this new regime. We show that intermittency appears at
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strong forcing and that it can be attributed to the existence
of singular structures in the wave field.

Experiment.—The experimental setup and the presented
data set are the same as those of Ref. [10]. A stainless steel
plate 2 X 1 m? and h = 0.4 mm thick is held freely
hanging from a beam. Vibrations are excited at 30 Hz by
an electromagnetic shaker. The forcing intensity is tuned
by changing the amplitude of the excitation. The deforma-
tion of the plate is measured using a high speed Fourier
transform profilometry technique [7,20] providing movies
of the deformation over about 1 m? (i.e., half the total
surface of the plate) that are resolved both in time and
space. The recording frame rate is varied between 5000
and 10000 frames/s depending on the forcing intensity.

Numerical simulation.—The Foppl-von Karman equa-
tions (1) are simulated with forcing, and dissipation by a
pseudospectral algorithm with a second-order Runge-Kutta
scheme and antialiasing [14] similar to that used in Ref. [4].
Resolutions are up to 7682 grid points to ensure a full
development of the wave spectrum. Physical parameters
are chosen to be comparable to those of the experiment.
The simulated plate is 2 X 2 m? in physical units. Forcing
is chosen to mimic the experimental one: the linear modes
around k = 57 are forced resonantly at their linear
frequency (close to 30 Hz as in the experiment). Linear
dissipation is implemented in two ways: first, a Lorentz
dissipation (the dissipation time scale is decaying as a
Lorentzian with the wave number k) as measured in the
experiment [9]. Such numerical simulations with realistic
parameters have been shown to reproduce the observations
for weakly nonlinear waves [14]. Another dissipation
(called transparent dissipation in the following) is imple-
mented: dissipation is acting only at the highest wave
numbers of the simulation (k > 2007r). This enforces a
constant flux of energy in the inertial (transparent) range
between the forcing at k= 57 and the dissipation at
k > 2007 consistent with the framework of the WTT.

Analysis of Fourier spectra.—Figure 1 shows the power
spectra of the deformation of the steel plate for several
forcing intensities for the experiment, numerical simula-
tions with realistic dissipation and with transparent dissi-
pation. All cases show the emergence of a new regime with
a steeper spectrum at low wave number. The simulation
shows a behavior very close to the experiment and is
similar to the numerical results of Ref. [15]. The experi-
mental study confirms that the effect is present in real
plates and is not an artifact of the Foppl-von Karman
equation driven out of their domain of validity. The simu-
lation with transparent dissipation is in agreement with the
theoretical prediction at low forcing intensity and shows
the same departure at low wave number and strong forcing.
Thus, the observed change in spectrum is not due to a
peculiar dissipation of real plates.

Description of the new regime.—Figure 2 shows snap-
shots of the deformation of the simulated plate in the case
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FIG. 1 (color online). Spectra of the plate deformation (multi-
plied by &*). Forcing intensity is increasing from the bottom
curve to the top curve. Top figure: experiment (forcing magni-
tude in arb. units: 0.5, 0.75, 1, 1.25, 1.5 from bottom to top).
Inset: numerics with Lorentz dissipation mimicking the experi-
mental dissipation (the forcing magnitude is increasing by a
factor of 2 between each curve from bottom to top). The dashed
line is a 1/k decay. Bottom figure: numerical simulations with
transparent dissipation. The left vertical line marks the forcing
wave number, and the right vertical line shows the lower wave
number of the dissipation range. The lower dashed line stands for
the theoretical prediction for weakly nonlinear wave turbulence
[4]. The forcing magnitude is increasing by a factor of 2 between
each curve from bottom to top. Inset: spectrum rescaled by P.

of transparent dissipation for the lowest and the strongest
forcing intensities. The magnitude of the deformation is
over one order of magnitude larger at the strongest forcing.
The shape of the plate is very different in the two
situations: at small forcing, where the KZ spectrum is
observed, the deformation looks like a rock surface and it
appears extremely rough. On the other hand, at strong
forcing, it resembles rather crumpled paper [21] and seems
smoother at first glance (note, however, the different ver-
tical range between the two plots). The large scale defor-
mation is made of folds with sharp crests that form ridges
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FIG. 2. Snapshots of the deformation for numerical simula-
tions with transparent dissipation. Top: smallest forcing ampli-
tude. Bottom: largest forcing amplitude.

connecting developable cones (D cones) [22] responsible
for the fast decay of the spectrum at small k. D cones and
ridges are singular structures that concentrate the stress
resulting from the deformation of the plate. The difference
between the two snapshots reveals a transition from a
diffuse stress to a concentrated stress [21] in a dynamical
regime. Indeed the folds are actually dynamical structures
that form, move for a while, and then disappear: we refer to
this new regime of vibration as dynamical crumpling
by analogy with the static crumpling of an elastic sheet.
The ridges and D cones are regularized at small scales by
the nonlinearity of the von Karman equations [23]. In fact,
as can be seen from the spectra in Fig. 1, the small scale
deformations are still following the KZ solution so that one
can consider that small scale turbulent wave fluctuations
still exist on top of the large scale folds.

A more detailed observation of the deformation shows
that on a single fold, the slopes are almost constant.
This feature is also characteristic of static crumpling
[21]. This observation is supported by the pictures of the
magnitude of the gradient displayed in Fig. 3 at the weakest
and strongest forcing. At weak forcing, the picture of the
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FIG. 3 (color online). Magnitude of the gradient of the defor-
mation. Numerical simulations with transparent dissipation: Top:
smallest forcing amplitude. Center: largest forcing amplitude.
Bottom: comparison of the experiment at strongest forcing (left)
and numerical simulation with Lorentz dissipation (right).
The simulation picture has been truncated to the size of the
experimental picture.

gradient shows a small scale filamentary structure. At
strong forcing, the gradient follows a very different spatial
repartition: the largest values of the gradients are structured
in stripes separated by very narrow ‘‘valleys” of zero
gradient corresponding to the ridges. The comparison
between the experiment and the numerical simulations
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flatness

FIG. 4 (color online). Flatness of gradient increments
[Eq. (5)]. Main figure: numerics with transparent dissipation.
Inset: experiment. The forcing magnitude increases from bottom
to top.

with the empirical Lorentz dissipation at strong forcing
shows that similar features are observed for real plates.

Analysis of spatial increments of the gradient.—A way to
quantify the previous observations is to study the evolution
of spatial increments of the spatial derivatives of the
deformation

Se) = SRR -ER, @

where X is the unit vector along the x direction and R a
position in the xy plane. We expect the probability distri-
bution of such increments to change significantly between
the weak forcing regime and the strong one reflecting the
emergence of intermittency. The flatness of the increments

F(r) = (8g.(nN*)/(8g.(r))? (5)

provides an indicator of the departure from a Gaussian
statistics (for which the flatness is equal to 3). Figure 4
shows the evolution of the flatness as a function of the
forcing intensity for the experiment and for the numerics
with the transparent dissipation case (here the average is
over R and time). At weak forcing, the flatness is close to 3
reflecting Gaussian statistics at all scales. Thus, no inter-
mittency is observed in this regime; the statistics are the
same at all scales. At strong forcing, the flatness is close to
3 both at the small and large scales, but at intermediate
scales of the order of 10 cm the flatness takes values
significantly larger than 3 (over 4 in the experiment and
over 7 in the numerics). The statistics are thus changing
with scale reflecting the presence of intermittency. The
length scale associated to the maximum flatness corre-
sponds roughly to the width of the large gradient stripes
observed in Fig. 3 (the forcing wavelength is about 40 cm).
By contrast, the flatness of the deformation or velocity

increments (not shown) is almost unchanged when the
forcing is increased and remains close to 3.

Discussion.—We have identified that the new dynamical
regime is made of moving ridges delimited by D cones.
It enters into the spectrum at small wave numbers (starting
from the forcing scale) and invades more and more scales
as the amplitude of the forcing increases. A surface domi-
nated by ridges only would develop an elevation spectrum
E (k) < 1 /k* [4,24], i.e., slightly different from the KZ
spectrum (3) but not as steep as our observations. Modeling
the cone by the simple deformation relation ¢ = rf(6)
(singular at r = 0) yields the following contribution to
the deformation spectrum [4] E (k) o« 1/k°, in good agree-
ment with the observed behavior at large scales as dis-
played in Fig. 1 where the slope 1/k is indicated for large
forcing amplitudes. The regularization of the singularity
gives a correction to this scaling at short scales, which
is eventually not relevant in the observation since the
spectrum is then dominated by the usual wave turbulence
contribution. The observed intermittency is clearly related
with the existence of these structures.

We would like to argue here that the emergence of this
new dynamical regime is related to the breakdown of
wave turbulence. A key ingredient in the WTT is that the
nonlinearities remain ‘“weak’” at each scale or equivalently
that the nonlinear time scale is much larger than the linear
one. Since the magnitude of the wave amplitude evolves
with the scale within the cascade, the ratio between these
two time scales usually varies between the forcing and the
dissipative scales. Then, if the inertial range is wide
enough the nonlinearity becomes significantly strong and
intermittency develops either at the largest or smallest
scales [16,17]. This regime of strong turbulence due to
the breakdown of weak turbulence leads to different
dynamical properties for which a general theory is still
missing. Comparing the linear time (7; due to the wave
oscillation) to the nonlinear time (7y;, due to the nonlinear
interactions between the waves) at each scale for the KZ
spectrum yields, following [4,17] (up to the logarithmic
correction terms)

L~ (©)

The wave number scaling of this ratio shows that the wave
turbulence hypothesis of time separation between the fast
wave oscillation and asymptotic nonlinear contribution
fails at large scales and for high forcing amplitudes. Here
the singularities dominate the spectrum at low wave num-
bers consistently with the above argument. At higher wave
numbers, the scale separation 7y, >> 7; is still satisfied
so that weak turbulence can proceed. The spectrum of the
new regime is scaling as P/k’, as seen in Fig. 1 (bottom),
suggesting that the number of singularities increases also
linearly with P [24].
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Finally, it can be noted that experiments on water sur-
face waves (gravity-capillary waves) in which singularities
are indeed observed [25] also show a spectrum that scales
linearly with P in place of the Kolmogorov-Zakharov
scaling [26,27] (P'/? for gravity, P'/? for capillary). It
may be due to the fact that the observed regime of water
waves is dominated by singularities, consistent with the
observation that the scaling in wave number is not the one
predicted by WTT for water waves.

This research was supported by the ANR Grant
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