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Abstract. In wave turbulence, the derivation of solutions in the frame of the Weak Turbulence

Theory relies on the existence of a double time-scale separation: first, between the period of

the waves and caracteristic nonlinear time tNL corresponding to energy exchange among waves;

and secondly, between tNL and the characteristic dissipation time td. Due to the lack of space

and time resolved measurement, this hypothesis have remained unverified so far. We study the

turbulence of flexion waves in thin elastic plates. td is measured using the decline stage of the

turbulence whereas a wavelet analysis is performed to measure the characteristic non-linear time

tNL.

1. The Weak Turbulence Theory for thin elastic plates

1.1. The frame of the Weak Turbulence Theory
The Weak Turbulence Theory (WTT) describes the long-time statistical behaviour of a large
number of weakly interacting waves. This theory describes numerous systems in various fields:
elastic waves in thin plates (1; 2), surface waves in fluids (3), Alfvén waves in astrophysical
plasmas (4), ion waves in plasmas (5), etc. Aside its own intrinsec interest, this theory might
be considered as an intermediate step toward the comprehension of hydrodynamical turbulence
(HT). Indeed, WTT for out-of-equilibrium systems shares a common phenomenology with HT:
energy cascading from injection lengths λI toward dissipation lengths λD builds a continuous
Kolmogorov-Zakharov spectrum EKZ

k
(6). In contrast with hydrodynamical turbulence, many

analytical predictions – including the analytical derivation of the spectrum – are made possible
by the WTT strong hypothesis: (i) the size of the system is asymptotically large and (ii) the
interactions between waves are weak. Mathematically, these hypotheses lead to a multiscale
treatment of the equation of the motion. On a more physical ground, the motion is composed
of wavetrains exchanging energy at a slow rate compared to the period of the waves.

1.2. Theoretical predictions for thin plates
The WTT formalism was applied to the specific case of flexion waves propagating on an
elastic plate by Düring (7). The deformation field of the plate ζ obeys a Föppl-Von Karman
equation (7; 8) featuring a linear term due to bending and a nonlinear correction due to
stretching. The linear term yields a quadratic dispersion relation for the linear waves ωk = ck2

(with k = |k|). The analytical derivation of the spectrum necessitates the introduction of the
canonical variables ak. These variables diagonalize the linear part of the hamiltonian. One then
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defines the wave occupation number nk =< aka∗
k

>stat (< . >stat and ∗ stands for statistical
average and complex conjugaison, respectively). The occupation number is found to obey a
kinetic equation:

∂nk

∂t
= Fk + Coll ({nk}) − γknk (1)

Forcing Fk and dissipation γknk are localized in long and short wave-lengths, respectively.
The conservative collision integral Coll ({nk}) transfers energy between resonant wavetrains.
In WTT, forcing and dissipation are well separated in Fourier space and circumscribe the
transparency window: for wavelengths λ such that λI � λ � λD, Coll ({nk}) is the leading order
term of the RHS of equation (1) so that energy is transferred conservatively. The Kolmogorov-
Zakharov (KZ) spectrum is a stationnary out of equilibirum solution that cancels the collision
term Coll ({nk}). The predicted wave occupation spectrum nk and predicted power spectrum
of velocity Ek ∝ k2nk reads:

nKZ
k = CP 1/3k−2 ln1/3 (kc/k) , EKZ

k = C ′P 1/3 ln1/3 (kc/k) , EKZ
ω = C ′′P 1/3 ln1/3 (ωc/ω)

(2)
In the stationnary regime, P is the averaged injected and dissipated power, C is a constant
depending on the properties of the plate and kc is a cutoff wave-number. In the mean time, the
non-linearities are responsible for a small departure δω from the quadratic dispersion relation
of the linear problem. This correction is predicted to share a common power law in P with the
KZ spectrum.

1.3. Setup and experimental (dis)agreements in the stationary regime
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Figure 1. Plain blue line: Integrated
over angles spectrum. Note (as k
increases): the noticeable forcing at
small wavevectors; the flat plateau
corresponding to a power-law spectrum;
the logarithmic cut-off

Our system consists of a thin flat stainless plate (0.4 mm × 1 m × 2 m) hanging with no
stress but its own weight. An electromagnetic shaker acts as a point source of vibration at the
frequency νf = 30 Hz. We measure the motion of the plate using an optical profilometry method
developped by Cobelli et al. (9) performed with a high speed camera. From the measured normal
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deformation field ζ(r, t) we compute the velocity field v(r, t) = ∂tζ and its space-time Fourier
transform ṽk,ω. A statistical average on realisations yields the space-time power spectrum :

Ek,ω =< ṽk,ωṽ∗k,ω >stat (3)

As predicted, the energy is found to be localized in the vicinity of the surface given by the
dispersion relation ωk = ck2 in the Fourier space. We measure c = 0.641 ± 0.001 s−1.m−2 for
our stainless steel plate. This result constitute a strong clue in favor of a motion composed of
waves. When integrated over wave vector, the space-time spectrum leads to the experimental
frequency spectrum Eexp

ω ∝ ω−0.6P 0.7 (1). This spectrum does not exhibit the theoretical
exponent (eq (2)) for frequency ω nor for injected power P . However the frequency spectrum
and the correction to the linear dispersion relation δω share a common power law, as predicted
by WTT.

1.4. Decline stage: dissipative time
The plate is first shaken until the stationary regime is reached. The forcing is then stopped and
the deformation of the plate is recorded and analyzed in the same fashion than the stationary
case. The cut-off wavenumber kc decreases with the energy contained in the cascade. For a
wavevector initially located in the cascade (k0 < kstat

c ), energy transfer to higher wave number
modes are responsible for the evolution of the energy of the mode k0 at early dates after the stop
of the forcing. As kc(t) crosses k0, the mode k0 enter the dissipative part of the spectrum where
the energy decay is no longer attributed to transport but dominantly to dissipation. These two
steps are exhibited on figure 2. The dissipative rates of every modes γk are measured by fitting
the dissipative part of the spectrum with an exponential decay ∝ exp(−γkt) (dashed lines on
figure 2). The dissipative time td is clearly separated from the period of the wave T = 2π/

(

ck2
)

(figure 3): td = 25T at the forcing scale up to td = 100T at k/2π = 25m−1. This separation
opens the possibility for a non linear time to stand between td and T .
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Figure 2. Integrated over angle spectrum
Ek(t) =

∫

Ekkdθ as a function of time plotted
for 4 different wavevectors (solid blue line) on
a semilog scale. Curves are shifted vertically
for lisibility. Red thick dashed line are
exponential fits exp(−γkt) of the dissipative
part of each spectrum.
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Figure 3. Blue square ut: Measured
dissipative time td(k) = 1/γk plotted versus
k. Red dashed line: Lorentzian fit td =
(

0.73 + 0.025(k/2π)2
)

−1
(s). Insert: td (ut),

lorentzian fit (red dashed line) and period of
the waves T (solid black line) versus k on a
semilog scale.
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2. Non-linear dynamics

2.1. One definition of the non-linear time tNL

Since the motion is predicted to be a superposition of wavetrains, we carry out a method
measuring the dynamics of one wave packet embedded in a turbulent ensemble of waves. The
spatial Fourier transform of the velocity Ṽk(t) is thus expected to oscillate rapidly at the pulsation
ωk with a slow modulation ṽk:

Ṽk(t) = ṽk(t) exp (iωkt) (4)

The slow variation of the envelop of V are described by the autocorrelations of ṽk:

Gk(t) =< ṽk(T + t)ṽ∗k(T ) >stat (5)

We define the non-linear time as tNL(k) using Gk:

tNL(k) =

∫

∞

0

Gk(t)

Gk(0)
dt (6)

Although tNL is defined with ṽ, a direct experimental estimation is difficult. First it would
require to measure the deformation over the whole system, and second computing ṽ from the
measured Ṽ by simply multiplying by a phase e−iωkt would require a very precise knowledge of
ωk. The next section introduces a method based on wavelets analysis in order to compute tNL.

2.2. Decomposition of the turbulent motion on the wavelet family
We use 2D Gabor wavelets that are characterized by the position R, the wave vector k0 and a
Gaussian envelop of width σ (fig. 4):

wk0,R,σ(r) = (σ
√

π)−1 exp(ik0 · r) exp

(

−(r− R)2

2σ2

)

(7)

We emphasize that although our study is performed using Gaussian wavelets for tractability sake,
the method is robust: the results are independent of the envelop of the wavelet wk0,R,σ(r) =
ER,σ exp (ik0r) where the envelop E may be any usual windowing function (hanning, tukey, etc.).

Let ak0,R,σ(t) be the wavelet component of V (r, t) (along the wavelet wk0,R,σ(r)):

ak0,R,σ(t) =

∫

V (r, t)w∗

k0,R,σ(r)dr =

∫

Ṽ (k, t)w̃∗

k0,R,σ(k)dk (8)

We define the autocorrelation Ak0,R,R′ and the crosscorrelation Ck0,R,R′ of the wavelets
coefficients (< . >T denote the average over the time T ):

Ak0,R,R′(t) =
〈

a∗k0,R(T )ak0,R′(T + t)
〉

T
(9)

Ck0,R,R′(t) =
〈

a∗k0,R(T )a−k0,R′(T + t)
〉

T
(10)

The correlation A measures the temporal coherence of the wavepaquet wk,R embedded in the
turbulent field at time T and the wavepaquet wk,R at time T + t. C measures the same thing
but beween two packets propagating in opposite directions.

The case of a wide (σk0 >> 1) Gaussian wavepacket is analytically tractable and yields:

Ak0,R,R′ = Gk0
(t)

1
√

1 + c2t2

σ2

e

−
(R′

−(R+vgt))2

4σ2

√

1+ c2t2

σ2 e−iωk0
teiΦ(t) (11)
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Figure 4. Figures (a–b): examples of Gaussian wave packets in a 2 m × 1 m plate, with
σ = 20 cm. The position R is marked by a white cross (+). (a) k/2π = 15 m−1. (b)
k/2π = 20 m−1. (c) Layout of the plate. position of the shaker; ◦ centers of the wavelets
Ri; the black arrow is the direction of the wavevectors k

The correlation function of the slow modulation Gk0
(t) illustrates the energy transfer between

the wave packet we are tracking and the surrounding turbulent bath. The other coefficients
account for the dispersion of the Gaussian wavepacket: the wave packet initially located around
R has broadened and propagated during the time t at the position R + vgt. The detailed
expression of the phase factor Φ(t) is not relevant in the following analysis. The derivation of
equation (11) will be detailed in a forthcoming article. Using this analytical expression in the
case of a Gaussian wavepacket, we compute the compensated autocorrelation coefficients A′ to
correct the decay due to the dispersion:

A′

k,R,R′(t) =

√

1 +
c2t2

σ2
Ak,R,R′ (12)

|A′

k,R,R′(t)| = |Gk(t)|e
−

(R′
−(R+vgt))2

4σ2

√

1+ c2t2

σ2 (13)

2.3. Measured wavelets coefficients correlations
For sake of simplicity, we study wave packets propagating along the direction given by the short
side of our plate. The wavelet coefficients are computed for several positions Ri (see figure 4),
and different wavenumbers from forcing to dissipation. The width of the wavelets is σ = 15 cm.
Thereby the wavelet is well located in Fourier space but still fits in the plate. Some corrected
correlation coefficients are plotted in figure 5. Figure 5(a) displays the autocorrelations at the
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Figure 5. Real part (red thin line)
and modulus (black thick line) of some
wavelets coefficients correlations fonc-
tions Ak,R,R′(t) versus time. |k/(2π)| =
16 m−1, vg = 2ck = 129 m.s−1, L/vg =
7.8 ms. Note the 2L/vg-periodic max-
ima due to reflexions:
(a) R = R′;
(b) R′ = R + ∆R with ∆R = 30 cm.
The main maximum is delayed from 0
by ∆t = ∆R/vg = 2.3 ms;
(c) cross-correlations C for R = R′.
Main maximum for t = L/vg.

same position (R = R′). The envelop of the correlation decays quickly to zero as the wave packet
is moving at the group velocity away from its initial position (the width of the envelop around
t = 0 is related to the width of the envelop of the wavelet). Other peaks of the envelop of the
correlations are seen that are due to the rebounds of the wave packet at the border of the plate:
one rebound on each side is required for the wave packet to come back to its initial position
with the same k (as k is turned into −k at each rebound) so that a maximum of correlation is
observed every 2L/vg. The amplitude of the maxima decays with the number of rebound pairs
due to the decoherence of the wave packet related to energy exchanges with the other waves
contained in the turbulent field. When looking at autocorrelation between different positions,
according to equation (13), compensated autocorrelations coefficients exhibit a maximum for
tmax = |R′ − R| /vg:

∣

∣

∣

∣

A′

k,R,R′

(

R′ − R

vg

)∣

∣

∣

∣

=

∣

∣

∣

∣

Gk

(

R′ − R

vg

)∣

∣

∣

∣

(14)

as can be seen in figure 5(b). For the cross correlation C at the same position (fig. 5(c)), similar
features are observed: the cross-correlation is zero at t = 0 and the first maximum occurs after
one rebound on a side of the plate (i.e. at t = L/vg if R is the center of the plate) and then a
maximum every 2L/vg. As a consequence, seeking the maxima of A and C for different position
pairs is a way of measuring |Gk| at different times.

2.4. Discussion about tNL

We gather on figures 6 the envelop of the autocorrelation and cross correlation coefficients for
a given k but different relative positions. The positions of the maxima are measured and fitted
with an exponential decay (insert of figure 6) which characteristic time provides the non linear
time tNL. We plot tNL(k) as a function of k at a given forcing intensity P on figure 7. For small
k (long wavelength) our analysis is not valid as the condition σk >> 1 is no longer fulfilled.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042006 doi:10.1088/1742-6596/318/4/042006

6



0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

t (ms)

A
(t

),
C

(t
)

0 20 40
−4

−3

−2

−1

0

t (ms)

G
(t

)

Figure 6. Correlations as a function of time (in ms) for k/(2π) = 15 m−1. Black thick
line: Autocorrelation at the same position Ak,R,R; blue lines: autocorrelations Ak,R,R′; red
lines: crosscorrelations Ck,R,R′. Insert: measured maxima (ut) and fit G(t) = exp−t/tNL with
tNL = 14.1 ms (black thick line)

Beyond k/2π = 29 m−1, the signal over noise ratio for correlations is very poor as the signal
drops very quickly to zero. Hence these points are absent from figure 7. From the decreasing
spectrum displayed in figure 1, one expect the coherence of wavepackets to subsist on longer
times (as compared to the period of the wave) as k increases. Our datas verify this prediction
since tNL is slightly increasing with k whereas the period of the wave decays as 1/k2.

The double scale separation validity is investigated by computing the ratios that compare
dissipation and non-linearities Qd = td/tNL or non-linearities and wave period Qω = tNLω
(displayed in figure 7). The separation between dissipative and non-linear effects is well verified,
even in the quite advanced dissipative part of the spectrum: Q2 > 5 for k = 20 m−1. This scale
separation validates the hypothesis of the existence of a transparency window.

2.5. Frozen turbulence
The size of our system is finite (width L) so that the modes are discrete in Fourier space, and
two contiguous modes are separated in k−space by δk = π/L. In the regular turbulent regime,
the effect of non linearity results in a broadening of each mode that overcomes the distance
between modes: δkNL > π/L. Using the dispersion relation, this inequality yields:

tNL < Tfroz. with Tfroz. = L/(2πck) (15)

The regular turbulent regime is characterized by a continuous ensemble of accessible wave vectors
due to the broadening of the discrete modes. If the inequality is verified, a finite size system
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Figure 7. (a) Triangles (4): Measured non-linear time tNL for a given amplitude of forcing
versus k/2π. Dashed line: period of the waves. Dotted line: Tfroz. = L/(2πck). Dashed-dotted
line: dissipative time td. (b) Squares (ut): tNLω; Circles (◦ ): ratio td/tNL.

resembles an infinite system so that hypothesis (i) is met although being not rigorously verified.
On the contrary, if tNL � Tfroz. the modes are clearly separated and the system behaves rather
like a finite dimensional non linear system. The resonance conditions may be difficult to fulfill
for discrete modes and the energy transfer is more difficult or even frozen depending on the
cases (see reference (11) for frozen turbulence). The ratio tNL/Tfroz. increases with k at a given
injected power P so that frozen turbulence appears for large k. Although the energy flux in
Fourier space may be strongly different to that of the continuous case and be zero in some cases,
the phase of each mode is still randomized by the chaotic exchange of energy among the modes.
In an intermediate regime tNL ∼ Tfroz. the cascade is altered by the finite size effects but can
still transfer energy among scales. This situation seems to correspond to our case and may
explain the disagreement between the observed scaling of the spectra and the theoretical one.

3. Conclusion

We measured the dissipative time and the non-linear time as a function of k. The double time-
scale separation stated by the WTT is well verified. Nevertheless the experimental spectrum of
the wave is in disagreement with the theoretical prediction. This is explained by the occurrence
of finite size effects that alter the cascade.
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