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The Kolmogorov-Zakharov spectrum predicted by the weak turbulence theory remains elusive for wave
turbulence of flexural waves at the surface of a thin elastic plate. We report a direct measurement of the nonlinear
time scale TNL related to energy transfer between waves. This time scale is extracted from the space-time
measurement of the deformation of the plate by studying the temporal dynamics of wavelet coefficients of the
turbulent field. The central hypothesis of the theory is the time scale separation between dissipative time scale,
nonlinear time scale, and the period of the wave (Td � TNL � T ). We observe that this scale separation is valid
in our system. The discrete modes due to the finite size effects are responsible for the disagreement between
observations and theory. A crossover from continuous weak turbulence and discrete turbulence is observed when
the nonlinear time scale is of the same order of magnitude as the frequency separation of the discrete modes.
The Kolmogorov-Zakharov energy cascade is then strongly altered and is frozen before reaching the dissipative
regime expected in the theory.

DOI: 10.1103/PhysRevE.84.066607 PACS number(s): 46.40.−f, 62.30.+d, 05.45.−a

I. INTRODUCTION

The nonlinear coupling among a large number of waves
causes an energy transfer between them and yields a state
of wave turbulence. This phenomenon plays an important
role in the atmosphere-ocean coupling through surface waves
forced by the wind, in energy transport and dissipation by
internal waves across the ocean, energy exchanges by Rossby
waves in the atmosphere, energy dissipation by Kelvin waves
in superfluid turbulence, or confinement in tokamak plasmas
among many examples. The weak turbulence theory (WTT)
aims at developing a theoretical framework for such turbulence
of dispersive waves [1–3]. It relies on two major assumptions:
weak nonlinearity and an asymptotically large size of the
system. Because of the weak nonlinearity, energy exchanges
between waves are slow and restricted to resonant waves that
conserve energy and impulsion. The wave amplitude is slowly
modulated by the coupling and an energy cascade operates
from the large scales of the energy input to the small scales at
which it is dissipated. The theory relies fundamentally on the
following scale separation:

T � TNL � Td, (1)

where T = 2π/ω is the period of the wave, TNL the char-
acteristic time of the nonlinear exchange of energy in the
cascade, and Td is the characteristic time of dissipation.
Both latter times usually depend on ω. Thanks to this scale
separation, an asymptotic calculation can be performed to
predict the statistical properties of wave turbulence [1–3]. It
predicts in particular an energy cascade in scales sharing many
similarities with the Kolmogorov cascade of hydrodynamical
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turbulence (thus the name Kolmogorov-Zakharov cascade for
wave turbulence). The goal of this article is to check directly
the hypothesis of scale separation in flexion wave turbulence
in an elastic plate.

Testing the validity of WTT in experiments is challenging
because a measurement resolved both in space and time is
required in order to probe the structure of the turbulent wave
field. In this respect, the time-resolved profilometry technique
applied to water surface waves and waves on a thin elastic plate
is a very valuable tool [4,5]. In the case of water waves it was
observed that the waves develop strongly nonlinear structures
(crests and bound waves) that explain the disagreement of
the observed wave spectra with the WTT predictions [6–8]:
For instance, the spectral exponents of the wave spectrum
predicted by the WTT are not observed in experiments. The
case of waves in a thin elastic plate is somewhat different: The
space-time spectra of such turbulence show that the waves
are indeed weakly nonlinear [4,9,10]; the dispersion relation
remains as a single energy line in the (k,ω) space (as opposed
to water waves) and it is weakly shifted from the linear
dispersion relation. Despite this agreement with the WTT
requirement of weak nonlinearity, the observed wave spectra
are not in agreement with the theoretical predictions [11–13].
This disagreement between experiment and theory may be
attributed to two effects. First, the forcing is localized in space
and thus requires some propagation distance to randomize
the wave phases and to develop the weak turbulence energy
cascade [10]. This effect impacts the observed spectrum
because the measurement region cannot be located far enough
from the forcing in a region where the stationary energy
cascade is effective. A second effect may be in action due
to the finite size of the plate: For finite systems, the modes
have discrete frequencies. This discreteness may hinder the
occurrence of resonances if the separation between frequencies
is so large to prevent resonance conditions to be fulfilled
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[14]. Assuming a system of size L, the wave numbers of
the neighboring modes should be separated by δk ∝ π/L.
This translates through the group velocity vg in a frequency
separation δωsep = vg(ω)δk. Such modes have a spectral width
�ω due to dissipation (then �ω ∝ 1/Td which is a lower
bound of the spectral width) and to the nonlinear exchanges
of energy that alter the temporal coherence of the waves. In
such a case one expects an additional contribution proportional
to 1/TNL which dominates over the dissipation if the scale
separation TNL � Td is fulfilled. The WTT assumes that
the frequencies can vary continuously: This is valid if the
spectral width of the modes is larger than their separation
(�ω � δωsep). The discreteness of the modes can be neglected
if 1/TNL � δωsep. If this is not the case, the separation of the
modes prevents the Kolmogorov-Zakharov (KZ) cascade from
developing. The dynamics of such discrete wave turbulence
resembles somewhat that of a finite dimensional nonlinear
system [14]. In such a system, the energy transfer to small
scales is strongly affected compared to the KZ cascade. The
continuous KZ cascade is expected to be observed in the range
of frequencies where

T � TNL � 1/δωsep . (2)

Depending on the ordering of Td and 1/δωsep a range of
discrete turbulence could be observed as well.

The experimental setup is similar to the one described
in [9]: a stainless plate (1 m× 2 m× 0.4 mm) hangs vertically,
clamped at the top on its short side. An electromagnetic
shaker is attached slightly above the inferior edge of the
plate [see Fig. 2(b)] driven at 30 Hz with various amplitudes.
A videoprojector displays a line pattern on the plate. The
deformation of the plate yields a deformation of the pattern.
This deformed pattern is recorded by a high speed camera
at a frame rate up to 10 000 frames/s. The deformation field
ζ (r,t) is obtained by a two-dimensional (2D) demodulation of
the movies (see [4]). Eventually we compute the velocity field
v(r,t) = ∂ζ/∂t .

Our previous work shows that the scale separation T � Td

is verified in wave turbulence in an elastic plate [10]. We
studied the decay of energy of the wave turbulent field after
stopping the forcing. A first period of decay is associated with
the nonlinear cascade and is followed by a final exponential
decay. We extract from this exponential part the dissipative
characteristic time Td shown in Fig. 1. The ratio of Td and
the period of the wave is over 100 in the accessible range of
wavelengths. This scale separation enables the existence of an
intermediate nonlinear time scale.

In order to check the above scale separation of the
nonlinear time scale with respect to T and Td , we perform
an analysis of the dynamics of wave packets through a wavelet
decomposition. The signal processing yielding the estimation
of the nonlinear time scale is described in part II. The scale
separation is discussed in Sec. III.

II. DESCRIPTION OF THE WAVELET ANALYSIS

A. Definition of the nonlinear time TNL

In the framework of the WTT, the amplitude of the wave
is supposed to be slowly modulated by the nonlinear coupling
between the waves. Let us write ṽk(t) = 1

2π

∫
v(r,t)ejk·rd2r
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FIG. 1. (Color online) (Squares) Measured dissipative time Td

versus k/2π = 1/λ. (Dashed line) Lorentzian fit Td = (0.73 +
0.025(k/2π )2)−1 used in the following. (Insert) Tdω versus k/2π

(semilog scale).

the spatial Fourier transform of the velocity field. The WTT
assumes that ṽk(t) can be written as

ṽk(t) = ak(t)e−jωkt , (3)

where ak(t) is the amplitude which evolves slowly in time
compared to the period of the wave. We define the nonlinear
time scale as

TNL =
∫ ∞

0

|Dk(τ )|
|Dk(0)|dτ, (4)

where Dk(τ ) = 〈ak(t)a∗
k(t + τ )〉 is the temporal correlation

of the slow modulation of the wave. The average 〈 〉 is a
statistical average on realizations of the turbulent field and
is estimated as a time average in our case (the system is
statistically stationary). Unfortunately Dk cannot be estimated
directly from the experimental data because the velocity
field is measured only on a fraction of the plate. A wavelet
decomposition is performed to gain access to the slow
modulation correlation function Dk.

B. The wavelet family

In order to extract the dynamics of a wavetrain at some
wave vector k and position R we use the continuous family of
2D Gabor wavelets:

Gk,R(r) = 1√
πσ 2

exp

(
− (r − R)2

2σ 2

)
exp(jk · r). (5)

Such a wavelet is a complex exponential of wave vector k
modulated by a Gaussian envelop of width σ and centered in
R. The choice of the width of the envelop results from a balance
between the locality in space and in scale. In all the following
we use a constant width σ = 14.4 cm for convenience (rather
than fixing the product σk, for instance). An illustration of the
wavelet is shown in Fig. 2. We define the wavelet coefficients
as

w̃k,R(t) =
∫

v(r,t)G∗
k,R(r)d2r, (6)

066607-2



NONLINEAR DYNAMICS OF FLEXURAL WAVE TURBULENCE PHYSICAL REVIEW E 84, 066607 (2011)

σ = 15 cm
λ = 5 cm

k

FIG. 2. (Color online) Schematics of the plate (figured by the
vertical rectangular box) of size 2 × 1 m2. (Left) Example of the
Gabor wavelets used in the analysis. The width of the Gaussian
envelop is σ = 15 cm and k/2π = 15 m−1. (Right) Collection of
positions of the center of the wavelets R used in our analysis. k is
chosen horizontal. The bottom black dot corresponds to the position
of the electromagnetic shaker.

where ∗ is the complex conjugation. The wavelet coefficient
is the projection of the turbulent mix of waves at time t on a
Gaussian wave packet at position R and wave vector k.

C. Correlations of wavelet coefficients

In order to extract the nonlinear dynamics of the turbulent
field, we investigate the time correlations of the wavelet
coefficients:

Ak,R,R′ (τ ) = 〈w̃k,R(t)w̃∗
k,R′(t + τ )〉, (7)

Ck,R,R′ (τ ) = 〈w̃k,R(t)w̃∗
−k,R′(t + τ )〉. (8)

A is the correlation of the amplitude of a wave packet
propagating along the same k and between the positions R
and R′ and at times separated by τ . C is a similar correlation
but for wave packets propagating along opposite wave vectors.
Here we study only correlations between positions on a line
parallel to the horizontal wave vector k as shown in Fig. 2.
The same correlations are computed for a plate at rest as well
in order to get an estimate of the noise contribution. Assuming
that the noise and the signal are independent, the contribution
of the noise can be subtracted from the direct estimation of
A so that to increase the dynamics of the measurement and
in particular to remove contributions due to the flickering and
the scanning of the videoprojector (acting at very low k and at
60 Hz and its harmonics).

D. Extraction of the nonlinear dynamics

In this subsection, we describe how the slow modulation
correlation D can be computed from the measured coefficients
A and C. The correlation A can be rewritten in Fourier space
as

Ak,R,R′ (τ ) =
∫

〈ṽq(t)ṽ∗
q′(t + τ )〉G̃∗

k,R(q)G̃k,R′(q′)d2qd2q′,

(9)

where G̃k,R(q) is the spatial Fourier transform of the wavelet
Gk,R(r).

In the framework of the WTT, two Fourier modes of the
turbulent field are supposed to be uncorrelated at different
wave vectors (correlations appear for at least three waves). It
has been checked in this experiment for two-wave equal time
correlations in [9]. Using this hypothesis, one gets

〈ṽq(t)ṽ∗
q′(t + τ )〉 = 〈ṽq(t)ṽ∗

q(t + τ )〉δ(q − q′) (10)

= δ(q − q′)Dq(τ )ejωqτ . (11)

The correlation can thus be rewritten as

Ak,R,R′ (τ ) =
∫

G̃∗
k,R(q)G̃k,R′ (q)Dq(τ )ejωqτ d2q . (12)

We assume in the following that Dq(τ ) is varying more
slowly as a function of q than the Fourier transform Gk,R(q).
By doing this assumption, we suppose that the extension of the
wavelet (in real space) is narrower than the spatial coherence
of the wave. As the wavelet has a Gaussian envelop, Gk,R(q) is
also Gaussian centered on q = k. With the above assumption
one can neglect the variation of D in Eq. (12) so that

Ak,R,R′ (τ ) ≈ Dk(τ )
∫

G̃∗
k,R(q)G̃k,R′ (q)ejωqτ d2q. (13)

The integral in this equation can be calculated using the
dispersion relation of the waves in the elastic plate ω = ck2

and yields

Ak,R,R′ (τ )= Dk(τ )√
1 + c2τ 2

σ 4

exp

(
− (�R − vg(k)τ )2

4σ 2
(
1 + c2τ 2

σ 4

)
)

ej�, (14)

where �R = R′ − R, vg(k) = 2ck is the group velocity and
� = ωτ + φ(ω,τ ) where φ is a phase factor.

The correlation A of the wavelet coefficients contains the
variations of the correlation of the modulation of the wave D
but altered by the factor,

1√
1 + c2τ 2

σ 4

exp

(
− (�R − vg(k)τ )2

4σ 2
(
1 + c2τ 2

σ 4

)
)

ej�, (15)

which is due to the dispersion of the wavelet during its
propagation from R to R′ at the group velocity. The prefactor
(1 + c2τ 2

σ 4 )−1/2 can be easily compensated. We study rather the

compensated correlations in the following: Ac =
√

1 + c2τ 2

σ 4 A
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and Cc =
√

1 + c2τ 2

σ 4 C. The modulus of the compensated
coefficient Ac is directly linked to D:

∣∣Ac
k,R,R′ (τ )

∣∣ = |Dk(τ )| exp

(
− (�R − vg(k)τ )2

4σ 2
(
1 + c2τ 2

σ 4

)
)

. (16)

Wave-packet propagation over a distance �R at the group
velocity vg accounts for the Gaussian additional term. Note that
in our configuration, this extra term equals 1 for τ = ε

|�R|
|vg(k)|

with ε being the sign of �R · vg . This time is the flight time
of the wave packet at the group velocity. Thus by scanning a
collection of positions R,R′ the magnitude of the correlation
|D| can be reconstructed at all time lags τ and the nonlinear
time scale TNL can be computed. We emphasize that the method
has been checked to be robust: The result does not depend on
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FIG. 3. (Color online) Modulus |Ac(t)| (red squares, experimen-
tal results; blue solid lines, analytical predictions) and real part
|Ac(t)| (red circles, experimental results; blue dashed lines, analytical
predictions) of the compensated correlation functions Ac

k,R,R+�R(t).
No adjustable parameter is used. (a) k/(2π ) = 10.6 m−1, �R = 0;
(b) k/(2π ) = 20.2 m−1, �R = 0; (c) k/(2π ) = 20.2 m−1, �R =
0.27 m.

the choice of the wavelet envelope (although we restrain our
study to Gaussian wavelets in this paper for tractability sake)
nor on the choice of the width of the wavelet σ .

E. Experimental results and rebounds

In this subsection we present a comparison between the
experimental data and Eq. (16) predicted by our model:
Examples of compensated correlation functions Ac

k,R,R′ (τ )
and Cc

k,R,R′ (τ ) are shown in Figs. 3 and 4. Figure 3 compares
measured correlations for short times with the expression given
in Eq. (16). The modulus of the correlations at the same
positions R = R′ [Figs. 3(a) and 3(b)] exhibit a maximum
for τ = 0. As τ grows, the wavelet propagates away from
its original position and this modulus decreases to 0 in the
Gaussian fashion predicted by Eq. (14). The real part oscillates
as predicted by the term exp(j [ωt + φ]). As expected, a wave
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FIG. 4. (Color online) Example of correlations at k = 16.0 m−1.
The real part is shown as the oscillating thin red line and the modulus
as the thick black line. (a) Ac

k,R,R(τ ) for R at the center of the plate.
The vertical dashed lines show the times 2nL/vg for n = −2 to 2.
(b) Ac

k,R,R′ (τ ) for �R = 0.27 m. The vertical dashed lines show
the times (2nL + �R)/vg for n = −2 to 2. (c) Cc

k,R,R(τ ) for R at
the center of the plate. The vertical dashed lines show the times
(2n + 1)L/vg for n = −3 to 2. In the three cases, the correlations
have been normalized by Ak,R,R(0).
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at a larger wave number propagates further and oscillates faster
than for smaller wave vectors. An example of correlation for
different positions is displayed on Fig. 3(c). The maximum
is delayed due to the flight time. Measurements show a very
good agreement with predictions, although a small departure
from the expected Gaussian envelop is observed for small wave
vectors and large wavelengths [Fig. 3(a)]. Indeed, the second
statement of our derivation is not met for small wave numbers:
The wavelength and the size of the wavelets are comparable.

The measured correlation coefficients are plotted for larger
time lags on Fig. 4. The autocorrelation coefficients A
[Figs. 4(a) and 4(b)] exhibit some secondary maxima. They
correspond to a wave packet that has bounced on the borders
of the plate. After one rebound, the wave packet propagates
back with the opposite wave vector −k. Thus no correlation
is observed until it bounces a second time and propagates
again with its original wave vector. Correlation reappears as it
comes back to its initial position R. These reflections account
for repeated maxima with a delay Tfly = 2L/vg corresponding
to the wave-packet round trip across the plate. These rebounds
can be used to extend the range of accessible values of the
time lag for the reconstruction of D. The magnitude of the
reflection coefficient at the border is expected to be very close
to unity for a free border moving in air (whose density is about
4 orders of magnitude lower than steel). The relative amplitude
of the maxima is decaying with the time lag because of the
decoherence of the wave as it propagates.

Figure 4(c) shows Cc for R = R′. As expected, the correla-
tion is zero at small τ because the wave packet has not enough
time to propagate to the border of the plate and back to the
original position. A maximum of the modulus of the correlation
is observed for a time lag τ = L/vg . This corresponds to the
time needed for a wave packet to travel to the border, bounce on
it, and come back to its original position counterpropagating.
Secondary maxima are also observed with a period Tfly. By
collecting all values of all maxima of Ac and Cc one can build
the modulus of D for quite long time lags (until the signal falls
under the noise level).

Figure 5 presents in its upper part the correlation Ac
k,R,R(τ )

as a function of both k and τ and Cc
k,R,R(τ ) in the lower part.

The dashed lines correspond to flight times over 2nL for A
or (2n + 1)L for C at the group velocity. The local maxima of
correlation follow these lines: This validates our interpretation
of the secondary maxima as due to the rebounds.

A picture of the travel of the wave packet can be built
by plotting the modulus of the correlation in a space time
representation as in Fig. 6. Figures 6(a) and 6(b) show the
modulus of Ac and Cc, respectively. Figure 6(a) displays only
the wave packet traveling from left to right whereas Fig. 6(b)
shows only the reverse motion. The trajectories appear slightly
deformed in an S shape due to the fact that close to the
border of the plate, the wave packet is partially reflected in
the other direction and the wavelet is truncated by the border.
The two functions can be combined to show the full trajectory
in Fig. 6(c). The correlation is seen to decay in magnitude as
time goes by along the trajectory corresponding to the loss
of temporal coherence of the wave packet due to the energy
exchanges with the other waves by the nonlinear coupling.

Figure 7 shows the space-time representation of the decay of
the correlation along the trajectory of the wave packet for four
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FIG. 5. (Color online) Modulus of the correlations at the same
position R = R′ as a function of time and wave vector. Colors are
log coded. (a) Autocorrelations |Ac|. Green (light gray) dashed lines,
flight times for 2n rebounds t
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n = 2nL/(vg(k)); black dashed line,

flight time over the width of the wave packet. (b) Cross correlations
|Cc|. Green (light gray) dashed line, flight times for 2n − 1 rebounds
t

fly
n = (2n − 1)L/(vg(k)). At each value of k, the correlations have

been normalized by Ac
k,R,R(0) so that the modulus of the correlation

is between 0 and 1.

different values of the forcing. As the forcing is increased, the
number of rebounds that can be observed is also decaying: Six
bounces can be seen in the 60-ms time window at the lowest
forcing while only three are visible at the strongest forcing
intensity. The stronger the forcing, the higher the nonlinearity,
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FIG. 6. (Color online) (a) Color plot of |Ac
k,R,R′ (t)|/|Ac

k,R,R(0)|
versus time t and position R′. Wave number k/2π = 13 m−1;
the position R is at center of the plate. Colors are log coded.
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k,R,R(0)| (c) Combination of the

two functions Ac and Cc: T =
√

|Ac|2 + |Cc|2.

066607-5



BENJAMIN MIQUEL AND NICOLAS MORDANT PHYSICAL REVIEW E 84, 066607 (2011)
ti
m

e
[m

s]

(a)
0

10

20

30

40

50

60

(b)

ti
m

e
[m

s]

Position [m]

(c)

−0.4 −0.2 0 0.2 0.4

0

10

20

30

40

50

60

Position [m]

(d)

−0.4 −0.2 0 0.2 0.4

1

0.1

0.01

FIG. 7. (Color online) Color plot of T (see previous figure) versus
time t and positions R′. Wave number k/2π = 13 m−1; the position
R is the center of the plate. Colors are log coded. The forcing power
is P0, 7P0, 27P0, and 59P0 [from (a) to (d)].

the faster the energy transfer, and thus the smaller the nonlinear
time.

F. Nonlinear time measurement

In order to rebuild the modulus of the correlationDk(τ ), one
should collect the values of the local maxima of the correlations
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Ac
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k,R,R′ (τ ). (Insert) Squares

correspond to the value of the local maximum. The line is an
exponential fit of the decay.

Ac and Cc for various pairs of positions R,R′. An example of
collection of all such correlation curves is shown in Fig. 8 for
given k and forcing intensity. The maxima are extracted by a
local Gaussian fit and shown in the insert. The decay of the
maxima with the time lag is seen to be exponential so that

|Dk(τ )|
|Dk(0)| ∝ exp − τ

TNL(k)
, (17)

which permits a direct extraction of the nonlinear time scale.

III. DISCUSSION

A. The nonlinear time scale

The evolution of the nonlinear time scale with the wave
number and the forcing intensity is shown in Fig. 9. The
estimation of TNL was not performed for k/2π less than 5
as the wavelength is too large to fit in the Gaussian modulation
of the wavelet (the wavelength is comparable to σ ). At large
k, the estimation is performed until the signal over noise ratio
gets too degraded to allow any computation of the correlations.
Thus the highest wave number that is reached depends on the
amount of data gathered at the considered value of the forcing
as well as on the frame rate of the camera (the highest the
frame rate, the lowest the amount of light, the highest the noise
level). The nonlinear time may be considered as a measure of
nonlinearities: In this respect, we expect this time to diverge
for linear problems and to decrease as the nonlinearities grows.
Figure 9 shows that TNL is indeed a growing function of k and
a decreasing function of the forcing P . The evolution of TNL

with k is affine.
A cutoff frequency was previously measured from the

wave spectrum [13]: f ∗ ∝ P 1/3 which translates through
the dispersion relation into k∗ ∝ P 1/6. This cutoff frequency
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FIG. 9. (Color online) Evolution of the nonlinear time scale
as a function of the wave number for different forcing. Symbols
are experimental data for different values of the forcing intensity
(intensity increasing downward): P0, 7P0, 27P0, 59P0, 100P0, 149P0,
and 207P0. This color chart for injected powers is used through this
section for other figures.
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FIG. 10. (Color online) Rescaled nonlinear time TNLP 0.5 as a
function of the rescaled wave vector kP −1/6 for different injected
power P .

corresponds to the transition to a dissipative regime. Here we
look for the following rescaling of the nonlinear time scale:

TNL(k) ∝ P −αf (kP −1/6). (18)

The curves for different forcing collapse on a master curve
when using α = 0.5 (Fig. 10). This scaling is similar to that
previously observed for the power spectrum [12,13]. In the
framework of the WTT, one would expect that TNL scales as
P −1/3 for four-wave resonance as predicted by the theory [11]
or as P −1/2 for three-wave resonance. Here, the rescaled time
is affine with the rescaled wave number so that a pure scaling
is not observed. The nonlinear time follows a scaling law,

TNL = βP −1/2 + γ kP −2/3, (19)

with constant β,γ .

B. Time-scale separation

The experimental time scales are compared with the
dissipative time scales and the period of the wave in Fig. 11.
The figure displays rather twice the time Td estimated from
the decay of the energy in the decline case as the energy is
quadratic in the amplitude of the wave thus the decay time of
the amplitude is twice that of the energy. The figure shows
1/ω rather than the period 2π/ω for the following reason:
The correlation of the magnitude of the wave is observed
to be exponentially decaying. Its Fourier transform follows
thus a Lorentzian shape ∝ 1/(ω2 + 1

T 2
NL

). Thus TNL should be

compared directly to 1/ω.
The product TNLω is shown in Fig. 12(a). The nonlinear

time scale is seen to be over an order of magnitude above
ω for most of the accessible wave-number range so that the
scale separation ωTNL � 1 is verified. At the highest forcing
intensity the ratio is only a factor 2 at the forcing scale
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FIG. 11. (Color online) Comparison of the nonlinear time scale
with other relevant time scales. Symbols are experimental data for
TNL at different values of the forcing intensity. Upper dashed line,
twice the dissipative time Td measured by the decay of energy in the
unforced case (see Fig. 1). Middle dashed line, 2/δωsep = L/(πkc).
Lower dashed line, 1/ω. The forcing is operated at 30 Hz and is
shown with the vertical dash-dotted line.

suggesting that the hypothesis of weak nonlinearity may be
disputable at this scale.

The ratio 2Td/TNL is displayed in Fig. 12(b). The nonlinear
time scale is over two orders of magnitude shorter than the
dissipative time at the forcing scale. The ratio is always
larger than 3 at the highest wave number that can be
analyzed (which is always above the observed dissipative
cutoff). In the framework of the weak turbulence theory one
would expect the conservative energy cascade to operate until
TNL � Td and to be followed by a dissipative regime. Here it
appears that the system reaches the dissipative regime at wave
numbers for which the nonlinear times are still larger than
the dissipative times. The cascade is stopped by another phe-
nomenon before reaching the expected dissipative region. This
observation is attributed to finite size effects in the following
section.

C. Finite size effects and transition
to frozen turbulence

Finite size effects can be neglected when the half separation
of the modes δωsep/2 is larger than 1/TNL. The quantity
2/δωsep is compared with TNL in Fig. 11 and the ratio is
shown in Fig. 12(c). At low forcing intensity, the product
TNLδωsep is always larger than one so that finite size effects are
expected to be dominant over the whole interval of accessible
wave numbers. When increasing the forcing, the product gets
smaller. At the strongest forcing the ratio is lower than one over
the whole interval of k so that a behavior close to WTT should
be expected. At intermediate values of the forcing a crossover
is seen from a regime where finite size effects should be
negligible (at low k) to a regime dominated by finite size effects
(at large k). The crossover region corresponds to laminated tur-
bulence as described in [14–16]. In this regime, the resonance
conditions on frequencies ω1 + ω2 = ω3 + ω4 (expected for
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FIG. 12. (Color online) Ratios between different characteristic
times as a function of k for various values of the injected power:
(a) ωTNL; (b) 2Td/TNL; (c) TNLδωsep/2.

four-wave resonance [11]) are made less numerous due to
the discretization of the modes. Nonlinear spectral widening
allows for approximate resonances if the nonlinearities are
strong enough so that a continuous regime can be observed.
In the opposite case, only a few clusters of frequencies can be
resonant and the cascade operates with a reduced efficiency.
If the nonlinearity is too weak, the cascade is frozen when
TNL � 2

δωsep
so that the energy cannot be transferred to higher

wave numbers and is ultimately dissipated. In this case, the
energy cascade stops before reaching the dissipative regime
expected from WTT (at which TNL � Td ).

Figure 13 analyzes the experimental observation of the
widening of the modes due to nonlinear effects. The crossover
wave vector kc, defined as

TNL(kc) = 2

δωsep(kc)
, (20)
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FIG. 13. (Color online) (a) Symbols, measured TNL. Dashed line,
2/δωsep. Red solid squares, crossover wave number kc given by
TNL(kc) = 2/δωsep(kc). (b) Solid lines, stationary power spectrum of
the velocity extracted along the dispersion relation and for kx = 0 (see
text). Forcing is increased from bottom to top. Plain squares, crossover
frequency fc reported from (a). (c) Synthetic spectrum incorporating
the nonlinear widening of the modes (see text). The width of the
modes is 1/(2πTNL) interpolated as a function of frequency from (a).
Curves are vertically shifted for clarity in (b) and (c).

is first determined in Fig. 13(a) for different injected power.
Using the dispersion relation, this crossover wave number is
associated with a crossover frequency fc:

fc = ck2
c /(2π ). (21)

By performing Fourier transforms both in time and
space, one computes the power spectrum density E(k,ω) =
〈|v(k,ω)|2〉. Figure 13(b) shows a part of the power spectrum
density E(kx = 0,ky = √

ω/c,ω) (i.e., along the dispersion
relation in a cut kx = 0). A transition can be observed between
two distinct regimes: The spectrum is smooth and continuous
at low frequencies whereas it displays some clearly separated
peaks at high frequencies. This transition is well described
by our criteria Eq (21): The crossover frequency extracted
from Fig. 13(a) separates the two distinct regimes as shown
in Fig. 13(b). A toy model can be built to incorporate
the nonlinear widening of discrete modes. The frequency
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of the modes are given by fn = c(nπ/L)2/(2π ) and each
mode is broadened following a Lorentzian variation of width
1/(2πTNL). A density of energy can be build in the following
way:

ρ(f ) ∝
∑

n

1

[2πTNL(f − fn)]2 + 1
. (22)

This synthetic density of mode ρ(f ) is shown in Fig. 13(c).
The overall characteristics of Fig. 13(b) are recovered (except
for the general decay which is not taken into account in the
model).

D. Width of the dispersion relation

Our previous work demonstrated that the energy was indeed
localized in the space-time power spectrum density E(k,ω)
in the vicinity of the linear dispersion relation [4,9]. Due
to weak interaction between waves, the observed dispersion
relation is slightly shifted from the linear one. The observed
dispersion relation shows also a finite width �ω that can
be attributed to two distinct causes: the nonlinear widening
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FIG. 14. (Color online) (a) Symbols, (�ω/k)2 as a function of
(TNLk)−2 for different injected powers. Dashed line (eye guide),
0.6x + 25. (b)A(TNLk)−2 + B (pentagrams) and (�ω/k)2 (squares)
plotted as a function of k for one given injected power P = 149P0.
A = 0.6, B = 25. Solid line, value of B.

�ωNL = 1/TNL as expected from the WTT and the finite
resolution due to the finite size of the measurement picture
�ωwin = 2ck�k = 2ckπ/l. These phenomena are indepen-
dent. Hence the effective width is expected to be close to

(�ω)2
� (�ωNL)2 + (�ωwin)2 = A

T 2
NL

+ Bk2, (23)

where A and B have been substituted to the above theoretical
value to account for geometrical constants in the experimental
evaluation of �ω and in the effective shape of the energy
profiles due to both phenomena. A is expected to be close to
1 and B of the order of (2πc/l)2

� 65. The integrated over-
angles power spectrum E(k,ω) is fitted with a local Gaussian
along ω at given k to measure the width �ω(k) (as in [9]). We
compare this width with the nonlinear time measured from the
wavelet analysis presented in this paper. According to Eq. (23),
a linear relation is expected between (�ω/k)2 and (TNLk)−2.
This is indeed observed in Fig. 14(a). The extracted values A

and B are used to compare �ω and TNL as a function of k in
Fig. 14(b) and the agreement is very good. This observation
validates the fact that the nonlinear time is responsible for the
widening of the dispersion relation as predicted by the WTT
(even if the observed scaling of TNL is not the one predicted
by the WTT).

IV. CONCLUSION

We proceeded to a direct extraction of the nonlinear time
scale at various wave numbers and forcing intensities by
studying the temporal correlations of wavelet coefficients.
With this technique, we have checked that the scale separation
hypothesis T d � TNL � T is reasonably valid in our system
which is indeed weakly nonlinear. This hypothesis is one of
the main requirements for the validity of the weak turbulence
theory. Nevertheless, the scaling of the power spectrum was
previously observed to be in disagreement with the theory. It
appears also that the cascade does not really proceed to the
expected dissipative regime for which TNL is comparable to
the dissipative time scale. This is due to the fact that the second
major hypothesis of the theory is not valid: the asymptotically
large system. Finite size effects lead to discrete modes. This
discreteness can be ignored if the spectral widening due to
nonlinear energy transfers overcomes the frequency separation
of adjacent modes in the k space. We checked that this
requirement is not fulfilled at weak forcing whereas it is
valid at a low wave number for strong forcing intensities.
One would expect a range of large wavelength for which the
WTT should be valid. But this range is most likely altered
by another sort of finite size effect related to the forcing and
previously analyzed [10]: In the vicinity of the forcing point,
the phases of the waves with large wavelengths need some
distance to get randomized. The plate is most likely too small
for the measurement region to be far enough from the forcing
so that to really observe a pure WTT regime. Nevertheless,
many qualitative features of the weak turbulence theory and of
laminated turbulence have been observed in this system due to
the possibility of performing advanced space-time analyses
of the turbulent field made possible by the time-resolved
profilometry technique [5].
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