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Thermal convection driven by internal heat sources and sinks was recently shown
experimentally to exhibit the mixing-length or “ultimate” scaling-regime: The Nusselt
number Nu (dimensionless heat flux) increases as the square-root of the Rayleigh-number
Ra (dimensionless internal temperature difference). While for standard Rayleigh-Bénard
convection this scaling regime was proven to be a rigorous upper bound on the Nusselt
number, we show that this is not so for convection driven by internal sources and sinks. To
wit, we introduce an asymptotic expansion to derive steady nonlinear solutions in the limit
of large RaQ, the Rayleigh-number based on the strength of the heat source. We illustrate
this procedure for a simple sinusoidal heat source and show that it achieves heat transport
enhancement beyond the mixing-length scaling regime: Nu increases linearly with Ra over
this branch of solutions. Using rigorous upper bound theory, we prove that the scaling
regime Nu ∼ Ra of the asymptotic solution corresponds to a maximization of the heat
flux subject to simple dynamical constraints, up to a dimensionless prefactor. Not only do
two-dimensional numerical simulations confirm the analytical solution for the sinusoidal
source, but, more surprisingly, they indicate that it is stable and indeed achieved by the
system up to the highest RaQ investigated numerically, with a heat transport efficiency
orders of magnitude higher than the standard mixing-length estimate.
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Motivated by studies of the Rayleigh-Bénard (RB) system, a fluid layer enclosed between a
hot bottom plate and a cold top one, Malkus put forward the physical idea that turbulent convection
may maximize the heat transport subject to simple dynamical constraints (the “power integrals”) [1].
Howard introduced the corresponding variational problem and obtained an upper bound on the heat
transport enhancement achieved by RB convection [2]. Busse improved the approach by including
the incompressibility constraint and deriving the so-called “multi-α” solutions to the variational
problem [3]. He also showed that a similar approach can be applied to many transport problems,
such as momentum transport in a turbulent shear flow [4,5]. In the 1990s, Doering and Constantin
introduced an alternate method, the “background method,” to derive similar bounds for a broad range
of turbulent flows [6–8]. In the context of RB convection, these rigorous upper bounds show that the
Nusselt number Nu (dimensionless heat flux) increases at most like the square-root of the Rayleigh
number Ra (dimensionless temperature difference between the plates) in the large-Rayleigh-number
regime [2,3,8]. The scaling behavior of this upper bound is reminiscent of the “mixing-length”
arguments put forward in astrophysical contexts, where it is assumed that the relation between
the heat flux and the temperature difference does not involve the molecular diffusivities [9,10].
The resulting “mixing-length” scaling law is Nu ∼ √

Pr Ra, where Pr is the Prandtl number. In
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the context of RB convection, this scaling regime was initially proposed by Kraichnan [11], albeit
with additional logarithmic corrections, and is sometimes referred to as the “ultimate” regime of
thermal convection [12]. The actual scaling behavior Nu ∼ Raγ of experimental RB convection
remains a controversial issue in the literature, with values of the measured exponent γ in the
range γ = 0.33–0.39 for the highest Ra achievable in the laboratory [12–17]. This is clearly
below the scaling exponent of the upper bound derived by Howard and improved upon by several
authors: RB convection does not seem to maximize the heat flux constrained by the power integrals
alone.

It was soon realized that the boundary layers—either laminar or turbulent—are responsible
for the reduced value of the exponent γ [1,11,18]. Various approaches were designed to remove
these boundary layers, with the goal of achieving the mixing-length scaling regime predicted by
Spiegel for bulk convection inside astrophysical objects [9,10]. The most drastic one consists
in numerically simulating “homogeneous” convection inside a 3D-periodic domain [19]. While
early results of this approach point towards a Nu ∼ Ra1/2 scaling relation, further investigation
indicates that the numerical simulations are polluted by diverging elevator-mode solutions at high
Ra. The latter would grow unboundedly if resolution- and numerical-noise-dependent instabilities
did not eventually saturate their amplitude [20,21]: At the mathematical level, the consequence
is that the Nusselt number can take arbitrarily large values, making the physical relevance of
this configuration questionable. One way around this issue is to consider very tall domains,
a situation approached experimentally using convection cells that consist in a narrow vertical
channel connecting two reservoirs of hot and cold fluid. Interestingly, the data then displays a
square-root relation between the heat flux and the internal temperature gradient [22,23]. However,
the associated Rayleigh and Nusselt numbers need be built using the width of the channel [24–26].
The resulting scaling relation between the heat flux and the internal temperature gradient explicitly
involves the width of the domain, which challenges its applicability to the arbitrarily wide domains
characteristic of astrophysical and geophysical flows. Another line of work consists in replacing
the smooth boundaries of RB convection by rough plates. When the roughness has a single scale,
it can lead to γ � 0.5 over a finite range of Rayleigh numbers, the belief being that this range
extends to arbitrarily large Ra when the roughness involves infinitely many scales in a fractal
fashion [27–37].

Recently, some of the authors developed an alternate convection experiment, where heat is
effectively input and extracted in volume through a combination of radiative heating and secular
cooling [38,39]. This strategy allowed us to bypass the diffusive boundary layers and achieve
the mixing-length scaling regime Nu ∼ Ra1/2. The questions that naturally arise are thus: Does
convection driven by heat sources and sinks maximize heat transport, and how large is the associated
maximum heat flux? We answer this question by combining two theoretical tools: First, we introduce
an asymptotic expansion to derive high-Rayleigh-number steady solutions [40–42]. Second, we
derive rigorous upper bounds on the heat transport efficiency of convection driven by internal
sources and sinks. Because the scaling behavior of the asymptotic solution matches the one of
the upper bound, we can conclude unambiguously on the maximum heat transport enhancement
that can actually be achieved in the system: the asymptotic solution obeys the scaling law Nu ∼
Ra, which corresponds to heat transport enhancement much beyond the mixing-length scaling
regime.

Convection driven by heat sources and sinks. Consider a Newtonian fluid of mean density ρ0,
specific heat capacity C, kinematic viscosity ν, and thermal diffusivity κ , inside a domain of height
H . The fluid is subject to internal heat sources and sinks, which enter the heat equation through
a term Q0S(z), where Q0 characterizes the magnitude of the heat input/output in Watts per cubic
meter, z is the vertical coordinate measured in units of H , and S(z) is a shape function that depends
on the dimensionless vertical coordinate z only. This heating/cooling profile S(z) has zero mean over
the fluid domain, to avoid any temperature drift in the long-time limit, and unit root-mean-square
(rms) value. After nondimensionalizing lengths with H , time with H2/κ , and temperature with
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νκ/αgH3, where α is the thermal expansion coefficient and g is gravity, the Navier-Stokes and heat
equations in the Boussinesq approximation read:

∂t u + (u · ∇)u = −∇p + Pr(�u + T ez ), (1)

∂t T + u · ∇T = �T + RaQ S(z). (2)

In these equations, t and x denote the dimensionless time and space variables, while u, T, and p are
the dimensionless velocity, temperature, and generalized pressure fields, respectively. The velocity
field is incompressible, ∇ · u = 0, and the two dimensionless control parameters appearing in the
equations are the Prandtl number Pr and the flux-based Rayleigh number RaQ, defined as

Pr = ν

κ
, RaQ = αgQ0H5

ρ0Cκ2ν
. (3)

High-Rayleigh-number asymptotics. We first consider two-dimensional (2D) asymptotic solu-
tions to Eqs. (1) and (2) where the fields depend on x and z only. For brevity, we consider a
square domain (x, z) ∈ D = [0, 1]2, although the approach remains valid for an arbitrary aspect
ratio. Introducing a stream function ψ such that the velocity field is u = ∇ × (ψ ey), with ey the
unit vector along y, Eqs. (1) and (2) yield

∂t�ψ + J (ψ,�ψ ) = Pr [�2ψ + ∂xT ], (4a)

∂t T + J (ψ, T ) = �T + RaQ S(z), (4b)

where the Jacobian is J (A, B) = ∂xA ∂zB − ∂zA ∂xB. For simplicity, we consider stress-free boundary
conditions at all boundaries of the square domain: ψ = 0, �ψ = 0. We consider insulating
boundary conditions at the vertical sidewalls (∂xT = 0), and we leave the top and bottom thermal
boundary conditions unspecified for now.

We seek a time-independent asymptotic solution at high RaQ and thus expand the fields in powers
of RaQ

1/2:

ψ = RaQ
1/2ψ0 + ψ1 + RaQ

−1/2ψ2 + . . . , (5)

T = RaQ
1/2T0 + T1 + RaQ

−1/2T2 + . . . . (6)

At order O(RaQ), Eqs. (4) yield, respectively,

J (ψ0,�ψ0) = 0, (7a)

J (ψ0, T0) = S(z). (7b)

To lowest order, the flow thus satisfies the Euler equation and advects heat from the sources to
the sinks, without the need for diffusive processes. The solution to Eq. (7a) is simply

�ψ0 = F (ψ0), (8)

i.e., the vorticity is a function of the stream function, with the only constraint that F (0) = 0 to
satisfy the stress-free boundary conditions. The solutions are very degenerate at this stage: F can
be chosen arbitrarily, the corresponding temperature field being then deduced from Eq. (7b). As we
will now see, solvability conditions at the next order constrain the choice of F . Equation (4a) yields
at order O(RaQ

1/2):

J (ψ0,�ψ1) + J[ψ1, F (ψ0)] = Pr(∂xT0 + �2ψ0), (9)

where we have inserted the relation Eq. (8). Multiplying this equation by G(ψ0), with G an arbitrary
differentiable function, before integrating over the square domain D, leads to∫∫

D
G(ψ0){J (ψ0,�ψ1) + J[ψ1, F (ψ0)]}dxdz = Pr

∫∫
D

G(ψ0)(∂xT0 + �2ψ0)dxdz. (10)
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For any three functions a, b, and c, one of which vanishes at the boundaries of D, the functions can
be swapped inside triple products of the form

∫∫
D aJ (b, c) dxdz at the expense of changing the sign.

Using this property, one can prove that the left-hand side of Eq. (10) vanishes, giving the following
constraints on ψ0 and T0: ∫∫

D
G(ψ0)(∂xT0 + �2ψ0)dxdz = 0, (11)

for any differentiable function G.
To summarize, solving this problem consists in finding the function F in Eq. (8), such that ψ0

satisfies the infinite set of solvability conditions Eq. (11), where the temperature field T0 is deduced
from ψ0 by solving Eq. (7b). This is an intricate task in general, that may not even always admit a
solution. In the following, we thus focus on a simple form for the source function S(z) to provide
an explicit example of solution to this problem.

Sinusoidal heating. The procedure described above becomes surprisingly simple in the situation
where the source term varies sinusoidally in the vertical direction, with a shape function S(z) =√

2 sin(2πz). One can look for solutions to Eqs. (7) that consist of the gravest Fourier mode only:

ψ0 = ψm sin(πx) sin(πz), (12a)

T0 = Tm cos(πx) sin(πz). (12b)

Substitution into Eq. (7b) yields Tm = 2
√

2/π2ψm. At this stage, the amplitude ψm remains un-
determined, and we have obtained a continuous family of solutions to the undamped equations. The
selection of ψm occurs through the solvability conditions Eq. (11), which are simultaneously ensured
if ∂xT0 + �2ψ0 = 0. After substitution of Eqs. (12a) and (12b), this yields ψm = ±2−1/4π−5/2 and
Tm = ±27/4π1/2. This completes the determination of the asymptotic solution.

To check the validity of this solution, we performed direct numerical simulations (DNS) of the
governing Eqs. (4a) and (4b) with the pseudospectral solver CORAL [43]. We time-stepped the
equations inside the domain [x, z] ∈ [0, 1]2 with stress-free boundaries and insulating sidewalls.
We consider either vanishing-temperature or insulating boundary conditions at top and bottom.
In the latter case, we set the spatially averaged temperature to zero initially, and it remains zero
under the evolution Eq. (4b). Remarkably enough, the system settles in a steady solution in the
long-time limit. In Fig. 1, we show the temperature field of these steady states for various RaQ.
The analytical solution derived above readily satisfies T = 0 at top and bottom, and the numerical
solutions indeed tend to the theoretically predicted shape as RaQ becomes larger and larger. For
no-flux boundary conditions, small boundary layers develop at the top and bottom to match the
analytical solution—valid in the bulk—to the no-flux boundary conditions. Methods to compute
such boundary-layer corrections in a square box are provided in Refs. [40,44,45]. In the present
situation, these boundary layers have a negligible impact on the temperature field for large RaQ,
and the solution again takes the shape of the asymptotic analytical prediction; see Fig. 1. For a
more quantitative comparison, we plot in Fig. 2 the spatial maximum of ψ and T in steady state,
as functions of RaQ. At large RaQ, they are in excellent agreement with the predictions RaQ

1/2|ψm|
and RaQ

1/2|Tm| of the asymptotic approach.
Beyond the ultimate regime. To facilitate the comparison to other convective systems, we now

express the asymptotic results in terms of standard Rayleigh and Nusselt numbers. We introduce
the Rayleigh number Ra based on the rms temperature, a good proxy for the typical temperature
difference inside the square domain. In terms of the dimensionless temperature field, this Rayleigh
number is simply Ra =

√
〈T 2〉, where 〈·〉 denotes space and time average. The Nusselt number is

then defined as Nu = RaQ/Ra. Up to a dimensionless prefactor depending on the source function
S(z), this number is the ratio of the heat flux transferred from the heat sources to the sinks, to the
hypothetical heat flux associated with pure diffusion of the rms temperature over the domain height.
Equivalently, Nu is proportional to the ratio of the rms temperature of the diffusive steady solution
to the rms temperature of the convective one.
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FIG. 1. Temperature field in steady state obtained by DNS of Eqs. (4a) and (4b), for no-flux [top row (a-e)]
and vanishing-temperature [bottom row (f–j)] boundary conditions at top and bottom. The Prandtl number is
Pr = 1 and the flux-based Rayleigh number RaQ increases from left to right. All fields are normalized by the
spatial maximum max[T (x, z)]. We represent isocontours for equispaced values indicated in panel (c).

Taking the rms value of Eq. (12b), remembering that T = RaQ
1/2T0 to lowest order, we obtain

Ra = RaQ
1/2 |Tm|/2. Substituting the expression of Tm and RaQ = Nu × Ra leads to

Nu = Ra

23/2 π
. (13)

The asymptotic solution corresponds to heat transport enhancement beyond the mixing-length or
“ultimate” scaling regime Nu ∼ √

Ra Pr. This new scaling-regime can be traced back to the laminar
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FIG. 2. Spatial maximum of the stream function and temperature field as functions of the flux-based
Rayleigh number. Symbols correspond to the steady state attained at large time in the DNS with insulating
(orange; light gray) or vanishing-temperature (blue; dark gray) top and bottom boundary conditions. The
dashed and dash-dotted lines are the predictions RaQ

1/2|ψm| and RaQ
1/2|Tm| from the asymptotic theory.
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nature of the flow: The typical velocity is set by the balance between the buoyancy force and
the viscous term of the Navier-Stokes equation, which yields a Reynolds number Re ∼ Ra/Pr,
as opposed to the standard free-fall estimate Re ∼ (Ra/Pr)1/2 associated with the mixing-length
regime of thermal convection [9,10]. This fast flow efficiently carries fluid elements from the heat
sources to the sinks, leaving them little time to build large temperature values.

Bound on the heat transport. The scaling law Eq. (13) may come as a surprise to readers familiar
with Rayleigh-Bénard convection. Indeed, as mentioned at the outset, for the latter setup one can
prove rigorous upper bounds on the Nusselt number of the form Nu � C Ra1/2 [2,8], where C is a
dimensionless constant, incompatible with scaling laws of the form (13). This apparent paradox is
solved by observing that these upper bounds only hold for Rayleigh-Bénard-like geometries, and
not for convection driven solely by internal sources and sinks. One may thus wonder how large the
Nusselt number can be for convection driven by heat sources and sinks. We answer this question by
deriving a rigorous upper bound on the Nusselt number for this situation. We consider the general
three-dimensional situation, Eqs. (1) and (2), inside a parallelepipedic domain of arbitrary aspect
ratio, with insulating and either stress-free or no-slip boundary conditions at each boundary. Once
again, without loss of generality we set the spatially averaged temperature to zero initially, and it
remains zero at any subsequent time. Multiplying Eq. (2) by S(z) before taking a space and time
average yields, after a few integrations by parts:

RaQ = −〈S′(z)wT 〉 − 〈S′′(z)T 〉 + [S′(z)T (z)]1
0, (14)

where T (z) denotes the horizontally- and time-averaged temperature profile, and primes denote
z-derivatives of the source. We introduce the numerical constants c1 = maxz∈[0;1] |S′(z)| and c2 =√

〈S′′(z)2〉 and apply the Cauchy-Schwarz inequality to Eq. (14) to obtain

RaQ � c1(
√

〈w2〉Ra + |T (0)| + |T (1)|) + c2Ra. (15)

In a similar fashion, multiplying Eq. (2) by T before averaging yields

〈|∇T |2〉 = RaQ〈S(z)T 〉 � RaQ Ra, (16)

where we have used 〈S(z)2〉 = 1 and
√

〈T 2〉 = Ra.
Because 〈T 〉 = 0, there is a z0 ∈ [0; 1] such that T (z0) = 0. Hence, |T (1)| = | ∫ 1

z0
∂zT dz| �√∫ 1

z0
(∂zT )2dz �

√
〈|∇T |2〉 � √

RaQ Ra, and similarly |T (0)| � √
RaQ Ra, so that

RaQ � c1(
√

〈w2〉Ra + 2
√

RaQ Ra) + c2Ra. (17)

Dotting the Navier-Stokes Eq. (1) with u before averaging leads to the balance between dissipation
and injection of kinetic energy: 〈|∇u|2〉 = 〈wT 〉 �

√
〈w2〉Ra. We insert this inequality into the

Poincaré inequality for w, which vanishes at the top and bottom boundaries:

〈w2〉 � 〈|∂zw|2〉
π2

� 〈|∇u|2〉
π2

�
√

〈w2〉Ra

π2
. (18)

Dividing by
√

〈w2〉 we obtain
√

〈w2〉 � Ra/π2. Inserting the latter inequality into Eq. (17) and
substituting RaQ = Nu × Ra finally leads to Nu − c1(2

√
Nu + Ra/π2) − c2 � 0, which is satisfied

only if

Nu � c2
1

(
1 +

√
1 + c2

c2
1

+ Ra

c1π2

)2

. (19)

This inequality is the desired upper bound on the Nusselt number. The right-hand side scales
linearly in Ra for large Rayleigh number, which shows that the Nusselt number cannot increase
faster than linearly in Ra in the present system. For the particular case of sinusoidal heating, the
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FIG. 3. Dimensionless heat flux Nu = RaQ/Ra as a function of Ra =
√

〈T 2〉. Same color code as in Fig. 2.
Dashed line: asymptotic solution [Eq. (13)]. Dash-dotted line: analytic upper bound [Eq. (19)].

constants entering expression Eq. (19) are c1 = 2
√

2π and c2 = 4π2. The upper bound becomes
Nu � 2

√
2 Ra/π at leading order in Ra 	 1. The heat flux Nu = Ra/2

√
2π of the asymptotic

solution Eqs. (12a) and (12b) thus saturates the analytical bound up to a dimensionless prefactor
equal to 8 (see Fig. 3), and the bound can only be marginally improved upon. One may want to
express the bound Eq. (19) using Rayleigh and Nusselt numbers even more closely related to the
standard definitions of RB convection. For instance, we introduce a Rayleigh number based on
a characteristic maximum temperature Ramax = maxz[T 2(z)]1/2, where the overbar still denotes a
horizontal and time average, together with the associated Nusselt number Numax = RaQ/Ramax. An
application of Hölder’s inequality leads to Ra � Ramax and Numax � Nu, so that Eq. (19) holds
when Ra and Nu are replaced by Ramax and Numax.

Discussion. We have derived upper bounds on the Nusselt number, as well as steady asymptotic
solutions, that exhibit a heat transport scaling law Nu ∼ Ra, beyond the mixing-length or “ultimate”
scaling regime. A natural next step would be to study the stability of such solutions. For the
sinusoidal heat source in 2D, the energy of the convective flow concentrates in the gravest Fourier
modes. This observation suggests—and one may be able to prove analytically—that the asymptotic
solution is indeed stable at arbitrarily large RaQ, in a similar fashion to 2D flows forced at the
largest scale [46]. In our numerical computations we reached RaQ ≈ 1011 and Re ≈ 4.104 without
observing signs that the large-scale steady solution would become unstable. However, for more
general source functions and in the general 3D situation with no-slip boundary conditions, we
observe unsteady and turbulent flows in both experiments and DNS, with an average heat flux
obeying the mixing-length scaling law [38,39]. Steady solutions of the form of Eqs. (7b), (8), and
(11) remain useful in this context, because they show that the upper bound Eq. (19) is sharp, i.e., it
captures the scaling behavior of some true solutions to the equations. Improving the scaling behavior
of such bounds would thus require a technology to exclude some unstable solutions during the
bounding procedure, a formidable task in general [47]. Instead, we speculate that the combination
of the asymptotic solutions described above with the upper bound Eq. (19) could be indicative of
the scaling behavior of extreme events of heat transport: Keeping in mind the picture of a chaotic
system that wanders between unstable solutions and periodic orbits in phase space [48–50], unstable
solutions of the form of Eqs. (7b), (8), and (11) may set the scaling behavior for such extreme events,
with Nu ∼ Ra over the duration of a single event.
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