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 a b s t r a c t

Convection is a ubiquitous process driving geophysical/astrophysical fluid flows, which are typi-
cally strongly constrained by planetary rotation on large scales. A celebrated model of such flows, 
rapidly rotating Rayleigh–Bénard convection, has been extensively studied in direct numerical 
simulations (DNS) and laboratory experiments, but the parameter values attainable by state-of-
the-art methods are limited to moderately rapid rotation (Ekman numbers 𝐸𝑘 ≳ 10−8), while re-
alistic geophysical/astrophysical 𝐸𝑘 are significantly smaller. Asymptotically reduced equations 
of motion, the nonhydrostatic quasi-geostrophic equations (NHQGE), describing the flow evo-
lution in the limit 𝐸𝑘 → 0, do not apply at finite rotation rates. The geophysical/astrophysical 
regime of small but finite 𝐸𝑘 therefore remains currently inaccessible. Here, we introduce a new, 
numerically advantageous formulation of the Navier–Stokes–Boussinesq equations informed by 
the scalings valid for 𝐸𝑘 → 0, the Rescaled Rapidly Rotating incompressible Navier–Stokes Equations
(RRRiNSE). We solve the RRRiNSE using a spectral quasi-inverse method resulting in a sparse, 
fast algorithm to perform efficient DNS in this previously unattainable parameter regime. We val-
idate our results against the literature across a range of 𝐸𝑘, and demonstrate that the algorithmic 
approaches taken remain accurate and numerically stable at 𝐸𝑘 as low as 10−15. Like the NHQGE, 
the RRRiNSE derive their efficiency from adequate conditioning, eliminating spurious growing 
modes that otherwise induce numerical instabilities at small 𝐸𝑘. We show that in sufficiently large 
domains the time derivative of the mean temperature is inconsequential for accurately determin-
ing the Nusselt number in the stationary state, significantly reducing the required simulation time 
and leading to improved stability of our numerical formulation. We furthermore demonstrate that 
full DNS using RRRiNSE agree with the NHQGE at very small 𝐸𝑘.

1.  Introduction

Buoyant convection in the presence of rotation represents a ubiquitous scenario for geophysical and astrophysical fluid flows that 
is largely responsible for the turbulent dynamics observed in planetary and stellar interiors [1–3], and in planetary atmospheres [4,5] 
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$Ra\,=\,10^9$


$f$


$f$


\begin {equation}\label {eq:nond} Ro_H = \frac {U}{2\Omega H}, \quad Eu = \frac {P}{\rho _0 U^2},\quad \Gamma _H = \frac {g\alpha \lVert \nabla T_b \rVert H^2}{U^2},\quad Re_H = \frac {UH}{\nu },\quad Pe_H = \frac {UH}{\kappa }=\Pr Re_H,\end {equation}
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\begin {equation}\label {eqn:Ek} \ekman = \frac {Ro_H}{Re_H} = \frac {\nu }{2\Omega H^2}.\end {equation}


$Re_H\gg 1$


$\ekman \ll Ro_H \lesssim 1$


$Ro_H=Re_H Ek$


$\ekman \ll 1$


$Re_H\gg 1$


$Ro_H \ll 1$


$Re_H^{3/4}\ge \mathcal {O}(10^6)$


$Re_H^{1/2}\ge \mathcal {O}(10^4)$


$10^{-10} \le Ro_H \le 10^{-1}$


$\mathcal {O}(\Omega ^{-1})$


$\mathcal {O}(H/U)$
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$Ro_H$


$\mathcal {O}(10^4)$


$Re_H=\mathcal {O}(10^5)$
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$Re_H$


$\ekman $


$Re_H$


$\ekman \gtrsim 10^{-8}$


$Re_H\lesssim 10^4$


$\ekman \gtrsim 10^{-7}$


$Re_H\lesssim 10^3$


$Re$


$Ro_H=Re_H \ekman \ll 1$


$Re_H$


$2\Omega U\hz \times \ub $


$Ro_H^{-1}$


$\ub \cdot \nabla \ub $


$Re_H\gg 1$


$\ekman \ll Ro_H \ll 1$


$\ekman $


$10^{-15}$


$\ub $


$\pi $


$T=T_b(z) + \vartheta (\boldsymbol {x},t)$


$T_b(z)$


$\vartheta $


$\Omega $


$\hz $


$\Omega ^2 H / g$


$U$


$H$


$\lVert \nabla T_b \rVert $


$Ro_H\ll 1$


$Re_H\gg 1$


$Ro_H\ll 1$


$\nabla {T_b} \equiv \partial _z {T_b} {\bf \hat {z}}$


$\partial _z {T_b}=(T_b(H)-T_b(0))/H$


$F$


$\partial _z T_b = - F/\kappa $


\begin {equation}U_{r\!f\!f} = \frac {g\alpha \lVert \partial _z T_b \rVert H}{2\Omega } \equiv Ro_c U_{\!f\!f}\end {equation}


$Ro_c$


$U_{\!f\!f}$


\begin {equation}U_{\!f\!f} = \sqrt {g\alpha \lVert \partial _z T_b\rVert H^2}\,.\end {equation}


\begin {equation}Ro_c \equiv \frac {U_{r\!f\!f}}{U_{\!f\!f}} = \sqrt {\frac {Ra}{Pr}}\ekman .\end {equation}


\begin {equation}Ra = \frac {g\alpha \lVert \partial _z T_b \rVert H^4 }{\nu \kappa }\end {equation}


$Ro_c$


$Ro_c=U_{\!f\!f}/(2\Omega H)$


$Ro_H$


$U_{\!f\!f}$


$Ro_c\ll 1$


$U_{r\!f\!f}\ll U_{\!f\!f}$


$U=U_{r\!f\!f}$


\begin {equation}\label {eqn:dist} \Gamma _H=\frac {1}{Ro^2_c},\quad Re_H = \frac {Ro^2_c}{\ekman }.\end {equation}


\begin {equation}\label {eqn:xyz} \nabla _\perp \sim \frac {H}{\ell } \sim \ekman ^{-1/3}, \qquad \partial _Z \sim 1,\end {equation}


${\cal O}(\ekman ^{-4/3})$


$\ell \ll H$


\begin {equation}\label {eqn:dist2} \rRa \equiv Ra \ekman ^{4/3},\end {equation}


$\rRa = {\cal O}(1)$


$Ra\gg 1$


$Ro_c\ll 1$


$\rRa $


$\rRa = o(\ekman ^{-1/3})$


\begin {equation}Ro_\ell \equiv \frac {U_{r\!f\!f}}{2\Omega \ell } = Ro_c^2 \frac {H}{\ell }\sim Ro_c^2\ekman ^{-1/3} =o(1).\end {equation}


$\ekman ^{1/3}$


\begin {equation}\epsilon = \ekman ^{1/3}\,. \label {eq:defEpsilon}\end {equation}


$\Delta x_\perp $


$\Delta z\ll 1$


$\Delta t\ll 1$


$\Delta t_{\boldsymbol {f}}$


$\boldsymbol {f}$


$\partial _t \ub = \boldsymbol {f}\equiv - 2\Omega \hz \times \ub -\nabla p + \nu \nabla ^2_\perp \ub - \ub \cdot \nabla _\perp \ub - g\alpha \theta \boldsymbol {\hat r} - \ub \cdot \nabla _\parallel \ub + \nu \nabla _\parallel ^2 \ub $


$H^2/\nu $


$\ell ^2/\nu $


$\ell \sim \ekman ^{1/3} H$


$\Delta x_\perp ^* = \ell \Delta x_\perp $


$\Delta z^* = H \Delta z$


$\Delta x_\perp \propto N_{x_\perp }^{-1}$


$\Delta z \propto N_z^{-1}$


$U_{r\!f\!f}\sim Ro_c U_{\!f\!f}$


$\theta $


\begin {equation}\vartheta \equiv \overline {\Theta } + \epsilon \theta . \label {eq:decomposition_vartheta}\end {equation}


$\theta \sim \ekman ^{1/3} \lVert \partial _z T_b \rVert H$


$Ro_c=\sqrt {Ra/Pr}\ekman $


$\lVert $


$\Delta x_\perp \ll \rRa ^{-1}$


$\Delta x_\perp \sim \Delta z < \rRa ^{-1}$


$\ekman \rightarrow 0$


$\Delta t$


$\Delta x_\perp \sim \Delta z \gg \rRa E^{1/3}/\Pr $


$\propto (\Delta x_\perp )^2$


$\Delta x_\perp =o\lb \rRa ^{-1}\rb $


$\mathcal {O}(\Delta x_\perp )$


$\mathcal {O}(\ekman ^{1/2})$


$w = \pm \ekman ^{1/2} \, \hz \cdot \nabla \times \ub \, /\sqrt {2}$


$Ro\ll 1$


$\ekman \to 0$


$Ro_c\sim \ekman ^{1/3}{\equiv \epsilon }\ll 1$


\begin {equation}\hz \times \ub \approx -\nabla \pi , \qquad \nabla _\perp \cdot \ub _\perp \approx 0.\end {equation}


$\mathbf {u}_\perp = {\bf \hat {z}}\times \nabla _\perp \pi \equiv \nabla ^\perp \pi $


$\nabla ^\perp =(-\partial _y,\partial _x)$


$\pi =\Psi $


$\ub =(\nabla ^\perp \Psi , w)$


$\ell $


$H$


$\nu /\ell $


\begin {equation}\label {eqn:rbc} w = \overline {\Theta } = 0, \quad \mbox {on} \quad Z = 0,1.\end {equation}


$J\lsq \Psi , f \rsq = \ub _\perp \cdot \nabla _\perp f$


$\hz \cdot \boldsymbol {\omega }=\nabla ^2_\perp \Psi $


${\cal O}({\ekman }^{1/3})$


$Z$


${\cal O}(1)$


$\mathcal {O}(\epsilon )$


$\overline {\Theta }$


$T= \epsilon ^{2}t$


$\overline {\Theta }$


$\partial _t \overline {\Theta }\approx 0$


$\overline {\Theta }$


$\mathcal {O}(\ekman ^{2/3})$


$\ekman \ll Ro_H \rightarrow 0$


$\ekman $


$H$


$\ell = \epsilon H$


$\epsilon = \ekman ^{1/3}$


$U=U_\nu =\nu /\ell $


$U_\nu = (\rRa /Pr) U_{r\!f\!f}$


\begin {equation}\nabla _\perp \mapsto \frac {1}{\epsilon }\nabla _\perp ,\hspace {0.5cm} \hat {\bf z} \cdot \nabla = \partial _Z,\hspace {0.5cm} \partial _t \mapsto {\frac {1}{\epsilon }}\partial _t. \label {Xeqn3-19}\end {equation}


$\vartheta = \overline {\Theta }(Z,t) + \epsilon \theta (\mathbf {x},t)$


\begin {equation}U = \frac {1}{\epsilon } (u + \partial _y \pi ), \hspace {0.5cm} V = \frac {1}{\epsilon } (v - \partial _x \pi ) \quad \Longleftrightarrow \quad \boldsymbol {U}_\perp =\frac {1}{\epsilon } (\ub _\perp - \nabla ^\perp \pi ) . \label {eq:ageo_uv}\end {equation}


$\nabla ^\perp = (-\partial _y, \partial _x)$


$\nabla _\perp = (\partial _x, \partial _y)$


\begin {align}&\dst {u} +\mathcal {N}_\epsilon u -V = \ \widetilde {\nabla }^2_\epsilon u. \label {eq:rinse_ux}\\ &\dst v +\mathcal {N}_\epsilon v + U = \ \widetilde {\nabla }^2_\epsilon v,\\ &\dst w + \mathcal {N}_\epsilon w + \partial _Z \pi = \ \widetilde {\nabla }^2_\epsilon w +\frac {\widetilde {Ra}}{Pr} \theta , \\ &\partial _x U + \partial _y V + \partial _Z w = \ 0,\\ &\dst \theta + \mathcal {N}_\epsilon \theta + ( \partial _Z \overline {\Theta } - 1) w = \ \frac {1}{Pr}\widetilde {\nabla }^2_\epsilon \theta ,\\ &\epsilon ^{-2} \dst \overline {\Theta } + \partial _Z \overline {w\theta }= \ \frac {1 }{Pr} \partial _Z^2 \overline {\Theta }, \label {eq:rinse_tm}\end {align}


\begin {equation}\widetilde {\nabla }^2_\epsilon = \nabla ^2_\perp + \epsilon ^2 \partial _Z^2, \,\qquad \nabla ^2_\perp =\partial _x^2 + \partial _y^2, \quad \quad \quad \mathcal {N}_\epsilon = u\partial _x + v \partial _y + \epsilon w \partial _Z . \label {Xeqn5-21}\end {equation}


\begin {equation}w=\partial _Z u = \partial _Z v = 0 \text { at } Z=0,1, \label {Xeqn6-22}\end {equation}


\begin {equation}\theta = \overline {\Theta } = 0 \text { at } Z=0,1. \label {eq:bctemp}\end {equation}


$\epsilon \to 0$


\begin {equation}\lim _{\epsilon \rightarrow 0} \widetilde {\nabla }^2_\epsilon = \nabla ^2_\perp \,; \label {Xeqn8-24}\end {equation}


$\Psi $


$\chi $


\begin {equation}\ub _\perp = \nabla ^\perp \Psi + \epsilon \nabla _\perp \chi , \label {Xeqn9-25}\end {equation}


$\nabla _\perp = (\partial _x,\partial _y,0)^T$


$\nabla ^\perp = (-\partial _y,\partial _x,0)^T$


\begin {equation}\lim _{\epsilon \to 0} \pi = \Psi ; \quad \lim _{\epsilon \to 0} \boldsymbol {U}_\perp = \nabla _\perp \chi ; \quad \lim _{\epsilon \to 0} \ub _\perp = \nabla ^\perp \Psi \,.\end {equation}


$\nabla _\perp \cdot \boldsymbol {U}_\perp = \nabla ^2_\perp \boldsymbol {\chi } = -\partial _Z w$


$\epsilon ^{-2}\partial _t \overline {\Theta }\approx 0$


$\ekman $


\begin {equation}\label {eq:tstep} \lb \partial _t \mathcal {M} - \mathcal {L}_I \rb \statevector ^{(n+1)} = \mathcal {L}_E \statevector ^{(n)} + \mathcal {N} (\statevector ^{(n)},\statevector ^{(n)})\end {equation}


$\statevector ^{(n+1)}\equiv (\ub ^{(n+1)},\boldsymbol {U}^{(n+1)}_\perp ,\pi ^{(n+1)},\theta ^{(n+1)})^T$


$\statevector ^{(n)}$


$\statevector $


$\mathcal {M},\mathcal {L}_I, \mathcal {L}_E$


$\mathcal {N}$


$\mathcal {L}_I$


$\mathcal {O}(\epsilon ^{-1})$


$\epsilon \rightarrow 0$


$\widetilde {Ra}=60$


$Pr=1$


$10\ell _c \times 10\ell _c\times 1$


$\ell _c \approx 4.82$


$10^{-12}$


$10^{-1}$


$Nu-1$


$Re_w$


\begin {equation}Nu = 1 + Pr \langle \overline {w \theta } \rangle _{Z,t} \equiv 1 + \partial _{Z} \overline {\Theta }\vert _{0,1},\qquad Re_w = \langle \langle \overline {w^2} \rangle ^{1/2}_{Z}\rangle _t, \label {eq:def_Nu_Re}\end {equation}


$\epsilon $


$\textbf {v}$


\begin {equation}\label {eq:decomp} \vb = \sum \hat {\vb }_{\boldsymbol {k}_\perp ,j} (t) e^{i \boldsymbol {k}_\perp \cdot \boldsymbol {x}_\perp } \Phi _j \left ( Z \right ).\end {equation}


$\Phi _j(Z)$


$\Phi _j=0$


$\partial _Z\Phi _j =0$


$\Phi _j = \partial _Z \Phi _j=0$


$\Phi _j=\partial _{ZZ}\Phi _j=0$


$\hat {\vb }_{\boldsymbol {k}_\perp ,j} (t)$


$\mathcal {M}$


$\mathcal {L}_I$


$\Delta t$


$\ekman $


$\mathcal {L}_I$


${\ekman \rightarrow }\ 0$


$\boldsymbol {A}$


$\boldsymbol {A}\mathbf {x}=\boldsymbol {b}$


$\boldsymbol {A}$


$\partial _t \mathcal {M} - \mathcal {L}_I$


$\mathbf {x}$


$\boldsymbol {b}$


$\lambda \boldsymbol {M}\mathbf {x} = \boldsymbol {L}_I\mathbf {x}$


$(\partial _t \mathcal {M} - \mathcal {L}_I)\vb =0$


$\widetilde {Ra}=0$


$\widetilde {Ra}=5$


$\widetilde {k}_\perp =1.3$


$Pr=1$


$N_Z=256$


$N_Z=512$


$N_Z=256$


$Ek$


$10^{-15}$


$\ekman =10^{-6},10^{-9}, 10^{-12}, 10^{-15}$


$\widetilde {Ra}=0$


$\widetilde {Ra}=5$


$N_Z=256$


$N_Z=256$


$N_Z=512$


$\widetilde {Ra}=0$


$\widetilde {Ra}=5$


$\widetilde {k}_\perp =1.3$


$Pr=1$


$N_Z=256$


$N_Z=512$


$Ek$


$\ekman =10^{-7}, 10^{-9}, 10^{-10}, 10^{-11}$


$\widetilde {Ra}=0$


$\widetilde {Ra}=5$


$N_Z=256$


$N_Z=512$


$\ekman \lesssim 10^{-7}$


$\Re (s)>0$


$\widetilde {Ra}=0$


$\ekman =10^{-11}$


$\widetilde {Ra}=5$


$\ekman =10^{-9}$


$\ekman =10^{-9}$


$\boldsymbol {L}_I$


$\ub =(u,v,w)$


$\boldsymbol {U}_\perp =(U,V)$


$\pi $


$\overline {\Theta },\theta $


$11{\rm th}$


$Z$


$11{\rm th}$


$\ub =(u,v,w)$


$\boldsymbol {\omega }=(\omega _x,\omega _y,\omega _z )$


$\boldsymbol {U}_\perp =(U,V)$


$\pi $


$\overline {\Theta },\theta $


$\widetilde {k}_\perp =1.3$


$Pr=1$


$\widetilde {Ra}=0$


$\widetilde {Ra}=5$


$1/2$


$3/2$


$2$


$\boldsymbol {L}_I$


$\ekman ^{-3/2}$


$\widetilde {Ra}=0$


$\ekman ^{-2}$


$\widetilde {Ra}=5$


$\ekman \rightarrow 0$


$\ekman ^{-1/2}$


$\ekman = 10^{-16}$


$\ekman \approx 10^{-6}$


$\ekman $


$\ekman $


$Pr=1$


$10\ell _c\times 10\ell _c\times 1$


$\ell _c\approx 4.82$


$\mathcal {N}_i$


$i=u,v,w,\theta ,\Theta $


$(\partial _Z\overline {\Theta } -1)w$


$\theta $


$\langle \cdot \rangle _{Z,t}$


$\langle \cdot \rangle _Z$


$\langle \cdot \rangle _t$


$Nu$


$Re_w$


$\ekman $


$\widetilde {Ra}$


$\ekman =10^{-15}$


$\epsilon ^{-2}\partial _t \overline {\Theta }$


$\epsilon ^{-2}\partial _t\overline {\Theta }$


$\epsilon $


$\epsilon ^{-2} \partial _t = \partial _T$


$T=\epsilon ^2 t$


$Nu-1$


$\widetilde {Ra}=40$


$Pr=1$


$\ekman =10^{-9}$


$L=5\ell _c$


$64^2\times 128$


$L=10\ell _c$


$128^3$


$L=15\ell _c$


$192^3$


$\ell _c\approx 4.82$


$t=0$


$t=t_c$


$\overline {\Theta }$


$\overline {\Theta }$


$t=t_c$


$\overline {\Theta }$


$Nu-1$


$\epsilon ^{-2} \partial _t\overline {\Theta }$


$5\ell _c\times 5\ell _c\times 1$


$10\ell _c\times 10\ell _c\times 1$


$15\ell _c\times 15\ell _c\times 1$


$\widetilde {Ra}=40$


$Pr=1$


$Ek=10^{-9}$


$L\gtrsim 10\ell _c$


$\ell _c$


$\epsilon ^{-2} \partial _t \overline {\Theta }$


$Nu-1$


$Ek=10^{-9}$


$L=5\ell _c$


$64^2\times 128$


$L=10\ell _c$


$128^3$


$L=15\ell _c$


$192^3$


$\partial _t\overline {\Theta }$


$\epsilon ^{-2}\partial _t\overline {\Theta }$


$\partial _t\overline {\Theta }$


$Ek=10^{-9}$


$\epsilon ^{-2}\partial _t\overline {\Theta }$


$\partial _t\overline {\Theta }$


$\epsilon ^{-2}$


$\partial _t\overline {\Theta }$


$\epsilon =\ekman ^{1/3}$


$\epsilon $


$\widetilde {Ra}=60$


$Pr=1$


$\ekman $


$10^{-1}$


$10^{-12}$


$\ekman $


$Ta=Ek^{-2}$


$Ta\geq 10^{12}$


$\ekman =1/\sqrt {Ta}\lesssim 10^{-6}$


$\ekman \gtrsim 10^{-6}$


$\epsilon \gtrsim 0.01$


$0.2$


$\%$


$\ekman $


$\ekman \to 0$


$\ekman \gtrsim 1.34\times 10^{-7}$


$\ekman $


$\ekman $


$Pr=1$


$10\ell _c \times 10\ell _c\times 1$


$\ell _c \approx 4.82$


$Ra$


$\ekman $


$\Pr $


$N_x$


$N_y$


$N_Z$


$Nu$


$Re_w$


$384\times 384$


$256$


$576\times 576\times 384$


$512 \times 512 \times 1024$


$\ekman $


$\widetilde {Ra}=40$


$60$


$80$


$120$


$Pr=1$


$\ekman $


$10^{-1}$


$10^{-15}$


$Ta$


$10^2$


$10^{30}$


$Ek=10^{-24}$


$Ek=10^{-15}$


$Pr=1$


$\widetilde {Ra}=40$


$60$


$80$


$120$


$Nu$


$\widetilde {Ra}^{3/2}$


$Ta\equiv \ekman ^{-2}$


$\widetilde {Ra}\equiv Ra \ekman ^{4/3}$


$\widetilde {Ra}=40$


$\widetilde {Ra}=60$


$\widetilde {Ra}=80$


$\widetilde {Ra}=120$


$Re_w$


$Ta=\ekman ^{-2}$


$\widetilde {Ra}\equiv Ra \ekman ^{4/3} = 60$


$\widetilde {Ra}$


$Ta$


$\widetilde {Ra}^{3/2}$


$\widetilde {Ra}$


$Ta$


$\ekman $


$\widetilde {Ra}$


$Ta$


$Ta$


$\widetilde {Ra}$


$\ekman \to 0$


$Ta\to \infty $


$\ekman $


$0.4$


$0.1$


$0.2$


$Ek=10^{-15}$


$\rRa = 80$


$128$


$384$


$x$


$y$


$128$


$256$


$Nu$


$Re_w$


$Ta$


$Ta$


$Nu$


$Re$


$\widetilde {Ra}$


$Pr=4.38$


$6.4$


$\ekman $


$\ekman =10^{-15}$


$Pr=1$


$\widetilde {Ra}=80$


$y$


$v$


$\ekman =10^{-15}$


$\widetilde {Ra}=80$


$Pr=1$


$y$


$v$


$\omega _z$


$w$


$\ekman =10^{-15}$


$\widetilde {Ra}=80$


$Pr=1$


$\omega _z$


$w$


$\omega _z$


$w$


$\omega _z$


$w$


$v$


$\theta $


$U$


$\ekman =10^{-15}$


$\widetilde {Ra}=80$


$\Pr =1$


$\theta $


$x$


$U$


$\ekman \to 0$


$\ekman $


$\ekman $


$\ekman $


$\ekman $


$f$


\begin {align}U = \frac {1}{\epsilon } (u+\partial _y {\pi }), \hspace {1cm} V = \frac {1}{\epsilon }(v - \partial _x {\pi }), \hspace {1cm}\omega _z = \partial _x v - \partial _y u, \label {eq:rinse_defs}\end {align}


\begin {align}&\epsilon \partial _Z v - \partial _y w + \omega _x \ = \ 0,\\ &\epsilon \partial _Z u - \omega _y - \partial _x w \ = \ 0, \\ &\partial _x U + \partial _y V + \partial _Z w \ = \ 0, \\ &\partial _t u - V - \mathcal {D}_u \ = \ - \mathcal {N}_u, \label {eq:rinse_umom}\\ &\partial _t v + U - \mathcal {D}_v \ = \ - \mathcal {N}_v, \\ &\partial _t w + \partial _Z {\pi } - \frac {\widetilde {Ra}}{\Pr } \theta - \mathcal {D}_w \ = \ -\mathcal {N}_w, \\ &\partial _t \theta + (\partial _Z \overline {\Theta }-1) w - \mathcal {D}_\theta \ = \ - \mathcal {N}_\theta ,\\ &\epsilon ^{-2} \dst \overline {\Theta } - \mathcal {D}_\Theta = \ - \mathcal {N}_\Theta , \label {eq:rinse_Theta_mean}\end {align}


\begin {align*}- \mathcal {D}_u =&\ \partial _y \omega _z - \epsilon \partial _Z \omega _y, \hspace {0.5cm} & -\mathcal {N}_u = & \ \omega _z v - \omega _y w,\\ -\mathcal {D}_v =&\ \epsilon \partial _Z \omega _x - \partial _x \omega _z, \hspace {0.5cm} & -\mathcal {N}_v = &\ \omega _xw - \omega _z u, \\ -\mathcal {D}_w =&\ \partial _x \omega _y - \partial _y \omega _x, \hspace {0.5cm}& -\mathcal {N}_w = & \ \omega _y u - \omega _x v,\\ -\mathcal {D}_ \theta =&\ - \frac {1}{\Pr } \left (\partial _x^2 + \partial _y^2 + \epsilon ^2 \partial _Z^2\right ), \hspace {0.5cm}& -\mathcal {D}_\theta = &\ - \partial _x (u\theta ) - \partial _y (v\theta ) - \epsilon \partial _Z (w\theta ), \\ -\mathcal {D}_ \Theta =&\ - \frac {1}{\Pr } \partial _Z^2, \hspace {0.5cm}& -\mathcal {N}_\Theta = &\ - \partial _Z \overline {(w\theta )}.\end {align*}


$10th$


$Z$


$10$


\begin {equation}w = \omega _x = \omega _y = \theta = \overline {\Theta } = 0 \text { at } Z = 0,1. \label {Xeqn10-A.2}\end {equation}


$\partial _Z p=0$


$Z=0,1$


$z$


\begin {equation}\partial _t \phi - (\partial _{zz}-k_\perp ^2) \phi = b(z) \label {eq:heat1d}\end {equation}


$z\in [-1,1]$


$b$


$N$


$\lb T_n \rb _{0\le n < N}$


$\lb \Phi _m \rb _{2,N}$


\begin {equation}\Phi _m (z)= \sum _{0\le n <N} S_{mn}T_n(z), \label {eq:galerkinBasis}\end {equation}


$N-2$


$\phi $


\begin {equation}\phi (z,t) = \sum _{2\le m < N} \widetilde {\phi _m}(t) \Phi _m (z)\,.\label {eq:galerkinExpansion}\end {equation}


$\partial _z$


$z$


\begin {equation}\partial _t \iint \phi - \left (1 - \iint k_\perp ^2\right ) \phi = \iint b(z) + a_0 + a_1 z, \label {eq:heat1dQI}\end {equation}


$a_0$


$a_1$


$T_0(z)$


$T_1(z)$


$N-2$


$N-2$


$\widetilde {\phi }_m$


$\left \langle \ldots \right \rangle $


$2\le m,p <N$


$\left \langle T_p(z), T_n(z)\right \rangle = \delta _{pn}$


\begin {equation}\left \langle T_p(z), \iint T_n(z)\right \rangle ,\end {equation}


$S_{mn}$


\begin {equation}\Phi _{2p}(z) = T_{2p}(z) - T_0(z)\quad \mathrm {and}\quad \Phi _{2p+1}(z) = T_{2p+1}(z) - T_1(z)\,.\end {equation}


\begin {equation}\Phi _m(z) = T_m(z) - T_{m-2}(z), \label {Xeqn12-B.8}\end {equation}


\begin {equation}\label {eq:tstepA} \lb \partial _t \mathcal {M} - \mathcal {L}_I \rb \vb ^{(n+1)} = \mathcal {L}_E \vb ^{(n)} + \mathcal {N} (\vb ^{(n)},\vb ^{(n)}) +\boldsymbol {\mathcal {F}}^{(n)}_\theta .\end {equation}


$(n+1)$


$(n)$


$\vb $


$\mathcal {M}$


$\mathcal {L}_I$


$\vb =(\Psi \; , \; w)^T$


$\vb ^{(j)}=(\ub \; , \; {\boldsymbol {U}}_\perp , \pi )$


$\boldsymbol {\mathcal {I}}_3$


$\mathcal {M}$


$\mathcal {L}_I$


$\vb ^{(j)}=(\ub \;\vert \;{\boldsymbol {U}}_\perp , \pi \;\vert \; \boldsymbol {\omega })$


$\mathcal {N}=Diag\left [\{\mathcal {N}_u,\mathcal {N}_v,\mathcal {N}_w\},\boldsymbol {0}_3,\boldsymbol {0}_3\right ]$


$\mathcal {L}_I$


$Z$


$w=0$


$Z=0,1$


$\partial _Z \ub _\perp =0$


$\Phi _j(Z)$


$\ub _\perp =0$


$\mathcal {L}_E$


$\mathcal {L}_E$


\begin {equation}\epsilon ^{-2} \pd {t} \overline {\Theta } + \pd {Z} \lb \overline {w \theta } - \frac {1}{Pr}\pd {Z} \overline {\Theta } \rb = 0\end {equation}


\begin {equation}Nu_t - 1 = {Pr}\, \overline {\overline {w \theta }}^t - \overline {\pd {Z} \overline {\Theta }}^t\quad \implies \quad Nu_t - 1 = Pr \lbr \overline {\overline {w \theta }}^t \rbr _{Z} .\end {equation}


$Nu_t$


\begin {equation}\epsilon ^{-2} \pd {t} \overline {\Theta } + \pd {Z} \lb \overline {w \theta } - \overline {\overline {w \theta }}^t - \frac {1}{Pr}\lb \pd {Z} \overline {\Theta } - \overline {\pd {Z} \overline {\Theta }}^t \rb \rb = 0\end {equation}


$\epsilon ^2\overline {\Theta }_{2^+}\equiv \sum _{j\ge 2} \epsilon ^j \overline {\Theta }_j$


$\pd {t}\overline {\Theta }_{(0,1)} =0$


$\pd {Z}\overline {\Theta }_{(0,1)} = \pd {Z}\overline {\overline {\Theta }}^t_{(0,1)}$


\begin {equation}\pd {t} \overline {\Theta }_{2^+} + \pd {Z} \lb \overline {w \theta } - \overline {\overline {w \theta }}^t - \frac {\epsilon ^2}{Pr}\lb \pd {Z} \overline {\Theta }_{2^+} - \overline {\pd {Z} \overline {\Theta }}_{2^+}^t \rb \rb = 0 .\end {equation}


\begin {equation}\pd {t} \overline {\Theta }_{2} + \pd {Z} \lb \overline {w \theta } - \overline {\overline {w \theta }}^t \rb \approx 0\end {equation}


$\mathcal {O}(1)$


$Nu_t$


$\mathcal {O}(\epsilon ^2)$


$\overline {\Theta }_2$


$\epsilon ^{-2} \pd {t} \overline {\Theta }$


\begin {equation}\pd {Z} \lb \overline {w \theta } - \frac {1}{Pr}\pd {Z} \overline {\Theta } \rb = 0 ,\end {equation}


\begin {equation}Nu(t) - 1 =Pr\, \overline {w \theta } - \pd {Z} \overline {\Theta } .\end {equation}


\begin {equation}Nu(t) - 1 = Pr \lbr \overline {w \theta } \rbr _Z \quad \implies \quad \overline {Nu(t)}^t - 1 = Pr \overline {\lbr \overline {w \theta }\rbr _Z}^t.\end {equation}


\begin {equation}\overline {Nu(t)}^t - Nu_t = Pr \lb \overline {\lbr \overline {w \theta }\rbr _Z}^t - \lbr \overline {\overline {w \theta }}^t \rbr _Z\rb = \left . \lb \pd {Z} \overline {\Theta } - \overline {\pd {Z}\overline {\Theta }}^t\rb \right \vert _{0,1} .\end {equation}


$\overline {Nu(t)}^t = Nu_t$


$\epsilon \mapsto \epsilon ^*$


$\epsilon ^* > \epsilon $


\begin {equation}Nu^*_t - Nu_t = Pr \lb \lbr \overline {\overline {w \theta }}^{*t} \rbr _Z - \lbr \overline {\overline {w \theta }}^t \rbr _Z \rb = \left . \lb \overline {\pd {Z}\overline {\Theta }}^{*t} - \overline {\pd {Z}\overline {\Theta }}^t\rb \right \vert _{0,1} .\end {equation}


$Nu^*_t = Nu_t$


$\vert \overline {Nu(t)}^t - Nu_t\vert $


$\vert Nu^*_t - Nu_t\vert $


$\widetilde {Ra}=40$


$N_x=N_y=128$


$L_x=L_y=10 \ell _c$


$222$


$Ek=10^{-9}$


$Ek=10^{-12}$


$N_Z$


$\partial _t \Theta =0$


$Ek=10^{-9}$


$Ek=10^{-12}$
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Table 1 
Nondimensional parameter estimates for planetary [21] and satellite 
interiors [7]. Estimates of the Rossby number are derived from the 
relation 𝑅𝑜𝐻 = 𝑅𝑒𝐻𝐸𝑘.
    Celestial body 𝐸𝑘 Pr 𝑅𝑜𝐻 𝑅𝑒𝐻  
  Earth’s outer core 10−15 0.1 10−7 108  
  Mercury (core) 10−12 0.1 10−4 108  
  Jupiter (core) 10−19 0.1 10−10 109  
  Europa (ocean) 10−12 11.0 10−2.5–10−1.5 109.5–1010.5 
  Ganymede (ocean) 10−10–10−13 10.0 10−3.5–101.5 109.5–1011.5 
  Saturn (core) 10−18  0.1 10−9 109  
  Enceladus (ocean) 10−10–10−11 13.0 10−3.5–10−1 107.5–109  
  Titan (ocean) 10−11–10−12 10.0 10−3–1 109–1011  
  Uranus (core) 10−16  10.0 10−6 1010  
  Neptune (core) 10−16  10.0 10−6 1010  

and oceans [6,7]. The dynamics are highly complex with many influential ingredients such as geometry, compressibility, multiple 
components, and the presence of magnetic fields. In the absence of such complexities, the quintessential paradigm for investigating 
rotationally influenced buoyant flows is provided by rotating Rayleigh–Bénard convection (RRBC). A large number of studies has 
been published on this model system, which is very well suited for detailed experimental, numerical and theoretical studies, including 
[8–20], to name but a few. In its most distilled form, the problem consists of a rotating plane layer of fluid confined between two 
parallel horizontal plates which maintain a destabilizing temperature gradient. However, the interpretation of a layer within this 
paradigm may be broadened to include confined fluid domains such as cylinders, annuli, as well as spherical interiors and shells, 
which often arise in geophysical and astrophysical applications.

Five nondimensional parameters of geophysical and astrophysical interest highlight the relative importance of the Coriolis, pres-
sure gradient, buoyancy, and dissipation forces in setting the acceleration of the fluid. These are the bulk Rossby, Euler, buoyancy, 
Reynolds and Péclet numbers, respectively:

𝑅𝑜𝐻 = 𝑈
2Ω𝐻

, 𝐸𝑢 = 𝑃
𝜌0𝑈2

, Γ𝐻 =
𝑔𝛼‖∇𝑇𝑏‖𝐻2

𝑈2
, 𝑅𝑒𝐻 = 𝑈𝐻

𝜈
, 𝑃 𝑒𝐻 = 𝑈𝐻

𝜅
= Pr 𝑅𝑒𝐻 , (1)

which are comprised of intrinsic, extrinsic and characteristic properties of the fluid. Intrinsic material properties include the coefficient 
of thermal expansion 𝛼, the kinematic viscosity 𝜈, and the thermal diffusivity 𝜅, with Pr = 𝜈∕𝜅 denoting the Prandtl number. Extrinsic 
properties include the magnitude Ω of the rotation rate, the layer depth 𝐻 , the gravitational acceleration 𝑔 and the applied temperature 
gradient ‖∇𝑇𝑏‖. Characteristic properties include the velocity 𝑈 , pressure 𝑃 , and the constant reference density 𝜌0. The subscript ‘𝐻 ’ 
signifies association with the bulk layer depth. Also of importance is the ratio of the viscous and Coriolis forces that provides an a 
priori external parameter referred to as the Ekman number

𝐸𝑘 =
𝑅𝑜𝐻
𝑅𝑒𝐻

= 𝜈
2Ω𝐻2

. (2)

Turbulent flows are characterized by 𝑅𝑒𝐻 ≫ 1 and, when strongly influenced by rotation, by the ordering 𝐸𝑘 ≪ 𝑅𝑜𝐻 ≲ 1 (cf. 
Eq.  (2)). Table 1 provides estimates of these nondimensional parameters in important geophysical and astrophysical settings. It can 
be seen that all such flows are rapidly rotating (𝐸𝑘 ≪ 1), highly turbulent (𝑅𝑒𝐻 ≫ 1), and in the majority of situations strongly 
influenced by rotation (𝑅𝑜𝐻 ≪ 1). To first approximation, using the theory of isotropic and statistically stationary turbulence as 
a benchmark, an order of magnitude estimate of the range of scales between the integral and dissipative scales in terms of the 
number of degrees of freedom per spatial direction and time is given, respectively, by 𝑅𝑒3∕4𝐻 ≥ (106) and 𝑅𝑒1∕2𝐻 ≥ (104) [22,23]. 
Probing this region of parameter space is further complicated by an extended temporal range. Specifically, the smallness of the Rossby 
number 10−10 ≤ 𝑅𝑜𝐻 ≤ 10−1 indicates an extreme time scale separation between fast inertial waves, associated with the Coriolis force, 
propagating on (Ω−1) time scales and the motion of eddies evolving on the advective time scale (𝐻∕𝑈 ). From the combined values 
of 𝑅𝑒𝐻  and 𝑅𝑜𝐻 , Table 1 indicates that this extended temporal range may span as much as ten logarithmic decades.

From the standpoint of direct numerical simulations (DNS) – which are required to resolve all scales of the motion – these 
estimates are truly daunting. The current capability of state-of-the-art 3D DNS is (104) degrees of freedom in each spatial direction 
for periodic boundary conditions [25–27] indicating an upper threshold of 𝑅𝑒𝐻 = (105). In the presence of walls, the current state 
of the art in 3D DNS is (103) degrees of freedom in each spatial direction [28–30], further restricting the accessible range of 
𝑅𝑒𝐻 . Hence, directly accessing the geophysical and astrophysical parameter regime is out of reach for the foreseeable future, even 
with impending advances to exascale supercomputing. Fig. 1 captures this void visually. Recent DNS studies place the threshold at 
𝐸𝑘 ≳ 10−8, 𝑅𝑒𝐻 ≲ 104, e.g. [30–37]. Inclusion of spherical geometry and the capability for dynamo action in the simulations further 
restricts the reported range to 𝐸𝑘 ≳ 10−7, 𝑅𝑒𝐻 ≲ 103 [38–41], although hyperviscous simulations have been used to emulate lower 
Ekman numbers [42]. Given these limitations, a popular DNS strategy has been to vary 𝑅𝑒 over the accessible range and attempt 
to uncover scaling laws in global quantities such as momentum and heat transport with a goal of extrapolating the results to the 
geophysical and astrophysical settings of Table 1. However, to be physically meaningful, such an extrapolation must be performed 
while respecting the strong rotational constraint 𝑅𝑜𝐻 = 𝑅𝑒𝐻𝐸𝑘 ≪ 1. Inspection of this expression indicates that this gives rise to 
the challenging and somewhat incompatible requirement that the Ekman number be repeatedly lowered as 𝑅𝑒𝐻  increases (see also 
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Fig. 1. Overview of the parameter space of RRBC spanned by the Ekman number 𝐸𝑘 and the bulk Reynolds number 𝑅𝑒𝐻 . Experiments, simulations, 
and dynamo models populate the parameter space characterized by moderately small Ekman numbers and moderately high Reynolds numbers 
(shaded) but these are far from their geo-/astrophysically relevant values. Adapted from Aurnou et al. [24], based on Table 1.

Fig. 1). This leads to an amplification in the stiffness of the governing equations due to an increased separation between the time 
scales of inertial waves and advection, as well as between the advective and dissipative time scales (see Section 3). As a result, this 
requirement imposes severe time-stepping constraints on the majority of numerical algorithms currently in use.

The issue resides, in particular, with the precise implementation of the time-stepping scheme. Specifically, the linear Coriolis force 
2Ω𝑈 𝐳̂ × 𝐮, of relative order 𝑅𝑜−1𝐻  compared to inertial forces, is often treated explicitly, e.g. in Julien et al. [16], Guervilly et al. [33],
Verzicco and Orlandi[43], King et al. [44], Zhu et al. [45], while the advective time scale associated with the nonlinear advection 
term, 𝐮 ⋅ ∇𝐮, is invariably treated explicitly and so is known from a prior time step. Algorithmically, this avoids the complexities 
of implementing a coupled numerical solver for the momentum equations, and by contrast permits the use of a decoupled solver 
that updates fluid variables sequentially at each time step. However, several recent codes for simulating rapidly rotating convection, 
including [46–49], treat the Coriolis force implicitly. This formulation has a number of advantages and we use it below to identify a 
rescaled RRBC model and numerical algorithms capable of accessing regimes characterized by 𝑅𝑒𝐻 ≫ 1 and 𝐸𝑘 ≪ 𝑅𝑜𝐻 ≪ 1.

The remainder of this paper is organized as follows. In Section 2, the incompressible Navier–Stokes equations (iNSE) in the Boussi-
nesq approximation are given in a rotating frame. In Section 3, the detailed spatiotemporal resolution requirements for buoyantly 
driven, rotationally constrained flows are discussed and the need for implicit time-stepping treatments is highlighted. In Section 4, an 
asymptotically reduced set of equations, the nonhydrostatic quasi-geostrophic equations (NHQGE), is established as an instrumental 
guide for deducing a reformulation of the full iNSE. Informed by the asymptotic equations, Section 5 introduces a novel formulation 
of the iNSE termed the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE). Section 6 highlights some of the 
advantageous numerical properties of RRRiNSE, establishing that the numerical discretization is well conditioned. Section 7 contains 
a detailed comparison of fully nonlinear DNS using the newly introduced reformulation with established results from the literature, 
together with an analysis of the mean temperature equation, along with novel DNS results for the Nusselt and Reynolds numbers at 
unprecedented Ekman numbers (𝐸𝑘 as low as 10−15 and smaller). Finally, Section 8 concludes with a discussion of the implications 
of our results for future numerical simulations of rapidly rotating convection. Where necessary, relevant detailed calculations are 
relegated to Appendices.

2.  The incompressible Navier–Stokes equations: iNSE

In the classic paradigm of rotating Rayleigh–Bénard convection in a horizontal plane layer the fluid motion is accurately cap-
tured by the Boussinesq approximation that assumes small density fluctuations about a static background state, resulting in the 
incompressible Navier–Stokes equations (iNSE) 

(

𝜕𝑡 + 𝐮 ⋅ ∇
)

𝐮 = −2Ω 𝐳̂ × 𝐮 − ∇𝜋 + 𝑔𝛼𝜗 𝐳̂ + 𝜈∇2𝐮, (3a)

∇ ⋅ 𝐮 = 0, (3b)
(

𝜕𝑡 + 𝐮 ⋅ ∇
)

𝜗 + 𝐮 ⋅ ∇𝑇𝑏 = 𝜅∇2𝜗, (3c)

where 𝐮 represents the convective fluid velocity, 𝜋 is the modified pressure, and 𝑇 = 𝑇𝑏(𝑧) + 𝜗(𝒙, 𝑡), i.e., the temperature is split into a 
static background profile 𝑇𝑏(𝑧) in the vertical direction and a convective temperature contribution 𝜗. The system rotates at a constant 
frequency Ω about the vertical direction ̂𝐳; the rotational Froude number Ω2𝐻∕𝑔 is assumed to be sufficiently small that the centrifugal 
force can be neglected.

The equations of motion can be nondimensionalized by a characteristic but as yet undetermined flow velocity scale 𝑈 , the layer 
depth 𝐻 , and the characteristic temperature gradient ‖∇𝑇𝑏‖ giving 

(

𝜕𝑡 + 𝐮 ⋅ ∇
)

𝐮 = − 1
𝑅𝑜𝐻

𝐳̂ × 𝐮 − 𝐸𝑢∇𝜋 + Γ𝐻𝜗𝐳̂ + 1
𝑅𝑒𝐻

∇2𝐮, (4a)
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∇ ⋅ 𝐮 = 0, (4b)
(

𝜕𝑡 + 𝐮 ⋅ ∇
)

𝜗 + 𝐮 ⋅ ∇𝑇𝑏 =
1

𝑃𝑒𝐻
∇2𝜗. (4c)

The nondimensional parameters are defined in (1). In the next section, we describe the challenges associated with solving the above 
set of nondimensional equations numerically in the regime 𝑅𝑜𝐻 ≪ 1, 𝑅𝑒𝐻 ≫ 1.

3.  Spatiotemporal resolution requirements for buoyantly driven flow

A review of the rotating convection literature illustrates why the 𝑅𝑜𝐻 ≪ 1 regime has proven to be so challenging for DNS 
[24,30,37,50,51]. Hereafter, for simplicity of exposition, we focus our discussion on the case where the rotation axis is antiparallel 
with gravity, i.e., the polar regime where ∇𝑇𝑏 ≡ 𝜕𝑧𝑇𝑏𝐳̂. For fixed temperature boundary conditions 𝜕𝑧𝑇𝑏 = (𝑇𝑏(𝐻) − 𝑇𝑏(0))∕𝐻 , while 
for a fixed heat flux 𝐹 , 𝜕𝑧𝑇𝑏 = −𝐹∕𝜅 instead. Within this regime a dynamical balance exists between the ageostrophic Coriolis, inertial 
and Archimedean (buoyancy) forces. This so-called CIA balance [52] establishes the rotational free-fall velocity

𝑈𝑟𝑓𝑓 =
𝑔𝛼‖𝜕𝑧𝑇𝑏‖𝐻

2Ω
≡ 𝑅𝑜𝑐𝑈𝑓𝑓 (5)

as an appropriate estimate for the characteristic velocity, an estimate that has been verified both numerically [53,54] and experi-
mentally [55–57].

We define the convective Rossby number 𝑅𝑜𝑐 as the ratio of the rotational free-fall velocity to the buoyancy free-fall velocity 𝑈𝑓𝑓
observed in rotationally unaffected regimes,

𝑈𝑓𝑓 =
√

𝑔𝛼‖𝜕𝑧𝑇𝑏‖𝐻2 . (6)

Thus

𝑅𝑜𝑐 ≡
𝑈𝑟𝑓𝑓

𝑈𝑓𝑓
=
√

𝑅𝑎
𝑃𝑟

𝐸𝑘. (7)

Here

𝑅𝑎 =
𝑔𝛼‖𝜕𝑧𝑇𝑏‖𝐻4

𝜈𝜅
(8)

is the thermal Rayleigh number. This definition of 𝑅𝑜𝑐 is physically more precise than the equivalent definition 𝑅𝑜𝑐 = 𝑈𝑓𝑓∕(2Ω𝐻), i.e. 
as the Rossby number 𝑅𝑜𝐻  based on 𝑈𝑓𝑓 .

The convective Rossby number provides an external measure of the rotational constraint based on the imposed thermal Rayleigh 
number. Since 𝑅𝑜𝑐 ≪ 1 for rotationally constrained flows, it follows that 𝑈𝑟𝑓𝑓 ≪ 𝑈𝑓𝑓 .

With 𝑈 = 𝑈𝑟𝑓𝑓  as the correct characteristic velocity scale it follows from (1) that

Γ𝐻 = 1
𝑅𝑜2𝑐

, 𝑅𝑒𝐻 =
𝑅𝑜2𝑐
𝐸𝑘

. (9)

Moreover, asymptotic linear theory [8] and simulations [58,59] both indicate that rotating flows are highly anisotropic with

∇⟂ ∼ 𝐻
𝓁

∼ 𝐸𝑘−1∕3, 𝜕𝑍 ∼ 1, (10)

and an (𝐸𝑘−4∕3) onset Rayleigh number, indicating that horizontal variations occur on the scale 𝓁 ≪ 𝐻 while vertical variations 
occur on the scale of the layer depth. Together with the corresponding nonlinear theory [60–62] these results lead to the introduction 
of the reduced Rayleigh number

𝑅𝑎 ≡ 𝑅𝑎𝐸𝑘4∕3, (11)

with 𝑅𝑎 = (1) defining the strongly forced (𝑅𝑎 ≫ 1) but still rotationally constrained (𝑅𝑜𝑐 ≪ 1) regime of interest. This regime 
extends from the convective threshold to highly supercritical Rayleigh numbers subject to the requirement that 𝑅𝑎 is no larger than 
𝑅𝑎 = 𝑜(𝐸𝑘−1∕3). This upper bound represents the constraint required to maintain the local rotational constraint

𝑅𝑜𝓁 ≡
𝑈𝑟𝑓𝑓

2Ω𝓁
= 𝑅𝑜2𝑐

𝐻
𝓁

∼ 𝑅𝑜2𝑐𝐸𝑘−1∕3 = 𝑜(1). (12)

It is now clear that the external order parameter threaded throughout the rapidly rotating regime is 𝐸𝑘1∕3. Anticipating the 
derivation and discussion of the rescaled formulation, this observation suggests the definition of the small parameter:

𝜖 = 𝐸𝑘1∕3 . (13)

For given (nondimensional) grid resolutions Δ𝑥⟂, Δ𝑧 ≪ 1 and temporal resolution Δ𝑡 ≪ 1, the assumption of an explicit time-
stepping algorithm leads in Table 2 to the spatio-temporal constraints known as the Courant-Friedrich-Lewy (CFL) criteria required 
for accurately discretizing the various forces in the iNSE. The most to least restrictive CFL conditions are shown in dimensional 
(row 2) and nondimensional forms according to the vertical or horizontal diffusion time scale (rows 3 & 4). This ordering holds 
provided Δ𝑥⟂ ∼ Δ𝑧 < 𝑅𝑎

−1
. In the limit 𝐸𝑘 → 0, it is clear from Table 2 that the Coriolis term (column 2) imposes the most restrictive 
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Table 2 
Ordering of the most to least restrictive CFL conditions for the explicit time step Δ𝑡𝒇  asso-
ciated with the forcing term 𝒇 in the incompressible Navier–Stokes Equation (iNSE): 𝜕𝑡𝐮 =
𝒇 ≡ −2Ω𝐳̂ × 𝐮 − ∇𝑝 + 𝜈∇2

⟂𝐮 − 𝐮 ⋅ ∇⟂𝐮 − 𝑔𝛼𝜃𝒓̂ − 𝐮 ⋅ ∇∥𝐮 + 𝜈∇2
∥𝐮. The time constraint for the pres-

sure force is identical to that of the Coriolis force. Row 2 gives the dimensional time step es-
timate. Later rows express the nondimensional estimates based on vertical (𝐻2∕𝜈) and horizontal 
(𝓁2∕𝜈) diffusion times. Here 𝓁 ∼ 𝐸𝑘1∕3𝐻 such that Δ𝑥∗⟂ = 𝓁Δ𝑥⟂, Δ𝑧∗ = 𝐻Δ𝑧 where Δ𝑥⟂ ∝ 𝑁−1

𝑥⟂
and Δ𝑧 ∝ 𝑁−1

𝑧 . From Aurnou et al. [52], Julien et al. [59], 𝑈𝑟𝑓𝑓 ∼ 𝑅𝑜𝑐𝑈𝑓𝑓  and the temperature 
fluctuation 𝜃, defined in Eq.  (16), scales as 𝜃 ∼ 𝐸𝑘1∕3‖𝜕𝑧𝑇𝑏‖𝐻 , where 𝑅𝑜𝑐 =

√

𝑅𝑎∕𝑃𝑟𝐸𝑘. Forces 
in need of an implicit treatment are presented to the left of the vertical separator ‖. This holds 
provided Δ𝑥⟂ ≪ 𝑅𝑎

−1
, otherwise, no advantages arise from the implicit treatment of horizontal 

dissipation (column 3) given that its CFL constraint becomes as restrictive as nonlinear horizontal 
advection (column 4).
 CFL time step  Rotation  Horiz. diff.  Horiz. adv.  Buoyancy  Vert. adv.  Vert. diff.
Δ𝑡𝒇 Δ𝑡Ω Δ𝑡𝜈⟂ Δ𝑡𝑎𝑑𝑣⟂ Δ𝑡𝑔 Δ𝑡𝑎𝑑𝑣∥ Δ𝑡𝜈∥

 Dimensional 1
2Ω

(

Δ𝑥∗⟂
)2

𝜈
Δ𝑥∗⟂
𝑈𝑟𝑓𝑓

𝑈𝑟𝑓𝑓

𝑔𝛼𝜃
Δ𝑧∗
𝑈𝑟𝑓𝑓

(Δ𝑧∗)2

𝜈

 Nondim., 𝐻2

𝜈
𝐸𝑘 𝐸𝑘2∕3

(

Δ𝑥⟂
)2 𝐸𝑘4∕3

𝑅𝑜2𝑐
Δ𝑥⟂ 𝐸𝑘2∕3 𝐸𝑘

𝑅𝑜2𝑐
Δ𝑧 (Δ𝑧)2

 Nondim., 𝓁2

𝜈
𝐸𝑘1∕3

(

Δ𝑥⟂
)2 𝐸𝑘2∕3

𝑅𝑜2𝑐
Δ𝑥⟂ 1 𝐸𝑘1∕3

𝑅𝑜2𝑐
Δ𝑧 𝐸𝑘−2∕3(Δ𝑧)2

constraint on the time step Δ𝑡 (provided Δ𝑥⟂ ∼ Δ𝑧 ≫ 𝑅𝑎𝐸1∕3∕ Pr). This suggests that it is numerically advantageous to treat this 
linear term implicitly with the additional expense of numerically coupling the momentum equations. It is also evident that, compared 
to nonlinear horizontal advection, an implicit treatment is desirable for the linear horizontal dissipation, the next most prohibitive 
constraint ∝ (Δ𝑥⟂)2, provided Δ𝑥⟂ = 𝑜

(

𝑅𝑎
−1)

. If this strategy is adopted then all remaining time-stepping bounds for the linear terms 
are less severe than the (Δ𝑥⟂) nonlinear horizontal advection time scale. Thus all remaining linear terms can be treated explicitly 
without a numerical penalty.

The mechanical conditions at an impenetrable boundary also result in additional resolution constraints in space. Specifically, 
no-slip boundaries and/or stress-free boundaries that are not perpendicularly aligned to the axis of rotation result in (𝐸𝑘1∕2) Ekman 
boundary layers. For no-slip boundaries, it has recently been established that this prohibitive constraint can be relaxed by parame-
terizing its effect on the bulk through the pumping boundary conditions 𝑤 = ±𝐸𝑘1∕2 𝐳̂ ⋅ ∇ × 𝐮 ∕

√

2 [46,63]. This complication does 
not arise in the present work, since we focus exclusively on stress-free top and bottom boundaries.

Given the enormous challenges faced by DNS in the 𝑅𝑜 ≪ 1 regime, an attractive alternative is to resort to large-eddy simulations 
(LES), which resolve only the large turbulent scales, and employ subgrid-scale models for the smaller turbulent scales below a certain 
threshold scale. This technique has been applied in the context of nonrotating Rayleigh–Bénard convection [64–66]. However, it 
must be stressed that, for the highly anisotropic turbulent flows encountered in the geophysical and astrophysical context, LES are 
still in their infancy and ill-understood due to the complex structure across scales which such flows exhibit. Even when LES can be 
applied, the results thus obtained still need to be extrapolated to the extreme parameter regimes of geophysical and astrophysical 
flows. Importantly, LES and subgrid-scale modeling are particularly challenging because there is a notable paucity of validation data 
in the relevant regimes.

4.  Asymptotically reduced model as a guide

Attempts to increase the achievable Reynolds number in DNS (or LES) of RRBC while lowering the Ekman number to sustain the 
low Rossby number environment must result from improving the conditioning of the matrices obtained from numerical discretization. 
Ultimately this means reducing or removing the discretization dependence on the Rossby or Ekman number. The asymptotic system 
of equations for RRBC valid in the limit 𝐸𝑘 → 0 derived and extensively studied by Julien & coworkers serves as a template for 
accomplishing this task [58,59,62,67]. Assuming a local plane layer about the North pole, the system leverages 𝑅𝑜𝑐 ∼ 𝐸𝑘1∕3≡ 𝜖 ≪ 1
as the small parameter, along with the characteristic anisotropic scalings (10), and the relations (9) and (11). A primary geostrophic 
balance is obtained together with horizontal incompressibility on horizontal spatial scales, namely,

𝐳̂ × 𝐮 ≈ −∇𝜋, ∇⟂ ⋅ 𝐮⟂ ≈ 0. (14)

It follows that 𝐮⟂ = 𝐳̂ × ∇⟂𝜋 ≡ ∇⟂𝜋, where ∇⟂ = (−𝜕𝑦, 𝜕𝑥). Moreover, it is found that the modified pressure 𝜋 = Ψ serves as the 
geostrophic streamfunction with 𝐮 = (∇⟂Ψ, 𝑤). When observed on the characteristic anisotropic spatial scales 𝓁 and 𝐻 , and velocity 
scale 𝜈∕𝓁, the reduced system of equations (the Non-Hydrostatic Quasi-Geostrophic Equations [58]) is given by 

𝜕𝑡∇2
⟂Ψ + 𝐽

[

Ψ,∇2
⟂Ψ

]

− 𝜕𝑍𝑤 = ∇4
⟂Ψ, (15a)

𝜕𝑡𝑤 + 𝐽 [Ψ, 𝑤] + 𝜕𝑍Ψ = 𝑅𝑎
𝑃𝑟

𝜃 + ∇2
⟂𝑤, (15b)
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𝜕𝑡𝜃 + 𝐽 [Ψ, 𝜃] +𝑤
(

𝜕𝑍Θ − 1
)

= 1
𝑃𝑟

∇2
⟂𝜃, (15c)

𝜖−2𝜕𝑡Θ + 𝜕𝑍
(

𝑤𝜃
)

= 1
𝑃𝑟

𝜕2𝑍Θ (15d)

with

𝑤 = Θ = 0, on 𝑍 = 0, 1. (15e)

Here 𝐽 [Ψ, 𝑓 ] = 𝐮⟂ ⋅ ∇⟂𝑓 , the vertical vorticity is ̂𝐳 ⋅ 𝝎 = ∇2
⟂Ψ and corrections at (𝐸𝑘1∕3) have been dropped; 𝑍 is the (1) vertical 

scale. The temperature field is decomposed into a mean (horizontally-averaged) and (𝜖) fluctuating component, i.e.,
𝜗 ≡ Θ + 𝜖𝜃. (16)

It follows that the Ekman number dependence remains only in the evolution of the mean temperature Θ which can be seen to evolve 
on a much slower time scale 𝑇 = 𝜖2𝑡 (ratio of vertical viscous diffusion time to horizontal diffusion time) compared to the convective 
dynamics. Importantly, it has been established in Sprague et al. [58], Julien et al. [59,67] that this term can be omitted provided: (i) 
Θ evolves to a statistically stationary state 𝜕𝑡Θ ≈ 0, and (ii) the fluid domain is sufficiently large that numerous convective cells or 
plumes contribute to the horizontal spatial averaging.

The result serves as an accurate representation for Θ with (𝐸𝑘2∕3) error (see Appendix D). Assuming an implicit treatment in 
time for all linear terms, it can now be seen that the most restrictive condition is the Ekman number-independent CFL constraint on 
the horizontal advection terms, which is consistent with our discussion in Table 2.

The NHQGE (15a)–(15e) have been instrumental in probing and identifying the properties of turbulent Rayleigh–Bénard convec-
tion in the rapidly rotating regime, from the identification of regimes of distinct flow morphologies [59], to the understanding of a 
novel inverse energy cascade in three dimensions [53,68], through to uncovering the dissipation-free momentum and heat transport 
scaling laws [53,54,69]. However, by design, the NHQGE are constructed to be valid in the asymptotic regime 𝐸𝑘 ≪ 𝑅𝑜𝐻 → 0, and 
a complete understanding of its robustness to finite 𝐸𝑘 remains an open question [70]. Bridging the intermediate void in parameter 
space between the regimes obtained in current laboratory experiments and DNS and actual geophysical and astrophysical settings as 
highlighted in Fig. 1 is a key scientific objective.

5.  Rescaled incompressible DNS

Based on the discussion in the previous section of the asymptotically reduced governing equations, we can now reformulate the 
iNSE in a rescaled form, which is advantageous for simulating very low Ekman and Rossby numbers. For this we will follow the 
template that produced the reduced system (15). We begin by introducing the anisotropic characteristic length scales: we nondi-
mensionalize vertical lengths by 𝐻 and horizontal lengths by 𝓁 = 𝜖𝐻 , where 𝜖 = 𝐸𝑘1∕3 as before. We also adopt the velocity scale 
𝑈 = 𝑈𝜈 = 𝜈∕𝓁 which differs from a rotational free-fall velocity scale according to 𝑈𝜈 = (𝑅𝑎∕𝑃𝑟)𝑈𝑟𝑓𝑓 . This implies that

𝑅𝑜𝐻 ≡ 𝑈
2Ω𝐻

= 𝐸𝑘2∕3 ≡ 𝜖2, Γ𝐻 = 1
𝜖2

𝑅𝑎
𝑃𝑟

, 𝑅𝑒𝐻 = 1
𝜖
, 𝑃 𝑒𝐻 = 𝑃𝑟𝑅𝑒𝐻 = 𝑃𝑟

𝜖
, (17)

𝐸𝑢 ≡ 𝑃
𝜌0𝑈2

= 2Ω𝑈𝓁3

𝜈2
= 1

𝐸𝑘1∕3
= 1

𝜖
. (18)

Note that due to the anisotropic rescaling one finds

∇⟂ ↦
1
𝜖
∇⟂, 𝐳̂ ⋅ ∇ = 𝜕𝑍 , 𝜕𝑡 ↦

1
𝜖
𝜕𝑡. (19)

As in the derivation of the reduced equations, we decompose the temperature deviation from the linear conductive background state 
according to 𝜗 = Θ(𝑍, 𝑡) + 𝜖𝜃(𝐱, 𝑡). Finally, we define the ageostrophic velocities 

𝑈 = 1
𝜖
(𝑢 + 𝜕𝑦𝜋), 𝑉 = 1

𝜖
(𝑣 − 𝜕𝑥𝜋) ⟺ 𝑼⟂ = 1

𝜖
(𝐮⟂ − ∇⟂𝜋). (20a)

Recall ∇⟂ = (−𝜕𝑦, 𝜕𝑥) and ∇⟂ = (𝜕𝑥, 𝜕𝑦). The iNSE then take the form
𝜕𝑡𝑢 +𝜖𝑢 − 𝑉 = ∇̃2

𝜖𝑢. (20b)

𝜕𝑡𝑣 +𝜖𝑣 + 𝑈 = ∇̃2
𝜖𝑣, (20c)

𝜕𝑡𝑤 +𝜖𝑤 + 𝜕𝑍𝜋 = ∇̃2
𝜖𝑤 + 𝑅𝑎

𝑃𝑟
𝜃, (20d)

𝜕𝑥𝑈 + 𝜕𝑦𝑉 + 𝜕𝑍𝑤 = 0, (20e)

𝜕𝑡𝜃 +𝜖𝜃 + (𝜕𝑍Θ − 1)𝑤 = 1
𝑃𝑟

∇̃2
𝜖𝜃, (20f)

𝜖−2𝜕𝑡Θ + 𝜕𝑍𝑤𝜃 = 1
𝑃𝑟

𝜕2𝑍Θ, (20g)

where

∇̃2
𝜖 = ∇2

⟂ + 𝜖2𝜕2𝑍 , ∇2
⟂ = 𝜕2𝑥 + 𝜕2𝑦 , 𝜖 = 𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑍 . (21)
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We consider impenetrable stress-free, fixed-temperature boundary conditions, i.e.,
𝑤 = 𝜕𝑍𝑢 = 𝜕𝑍𝑣 = 0 at 𝑍 = 0, 1, (22)

and

𝜃 = Θ = 0 at 𝑍 = 0, 1. (23)

The equation set (20a)–(23) is an equivalent reformulation of the iNSE obtained by rescaling terms (without omitting any terms 
in the process) in accordance with the asymptotic theory, specifically utilizing the distinguished limits (17) and (18) described in the 
previous section. We refer to these equations as the Rescaled Rapidly Rotating incompressible Navier–Stokes Equations (RRRiNSE).

We complete our exposition of these equations by noting that the formal limit 𝜖 → 0 of these equations leads directly to the 
asymptotic reduced Eqs. (15a)–(15d) describing quasi-geostrophic Rayleigh–Bénard convection. This follows on noting that

lim
𝜖→0

∇̃2
𝜖 = ∇2

⟂ ; (24)

moreover, introducing the streamfunction Ψ and velocity potential 𝜒 decomposition of the horizontal velocity field,
𝐮⟂ = ∇⟂Ψ + 𝜖∇⟂𝜒, (25)

where ∇⟂ = (𝜕𝑥, 𝜕𝑦, 0)𝑇  and ∇⟂ = (−𝜕𝑦, 𝜕𝑥, 0)𝑇 , we see that
lim
𝜖→0

𝜋 = Ψ; lim
𝜖→0

𝑼⟂ = ∇⟂𝜒 ; lim
𝜖→0

𝐮⟂ = ∇⟂Ψ . (26)

Thus, as in the asymptotic equations, the dependence of the pressure on the velocity changes from quadratic to linear and a leading 
order geostrophic velocity field is recovered. Three-dimensional incompressibility is maintained through the ageostrophic velocity, 
∇⟂ ⋅ 𝑼⟂ = ∇2

⟂𝝌 = −𝜕𝑍𝑤. In Section 7 we demonstrate empirically that in sufficiently large domains 𝜖−2𝜕𝑡Θ ≈ 0 in the statistically 
steady state, including at very small values of 𝐸𝑘.

6.  Conditioning properties of rescaled equations: RRRiNSE

The advantage of the RRRiNSE formulation can be displayed through the properties of its spatio-temporal discretization. The 
findings of Table 2 suggest an implicit-explicit time discretization scheme for the governing equations of the form

(

𝜕𝑡 − 𝐼
)

 (𝑛+1) = 𝐸 (𝑛) + ( (𝑛), (𝑛)) (27)

with implicit and explicit vectors of state  (𝑛+1) ≡ (𝐮(𝑛+1),𝑼 (𝑛+1)
⟂ , 𝜋(𝑛+1), 𝜃(𝑛+1))𝑇  and similarly for  (𝑛). The exact list of the variables 

that enter  and the expressions for differential operators ,𝐼 ,𝐸 and   all depend on the adopted formulation. The specific 
details for various forms of RRRiNSE and the asymptotic model NHQGE are relegated to Appendix C.

Numerically, given that 𝐼  is a non-diagonal operator, this requires the utilization of a coupled solver at each time step. This im-
plicit operator invariably contains the Coriolis force that would impose an (𝜖−1) explicit time-stepping constraint as 𝜖 → 0. However, 
as discussed in details in Section 7.2 (see also Table 3), for stability reasons, we find advantageous to revert to an implicit treatment 
for vertical diffusion in cases of slow rotation rates that correspond to moderate values for 𝜖. Boundary conditions at the top and 
bottom are imposed by constructing Galerkin basis functions, as we explain hereafter. We note that parameterized Ekman pumping 
boundary conditions [46], while not considered here, go beyond the Galerkin basis approach but can be handled via the use of the 
tau method [71] implemented in widely available solvers such as Dedalus [48]. 

Eq.  (27) are solved with the numerical code Coral [49], a flexible platform for solving systems of PDEs with spectral accuracy, i.e., 
with exponential error convergence. All fluid variables, combined in the state vector v, are discretized with a Fourier mode expansion 
in the horizontal and a Chebyshev–Galerkin polynomial expansion in the vertical direction, i.e.,

𝐯 =
∑

𝐯̂𝒌⟂ ,𝑗 (𝑡)𝑒
𝑖𝒌⟂⋅𝒙⟂Φ𝑗 (𝑍). (28)

Here the Chebyshev-Galerkin basis functions Φ𝑗 (𝑍) can be constructed to satisfy Dirichlet (Φ𝑗 = 0), Neumann (𝜕𝑍Φ𝑗 = 0), or higher 
order conditions that pertain to velocity potential formulations (Φ𝑗 = 𝜕𝑍Φ𝑗 = 0 for no-slip; Φ𝑗 = 𝜕𝑍𝑍Φ𝑗 = 0 for stress-free); here we 
consider stress-free kinematic boundary conditions only. The code temporally evolves the spectral coefficients of the modes 𝐯̂𝒌⟂ ,𝑗 (𝑡)
in spectral space, here via the third order-four stage implicit-explicit Runge-Kutta time-stepping scheme RK443 [72]. For constant-
coefficient differential equations, as considered here, Coral adopts the quasi-inverse method presented in Julien and Watson[73], 
based on an integral formulation of the problem, applied to Chebyshev–Galerkin bases obtained by basis recombination [48,49,73]. 
This procedure, detailed in Appendix B, is implemented in Coral and results in a sparse banded structure for the coupling matrices 
 and 𝐼  in (27).

We note that, given the dependence of the time step Δ𝑡 on 𝐸𝑘 through its presence in 𝐼 , the ability to take the limit 𝐸𝑘 → 0 is 
ultimately bounded by the accuracy of the time integration due to the specific time-discretization error associated with the scheme 
and round-off errors. Such errors are ultimately related to the condition number of the matrix 𝑨 in the linear algebraic system 𝑨𝐱 = 𝒃
that results from the spatial-temporal discretization of (27). Here 𝑨 is the discretization of 𝜕𝑡 − 𝐼 , 𝐱 is the state vector and 𝒃 is 
the explicit right-hand side of (27). Alternatively, the sensitivity of an implicit time-stepping scheme can be explored through the 
eigenspectrum of the generalized eigenproblem 𝜆𝑴𝐱 = 𝑳𝐼𝐱 deduced from the discretization of (𝜕𝑡 − 𝐼 )𝐯 = 0.

Fig. 2 shows this eigenspectrum, obtained with the RRRiNSE formulation, in the complex plane for four different Ekman numbers 
𝐸𝑘 = 10−6, 10−9, 10−12, 10−15 at 𝑅𝑎 = 0 (top row) and 𝑅𝑎 = 5 (bottom row), with the numerical results indicated by blue crosses (for 
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Fig. 2. Linear spectra from the rescaled equations (20) and (A.1) in the complex plane obtained numerically using the quasi-inverse method with 
Chebyshev–Galerkin basis (see Appendix B). The top row illustrates the case of pure inertial waves (𝑅𝑎 = 0) while thermal stratification below the 
convective onset (𝑅𝑎 = 5) is included in the bottom row. All panels use ̃𝑘⟂ = 1.3 and 𝑃𝑟 = 1. Numerical solutions are obtained for both the primitive 
variable formulation (20) with 𝑁𝑍 = 256 (magenta circles) and 𝑁𝑍 = 512 (green squares), and the mixed velocity-vorticity formulation (A.1) with 
𝑁𝑍 = 256 (blue crosses). For reference, the analytical dispersion relation is represented with black dots appearing as a continuous black line. In 
both cases the computation of the numerical spectra remains stable as 𝐸𝑘 reaches values as low as 10−15. The mixed velocity-vorticity formulation 
leads to a remarkably accurate numerical spectrum, at the cost of larger memory usage. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the mixed velocity-vorticity formulation (A.1) with 𝑁𝑍 = 256 Chebyshev modes in the vertical), magenta circles and green squares 
(for the primitive-variable form (20) with 𝑁𝑍 = 256 and 𝑁𝑍 = 512 Chebyshev modes, respectively), in excellent agreement with the 
analytical result shown by the black line. This result should be compared with Fig. 3, which displays the eigenspectrum obtained with 
the unscaled Boussinesq equations at Ekman numbers 𝐸𝑘 = 10−7, 10−9, 10−10, 10−11, again at 𝑅𝑎 = 0 (top row) and 𝑅𝑎 = 5 (bottom 
row), with magenta circles (𝑁𝑍 = 256) and green squares (𝑁𝑍 = 512) indicating the numerical data for comparison with the analytical 
result shown by the black line. In contrast with Fig. 2, inspection of Fig. 3 shows that the accuracy of the numerical spectra deteriorates 
significantly as the Ekman number decreases below 𝐸𝑘 ≲ 10−7. Particularly damaging to time stepping the solution are the spurious, 
linearly unstable modes (i.e., modes with ℜ(𝑠) > 0) visible in Fig. 3 for ̃𝑅𝑎 = 0 when 𝐸𝑘 = 10−11 (top row) and even more spectacularly 
for the thermally forced case 𝑅𝑎 = 5 when 𝐸𝑘 = 10−9 (bottom row), i.e., at a substantially slower rotation rate than in the purely 
hydrodynamical case. These results indicate why traditional DNS has proved unable to reach 𝐸𝑘 = 10−9.

The behavior of the spectra associated with the standard and the rescaled formulations is quantified and summarized in Fig. 4 
which presents the condition number of the operator 𝑳𝐼  as rotation increases. High values for the condition number of matrices are 
commonly associated with unstable numerical computations. With the standard formulation (4), the conditioning of the discretized 
operator degrades rapidly as the Ekman number decreases following an approximate 𝐸𝑘−3∕2 scaling law at 𝑅𝑎 = 0, and an even 
steeper scaling close to 𝐸𝑘−2 at 𝑅𝑎 = 5, as 𝐸𝑘 → 0. For comparison, the condition number associated to the RRRiNSE obeys a more 
moderate 𝐸𝑘−1∕2 scaling for the primitive variable form (20), and only a somewhat steeper scaling for the mixed velocity-vorticity 
form (A.1). The relative values of the condition number also speak clearly in favor of the rescaled formulation: the condition number 
computed with the RRRiNSE (in either the primitive variable or mixed velocity-vorticity forms) for geophysically relevant rotation 
strengths (𝐸𝑘 = 10−16) appears to be smaller than its counterpart computed with the standard formulation even at modest rotation 
rate (𝐸𝑘 ≈ 10−6).

These results reflect the well-conditioned nature and the practicability of the RRRiNSE equations in the small 𝐸𝑘 limit, which the 
unscaled equations do not possess. This fact provides a strong motivation for using the RRRiNSE system to perform accurate DNS in 
the limit of small 𝐸𝑘.
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Fig. 3. Linear spectra from the unscaled equations (4) in the complex plane obtained numerically using the quasi-inverse method with Chebyshev–
Galerkin basis (see Appendix B). The top row illustrates the case of pure inertial waves (𝑅𝑎 = 0) while thermal stratification below the convective 
onset (𝑅𝑎 = 5) is included in the bottom row. All panels use ̃𝑘⟂ = 1.3 and 𝑃𝑟 = 1. Numerical solutions obtained with 𝑁𝑍 = 256 (magenta circles) and 
𝑁𝑍 = 512 (green squares) are compared against the analytical dispersion relation (black dots appearing as a continuous black line). In both cases 
spurious unstable modes proliferate with decreasing 𝐸𝑘. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 4. Condition number of the operator 𝑳𝐼 computed for both the standard formulation [Eqs. (4), open symbols] and the rescaled formulations 
[Eqs. (20) and (A.1), filled symbols]. Both panels use ̃𝑘⟂ = 1.3 and 𝑃𝑟 = 1. (a) Pure inertial waves for 𝑅𝑎 = 0. (b) Thermally stratified case 𝑅𝑎 = 5. 
The dash-dotted, dashed, and dotted lines are eye-guides with slope 1∕2, 3∕2 and 2, respectively.

7.  Results

To further validate the RRRiNSE formulation, going beyond the improved conditioning properties of RRRiNSE presented in Sec-
tion 6, we perform extensive direct numerical simulations of RRBC using Coral. All runs described below were performed with 𝑃𝑟 = 1
and a rescaled (nondimensional) domain with dimensions 10𝓁𝑐 × 10𝓁𝑐 × 1 was used throughout, with critical convective onset length 
scale 𝓁𝑐 ≈ 4.82, unless specified otherwise. An explicit treatment is used for all advective RRRiNSE terms 𝑖, 𝑖 = 𝑢, 𝑣,𝑤, 𝜃,Θ and also 
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Fig. 5. Panels (a)–(c): time series of 𝑁𝑢 − 1 at 𝑅𝑎 = 40, 𝑃𝑟 = 1, 𝐸𝑘 = 10−9 for varying horizontal domain sizes. (a) 𝐿 = 5𝓁𝑐 (modal resolution 
642 × 128 modes), (b) 𝐿 = 10𝓁𝑐 (modal resolution 1283 modes), (c) 𝐿 = 15𝓁𝑐 (modal resolution 1923 modes), with the rescaled most unstable length 
scale 𝓁𝑐 ≈ 4.82. Each simulation consists of two parts. In the first part, which extends from 𝑡 = 0 to the time 𝑡 = 𝑡𝑐 indicated by a black arrow, the 
time derivative of Θ in Eq.  (A.1i) is omitted, leading to a slaving relation between Θ and the heat flux. At 𝑡 = 𝑡𝑐 (at which the large scale vortex 
condensate reaches saturation), the time derivative of Θ is restored. Horizontal dashed lines indicate time averages over each of the two segments 
of the simulation, while the blue and orange shaded areas indicate the observed standard deviation. The agreement between the results of the two 
numerical schemes improves noticeably as the domain size increases. Fluctuations are seen to be larger in smaller domains since the volume average 
contains fewer points. Panels (d)–(f): histograms of 𝑁𝑢 − 1 computed from each time series with and without the mean temperature time derivative, 
with dashed lines indicating a Gaussian fit. The histograms illustrate the convergence of the mean between the two schemes with increasing domain 
size. The histograms also show that fluctuations in the presence of the 𝜖−2𝜕𝑡Θ term are of larger amplitude, a fact consistent with the time series in 
the top row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for the mean temperature advection term (𝜕𝑍Θ − 1)𝑤 in the 𝜃 equation. The CFL condition is imposed based on the horizontal velocity 
components. Stress-free boundary conditions are adopted in all runs.

First, in Sections 7.1 and 7.2 we discuss different numerical schemes that can be used for solving the RRRiNSE. These differ in the 
treatment of the mean temperature equation and vertical derivatives in the diffusion terms. Our results focus on the global heat and 
momentum transport as defined by the nondimensional Nusselt and Reynolds numbers, namely,

𝑁𝑢 = 1 + 𝑃𝑟⟨𝑤𝜃⟩𝑍,𝑡 ≡ 1 + 𝜕𝑍Θ|0,1, 𝑅𝑒𝑤 = ⟨⟨𝑤2
⟩

1∕2
𝑍 ⟩𝑡, (29)

where ⟨⋅⟩𝑍,𝑡 denotes the combined average in the vertical and in time, while ⟨⋅⟩𝑍 and ⟨⋅⟩𝑡 denote averaging in the vertical or in 
time separately. Along with the Nusselt number 𝑁𝑢, the quantity 𝑅𝑒𝑤 saturates significantly earlier than the horizontal velocity 
components that are strongly impacted by an inverse kinetic energy cascade [53,54]. In Section 7.3, we compare the Nusselt number 
obtained in our simulation to published results in the literature. Next, in Section 7.4, we present the Nusselt and Reynolds numbers 
for different values of 𝐸𝑘 and 𝑅𝑎, verifying the convergence of the RRRiNSE to the asymptotically reduced equations presented in 
Section 4. Finally, we provide visualizations of our RRRiNSE simulation results at a very low Ekman number, 𝐸𝑘 = 10−15, well within 
the geostrophic turbulence regime.

7.1.  Slaving: the role of 𝜖−2𝜕𝑡Θ in the mean temperature equation

In the statistically steady state, quantities of interest, such as the Nusselt and Reynolds numbers, are typically given as space-time 
averages. It is natural to expect that this averaging improves as the domain size is increased. This motivates the hypothesis, discussed 
in Appendix D, that the term 𝜖−2𝜕𝑡Θ in the equation may become subdominant in calculating, for instance, the Nusselt number, 
provided the domain size is sufficiently large. The strategy of omitting the temporal variation of the mean temperature, which we 
will refer to as the slaving strategy, has the significant advantage of accelerating the convergence to the steady state at small 𝜖 by 
orders of magnitude, due to the fact that 𝜖−2𝜕𝑡 = 𝜕𝑇 , where 𝑇 = 𝜖2𝑡, is a derivative with respect to a slow time variable. The slaving 
approach has already been used successfully for the reduced equations of Section 4 in a number of works, including [58,67–69]. 
Here, we begin with a detailed verification of the slaving approach for the full Boussinesq system in the RRRiNSE formulation.

Fig. 5(a)–(c) show the time series of the Nusselt number for long simulations in domains of three different sizes, 5𝓁𝑐 × 5𝓁𝑐 × 1, 
10𝓁𝑐 × 10𝓁𝑐 × 1, and 15𝓁𝑐 × 15𝓁𝑐 × 1 at 𝑅𝑎 = 40, 𝑃𝑟 = 1 and 𝐸𝑘 = 10−9. With this set of parameters, an inverse cascade of energy 
is observed, which leads to the accumulation of energy at large scales and the formation of a large-scale vortex dipole (LSV), also 
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Fig. 6. Time series of 𝑁𝑢 − 1 for various horizontal domain sizes at 𝐸𝑘 = 10−9. (a) 𝐿 = 5𝓁𝑐 (modal resolution 642 × 128). (b) 𝐿 = 10𝓁𝑐 (modal 
resolution 1283). (c) 𝐿 = 15𝓁𝑐 (modal resolution 1923). First part of each simulation is performed without the 𝜕𝑡Θ term in the mean temperature 
equation. In the second part of each run, the term 𝜖−2𝜕𝑡Θ is replaced by 𝜕𝑡Θ. The mean and variance of each of the two segments are found to be 
very close.

observed in the nonhydrostatic quasi-geostrophic equations (15), cf. [53,68,69]. Each of the three simulation sets consists of two 
parts: first, each set is initialized with small-amplitude initial conditions and integrated for a long time with the slaving approach, 
until the LSV has saturated. Then, at the time indicated in Fig. 5(a)–(c) by an arrow, the time derivative of the mean temperature 
is again included, restoring the full RRRiNSE equations, and the run is continued. In small domains there is a notable discrepancy 
between the slaving strategy and the solution of the full RRRiNSE equations, but this discrepancy decreases as the domain size 
increases (see dashed lines). This is accompanied by a decrease in the statistical fluctuations about the mean Nusselt number, as 
expected given the improved horizontal averaging in larger domains. The histograms in Fig. 5(d)–(f) correspond to each of the 
two parts of the time series above and illustrate both of these trends: the averages of the two histograms approach each other 
as the domain size is increased, and the variance decreases, being somewhat larger for the full equations than with the slaving 
strategy. Thus, for large enough domains (horizontal domain size 𝐿 ≳ 10𝓁𝑐 in terms of the critical length scale 𝓁𝑐), the slaving 
scheme yields approximately the same answers for mean quantities as the unaltered equations. On the other hand, differences remain 
in the fluctuations about that mean, owing to the additional slow time scale arising from the time derivative of the mean temperature, 
eliminated in the slaving strategy. We also note that in all cases, the peak of the histogram is close to a Gaussian, while in the presence 
of 𝜖−2𝜕𝑡Θ deviations from that shape are seen, most strikingly in panel (e) in the intermediate domain, leading to a certain degree 
of skewness. This is not observed to the same degree in the smaller or larger domain, and remains to be better understood in future
investigations.

Fig. 6 shows long time series similar to those in Fig. 5(a)–(c), again at 𝐸𝑘 = 10−9. The first, earlier part of each simulation (orange 
curves in Fig. 6) is identical between the two figures and was computed using the slaving approach. In contrast, the second part (in 
blue) was computed with 𝜖−2𝜕𝑡Θ replaced by 𝜕𝑡Θ (without the 𝜖−2 prefactor). The Nusselt number evolution in the two segments is 
found to be close to indistinguishable. This indicates that, in the statistically stationary state, 𝜕𝑡Θ is small compared to the remaining 
terms in the mean temperature equation.

In summary, the slaving strategy is a highly attractive scheme for accelerating transient dynamics in the approach to a statistically 
steady state, and it is often preferable to adopt this strategy for a sizeable efficiency gain. We therefore adopt the slaving strategy in 
all the runs described below. In Appendix E, we examine the impact of rescaling and slaving on the stability of strongly nonlinear 
simulations, showing that the slaving strategy yields a significant improvement in stability.

7.2.  Implicit and explicit vertical derivatives in the diffusion terms

A particular feature of the RRRiNSE equations is the appearance of vertical derivatives with a prefactor of 𝜖 = 𝐸𝑘1∕3. 
This indicates that, for sufficiently small 𝜖, terms involving vertical derivatives become subdominant and their numeri-
cal treatment becomes irrelevant in the Courant-Friedrichs-Lewy (CFL) constraint on the integration of the equations of
motion.

To test whether this intuition is correct, we perform two sets of runs at 𝑅𝑎 = 60, 𝑃𝑟 = 1, varying 𝐸𝑘 between 10−1 and 10−12, as 
listed in Table 3. In the first set of runs, all diffusive terms are treated implicitly (as in all other runs described in later sections), while 
in the second set the diffusive terms in Eqs.  (A.1e)–(A.1i) involving a vertical derivative are treated explicitly (the CFL condition 
is still only applied based on the horizontal velocity field). This is expected to produce no significant difference in the simulation 
outcome, provided 𝐸𝑘 is sufficiently small.

The data provided in Table 3 and its visualization in Fig. 7 show that the runs with explicit and implicit vertical diffusion schemes 
produce Nusselt and Reynolds numbers which are compatible with each other within the margin of error (computed as the standard 
deviation in steady state), provided that 𝐸𝑘 = 1∕

√

𝑇 𝑎 ≲ 10−6. For 𝐸𝑘 ≳ 10−6, i.e. 𝜖 ≳ 0.01, the simulation becomes unstable with a 
CFL prefactor of 0.2 (with a tolerance of 30%), leading to an unphysical blow-up.

In short, diffusion terms involving vertical derivatives become irrelevant in the limit of small 𝐸𝑘. This is consistent with the 
discussion in Section 4, which highlighted that, as 𝐸𝑘 → 0, the RRRiNSE formulation directly converges to the asymptotically reduced 
equations, which do not contain vertical diffusion terms except in the mean temperature equation.
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Table 3 
Overview of runs with ̃𝑅𝑎 = 60, 𝑃𝑟 = 1 and implicit or explicit vertical diffusion schemes (in a rescaled domain 
of size 10𝓁𝑐 × 10𝓁𝑐 × 1, where 𝓁𝑐 ≈ 4.82) for Ekman numbers between 10−12 and 10−1. Values of 𝑁𝑢 − 1 and 
𝑅𝑒𝑤, defined in Eq.  (29), refer to the average in the quasi-steady state during the early phase of the nonlinear 
evolution where a large-scale vortex condensate slowly grows in amplitude if an inverse cascade is present. 
Uncertainties represent the standard deviation of the time series.
𝜕𝑍 (diffusion) 𝐸𝑘 𝑅𝑎  Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑍  Stability (𝑁𝑢 − 1) ± Δ𝑁𝑢 𝑅𝑒𝑤 ± Δ𝑅𝑒𝑤

 Implicit 1.0 × 10−1 60 1.29 × 103 128 × 128 × 128  Stable 0.6 ± 0.1 1.8 ± 0.1
 Implicit 1.0 × 10−2 60 2.78 × 104 128 × 128 × 128  Stable 3.2 ± 0.2 5.5 ± 0.1
 Implicit 1.0 × 10−3 60 6.0 × 105 128 × 128 × 128  Stable 8.3 ± 0.3 9.1 ± 0.2
 Implicit 1.0 × 10−4 60 1.29 × 107 128 × 128 × 128  Stable 20.7 ± 0.6 17.7 ± 0.3
 Implicit 1.0 × 10−5 60 2.78 × 108 128 × 128 × 128  Stable 26.1 ± 1.0 18.3 ± 0.4
 Implicit 1.0 × 10−6 60 6.00 × 109 128 × 128 × 128  Stable 25.4 ± 1.4 18.8 ± 0.7
 Implicit 1.0 × 10−7 60 1.29 × 1011 128 × 128 × 128  Stable 21.9 ± 1.4 17.4 ± 0.5
 Implicit 1.0 × 10−8 60 2.78 × 1012 128 × 128 × 128  Stable 19.6 ± 1.0 16.6 ± 0.5
 Implicit 1.0 × 10−9 60 6.00 × 1013 128 × 128 × 128  Stable 19.6 ± 0.9 16.6 ± 0.5
 Implicit 1.0 × 10−10 60 1.29 × 1015 128 × 128 × 128  Stable 19.4 ± 1.0 16.7 ± 0.5
 Implicit 1.0 × 10−12 60 6.00 × 1017 128 × 128 × 128  Stable 19.5 ± 0.9 16.5 ± 0.5

 Explicit 1.0 × 10−1 60 1.29 × 103 128 × 128 × 128  Unstable  –  –
 Explicit 1.0 × 10−2 60 2.78 × 104 128 × 128 × 128  Unstable  –  –
 Explicit 1.0 × 10−3 60 6.00 × 105 128 × 128 × 128  Unstable  –  –
 Explicit 1.0 × 10−4 60 1.29 × 107 128 × 128 × 128  Unstable  –  –
 Explicit 1.0 × 10−5 60 2.78 × 108 128 × 128 × 128  Unstable  –  –
 Explicit 1.0 × 10−6 60 6.00 × 109 128 × 128 × 128  Stable 25.4 ± 1.3 18.6 ± 0.6
 Explicit 1.0 × 10−7 60 1.29 × 1011 128 × 128 × 128  Stable 21.7 ± 1.2 17.5 ± 0.6
 Explicit 1.0 × 10−8 60 2.78 × 1012 128 × 128 × 128  Stable 19.7 ± 1.0 16.9 ± 0.5
 Explicit 1.0 × 10−9 60 6.00 × 1013 128 × 128 × 128  Stable 19.6 ± 1.0 16.8 ± 0.5
 Explicit 1.0 × 10−10 60 1.29 × 1015 128 × 128 × 128  Stable 19.4 ± 0.9 16.8 ± 0.5
 Explicit 1.0 × 10−11 60 2.78 × 1016 128 × 128 × 128  Stable 19.2 ± 0.9 16.6 ± 0.4
 Explicit 1.0 × 10−12 60 6.00 × 1017 128 × 128 × 128  Stable 19.3 ± 1.0 16.7 ± 0.5

7.3.  Comparison with published Nusselt numbers

To further ascertain the validity of the RRRiNSE formulation, we reproduce results from the literature. In [34], Kunnen and 
coworkers provide Nusselt numbers obtained from direct numerical simulations of the same set-up as ours, using a second-order 
energy-conserving, finite-difference code with fractional time stepping. We stress that, while the authors of [34] discuss the transition 
to geostrophic turbulence, they are only able to reach relatively modest Ekman numbers, 𝐸𝑘 ≳ 1.34 × 10−7, which is large relative to 
the values of 𝐸𝑘 that can be reached using RRRiNSE, as shown in Sections 7.2 and 7.4. Nonetheless, the results presented in Kunnen 
et al. [34] provide a valuable benchmark as one bookend at moderate 𝐸𝑘.

We perform runs at the same parameters as those given in Kunnen et al. [34]. In Table 4, set A, we list those runs along with the 
Nusselt and Reynolds numbers obtained from our simulations. We choose up to 384 × 384 dealiased Fourier modes in the horizontal 
directions and up to 256 dealiased Chebyshev modes in the vertical direction, corresponding to a collocation grid of size 576 × 576 ×
384, while Kunnen et al. [34] consider up to 512 × 512 × 1024 spatial grid points. We stress that these numbers cannot be easily 
compared between a spectral code such as Coral and finite-difference codes such as that employed in Kunnen et al. [34]. However, 
the differences reside in the exponential vs algebraic error convergence properties of the two algorithmic approaches.

Fig. 7. Visualization of the data listed in Table 3, comparing the results of implicit and explicit vertical diffusion schemes at different Taylor 
numbers 𝑇 𝑎 = 𝐸𝑘−2. At 𝑇 𝑎 ≥ 1012, implicit and explicit diffusion schemes are both stable and yield very similar results which are compatible within 
the margin of error (given by the standard deviation).
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Table 4 
List of simulations described in this work (see also Table 5). All simulations are done with 𝑃𝑟 = 1
in a rescaled domain of size 10𝓁𝑐 × 10𝓁𝑐 × 1, where 𝓁𝑐 ≈ 4.82. Simulations A1 through A12 have 𝑅𝑎, 
𝐸𝑘 and Pr identical to those in Kunnen et al. [34]. The resolution is specified by the numbers 𝑁𝑥, 
𝑁𝑦 of Fourier modes in the horizontal directions and the number 𝑁𝑍 of Chebyshev modes in the 
vertical. The values of 𝑁𝑢 and 𝑅𝑒𝑤, defined in Eq.  (29), refer to the average computed in the early, 
quasi-steady, nonlinear stage of the evolution, in the absence of an LSV. Uncertainties represent the 
standard deviation of the time series. Simulations C1-C3, C6-13 are identical to the runs with an 
implicit vertical diffusion scheme listed in Table 3.
 Simulation nr.  Ek 𝑅𝑎  Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑍 (𝑁𝑢 − 1) ± Δ𝑁𝑢 𝑅𝑒𝑤 ± Δ𝑅𝑒𝑤

 A1 4.0 × 10−7 29.5 1 × 1010 128 × 128 × 128 8.1 ± 0.5 7.6 ± 0.2
 A2 6.0 × 10−7 50.6 1 × 1010 128 × 128 × 128 18.9 ± 1.1 15.3 ± 0.5
 A3 9.0 × 10−7 86.9 1 × 1010 128 × 128 × 128 44.5 ± 2.6 29.2 ± 1.3
 A4 1.2 × 10−6 127.5 1 × 1010 256 × 256 × 256 67.2 ± 3.1 38.5 ± 1.6
 A5 1.5 × 10−6 171.5 1 × 1010 256 × 256 × 256 91.6 ± 4.7 53.1 ± 2.4
 A6 2.0 × 10−6 252.2 1 × 1010 384 × 384 × 256 110.2 ± 5 59.6 ± 2.5
 A7 1.34 × 10−7 34.3 5 × 1010 128 × 128 × 128 9.5 ± 0.6 9.1 ± 0.3
 A8 1.79 × 10−7 50.4 5 × 1010 128 × 128 × 128 18.2 ± 1.1 14.8 ± 0.4
 A9 2.95 × 10−7 98.3 5 × 1010 128 × 128 × 128 52.6 ± 3.1 33.0 ± 1.6
 A10 4.02 × 10−7 148.3 5 × 1010 256 × 256 × 256 88.7 ± 5.2 47.9 ± 1.5
 A11 4.92 × 10−7 194.6 5 × 1010 256 × 256 × 256 116.5 ± 7.2 61.4 ± 3.2
 A12 6.71 × 10−7 293.6 5 × 1010 384 × 384 × 256 148.4 ± 10.2 78.0 ± 4.2

 B1 1.0 × 10−1  40 8.62 × 102 128 × 128 × 128 0.029 ± 0.007 0.34 ± 0.02
 B2 1.0 × 10−2  40 1.86 × 104 128 × 128 × 128 0.287 ± 0.014 1.48 ± 0.03
 B3 1.0 × 10−3  40 4.0 × 105 128 × 128 × 128 6.26 ± 0.17 7.0 ± 0.1
 B4 1.0 × 10−4  40 8.62 × 106 128 × 128 × 128 12.0 ± 0.4 10.3 ± 0.2
 B5 3.0 × 10−5  40 4.29 × 107 128 × 128 × 128 14.7 ± 0.4 11.4 ± 0.3
 B6 1.0 × 10−5  40 1.86 × 108 128 × 128 × 128 15.8 ± 0.7 12.2 ± 0.3
 B7 1.0 × 10−6  40 4.0 × 109 128 × 128 × 128 14.8 ± 1.0 12.0 ± 0.4
 B8 1.0 × 10−7  40 8.62 × 1010 128 × 128 × 128 12.2 ± 0.7 10.9 ± 0.3
 B9 1.0 × 10−8  40 1.86 × 1012 128 × 128 × 128 11.7 ± 0.5 10.6 ± 0.2
 B10 1.0 × 10−9  40 4.0 × 1013 128 × 128 × 128 11.5 ± 0.6 10.7 ± 0.3
 B11 1.0 × 10−10  40 8.62 × 1014 128 × 128 × 128 11.65 ± 0.65 10.7 ± 0.3
 B12 1.0 × 10−11  40 1.86 × 1016 128 × 128 × 128 11.4 ± 0.6 10.7 ± 0.3
 B13 1.0 × 10−12  40 4.0 × 1017 128 × 128 × 128 11.4 ± 0.6 10.6 ± 0.3
 B14 1.0 × 10−15  40 4.0 × 1021 128 × 128 × 128 11.4 ± 0.6 10.6 ± 0.3
 B15 1.0 × 10−15  40 4.0 × 1021 256 × 256 × 256 11.4 ± 0.5 10.7 ± 0.3

 C1 1.0 × 10−1  60 1.29 × 103 128 × 128 × 128 0.6 ± 0.1 1.8 ± 0.1
 C2 1.0 × 10−2  60 2.78 × 104 128 × 128 × 128 3.2 ± 0.2 5.5 ± 0.1
 C3 1.0 × 10−3  60 6.0 × 105 128 × 128 × 128 8.3 ± 0.3 9.1 ± 0.2
 C4 3.0 × 10−4  60 2.99 × 106 128 × 128 × 128 12.5 ± 0.4 12.1 ± 0.2
 C5 1.75 × 10−4  60 6.13 × 106 128 × 128 × 128 14.7 ± 0.4 13.3 ± 0.3
 C6 1.0 × 10−4  60 1.29 × 107 128 × 128 × 128 20.7 ± 0.6 17.7 ± 0.3
 C7 1.0 × 10−5  60 2.78 × 108 128 × 128 × 128 26.1 ± 1.0 18.3 ± 0.4
 C8 1.0 × 10−6  60 6.0 × 109 128 × 128 × 128 25.4 ± 1.4 18.8 ± 0.7
 C9 1.0 × 10−7  60 1.29 × 1011 128 × 128 × 128 21.9 ± 1.4 17.4 ± 0.5
 C10 1.0 × 10−8  60 2.78 × 1012 128 × 128 × 128 19.6 ± 1.0 16.6 ± 0.6
 C11 1.0 × 10−9  60 6.00 × 1013 128 × 128 × 128 19.6 ± 0.9 16.5 ± 0.4
 C12 1.0 × 10−10  60 1.29 × 1015 128 × 128 × 128 19.4 ± 1.0 16.6 ± 0.5
 C13 1.0 × 10−11  60 2.78 × 1016 128 × 128 × 128 19.7 ± 1.0 16.5 ± 0.4
 C14 1.0 × 10−12  60 6.00 × 1017 128 × 128 × 128 19.5 ± 1.0 16.5 ± 0.4
 C15 1.0 × 10−15  60 6.00 × 1021 128 × 128 × 128 19.4 ± 1.0 16.7 ± 0.5

 D1 1.0 × 10−1  80 1.72 × 103 192 × 192 × 192 0.95 ± 0.05 2.4 ± 0.1
 D2 1.0 × 10−2  80 3.71 × 104 192 × 192 × 192 3.8 ± 0.1 6.8 ± 0.1
 D3 1.0 × 10−3  80 8.00 × 105 192 × 192 × 192 9.7 ± 0.2 11.6 ± 0.2
 D4 1.0 × 10−4  80 1.72 × 107 192 × 192 × 192 20.7 ± 0.6 17.7 ± 0.3
 D5 1.0 × 10−5  80 3.71 × 108 192 × 192 × 192 33.8 ± 0.9 25.7 ± 0.9
 D6 1.0 × 10−6  80 8.00 × 109 192 × 192 × 192 38.9 ± 0.9 24.4 ± 0.7
 D7 1.0 × 10−7  80 1.72 × 1011 192 × 192 × 192 34.4 ± 1.4 24.4 ± 0.7
 D8 1.0 × 10−8  80 3.71 × 1012 192 × 192 × 192 30.8 ± 1.1 22.8 ± 0.8
 D9 1.0 × 10−9  80 8.00 × 1013 192 × 192 × 192 28.9 ± 1.2 22.3 ± 0.6
 D10 1.0 × 10−10  80 1.72 × 1015 192 × 192 × 192 29.1 ± 1.6 22.6 ± 0.7
 D11 1.0 × 10−11  80 3.71 × 1016 192 × 192 × 192 28.5 ± 1.4 22.4 ± 0.8
 D12 1.0 × 10−12  80 8.00 × 1017 192 × 192 × 192 29.1 ± 1.2 22.8 ± 0.7
 D13 1.0 × 10−15  80 8.00 × 1021 192 × 192 × 192 28.5 ± 1.4 22.7 ± 0.7
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Fig. 8. Comparison of Nusselt numbers from Kunnen et al. [34] with the RRRiNSE results. The simulations shown correspond to runs A1–A12 in 
Table 4. Error bars for RRRiNSE data represent the observed standard deviation.

Fig. 9. Nondimensional heat flux measured by the Nusselt number 𝑁𝑢, defined in Eq.  (29), compensated by the turbulent scaling law ̃𝑅𝑎3∕2, cf. [59], 
versus the Taylor number 𝑇 𝑎 ≡ 𝐸𝑘−2 for fixed 𝑅𝑎 ≡ 𝑅𝑎𝐸𝑘4∕3 (blue 𝑅𝑎 = 40, orange 𝑅𝑎 = 60, red 𝑅𝑎 = 80, green 𝑅𝑎 = 120), computed with implicit 
vertical diffusion. Dashed lines show the average in steady state predicted by the reduced Eqs. (15a)–(15d) with the shaded region indicating one 
standard deviation about the mean. At low Ekman numbers, the RRRiNSE predictions converge to the reduced equations. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Despite the different codes and resolution requirements, Fig. 8 shows that the Nusselt numbers obtained using RRRiNSE and those 
of Kunnen et al. agree well within the margin of error (the standard deviation of the Nusselt number time series). This provides a 
first bookend at relatively large Ekman numbers, where the RRRiNSE formulation correctly reproduces known results.

7.4.  Convergence to the geostrophic branch

As discussed in Section 4, it is expected that rotating convective flows converge to the well-studied, asymptotically reduced 
equations in the limit of small Ekman numbers. However, to date, it has not been possible to achieve sufficiently small Ekman 
numbers in direct numerical simulations of the full Boussinesq equations to observe this convergence.

Owing to the improved conditioning of the RRRiNSE formulation in the small 𝐸𝑘 limit and the slaving approach adopted here, 
it is shown below that it becomes possible, for the first time, to observe this convergence. We perform four sets of simulations of 
the RRRiNSE at 𝑅𝑎 = 40, 60, 80, 120, 𝑃𝑟 = 1 and 𝐸𝑘 varying between 10−1 and 10−15 (corresponding to 𝑇 𝑎 between 102 and 1030), 
summarized in Tables 4–5. We note that the RRRiNSE formulation remained numerically stable even at 𝐸𝑘 = 10−24, and yielded 
approximately the same Nusselt and Reynolds numbers as the case 𝐸𝑘 = 10−15, but in order to avoid potential issues due to machine 
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Fig. 10. Reynolds number 𝑅𝑒𝑤, defined in Eq.  (29), versus 𝑇 𝑎 = 𝐸𝑘−2 at fixed 𝑅𝑎 ≡ 𝑅𝑎𝐸𝑘4∕3 = 60. The dashed lines show the corresponding mean 
value obtained from the asymptotically reduced equations, with the shaded area indicating one standard deviation above and below that value.

Table 5 
List of simulations described in this work (continued); see also Table 4.
 Simulation nr. 𝐸𝑘 𝑅𝑎  Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑍 (𝑁𝑢 − 1) ± Δ𝑁𝑢 𝑅𝑒𝑤 ± Δ𝑅𝑒𝑤

 E1 1.0 × 10−1  120 2.59 × 103 128 × 128 × 128 1.3 ± 0.1 3.4 ± 0.1
 E2 1.0 × 10−2  120 5.57 × 104 128 × 128 × 128 4.6 ± 0.1 8.7 ± 0.1
 E3 1.0 × 10−3  120 1.2 × 106 128 × 128 × 128 11.8 ± 0.2 14.8 ± 0.2
 E4 1.0 × 10−4  120 2.59 × 107 128 × 128 × 128 26.1 ± 0.6 22.7 ± 0.4
 E5 1.0 × 10−5  120 5.57 × 108 256 × 256 × 256 45.0 ± 1.9 30.2 ± 0.9
 E6 1.0 × 10−6  120 1.2 × 1010 256 × 256 × 256 63.2 ± 3.5 37.9 ± 1.6
 E7 1.0 × 10−7  120 2.59 × 1011 256 × 256 × 256 64.4 ± 3.7 39.6 ± 1.1
 E8 1.0 × 10−8  120 5.57 × 1012 256 × 256 × 256 58.2 ± 3.9 40.5 ± 2.1
 E9 1.0 × 10−9  120 1.2 × 1014 256 × 256 × 256 54.0 ± 3.4 40.1 ± 2.2
 E10 1.0 × 10−10  120 2.59 × 1015 256 × 256 × 256 54.9 ± 2.5 39.7 ± 1.5
 E11 1.0 × 10−11  120 2.59 × 1015 256 × 256 × 256 55.2 ± 2.9 38.7 ± 1.0
 E12 1.0 × 10−12  120 1.20 × 1018 256 × 256 × 256 56.5 ± 3.8 40.3 ± 1.1
 E13 1.0 × 10−15  120 1.20 × 1022 256 × 256 × 256 56.6 ± 2.9 40.4 ± 1.0

 F1 𝐸𝑘 ≪ 1  40 𝑅𝑎 ≫ 1 128 × 128 × 128 11.3 ± 1.0 10.6 ± 0.3
 F2 𝐸𝑘 ≪ 1  60 𝑅𝑎 ≫ 1 128 × 128 × 128 19.5 ± 0.7 16.7 ± 0.5
 F3 𝐸𝑘 ≪ 1  80 𝑅𝑎 ≫ 1 128 × 128 × 128 29.3 ± 1.3 23.1 ± 0.8
 F4 𝐸𝑘 ≪ 1  120 𝑅𝑎 ≫ 1 256 × 256 × 256 56.0 ± 2.8 40.9 ± 2.1

precision, these results are not shown here. In addition, we perform simulations of the asymptotically reduced equations described in 
Section 4 with 𝑃𝑟 = 1 and 𝑅𝑎 = 40, 60, 80, 120 and compare the observed Nusselt and Reynolds numbers with the RRRiNSE results.

Figs. 9 and 10 show, respectively, the Nusselt and Reynolds numbers, where the latter is based on vertical velocity and the critical 
horizontal length scale, obtained at each 𝑅𝑎 as a function of 𝑇 𝑎 (symbols), with error bars indicating the observed standard deviation 
of the time series. The Nusselt number is rescaled by 𝑅𝑎3∕2, the turbulent scaling law [52], leading to an approximate data collapse 
between different 𝑅𝑎 at large 𝑇 𝑎 (small 𝐸𝑘), in agreement with the asymptotically reduced equations [69]. The Reynolds numbers 
are rescaled by 𝑅𝑎, leading to a less satisfactory collapse, which is known to be related to the presence of the inverse energy cascade 
[53,54].

In addition, the dashed lines in Figs. 9 and 10 indicate the results obtained using the asymptotically reduced equations, with the 
shaded area showing the standard deviation. The RRRiNSE results are seen to converge to the values observed in the asymptotically 
reduced equations above a certain threshold in the Taylor number 𝑇 𝑎, within the error margins given by the standard deviation 
of the time series from the reduced equations. The threshold 𝑇 𝑎 required for this convergence appears to increase with 𝑅𝑎, but a 
more detailed investigation will be required in the future to quantitatively investigate this behavior. The observed convergence of 
the RRRiNSE to the reduced equations provides an additional bookend validating the accuracy of the RRRiNSE formulation against 
an established body of work in the limit 𝐸𝑘 → 0 (𝑇 𝑎 → ∞). We also verified that the flow statistics obtained in the low 𝐸𝑘 regime 
are independent of the time step using runs with CFL prefactor 0.4 or 0.1 instead of 0.2 (which was used in all other runs) using 
𝐸𝑘 = 10−15, 𝑅𝑎 = 80, both of which gave the same Nusselt and Reynolds numbers within one standard deviation (not shown).
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Fig. 11. Snapshots of the pressure (left column) and 𝑦-component 𝑣 of the velocity (right column) from run D12 (with 𝐸𝑘 = 10−15, 𝑅𝑎 = 80, 𝑃𝑟 = 1) 
in the steady state, where a saturated LSV is present. The axes in all panels are indicated by black arrows. Top row: side view. Bottom row: same data 
as in the top row (viewed from top). Blue color indicates negative values while orange and red colors indicate positive values. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

The above simulations were performed with between 128 and 384 dealiased Fourier modes in the 𝑥 and 𝑦 directions and between 
128 and 256 dealiased Chebyshev modes in the vertical direction. It was verified for each simulation that the thermal boundary layer 
(defined in terms of the root-mean-square temperature fluctuation, cf. [59]) was well resolved, with at least 10 grid points.

Beyond the convergence of the Nusselt and Reynolds numbers to the values predicted by the asymptotic equations, an interesting 
pattern emerges. Both 𝑁𝑢 and 𝑅𝑒𝑤 are small when 𝑇 𝑎 is small (weak rotation). As 𝑇 𝑎 increases, 𝑁𝑢 and 𝑅𝑒 increase as well and 
exhibit an overshoot before converging to the asymptotic value. The amplitude of the overshoot is seen to decrease with increasing 
𝑅𝑎. Similar results were very recently reported in Anas and Joshi [74] for high Prandtl number rotating Rayleigh–Bénard convection 
with no-slip boundary conditions, but the physical origin of these features remains to be explained. An enhancement of the Nusselt 
number with increasing rotation rate has also been observed for 𝑃𝑟 = 4.38 and 6.4 [75]. The RRRiNSE formulation allows us, for the 
first time, to observe the full range of 𝐸𝑘 from order one values down to the asymptotic regime within a single code, opening the 
door to detailed numerical studies of the classical problem of rapidly rotating convection, which has long posed a major challenge to 
the fluid dynamics community.
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Fig. 12. Snapshots of the vertical vorticity 𝜔𝑧 (left column) and the vertical velocity 𝑤 from run D12 (with 𝐸𝑘 = 10−15, 𝑅𝑎 = 80, 𝑃𝑟 = 1) in the 
steady state, where a saturated LSV is present. The orientation in all panels is identical to Fig. 11. Top row: side view of 𝜔𝑧 (left) and 𝑤 (right). 
Bottom row: same data as in top row (viewed from top). Blue color indicates negative values while orange and red colors indicate positive values. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7.5.  Visualizations

Here, we provide some visualizations of the various fields from run D12, at the low Ekman number of 𝐸𝑘 = 10−15 with 𝑃𝑟 = 1 and 
𝑅𝑎 = 80. This run is in the geostrophic turbulence regime and the visualizations are produced in the statistically steady state, where a 
pronounced large-scale vortex (LSV) is present. The software Vapor [76] was used to generate the visualizations. We indicate positive 
values by orange and red contours and negative values by light and dark blue contours.

The left column of Fig. 11 shows the pressure field, where the large-scale columnar vortices are clearly visible. The right column 
of Fig. 11 shows the 𝑦-component 𝑣 of the velocity, which displays smaller-scale features than the pressure field. Fig. 12 shows the 
vertical vorticity 𝜔𝑧 (left column) and the vertical component 𝑤 of the velocity (right column). In the 𝜔𝑧 and 𝑤 fields, the large-scale 
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Fig. 13. Snapshots of the temperature fluctuation 𝜃 (left column) and the ageostrophic velocity component 𝑈 (right column) from run D12 (with 
𝐸𝑘 = 10−15, 𝑅𝑎 = 80, Pr = 1) in the steady state, where a saturated LSV is present. The orientation in all panels is identical to Fig. 11. Top row: side 
view. Bottom row: same data as in the top row, viewed from top. Blue color indicates negative values while orange and red colors indicate positive 
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

vortex columns are less clearly visible than in the pressure and 𝑣 fields shown in Fig. 11. Finally, Fig. 13 shows the temperature 
perturbation field 𝜃 (left column) and the ageostrophic 𝑥 velocity 𝑈 . Both fields show small-scale structures without any visible trace 
of the large-scale vortex.

8.  Conclusions

In this work, we introduced the Rescaled Rapidly Rotating incompressible Navier–Stokes Equations referred to as RRRiNSE – a new 
formulation of the Navier–Stokes equations in the Boussinesq approximation describing rotating Rayleigh–Bénard convection, in-
formed by the scalings valid in the asymptotic limit 𝐸𝑘 → 0. We solved these equations for stress-free boundary conditions using the 
quasi-inverse method to perform efficient DNS in a previously unattainable parameter regime of extremely small Ekman numbers 
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𝐸𝑘 relevant to geophysical and astrophysical fluid flows. We showed that the reduced equations of motion derive their increased 
efficiency from being well conditioned, thereby eliminating spurious growing modes that otherwise lead to numerical instabilities at 
small 𝐸𝑘. We have validated our simulation results against published results in the literature, and showed that the vertical diffusion 
terms can be treated either implicitly or explicitly for small 𝐸𝑘 owing to their smallness. We demonstrated for the first time that 
the full DNS of the RRRiNSE converge to the asymptotically reduced equations for small 𝐸𝑘, and showed that the time derivative in 
the mean temperature is inconsequential for the accurate determination of the average Nusselt number in the statistically stationary 
state, thus allowing a reduction by orders of magnitude in the simulation time required.

The results presented here provide an important advance in the numerical treatment of rotating convection in the rapid rotation 
regime, which allows for the first time the exploration of the previously unattainable parameter regime of small but finite Ekman 
and Rossby numbers. The first study applying the approach described here to this regime, exploring the flow physics found there, 
is given in van Kan et al. [77]. Future studies will address the physics of the transition to the asymptotic parameter regime and the 
properties of optimal heat transport in rapidly rotating convection and the associated Reynolds numbers. Another direction for future 
investigation concerns the possibility of misalignment between the rotation axis and gravity, which has previously been studied in 
the context of the tilted 𝑓 -plane using both the asymptotically reduced equations of motion [60,78] and the full rotating Boussinesq 
equations [79–81].

CRediT authorship contribution statement

Keith Julien:  Writing – original draft, Writing – review & editing, Supervision, Validation, Resources, Methodology, Funding 
acquisition, Conceptualization, Project administration, Investigation, Formal analysis; Adrian van Kan: Writing – original draft, 
Writing – review & editing, Visualization, Validation, Resources, Software, Methodology, Funding acquisition, Conceptualization, 
Investigation, Formal analysis ; Benjamin Miquel: Writing – original draft, Writing – review & editing, Supervision, Validation, 
Resources, Software, Methodology, Funding acquisition, Conceptualization, Project administration, Investigation, Formal analysis ;
Edgar Knobloch: Writing – original draft, Writing – review & editing, Supervision, Resources, Methodology, Funding acquisition, 
Conceptualization, Project administration; Geoffrey Vasil: Writing – review & editing, Methodology, Conceptualization.

Data availability

Data will be made available on request.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments

K. J. passed away before this manuscript was finalized. We have attempted to present the results of our collaboration in accor-
dance with his high standards. Any errors or misinterpretations remain our own. This work was supported by the National Science 
Foundation (Grants DMS-2009319 and DMS-2308338 (KJ), Grants DMS-2009563 and DMS-2308337 (EK)), by the German Research 
Foundation (DFG Projektnummer: 522026592, AvK) and by Agence Nationale de la Recherche (Grant ANR-23-CE30-0016-01, BM). 
This research used the Savio computational cluster resource provided by the Berkeley Research Computing program at the University 
of California Berkeley (supported by the UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer). This 
research also utilized the Alpine high performance computing resource at the University of Colorado Boulder. Alpine is jointly funded 
by the University of Colorado Boulder, the University of Colorado Anschutz, and Colorado State University. Data storage for this 
project was supported by the University of Colorado Boulder PetaLibrary. This project also made use of computational resources from 
TGCC provided by GENCI (2024-A0162A10803). 

Appendix A.  Mixed vorticity-velocity formulation of the RRRiNSE

The primitive variable formulation of the RRRiNSE in terms of 𝐮 = (𝑢, 𝑣,𝑤), 𝑼⟂ = (𝑈, 𝑉 ), 𝜋, and Θ, 𝜃 given by equations (20) in 
the main text is of 11th order in 𝑍. Specifically, the continuity equation requires, e.g., the imposition of an 11th auxiliary bound-
ary condition applied to the pressure function. Instead of pursuing this option, we numerically solve the following modified set of 
equations for the variables 𝐮 = (𝑢, 𝑣,𝑤), 𝝎 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧), 𝑼⟂ = (𝑈, 𝑉 ), 𝜋 and Θ, 𝜃: 

𝑈 = 1
𝜖
(𝑢 + 𝜕𝑦𝜋), 𝑉 = 1

𝜖
(𝑣 − 𝜕𝑥𝜋), 𝜔𝑧 = 𝜕𝑥𝑣 − 𝜕𝑦𝑢, (A.1a)

𝜖𝜕𝑍𝑣 − 𝜕𝑦𝑤 + 𝜔𝑥 = 0, (A.1b)

𝜖𝜕𝑍𝑢 − 𝜔𝑦 − 𝜕𝑥𝑤 = 0, (A.1c)

𝜕𝑥𝑈 + 𝜕𝑦𝑉 + 𝜕𝑍𝑤 = 0, (A.1d)
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𝜕𝑡𝑢 − 𝑉 −𝑢 = −𝑢, (A.1e)

𝜕𝑡𝑣 + 𝑈 −𝑣 = −𝑣, (A.1f)

𝜕𝑡𝑤 + 𝜕𝑍𝜋 − 𝑅𝑎
Pr

𝜃 −𝑤 = −𝑤, (A.1g)

𝜕𝑡𝜃 + (𝜕𝑍Θ − 1)𝑤 −𝜃 = −𝜃 , (A.1h)

𝜖−2𝜕𝑡Θ −Θ = −Θ, (A.1i)

where the linear diffusion and nonlinear advection terms are given by
−𝑢 = 𝜕𝑦𝜔𝑧 − 𝜖𝜕𝑍𝜔𝑦, −𝑢 = 𝜔𝑧𝑣 − 𝜔𝑦𝑤,

−𝑣 = 𝜖𝜕𝑍𝜔𝑥 − 𝜕𝑥𝜔𝑧, −𝑣 = 𝜔𝑥𝑤 − 𝜔𝑧𝑢,

−𝑤 = 𝜕𝑥𝜔𝑦 − 𝜕𝑦𝜔𝑥, −𝑤 = 𝜔𝑦𝑢 − 𝜔𝑥𝑣,

−𝜃 = − 1
Pr

(

𝜕2𝑥 + 𝜕2𝑦 + 𝜖2𝜕2𝑍
)

, −𝜃 = − 𝜕𝑥(𝑢𝜃) − 𝜕𝑦(𝑣𝜃) − 𝜖𝜕𝑍 (𝑤𝜃),

−Θ = − 1
Pr

𝜕2𝑍 , −Θ = − 𝜕𝑍 (𝑤𝜃).

The above equations are of 10𝑡ℎ order in 𝑍 and do not require an auxiliary pressure boundary condition. We apply impenetrable, 
stress-free, fixed-temperature boundary conditions at the top and bottom which provide the 10 conditions

𝑤 = 𝜔𝑥 = 𝜔𝑦 = 𝜃 = Θ = 0 at 𝑍 = 0, 1. (A.2)

An immediate consequence of this formulation is the fact that 𝜕𝑍𝑝 = 0 on 𝑍 = 0, 1. We note that the CFL constraints on the linear and 
nonlinear terms are identical to those presented in Table 2.

Appendix B.  The quasi-inverse method with Chebyshev–Galerkin bases

We illustrate how the direction 𝑧 is treated in Coral using the quasi-inverse method and Galerkin bases. This technique can readily 
be applied to coupled sets of equations of arbitrary order. For brevity and clarity, however, we consider the simple case of the 
second-order, scalar heat equation:

𝜕𝑡𝜙 − (𝜕𝑧𝑧 − 𝑘2⟂)𝜙 = 𝑏(𝑧) (B.1)

on the interval 𝑧 ∈ [−1, 1], where the right-hand side 𝑏 contains explicit contributions (e.g. source terms or advection).
We suppose that this second-order equation is supplemented with two linear and homogeneous boundary conditions, a common 

case in fluid mechanics. By computing linear combinations of 𝑁 Chebyshev polynomials (𝑇𝑛
)

0≤𝑛<𝑁 , one defines a Galerkin family of 
function (Φ𝑚

)

2,𝑁 :

Φ𝑚(𝑧) =
∑

0≤𝑛<𝑁
𝑆𝑚𝑛𝑇𝑛(𝑧), (B.2)

each of which obeys the linear, homogeneous boundary conditions. It is crucial to note here that, as a result of enforcing these two 
boundary conditions, the Galerkin basis has been reduced as compared with the initial Chebyshev basis and now contains only 𝑁 − 2
polynomials. Next, we expand the variable 𝜙 in this Galerkin basis:

𝜙(𝑧, 𝑡) =
∑

2≤𝑚<𝑁
𝜙𝑚(𝑡)Φ𝑚(𝑧) . (B.3)

The standard discretization of Eq. (B.1) consists in using expansion (B.3) and projecting on Chebyshev polynomials. Owing to the 
presence of derivatives 𝜕𝑧, this is conducive to dense (triangular) and, perhaps more importantly, ill-conditioned matrices [82]. The 
spirit of the quasi-inverse method consists in integrating the differential equation repeatedly, until the reformulated problem is clear 
of derivatives. In our case, we integrate Eq. (B.1) with respect to 𝑧 twice:

𝜕𝑡 ∬ 𝜙 −
(

1 −∬ 𝑘2⟂

)

𝜙 = ∬ 𝑏(𝑧) + 𝑎0 + 𝑎1𝑧, (B.4)

where 𝑎0 and 𝑎1 are two arbitrary integration constants. Fortunately, these unknown constants appear in (and pollute) the 𝑇0(𝑧)
(constant) and 𝑇1(𝑧) (linear) projections only. By projecting Eq. (B.4) on the unpolluted 𝑁 − 2 higher Chebyshev polynomials, one 
obtains an algebraic system for the 𝑁 − 2 unknown Galerkin coefficients 𝜙𝑚. Denoting the natural scalar product for Chebyshev 
polynomials with brackets, ⟨…⟩, we have for 2 ≤ 𝑚, 𝑝 < 𝑁 : 

∑

0≤𝑛<𝑁
𝑆𝑚𝑛

⟨

𝑇𝑝(𝑧),∬ 𝑇𝑛(𝑧)
⟩

𝜕𝑡𝜙𝑚 − 𝑆𝑚𝑝𝜙𝑚 + 𝑘2⟂
∑

0≤𝑛<𝑁
𝑆𝑚𝑛

⟨

𝑇𝑝(𝑧),∬ 𝑇𝑛(𝑧)
⟩

𝜙𝑚 =
⟨

𝑇𝑝(𝑧),∬ 𝑏(𝑧)
⟩

, (B.5)

where we have used the orthonormality condition ⟨𝑇𝑝(𝑧), 𝑇𝑛(𝑧)
⟩

= 𝛿𝑝𝑛. Crucially, the matrix representing the double integration,
⟨

𝑇𝑝(𝑧),∬ 𝑇𝑛(𝑧)
⟩

, (B.6)
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is penta-diagonal and, more importantly, well-conditioned.
Finally, a discussion is in order considering the Galerkin stencil 𝑆𝑚𝑛. Some care must be taken when defining the Galerkin basis, 

among all the possibilities. Considering the simple case of Dirichlet boundary conditions on both boundaries, one may be tempted by 
the following simple recombination:

Φ2𝑝(𝑧) = 𝑇2𝑝(𝑧) − 𝑇0(𝑧) and Φ2𝑝+1(𝑧) = 𝑇2𝑝+1(𝑧) − 𝑇1(𝑧) . (B.7)

However, a dense discretization would result and therefore this stencil should be avoided. Instead, one should use
Φ𝑚(𝑧) = 𝑇𝑚(𝑧) − 𝑇𝑚−2(𝑧), (B.8)

which is a well-conditioned and banded stencil. Thus, all coupling matrices appearing in Eq. (B.5) are also banded and the system 
can be efficiently marched in time implicitly, e.g. with a Runge-Kutta scheme.

We emphasize that this procedure, exemplified on a simple scalar equation, can be generalized to systems of coupled PDEs without 
noticeable difficulty (but at the cost of increased book-keeping), as long as linear and homogeneous boundary conditions are imposed.

Appendix C.  Implicit-explicit time discretizations and the quasi-inverse method

In this appendix, we summarize the specific formulation of implicit-explicit time discretization for both the NHQG model (15) 
and the rescaled equations (20) and (A.1). In all generality, these governing equations are represented by a system of the form:

(

𝜕𝑡 − 𝐼
)

𝐯(𝑛+1) = 𝐸𝐯(𝑛) + (𝐯(𝑛), 𝐯(𝑛)) +  (𝑛)
𝜃 . (C.1)

where the superscripts (𝑛 + 1) and (𝑛) denote implicit (unknown) and explicit (known) variables from a prior time step, and 𝐯 represents 
the dependent variables associated with the hydrodynamics problem only. Generalization to the full problem including thermal effects 
(27) is straightforward and omitted for brevity. We summarize below the expressions for the various operators appearing in this 
equation for the different equations studied here.
A. NHQG-RRBC: 𝐯 = (Ψ , 𝑤)𝑇  and differential operators for equations (15a,b) 

 =
(

∇2
⟂ 0
0 1

)

, 𝐼 =
(

∇4
⟂ 𝜕𝑍

−𝜕𝑍 ∇2
⟂

)

, 𝐸 = 𝟎2,  =
(

𝐽 [Ψ, ] 0
0 𝐽 [Ψ, ]

)

. (C.2)

B. RRRiNSE: Primitive variable formulation: 𝐯(𝑗) = (𝐮 , 𝑼⟂, 𝜋) for equations (20a-d) and 

 =
(

3 𝟎3
𝟎3 𝟎3

)

, 𝐼 =

⎛

⎜

⎜

⎜

⎜

⎝

−∇2
⟂3

(

 2 0
0 0 𝜕𝑍

)

(

 2 0
0 0 𝜕𝑍

) (

−𝜖 2 ∇𝑇
⟂

∇⟂ 0

)

⎞

⎟

⎟

⎟

⎟

⎠

, (C.3)

𝐸 = 𝜖2
(

3𝜕2𝑍 𝟎3
𝟎3 𝟎3

)

,  = −
((

𝐮⟂ ⋅ ∇⟂ + 𝜖𝑤𝜕𝑍
)

3 𝟎3
𝟎3 𝟎3

)

. (C.4)

Here 3 is the order three identity matrix and 

 2 =
(

0 −1
1 0

)

. (C.5)

Fig. C.14. Spy plots of the mass  (left) and stiffness 𝐼 (center) matrices, both in banded format. The fine structure of the stiffness matrix is 
illustrated in the close-up in the right panel.

Journal of Computational Physics 541 (2025) 114274 

21 



K. Julien, A. van Kan, B. Miquel et al.

Fig. C.14 demonstrates the sparsity of the quasi-inverse approach via spyplots for the mass and stiffness matrices  and 𝐼 , 
respectively.

C. RRRiNSE: Mixed vorticity-velocity formulation: 𝐯(𝑗) = (𝐮 | 𝑼⟂, 𝜋 | 𝝎) (see Appendix A) and 

 =
⎛

⎜

⎜

⎝

3 𝟎3 𝟎3
𝟎3 𝟎3 𝟎3
𝟎3 𝟎3 𝟎3

⎞

⎟

⎟

⎠

, −𝐸 = 𝜖

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝟎3 𝟎3
(

𝜕𝑍 2 0
0 0

)

𝟎3 𝟎3 𝟎3
(

𝜕𝑍 2 0
0 0

)

𝟎3 𝟎3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (C.6)

−𝐼 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝟎3
(

 2 0
0 𝜕𝑍

) (

0 −∇⟂𝑇

∇⟂ 0

)

(

 2 0
0 𝜕𝑍

) (

−𝜖 2 ∇𝑇
⟂

∇⟂ 0

)

𝟎3
(

0 −∇⟂𝑇

∇⟂ 0

)

𝟎3 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.7)

and  = 𝐷𝑖𝑎𝑔
[

{𝑢,𝑣,𝑤}, 𝟎3, 𝟎3
]

.

From 𝐼  we see that the system (C.1) is in each case of second order in 𝑍 requiring impenetrable boundary conditions 𝑤 = 0 at 
𝑍 = 0, 1. For cases B and C stress-free boundary conditions (𝜕𝑍𝐮⟂ = 0) are enforced via an appropriate Chebyshev–Galerkin basis 
Φ𝑗 (𝑍) for each variable (no-slip boundary conditions, 𝐮⟂ = 0, can also be considered in this approach, but are not analyzed here). 
The above holds regardless of whether 𝐸 is treated explicitly or implicitly. For case B only, an implicit treatment of 𝐸 increases 
the order of the system to seven and an additional auxillary boundary condition on the pressure is required. This does not occur for 
Case C which is preferred.

Appendix D.  Analysis of the mean temperature equation

The mean temperature equation

𝜖−2𝜕𝑡Θ + 𝜕𝑍
(

𝑤𝜃 − 1
𝑃𝑟

𝜕𝑍Θ
)

= 0 (D.1)

in a statistically stationary state implies

𝑁𝑢𝑡 − 1 = 𝑃𝑟𝑤𝜃
𝑡
− 𝜕𝑍Θ

𝑡
⟹ 𝑁𝑢𝑡 − 1 = 𝑃𝑟

⟨

𝑤𝜃
𝑡⟩

𝑍
. (D.2)

With this interpretation 𝑁𝑢𝑡 is strictly a constant. It follows

𝜖−2𝜕𝑡Θ + 𝜕𝑍

(

𝑤𝜃 −𝑤𝜃
𝑡
− 1

𝑃𝑟

(

𝜕𝑍Θ − 𝜕𝑍Θ
𝑡))

= 0 (D.3)

and given 𝜖2Θ2+ ≡
∑

𝑗≥2 𝜖
𝑗Θ𝑗 , 𝜕𝑡Θ(0,1) = 0 such that 𝜕𝑍Θ(0,1) = 𝜕𝑍Θ

𝑡

(0,1). This implies

𝜕𝑡Θ2+ + 𝜕𝑍

(

𝑤𝜃 −𝑤𝜃
𝑡
− 𝜖2

𝑃𝑟

(

𝜕𝑍Θ2+ − 𝜕𝑍Θ
𝑡

2+

))

= 0. (D.4)

To leading order

𝜕𝑡Θ2 + 𝜕𝑍

(

𝑤𝜃 −𝑤𝜃
𝑡)

≈ 0 (D.5)

indicating that (1) fluctuations in the heat transport about the mean 𝑁𝑢𝑡 are accounted for by mean temporal variations in the mean 
temperature at (𝜖2), i.e., Θ2. However, for numerical efficiency it is found that the temporal fluctuations of 𝜖−2𝜕𝑡Θ can be neglected. 
Hence,

𝜕𝑍
(

𝑤𝜃 − 1
𝑃𝑟

𝜕𝑍Θ
)

= 0, (D.6)

resulting in the time-dependent Nusselt number
𝑁𝑢(𝑡) − 1 = 𝑃𝑟𝑤𝜃 − 𝜕𝑍Θ. (D.7)

This implies

𝑁𝑢(𝑡) − 1 = 𝑃𝑟
⟨

𝑤𝜃
⟩

𝑍
⟹ 𝑁𝑢(𝑡)

𝑡
− 1 = 𝑃𝑟

⟨

𝑤𝜃
⟩

𝑍

𝑡

. (D.8)
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The difference in averaged Nusselt numbers from the two methods is given by

𝑁𝑢(𝑡)
𝑡
−𝑁𝑢𝑡 = 𝑃𝑟

(

⟨

𝑤𝜃
⟩

𝑍

𝑡

−
⟨

𝑤𝜃
𝑡⟩

𝑍

)

=
(

𝜕𝑍Θ − 𝜕𝑍Θ
𝑡)|

|

|

|

|0,1
. (D.9)

If the operations of depth- and time-averaging commute then assuming equivalence in the thermal and velocity mean statistics implies 
𝑁𝑢(𝑡)

𝑡
= 𝑁𝑢𝑡.

Moreover, if 𝜖 ↦ 𝜖∗ such that 𝜖∗ > 𝜖 then it follows

𝑁𝑢∗𝑡 −𝑁𝑢𝑡 = 𝑃𝑟
(⟨

𝑤𝜃
∗𝑡⟩

𝑍
−
⟨

𝑤𝜃
𝑡⟩

𝑍

)

=
(

𝜕𝑍Θ
∗𝑡
− 𝜕𝑍Θ

𝑡)|
|

|

|

|0,1
. (D.10)

If the period of time-averaging is sufficiently long then assuming equivalence in the thermal and velocity mean statistics this implies 
𝑁𝑢∗𝑡 = 𝑁𝑢𝑡.

It is found that the magnitudes |𝑁𝑢(𝑡)
𝑡
−𝑁𝑢𝑡| or |𝑁𝑢∗𝑡 −𝑁𝑢𝑡| depend on the horizontal domain size upon which area-averaging is 

performed. Increasingly larger domains contain greater statistical sampling advantageous to the aforementioned commutation that 
results in asymptotic error convergence.

Appendix E.  Comparison of iNSE and RRRiNSE with and without slaving

Here we present results on different variations of the numerical approach presented in the main text. Specifically, we compare 
simulations of the iNSE and of the RRRiNSE with and without slaving of the mean temperature field. For the tests described below, 

Fig. E.15. Comparison of the RRRiNSE with the unscaled equations including (no approx. in legend) or omitting (𝜕𝑡Θ = 0 in legend) the slow mean 
temperature time derivative, showing time series of vertical kinetic energy (top row) and horizontal kinetic energy (bottom row). All quantities are 
plotted in rescaled units, regardless of the dimensionless formulation adopted for the governing equations. The horizontal kinetic energy grows as 
a consequence of inverse energy cascade.
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we fix 𝑅𝑎 = 40, while setting 𝑁𝑥 = 𝑁𝑦 = 128, 𝐿𝑥 = 𝐿𝑦 = 10𝓁𝑐 , and we employ the second order ARS-222 time-stepping scheme. We 
set the Ekman number to low values, either 𝐸𝑘 = 10−9 or 𝐸𝑘 = 10−12. We have tested different values for the vertical resolution 𝑁𝑍
to verify the robustness of our results.

The results of these tests are summarized in Fig. E.15 showing the time series of the kinetic energy in horizontal (top row) and 
vertical (bottom row) motions from different simulations. First, we note that the RRRiNSE are found to be unconditionally stable 
in all cases. In contrast, the standard iNSE are unstable when a slow adjustment of the vertical profile is permitted. This is seen to 
be the case when small amplitude, random perturbations are used for initial conditions at both 𝐸𝑘 = 10−9 (crimson line in the left 
column of Fig. E.15) and 𝐸𝑘 = 10−12 (purple line in the right column of Fig. E.15). In addition to using noise as initial condition, we 
have also considered an equilibrated RRRiNSE solution, which was suitably rescaled and used as an initial condition for continued 
time-marching of the solution with the unscaled iNSE. This procedure yielded the following observations: including the slow mean 
temperature time derivative (e.g. purple line on the left panels) is associated with eventual blow-up. Rather surprisingly, despite 
the presence of spurious modes polluting the numerical spectra, we have not observed a numerical blow-up when starting from an 
equilibrated solution and simultaneously omitting the slow mean temperature time derivative (e.g. salmon lines on both panels). 
When all terms in the mean temperature equation are retained, including the slow time derivative of the mean temperature, the 
unscaled equations quickly diverge (see the red and purple lines in the left panel). When the mean temperature derivative is set to 
zero, the unscaled equations of motion remain surprisingly stable for the times investigated, despite the presence of spurious growth 
rate values in the spectra obtained when solving the numerically ill-conditioned generalized eigenproblem.
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