
Coral: a parallel spectral solver for fluid dynamics and
partial differential equations
Benjamin Miquel1

1 Université Paris-Saclay, CEA, CNRS, Service de Physique de l’Etat Condensé, 91191
Gif-sur-Yvette,France

DOI: 10.21105/joss.02978

Software
• Review
• Repository
• Archive

Editor: Eloisa Bentivegna
Reviewers:

• @robertsawko
• @rhaas80

Submitted: 07 January 2021
Published: 06 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Coral is a fast, flexible, and efficient time-stepper for solving a large class of partial differential
equations, at the core of which are the Navier-Stokes equations that govern fluid motions.
Written in Fortran and employing the MPI standard for parallelization, the scalability of Coral
allows the code to leverage the resources of high-performance computing infrastructures (up
to hundreds of thousands of core, see Li & Laizet (2010)), while running efficiently on laptops
and workstations. Equations are entered by the user in the form of a plain text file following a
simple and legible syntax. No coding proficiency in Fortran is required. This flexibility makes
Coral suitable for both students and researchers with no coding experience.

Statement of need

Natural and industrial flows exist in numerous different flavours, including homogeneous in-
compressible flows, shear flow, stably or unstably stratified flows, rotating flows, and flows
of an electrically conducting fluid. These flows, however, have in common that they can be
modelled by sets of (quadratic) advection-diffusion equations for the velocity, and possibly
for the density, the temperature, the salinity, the magnetic field, etc. Hard-coding the sets
of equations corresponding to each of these flow configurations is complex, time-consuming,
and error-prone. These difficulties impede the development of new models. While Coral
was initially motivated by the study of Convection in Rapidly rotating Layers, its scope has
broadened and now encompasses solving homogeneous quadratic partial differential equations
in a plane-layer geometry, i.e., a 3D domain with periodic boundary conditions along the two
horizontal directions x and y. Internally, Coral expands the variables along Fourier basis (hor-
izontal directions) and Chebyshev polynomials (vertical direction). Transforms from physical
to spectral space and domain decomposition are handled by the 2decomp&fft library (Li &
Laizet, 2010). The quasi-inverse technique permits employing an arbitrarily large numbers of
Chebyshev polynomials, resulting in the ability to resolve thin boundary layers characteristic
of turbulent flows without suffering from loss of accuracy. Early versions of Coral have been
used for studies concerning the turbulent motion of convective flows in presence of internal
heat sources and sinks (Miquel et al., 2019, 2020).

Validation and examples

Coral has been validated on a variety of test cases (gathered in etc/benchmarks) found in the
literature: Rayleigh-Bénard convection (Chandrasekhar, 1961), rotating convection (Julien et
al., 1996), and convective dynamos (Cooper et al., 2020; Stellmach & Hansen, 2004). Those
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accuracy benchmarks, bound to grow in number, also constitute a library of examples for
defining PDEs in Coral.

State of the field

Among the existing flexible spectral solvers for marching in time PDEs in Cartesian geome-
tries, alternatives to Coral include Dedalus (Burns et al., 2020), spectralDNS (Mortensen,
2018), FluidDyn (Augier et al., 2019), and FluidSim (Mohanan et al., 2019). For more com-
plex geometries, options include nek5000 (Fisher, n.d.), Nektar++ (Moxey et al., 2020),
Freefem++ (Hecht, 2012), and Fenics (Alnæs et al., 2015).
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