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Low-frequency spectra of bending wave turbulence
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We study experimentally the dynamics of long waves among turbulent bending waves in a thin elastic plate set
into vibration by a monochromatic forcing at a frequency fo. This frequency is chosen large compared with the
characteristic frequencies of bending waves. As a consequence, a range of conservative scales without energy
flux on average exists for frequencies f < fo. Within this range, we report a flat power density spectrum for
the orthogonal velocity, corresponding to energy equipartition between modes. Thus, the average energy per
mode β−1—analogous to a temperature—fully characterizes the large-scale turbulent wave field. We present an
expression for β as a function of the forcing frequency, amplitude, and of the plate characteristics.
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Introduction. Turbulence generically refers to physical sys-
tems where a large number of degrees of freedom exchange
energy through nonlinear interactions and exhibit chaotic dy-
namics. A salient feature of these out-of-equilibrium systems
is the existence of a scale separation between the characteristic
scales of energy injection and of energy dissipation. From a
phenomenological point of view, this scale separation permits
energy cascades, a canonical example of which is the direct
(i.e., down-scale) energy cascade in hydrodynamical turbu-
lence (HT) between the (large) injection scale and the (small)
dissipation scale [1,2]. From a theoretical point of view, this
scale separation advocates for a statistical approach [3,4].
For instance, the Kolmogorov 1941 theory [5] (thereafter
K41) captures successfully many statistical properties of the
direct energy cascade in HT, although refined theories have
been formulated later [3,4,6]. From a practical point of view,
most numerical and experimental studies of hydrodynamic
turbulence focus on this direct cascade and, therefore, con-
sider fluid domains comparable to the forcing scale. However,
larger structures might exist, provided that the system size
allows for it. They have received much less attention, de-
spite their relevance in many geophysical and astrophysical
contexts [7]. A computationally savvy approach consists in
modeling the large-scale modes only by considering the trun-
cated Euler equation (e.g., Refs. [8,9]). These studies have
recently established the generally accepted theoretical view
that, in the absence of an energy flux through scales larger
than the forcing scale, energy is statistically evenly distributed
between these large scales [10–12]. This large-scale energy
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equipartition is the hydrodynamic analogous to the thermal
equilibrium.

Energy cascades are not exclusive to hydrodynamical tur-
bulence but occur in other systems as well. For instance,
cascades develop in a variety of nonlinear wave fields, which
constitutes the focus of the present Letter. Similar to the hy-
drodynamical case, a statistical theory has been derived in the
limit of weak nonlinearity: the weak wave turbulence theory
(WWT) [13–15]. The most prominent success of the WWT
is perhaps to derive analytically power-law spectra associated
with a nonzero energy flux through scales ε. These spectra,
coined Kolmogorov-Zakharov spectra, often take the form of
power laws in both k and ε, the exponents of which depend on
the nature of the interactions (dimensionality, number of inter-
acting waves, dispersion relation, etc.). The theory has a wide
range of applicability and has been successfully adapted to a
variety of wave systems: gravity and capillary surface waves,
sound waves, Alfven waves, plasma waves, internal waves,
nonlinear optics, Bose-Einstein condensates, and gravitational
waves [13–16].

Among nonlinear interacting waves, we consider here the
bending waves propagating in a thin elastic plate [17–19]. A
turbulent spectrum has been proposed for the direct cascade
in the WWT framework [20]. The prediction differs from ex-
perimental observations [21,22]. The discrepancy is attributed
to the dissipation mechanisms [23,24]. The nonlinear inter-
actions of elastic bending waves involves four waves but, in
contrast to surface gravity waves, the number of waves in
interaction is not necessarily conserved [20]. However, the
existence of an inverse cascade (i.e., towards large scales) is
still an open question. In Ref. [25], the authors observed an
inverse cascade growing up during a transient regime. They
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FIG. 1. Experimental setup: A thin stainless steel plate of
(2000×1000×0.5 mm3) is forced by a electromagnetic shaker
(EMS) at a frequency fo ∈ [100–300] Hz. The laser vibrometer
(LV1) measures the velocity of the perpendicular deformation. In
addition, we measure the force applied by the EMS with a strain
gauge (SG) and the velocity at the injection point with a second laser
vibrometer (LV2) (see the text).

attributed this transient inverse cascade to the interactions
conserving the number of waves. In the numerical study of
Ref. [25], the direct cascade is shrunk to a very short range
in order to extend the inverse cascade. Moreover, the final
stationary state is unknown.

Our aim in this Letter is to characterize experimentally
the low-frequency spectrum of nonlinear bending waves in
the stationary regime. The growth of the long wavelength has
caught the attention of oceanographers for a long time and can
be attributed partially to nonlinear interactions [26–28]. Labo-
ratory experiments designed for such studies were performed
only recently with surface gravity waves where an inverse
cascade exists [29,30] and with capillary waves where no
inverse cascade is expected for wavelengths smaller than the
gravity-capillary crossover [31]. As we demonstrate below,
flexion waves in thin steel plates prove a valuable candidate
to study the large-scale dynamics of turbulent systems where
one can easily excite and measure waves with temporal fre-
quencies 1 Hz � f � 300 Hz (slower than the forcing) and
with wavelength 1 cm � λ � 100 cm.

Experimental device. Our experimental device is similar
to the one presented in Ref. [32]. It is sketched in Fig. 1.
A thin stainless steel plate (2000×1000×0.5 mm3) is forced
with an EMS. In this setup, turbulent regimes are readily
attained with a monochromatic forcing. Hence, we drive the
shaker harmonically at a single frequency fo, picked within
the range from 100 to 300 Hz. We tested that broadband
forcing (within a similar range) gives qualitatively similar
results. The forcing point is at 10 cm from the bottom edge,
and the top edge is clamped. All others boundaries are free.
The low-frequency cutoff, fc due to finite size of the plate is
estimated with the dispersion relation of the bending waves:
2π f = chk2. Here f and k, respectively, are the bending wave
frequency and wave number, h is the plate thickness, and c
is a constant (with the dimension of a velocity) depending
only on the mechanical properties of the plate materials [17].

FIG. 2. PDS of the perpendicular velocity measured at a point
in the middle of the plate with fo = 250 Hz and an input power
of 407 mW. The continuous black line represents the plateau value
evaluated between 30 and 220 Hz. The main panel: The PDS is
plotted with logarithmic axes. The inset: semilogarithmic axes are
used. The vertical dot-dashed line points out the low-frequency cutoff
at fc = 30 Hz and the forcing frequency at fo = 250 Hz.

In Ref. [22], the authors estimate c = 1570 m/s in a similar
plate. Taking the cutoff wave number kc ∼ 1/L with L = 1 m
the plate width, one gets fc ∼ 5 Hz. In the following, we are
interested in the spectra between fc and fo of the normal
velocity v corresponding to displacements along the direction
perpendicular to the plate at rest. This velocity is measured
locally with LV1 near the center of the plate. We checked
that the velocity spectrum does not depend on the exact po-
sition of the laser spot as long as it is 20 cm apart from the
plate boundaries. LV2 measures the perpendicular velocity at
the energy injection point where the EMS is attached to the
plate. In addition, we measure the force applied by the EMS
with a SG. The mechanical power injected into the nonlinear
bending wave field, denoted I , is inferred from the product
of these two measurements. In the next section, we present
the low-frequency spectra of the perpendicular velocity v for
various injected powers and driving frequencies. For each
frequency and amplitude, we record the plate velocity for a
quarter of an hour in the stationary regime. We probe each set
of forcing parameters four times. The comparison of each four
similar measurements gives us an estimate of the experimental
reproducibility.

Experimental results. Figure 2 presents the power density
spectrum (PDS) of the perpendicular velocity, Sv for a forcing
frequency of fo = 250 Hz and an input power of 407 mW.
The forcing frequency remains clearly visible in the spec-
trum. Despite its amplitude, this peak actually contains only
few percent of the total energy due to its narrowness. At
frequencies higher than fo, data are accurately fitted with an
exponential decay C(I, fo) exp(−τo f ), shown as the dashed
line in the inset of Fig. 2. A similar exponential decay is
found in the viscous range of hydrodynamic turbulence spec-
tra [3,33]. Here τo is a characteristic decaying time, and
C(I, fo) is a parameter depending on the forcing. This kind
of decay holds for the entire range of driving parameters (I
and fo) explored in our experiment. Moreover, Fig. 3 shows
that the characteristic time τo is, to a good approximation,
inversely proportional to the rms velocity and independent of
the forcing frequency, fo, i.e., τo = α/σv where α is a constant

L061001-2



LOW-FREQUENCY SPECTRA OF BENDING WAVE … PHYSICAL REVIEW E 103, L061001 (2021)

10-2 10-1 100
10-3

10-2

FIG. 3. The characteristic time of the exponential decay of the
PDS of v as a function of the standard deviation of v. The various
forcing frequencies are as follows: fo = 100 Hz ∗, fo = 150 Hz ◦
(red), fo = 200 Hz × (green), fo = 250 Hz � (magenta), and fo =
300 Hz ∇ (cyan). The dashed line represents the best fit of the
experimental data. It gives an exponent of −1.1 ± 0.1.

length independent of the forcing. From Fig. 3 one estimates:
α � 0.35 mm.

Previous studies predict a power-law decay proportional to
f −γ with γ ≈ 0.6 followed by an exponential cutoff [21,22].
We do not observe such a universal power regime in our ex-
periments. The discrepancy might be attributed to the higher
forcing frequencies used in our experiment. This specific
shape of the spectrum and the value of α is discussed in
the next section. Despite the lack of a power-law cascade,
we search for a signature of turbulence behavior by studying
the scaling laws of the injected power I . More precisely,
a signature of nonlinear energy transfer is that the the en-
ergy flux ε ∝ 〈I〉 is proportional to the third moment of the
v [23,34]. We confirm this scaling in Fig. 4. By comparing
the range of the x axis of Figs. 3 and 4, we note that, de-
spite being small, the skewness of the velocity field 〈v3〉/σ 3

v

is significantly nonzero. This minute deviation from Gaus-
sianity is a necessary assumption of the WWT theoretical
framework [13–15].

At frequencies lower than the forcing, i.e., f < fo, the
main panel of Fig. 2 shows a constant spectrum down to a
cutoff frequency f obs.

c ∼ 30 Hz. This observed cutoff occurs
at a frequency larger than our estimate based on the plate size
L, which is fc(L) ∼ 5 Hz. However, it corresponds to a wave-
length of nearly half the plate width fc(L/2) ∼ 20 Hz. It is not
surprising that such low frequencies are affected by the sparse
distribution of eigenmodes. We do not observe a dependency
of f obs.

c with the forcing. This supports the assumption that
this low-frequency cutoff is due to finite size effects [35]. To
sum up our observation, for all forcing parameters explored
in our experiment such that nonlinear waves are generated,
we obtain the following picture: The temporal spectrum ex-
hibits an exponential decay for f > fo and a plateau between
fc and fo. The level of the plateau (shown by the continu-
ous line in Fig. 2) does depend on the forcing parameters,
though.
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FIG. 4. The mean injected power 〈I〉 as a function of the third
moment of the perpendicular velocity v. Symbols are as previously:
fo = 100 Hz ∗, fo = 150 Hz ◦ (red), fo = 200 Hz × (green), fo =
250 Hz � (magenta), and fo = 300 Hz ∇ (cyan). The dashed line
represents the best linear fit with a slope about 0.3 kg/m. The hori-
zontal data scattering is due to the uncertainty on 〈v3〉 obtained from
four identical experimental runs.

Discussions. In order to describe the shape of the spectrum
shown in Fig. 2, we address the three following points.

(1) Scaling of the exponential decay for f > fo. First, as
a preliminary remark, we discuss the scaling of the exponen-
tially decaying part of the spectra. Following Refs. [21,34],
the dimensionless parameters are as follows:

S̃v = Sv/(ch), φ = f h/ε1/3, (1)

φo = foh/ε1/3, ξ = ε/c3. (2)

We deliberately omit from this list the aspect ratio � = h/L
which has been kept constant. We recall that c is a charac-
teristic velocity that depends on the material properties and ε

(in m3/s3) is the mean energy flux by unit of mass injected
in the two-dimensional waves. It is proportional to the mean
injected power and quantifies the forcing intensity. If we de-
note φ = f / f  with f  = ε1/3/h, then f  corresponds to the
rescaling frequency previously introduced in Refs. [21,22].
Following Fig. 4, one has also: f  ∝ σv/h. From dimensional
analysis, we seek a relation of the form S̃v = F (φ, φo, ξ ),
where F is an unknown function. We infer from Fig. 2 that
F (φ, φo, ξ ) reduces to C̃(ξ, φo) exp(−α̃φ) for all f � fo in
the limit fo � f . The length α � 0.35 mm, deduced from
Fig. 3, is comparable to the thickness of the plate h = 0.5 mm.
This observation supports the use of the dimensionless vari-
able φ promoted in Ref. [21].

(2) Equipartition of energy for low-frequency modes
f < fo. We focus now on the low-frequency plateau. Energy is
the unique conserved quantity during nonlinear interactions of
bending waves [25]. In contrast to surface gravity waves in flu-
ids, there is no other quantity (e.g. wave action) to sustain an
inverse cascade. As a consequence, in the stationary regime,
one assumes that there is no net energy flux through the lowest
wave numbers, which contribute marginally to the overall
dissipation [36]. It is, therefore, natural to expect equipartition
of energy for these modes. With our data and the empirical
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law for the dissipation presented in Ref. [23], we confirm that,
at most, less than 10% of the power is dissipated below fo

(in the worst case, i.e., for fo = 300 Hz). In the following, we
will assume at first approximation that this has no influence on
the low frequencies and does not perturb the measured plateau
beyond the experimental uncertainty.

In order to explain the plateau, we now adapt the arguments
exposed in Ref. [31] to the present case. We start with the
two-dimensional isotropic energy spectral density per unit
density and per unit surface. Once integrated over angles,
one has: e(k)dk = 2πk |̂v(k)|2dk where v̂(k) is the Fourier
transform of velocity. The equipartition of energy implies in a
continuous limit (i.e., k � 1/L),

e(k)dk = 1

β

2πk dk

(2π/L)2

1

ρL2
⇒ e(k) = k

2πρβ
. (3)

where ρ is the stainless steel density and β−1 is the typ-
ical energy per modes (analogous to a temperature). The
power density spectrum of the perpendicular velocity is sim-
ply: Sv (k) = e(k)/L. Using the power density spectra relation
Sv (k)dk = Sv ( f )df together with the dispersion relation, one
gets

Sv ( f ) = 1

2βρcLh
. (4)

In other words, the equipartition of energy corresponds to a
flat frequency spectrum in agreement with the experimental
spectrum at low frequency.

(3) Power spectra continuity hypothesis at f = fo. The
last step is to determine the variations of β with the driving
parameters. As observations suggest, and despite the presence
of a maximum in the spectrum at the forcing frequency that
contains a negligible fraction of the total power, we match the
low-frequency plateau and the direct cascade at the forcing
frequency. We decompose the PDS into

S<
v ( f ) = 1

2βρcLh
for f � fo, (5)

S>
v ( f ) = C exp(−τo f ) for f > fo, (6)

with τo ∝ h/σv and where β and C are two unknown parame-
ters whose value has yet to be determined. Neglecting the peak
and the role of the frequency below fc, in the energy spec-
trum, one requires that S<

v ( fo) = S>
v ( fo) by continuity and that

σ 2
v = ∫ ∞

0 Sv ( f )df = ∫ fo

0 S<
v ( f )df +∫ ∞

fo
Sv ( f )>df . These two

relations imply

C = ασ 2
v

α fo + σv

exp(α fo/σv ), (7)

β−1 = 2ρchL
ασ 2

v

α fo + σv

. (8)

Figure 5 shows that all the low-frequency plateaus are well
rescaled by Sv ( f / fo)(α fo + σv )/σ 2

v and that β−1 is a lin-
ear function of σ 2

v /(α fo + σv ). Moreover, from Fig. 4 one
expects σv ∼ I1/3. Thus, one writes β−1 as a function of the
forcing parameters: β−1 ∼ 2ρchL(αI2/3)(α fo + I1/3). Note
that the ratio α fo/σv is on the order of one. Thus, Eqs. (7)

FIG. 5. Collapse at low frequency ( f � fo) of Sv , the PDS of
the perpendicular velocity of the plate, once rescaled by the ex-
pected plateau value: σ 2

v /(α fo + σv ) as a function of the reduced
frequencies f / fo for all the 156 experimental runs. The inset: linear
relation between the plateau value and σ 2

v /(α fo + σv ) with the forc-
ing frequency: fo = 100 Hz ∗, fo = 150 Hz ◦ (red), fo = 200 Hz ×
(green), fo = 250 Hz � (magenta), and fo = 300 Hz ∇ (cyan).

and (8) cannot be simplified further in our range of forcing
parameters.

Concluding remarks. In sum, bending waves forced in a
thin elastic plates prove a useful setup to explore the low-
frequency spectrum of turbulent systems in the absence of an
inverse cascade. We observe in this system that mean energy is
evenly distributed between modes. Finally, we propose an ex-
pression allowing a full characterization of the low-frequency
part of the velocities spectrum knowing the injected power
and the forcing. The buildup of this equipartition possibly
occurs through a transient inverse cascade as reported in
Ref. [25]. An experimental study of the transient associated
with high-frequency forcing would be a challenging endeavor
to generalize previous studies of direct cascade transients in
elastic plates [37]. In practice, leveraging a space and time
measure of the deformation, one could analyze the time evo-
lution of the spatial modes. The variations of this mean energy
per mode β−1 with the forcing parameters is obtained by
assuming the continuity of the spectrum. Ideally, one would
aim at observing simultaneously energy equipartition for low-
frequencies f � f0 and a direct cascade (characterized by a
power-law spectrum) for f � f0, before dissipative effects
take over. In the present experiment, high driving frequencies
were necessary so that equipartition was observed over a
convincingly large range of frequencies. As an unfortunate
consequence, the small scales did not exhibit conservative
cascades but were affected by dissipation. A goal for future
studies, perhaps achievable using a much larger plate, would
be to somehow extend the range of the “transparency window”
(i.e., the range of scales where energy is conservatively trans-
ferred) so that to observe simultaneously equipartition and a
direct cascade that is ultimately dissipated at small scales.
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