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We report experimental results on the decay of wave turbulence in an elastic plate obtained by stopping

the forcing from a stationary turbulent state. In the stationary case, the forcing is seen to induce some

anisotropy and a spectrum in disagreement with the weak turbulence theory. After stopping the forcing,

almost perfect isotropy is restored. The decay of energy is self-similar and the observed decaying

spectrum is in better agreement with the prediction of the weak turbulence theory. The dissipative part of

the spectrum is partially consistent with the theoretical prediction based on previous work by Kolmakov.

This suggests that the nonagreement with the weak turbulence theory is mostly due to a spurious effect of

the forcing related to the finite size of the system.
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Wave turbulence is observed in systems involving a
large number of waves coupled by nonlinear effects. Like
hydrodynamical turbulence, it is characterized by wide
ranges of excited length scales and time scales. As wave
turbulence can be weakly nonlinear, a statistical theory
[weak turbulence theory (WTT)] could be analytically
derived and applied to numerous systems such as optics,
oceanic or atmospheric waves, or plasmas (see [1,2] for
reviews). The predicted phenomenology of the forced case
is very similar to that of hydrodynamical turbulence: the
energy injected at large scales where dissipation is negli-
gible is transferred conservatively to small scales by non-
linearity through the Kolmogorov-Zakharov (KZ) cascade.
The cascade operates until the energy reaches scales that
are small enough so that dissipation dominates over non-
linear transfers. In this respect wave turbulence can appear
as an intermediate step in complexity towards the under-
standing of hydrodynamical turbulence.

Assuming that the waves composing the motion ex-
change energy at a slow rate compared to their frequency
(the nonlinear interactions are weak) and that the system is
infinite, the WTT yields analytical predictions for spectra
and other statistical quantities. Let ak stand for the canoni-
cal variables that diagonalize the linear part of the
Hamiltonian of the motion. The wave action (or occupation
number at wave vector k) is defined as nk ¼ hakðtÞa?kðtÞi,
where hi is a statistical average on realizations and ? stands
for complex conjugation (see [3] for details in the case of
flexion waves on a thin elastic plate). In the framework of
the WTT, the time evolution of nk can be described by

@nk
@t

¼ ColðnkÞ � �knk þ FkðtÞ: (1)

The forcing Fk is usually acting on large scales and the
dissipation �knk is efficient at small scales. In the inter-
mediate inertial range of scales, energy is transferred con-
servatively in Fourier space. ColðnkÞ is the collision
integral whose expression was derived in many physical

systems [1–3]. It appears as the divergence of an energy
flux in Fourier space and formally it is reminiscent of the
kinetic theory of gases as the energy is transferred non-
linearly by ‘‘collisions’’ of resonant wave trains [1,2]. The
KZ spectrum is a stationary solution of the forced case
whose analytical expression can be derived in the inter-
mediate range of scales.
Here we consider the case of flexion waves in an elastic

plate. In the experiment we measure the velocity spectrum
EðkÞ which is related to nk by EðkÞ / k2nk [3]. The
theoretical prediction for the velocity spectrum is

EðkÞ ¼ CP1=3ln1=3ðkc=kÞ; (2)

where C is a dimensional constant that can in principle be
calculated analytically, P is the average input power, and
kc is a cutoff frequency that has to be introduced for the
sake of dimensionality. The logarithmic dependency has to
be introduced to ensure a finite flux of energy because of
the degeneracy with the equipartition spectrum EðkÞ ¼
const which has a zero flux of energy [3]. The relation
between the cutoff wave number kc and the small (or large)
scale dissipation is largely an open question as no dissipa-
tion is considered in the theory. Although Düring et al. [3]
claim to have observed the KZ spectrum in numerical
simulations (by choosing kc as the dissipation scale of
the numerical simulation), so far the KZ spectrum remains
elusive in experiments as the theoretical scaling in P and in
k (or !) is not observed [4,5]. More generally, the appli-
cability of the weak turbulence theory to real systems
remains an open question, and only few experimental
systems are available for a quantitative comparison with
the theoretical predictions (see the recent review [1] for a
detailed discussion). In this respect, the case of flexion
waves in a thin plate is promising because the use of a
high speed profilometry technique enables advanced mea-
surements of the full space-time structure of the turbulent
field [5–7]. Although not in agreement with the WTT, the
flexion wave turbulence has been observed to be indeed
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weakly nonlinear, with a persistence of waves and a non-
linear dispersion relation weakly modified from the linear
dispersion relation. These observations are consistent with
the requirement and the predictions of theWTT. It has been
suggested that either dissipation or finite size effects could
be responsible for such discrepancy [4–7]. Here we study a
nonstationary regime of such turbulence obtained by stop-
ping the large scale forcing after a stationary regime is
reached. By observing the decline of turbulence, we sug-
gest that the forcing itself is responsible for the disagree-
ment between the measured spectrum and the theoretical
one through finite size effects.

Nonstationary weak turbulence was studied theoreti-
cally or numerically by several authors [2,8–10] but not
in conditions that are relevant to laboratory studies.
Usually dissipation is not considered and energy is initially
localized in a finite interval of (large) scales so that the
propagation of an energy front in Fourier space to large
wave numbers was observed [9,10]. The experimental
situation of decaying wave turbulence where dissipation
is present and starting from stationary turbulence is differ-
ent and was studied experimentally for capillary wave
turbulence [11] but with limited measurements due to the
difficult experimental conditions. A self-similar decay of
the spectra was predicted in this case [12] but has not been
observed yet.

The forcing is stopped after the plate reached a sta-
tionary turbulent state. Averages over realizations are per-
formed by repeating the experiment 90 times (see Fig. 1 for
a sketch of the experimental setup). Movies of the defor-
mation of the plate are obtained by high speed profilometry
[6]. Fourier analysis of the data is similar to [5]. At a given
k, two counterpropagating waves are present with frequen-
cies of opposite signs so that the spatial Fourier transform
of the velocity field can be written generally as vðk; tÞ ¼
vþðk; tÞ þ v�ðk; tÞ, where vþ (v�) contains only positive
(negative) frequencies. We study only Fourier components
of negative frequencies (i.e., v�) by applying a discrete
Hilbert transform in time [without losing any information
as vþðk; tÞ ¼ v�?ð�k; tÞ]. In this way, we can separate

waves at a given k traveling in the two opposite directions
so as to study isotropy issues. We chose to perform the
statistical analysis on v� so that, for instance, waves with
kx > 0 are propagating in the direction x > 0, which makes
the discussion slightly easier. Here we define the 2D time
dependent Fourier spectrum as Eðk; tÞ ¼ hjv�ðk; tÞj2i.
Note that this spectrum is no longer symmetrical under
the change k ! �k. Eðk ¼ kkk; tÞ is the angle averaged
spectrum Eðk; tÞ ¼ R

2�
0 Eðk; tÞkd�, where � is the polar

angle of k. To get some insight on anisotropy issues, the
interval of integration can be restricted to four quadrants of
angles in ½��=4; �=4�, ½�=4; 3�=4�, ½3�=4; 5�=4�, and
½5�=4; 7�=4�. These intervals correspond to propagation
along directions toward x > 0, y > 0, x < 0, y < 0, respec-
tively (noted xþ, yþ, x�, y�, respectively, in the
following).
An example of the decay of the velocity spectrum is

shown in Fig. 2(a). The top solid curve shows the stationary
spectrum observed before stopping the forcing shaker. A
maximum is observed at the forcing wave number and a
short power law inertial regime is observed with an
exponent about �0:2 corresponding to the previously ob-
served !�0:6 scaling of the single point frequency spec-
trum (change of variable ! $ k is obtained through the
dispersion relation! / k2) [4,7]. The theoretical spectrum
(2) is shown with a thick dashed line and is clearly different
from the experimental one both in the fact that the latter is
increasing in the inertial range and that the cutoff is not
following a logarithmic decay. After stopping the forcing
and after a short transient during which the forcing peak
disappears, the spectra are decaying in a self-similar way
until the inertial range is suppressed. A peak at low k is
observed which corresponds to the energy of the lowest
frequency modes of the plate which are not resolved by our
measurement (the field of view being too small). The cutoff
wave number decays with time. The exponent of the iner-
tial range scaling is observed to be close to 0.3, i.e., closer
to the theoretical exponent [equal to 1 if one discards the

log correction in EðkÞ / kln1=3ðkc=kÞ] than for the forced
case (� 0:2). The remaining disagreement may be attri-
buted to a too narrow interval of length scale available for
the energy cascade or to the logarithmic corrections.
The time evolution of the energy at a given k is shown in

Fig. 3 for a few values of k. The decay occurs in two steps:
the first one resembles a stretched exponential shape, the
second one is exponentially decaying. The change of be-
havior in the decay is related to a change in dynamics from
the nonlinear cascade to the dissipative decay. The char-
acteristic times of the exponential decay are shown in the
inset of Fig. 3. For k above the forcing scale, they tend to
follow a Lorentzian variation with k suggesting the coex-
istence of two processes for dissipating energy at large or
small scale (the increase at the upper values of k is due to a
very poor signal over noise ratio). The values of the
dissipative times (from 1 to 1=10 s) also show a clear scale

2 m

1 mforcing point

steel plate

measurement region

x

y

FIG. 1. Schematics of the experimental setup (similar to [5]).
A 2� 1 m2 plate, 0.4 mm thick, is vibrated by an electromag-
netic shaker at 30 Hz. A single value of the forcing amplitude is
studied here. The deformation of the plate is measured by a high
speed profilometry technique [14] over a surface 1:25�
0:94 m2. Linear waves follow a dispersion relation ! ¼ ck2

with c close to 0:64 m2 s�1 so that the 30 Hz forcing corresponds
to a wavelength � � 0:37 m. Movies of the deformations were
recorded at 6000 frames=s.
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separation from the period of the wave: the ratio equals 25
at the forcing scale up to over 100 at k=2� ¼ 25 m�1. The
exponential decay is consistent with the dissipative term
��knk with �k ¼ 0:73þ 0:025ðk=2�Þ2 s�1. The ob-
served time scale separation opens the possibility of an
energy cascade as predicted by WTT.

A theoretical prediction for the shape of the decaying
spectrum can be derived following the theoretical work of
Kolmakov [12]: one looks for a self-similar decaying
solution of (1) expressed as nkðtÞ ¼ AkbðtÞ�gð�Þ, where
kbðtÞ is a time dependent dissipative cutoff wave number
and � ¼ k=kbðtÞ. We assume that �k / k2, as suggested by
the data. In order to express (1) as a function of the single
parameter � for a self-similar decay of the spectrum, the
scaling properties in k of the collision integral (as given in
[3]) and of the dissipation time impose that � ¼ 0 in the

case of the plate and the cutoff wave number must verify
_kbðtÞkbðtÞ�3 ¼ const. One gets k2bðtÞ ¼ k2bð0Þ=ð1þ t=�Þ,
where � is a constant characteristic time. In the dissipative
range k � kbðtÞ, the collision integral in (1) is negligible
compared to the dissipative term so that (1) yields g0ð�Þ ¼
�2B�gð�Þ (where the prime stands for derivation and B is
a positive constant), so that gð�Þ / expð�B�2Þ. The over-
all dissipative region of the spectrum is thus expected to
follow

Edðk; tÞ ¼ Ak3 exp½�Bk2=k2bðtÞ�; (3)

where A is a positive constant depending on the spectrum
at initial time. The dissipative cutoff is then expected to
follow a Gaussian decay with 1=k2bðtÞ being affine with

time. The decay (3) has been fitted to the dissipative region
in Fig. 2 that provides A and B=k2bðtÞ [Figs. 2(b) and 2(c)].

The agreement is fairly good and the cutoff wave number
follows the theoretical prediction [1=k2bðtÞ being affine

with t]. Nevertheless, the prefactor A of the exponential
decay is not constant as predicted above but it is strongly
decaying with time. Thus, the shape of the spectrum is
preserved, but a genuine self-similarity is not observed. It
is interesting to notice that the prediction of kbðtÞ and the
dissipative behavior of the spectrum actually depend on the
scaling properties of the collision integral CðnkÞ and that
they are at least partially compatible with the data. Note
that the cutoff observed in the stationary forced regime is
also close to such a Gaussian decay. In the inertial range
[k < kbðtÞ], the collision integral dominates and the spec-
trum is expected to follow the KZ spectrum [12].
The issue of isotropy is addressed by separating the fully

angle averaged spectrum Eðk; tÞ into the four quadrants
defined above (as shown in Fig. 4). In the forced case,
waves in the quadrant xþ dominate strongly. Because of
the position of the measurement region, the spherical
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FIG. 3 (color online). Decay of energy. Main figure: evolution
of the angle averaged power spectrum Eðk; tÞ for 1=� ¼ k=2� ¼
5, 10, 15, 20, 25 m�1 from top to bottom (semilog scale, the
curves have been shifted vertically for clarity). Dashed lines: eye
guides for the long-time exponential decay of the energy.
Inset: Evolution of exponential decay times as a function of k.
Dashed line: Lorentzian fit ½0:73þ 0:025ðk=2�Þ2��1.
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FIG. 2 (color online). (a) Decay of the velocity power spectrum
density (PSD) Eðk ¼ 2�=�; tÞ at various times. Top solid curve
(S): stationary spectrum. Lower solid curves, from top to bottom:
104 ms after stopping the forcing and every 83 ms subsequently
(spectra are averaged over 42 ms). Thin dashed line at the top of
the figure: shape of the theoretical spectrum [EðkÞ /
kln1=3ðkc=kÞ]. Thick dashed line: fit of the model (3) for the
dissipative part of the spectrum at each time. Inset: Rescaling
of the decaying spectra using the fitting parameter of (3) at each
time as a function of k=kbðtÞ (covering both the inertial and the
dissipative range) for times between 0.1 and 0.83 s. Upper dashed
line: power law k0:3; lower dashed line: theoretical spectrum.
(b) Fitting parameter B=k2bðtÞ as a function of time. Dashed

line: linear trend. (c) Fitting parameter A as a function of time.
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waves directly generated by the shaker are only partially
visible and lie mostly in this xþ quadrant. This explains
that the energy in this quadrant is dominating over the other
quadrants at the forcing wave number and most of the
inertial range. Waves propagating in the other quadrants
have been generated by nonlinearities and/or rebounds on
the boundaries of the plate. The forcing is only weakly
visible on curves 2 and 4 (yþ and y� quadrants) and not
visible in the x� quadrant. In contrast to the forced case,
the decaying spectrum is almost perfectly isotropic. Note
that the peak at the lowest k corresponds to energy in the
lowest frequency modes with wavelengths larger than the
field of view of our technique. Some energy is stored in
these modes although their frequency is lower than that of
the forcing. Their energy is also decaying but may act as an
energy reservoir that feeds the cascade during the decay. It
should be noted that the spectrum of the x� quadrant is not
much different in the forced and the freely decaying
regimes.

We interpret our observations as follows: In the weakly
forced regime, nonlinear effects are due to cumulative
effects over several periods of the waves. Because of the
propagating nature of the waves, it translates into some
propagation length required for the generation of other
frequencies by weak nonlinearities. If this distance is not
short compared to the size of the plate, the transitory
regime dominates: this is the case in the xþ quadrant. By
contrast the waves in the x� quadrant have propagated
further (at least one rebound) and this seems enough for
nonlinear effects to have transferred energy from the forc-
ing to other waves. This explains why the spectrum of the
waves propagating in this direction are close to that of
freely decaying turbulence. We expect that a bigger system
and a measurement region farther from the forcing would
yield a better agreement with the theory. Thus our

observation can be assigned to finite size effect, the mea-
surement region being too close to the forcing point. It is
very different from another kind of finite size effect related
to the quantization of the plate modes due to its size. The
latter effect is expected to influence the energy cascade by
limiting the number of wave resonances available to trans-
fer energy [13].
The exponent of the isotropic decaying spectrum is

closer to the WTT prediction of the Kolmogorov-
Zakharov spectrum but not equal. The remaining discrep-
ancy can be attributed either to a too short inertial range
and/or to the logarithmic correction predicted by WTT.
The self-similar decay implies that the logarithmic cutoff
kc should evolve in time following the decay of kbðtÞ and
thus display a dissipative scaling (as implicitly assumed in
the numerical simulations of [3]). The partial agreement of
the observed and predicted dissipative cutoff provides
some support for the validity of the expression of the
collision integral derived by the WTT. The fact that
the prefactor A is not constant in time is most likely due
to the fact that the damping coefficient �k is not purely
quadratic in k. The constant part of �k may accelerate the
decay of energy as dissipation occurs at all wave numbers.
This may be responsible for the observed decay of A.
This work was funded by the French Agence Nationale

de la Recherche under Grant No. TURBONDE BLAN07-
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FIG. 4 (color online). Check of isotropy of the spectrum.
(a) Stationary forced regime. (b) Decaying case after 0.18 s of
decay. The upper thick curve is the fully angle averaged spec-
trum. The four lower curves correspond to an angle average over
the four quadrants (see text). Curve 1 corresponds to propagation
directions xþ, curve 3 to x�, and curves 2 and 4 to both
directions along y (almost superimposed).
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