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Elastic weak turbulence: From the vibrating plate to the drum
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Weak wave turbulence has been observed on a thin elastic plates since the work by Düring et al. [Phys. Rev.
Lett. 97, 025503 (2006)]. Here we report theoretical, experimental, and numerical studies of wave turbulence
in a forced thin elastic plate submitted to increasing tension. When increasing the tension (or decreasing the
bending stiffness of the plate) the plate evolves progressively from a plate into an elastic membrane as in drums.
We first consider a thin plate and increase the tension in experiments and numerical simulations. We observe that
the system remains in a state of weak turbulence of weakly dispersive waves. This observation is in contrast with
what has been observed in water waves when decreasing the water depth, which also changes the waves from
dispersive to weakly dispersive. The weak turbulence observed in the deep water case evolves into a solitonic
regime. Here no such transition is observed for the stretched plate. We then apply the weak turbulence theory to
the membrane case and show with numerical simulations that indeed the weak turbulence framework remains
valid for the membrane and no formation of singular structures (shocks) should be expected in contrast with
acoustic wave turbulence.
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I. INTRODUCTION

Wave turbulence is a generic class of systems in which a
large number of waves coupled through nonlinearity evolve
into a complex statistical state. The most natural physical
system in which wave turbulence occurs is that of water waves
at the surface of the ocean: Waves are forced by the wind and
once their amplitude is large enough they develop a wideband
spectrum. Depending on the strength of nonlinearity, various
scaling behaviors of the spectrum have been reported (see,
for instance, recent field measurements in Refs. [1,2]). In the
limit of weak nonlinearity a statistical theory named weak
turbulence theory (WTT) has been developed by Hasselman
[3] that allows to predict the evolution equation of the wave
spectrum and to exhibit its stationary solutions (in particular
following works of Zakharov [4–6]). The WTT has been
applied to a large number of other systems such as inertial
waves in astrophysical or geophysical flows, magnetized plas-
mas, optics in nonlinear media, superfluid turbulence, among
others [4,7–10]. In all these systems waves are dispersive
which means that waves at different frequencies propagate at
different velocities. As in the WTT the nonlinear coupling is
assumed to occur through N-wave resonances (N � 3), the
dispersive character of the waves enables nontrivial solutions
of the resonance equations such as

ω1 = ω2 + ω3, k1 = k2 + k3, (1)
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in the case N = 3 (ωi are angular frequencies and ki are wave
vectors). The question of what may happen for nondispersive
waves is largely open and depends most likely on the details
of the nonlinear coupling. Indeed for nondispersive waves,
the only resonant solutions for three-wave coupling is through
waves propagating in the same direction. Thus the waves may
develop shocks by a cumulative effect of the nonlinearity as is
the case for acoustic waves for instance [11,12]. In the case of
water waves at the surface of shallow water, when the waves
are both weakly dispersive and weakly nonlinear, solitons can
be observed rather than the interplay of free dispersive waves
that is expected in the WTT. When reducing the depth of
water, a transition from WTT to a solitonic regime could be
observed experimentally [13]. A question is whether a similar
transition would occur for other systems. Weak turbulence
was predicted for instance for gravitational waves in the early
universe [14]. In that case waves are nondispersive and the
coupling occurs through four-wave interaction. A regime of
weak turbulence is predicted nonetheless although no valida-
tion through numerical simulations (let alone experiments !)
has been reported to our knowledge.

Here we focus on a distinct physical system which provides
a paradigm for studying the transition toward nondispersive
wave turbulence: the elastic plate under tension. We address
this transition by means of both, experimental realizations
and computational studies. The elastic plate is a rich physical
system for wave turbulence which has been the object of
a growing interest [15–24]. A shaken metal plate has been
used for centuries to mimic the thunder noise in theaters [25]
and in the first half of the 20th century as a reverberator
for analog signal processing [26]. Beyond these somewhat
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specialized applications, the vibrating plate has become re-
cently a privileged model for wave turbulence. Indeed, ad-
vanced measurement resolved in both space and time are
possible experimentally [17] and its two-dimensional (2D)
character facilitates long numerical simulations [15,21,27] (by
contrast with substantially more challenging 3D fluid systems,
for instance). It was used to validate numerically the WTT
prediction [15,27], to investigate the effect of wideband dis-
sipation [20,27], the impact of finite size [28], or the strongly
nonlinear regime [18,19,23,29]. Thereafter, we consider the
addition of tension to elastic plates plate as a tuning parameter
for the dispersive character of the waves. When tension is
increased to the point that it dominates over bending stiffness
as a restoring force for wave motions, the plate starts to behave
like a membrane for which the waves are nondispersive.

A thin elastic plate without tension can be modeled by the
Föppl–von Karman equations [30–32] for the amplitude of
the deformation ζ (x, y, t ) of the plate and for the Airy stress
function χ (x, y, t ):

ρ
∂2ζ

∂t2
= − Eh2

12(1 − μ2)
�2ζ + {ζ , χ}, (2)

�2χ = −E

2
{ζ , ζ }, (3)

where h is the thickness of the elastic sheet. The material
has a mass density ρ, a Young modulus E , and its Poisson
ratio is μ. h is the thickness of the plate. � = ∂xx + ∂yy

is the usual Laplacian and the bracket {·, ·} is defined by
{ f , g} ≡ fxxgyy + fyygxx − 2 fxygxy. Equation (3) for the Airy
stress function χ (x, y, t ) may be seen as the compatibility
equation for the in-plane stress tensor: In the derivation the
inertia of the in-plane modes of oscillations is neglected, or,
in other words, it is assumed that the in-plane displacements
are negligible, hence Eq. (3) follows the dynamics.

An isotropic external tension can be added to the elastic
plate considering an isotropic in plane stress given via a
boundary condition for the Airy function χ (x, y) = T

2h (x2 +
y2), where T is the tension per unit length at infinity (T is
applied at the boundaries in practice). Then the Airy function
can be separated in two terms χ → T

2h (x2 + y2) + χ (x, y) in
which the first comes from the external tension while the
second comes from the amplitude deformation. The Föppl–
von Kármán equations (2) for a plate under tension then reads

ρ
∂2ζ

∂t2
= − Eh2

12(1 − μ2)
�2ζ + {ζ , χ} + T

h
�ζ, (4)

and Eq. (3) remains unchanged. In the linear limit, waves
follow the dispersion relation

ωk =
[

h2E

12(1 − μ2)ρ
k4 + T

ρh
k2

]1/2

. (5)

This reasoning can be generalized to the case of anisotropic
tension, which we study experimentally. Denoting Tx and
Ty the tension per unit length at infinity along the x and y
direction, respectively, the governing Eq. (4) yields:

ρ
∂2ζ

∂t2
= − Eh2

12(1 − μ2)
�2ζ + {ζ , χ} + 1

h

(
Tx∂xx + Ty∂yy

)
ζ ,

(6)

and the corresponding dispersion relation becomes

ωk =
[

h2E

12(1 − μ2)ρ
k4 + 1

ρh

(
Txk2

x + Tyk2
y

)]1/2

. (7)

For zero tension (T = 0), i.e., for pure bending, the disper-
sion relation simplifies into

ωk =
√

h2E

12(1 − μ2)ρ
k2 = Ck2, (8)

with C2 = h2E
12(1−μ2 )ρ . These waves are dispersive, thus the

WTT formalism could be used and yielded predictions for
the wave spectra [15]. These predictions have been verified
numerically [15] but not experimentally due to the presence of
wideband dissipation that alters the predicted scaling as dissi-
pation is not taken into account in the theory [16,17,20,27].

In the opposite limit of no bending stiffness (E = 0), and in
the case of isotropic tension, the dispersion relation changes
into

ωk =
√

T

ρh
k. (9)

This dispersion relation is now nondispersive but the nonlin-
ear term remains the same. Thus by tuning the value of the
tension T and/or the thickness h one can change the system
from an elastic plate into a membrane without rigidity (as in
drums) and study the evolution of the statistical properties of
this new system.

The crossover between both extreme cases occurs when
both contributions are equal, i.e.,

kc =
√

12T (1 − μ2)

h3E
or ωc =

√
24T 2(1 − μ2)

ρh4E
. (10)

This is somehow analogous to the transition between shallow
to deep water regimes for water surface waves that occurs
when kd ≈ 1 (d being the water depth) [33].

Our goal is to investigate if the system remains in a regime
of weak turbulence when the tension is increased (i.e., when
kc increases). Indeed, the waves being weakly nondispersive
to nondispersive the system could evolve into a distinct state
involving localized structures such as solitons (as for water
waves) or shocks (as for acoustics). Note that we remain in
a weakly nonlinear regime so that to avoid the creation of
singular structures such as developable cones that have been
reported in plates at strong level of nonlinearity [23,29]. Thus
we try to answer the question of Newell and Rumpf [6]:
by aiming toward a nondispersive system, will the nonlinear
interactions redistribute the energy isotropically or will it be
focused in shock waves?

In the next section we describe the experiment and the
numerical simulations used in this article. In Sec. III we first
investigate the effect of adding a tension to a plate. As weak
wave turbulence has been reported in a vibrating plate, thus
we start from such a state and analyze the effect of increasing
the tension in a plate either experimentally or numerically. In
Sec. IV, we report the application of WTT to the case of a
pure membrane with strictly no bending stiffness and finally
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we use numerical simulations to compare the statistics of a
vibrating membrane to the theoretical predictions.

II. METHODS

A. Description of the experiment

The experimental setup is composed of a 1 × 1.9 m2 stain-
less steel plate, h = 0.5 mm thick. The physical parameters
are E ≈ 2 1011 Pa, μ ≈ 0.3, ρ ≈ 7800 kg/m3. The plate is
attached at its top to a rigid frame (Fig. 1). Tension can be
added by using left-right threaded studs at the bottom. The
tension is thus only along the long axis of the plate for reasons
of simplicity: In other words, we may vary the tension along
the vertical direction Tx while the transverse tension Ty stays
zero. The tension Tx is tuned by first stretching the plate to
some level given by two force gauges. A second set of studs
is then tightened so that to vanish exactly the tension from the
force gauges. The gauges are then uncoupled from the plate to
preserve them from the strong vibrations of the plate during

FIG. 1. Experimental setup. A 1.9 × 1 m2, 0.5-mm-thick steel
plate is stretched vertically. Vibrations are generated by an elec-
tromagnetic shaker at the bottom of the plate. The deformation is
measured by the Fourier transform profilometry technique in which a
pattern is projected on the plate and recorded by a high-speed camera
(see text for details).

experiments. Vibrations are generated by an electromagnetic
shaker oscillating sinusoidally at a 30-Hz frequency in the
direction normal to the plate and bolted to the plate 30 cm
above its bottom.

Fourier transform profilometry is used to measure the
deformation of the plate with both space and time resolution
following the scheme developed by Cobelli et al. [17]. It
consists in projecting a sinusoidal grayscale pattern with a
video projector on a 0.8 × 1.40 m2 region centered in the
plate (painted in white). When the waves propagate, the
initial pattern is deformed. This distortion is recorded by a
high-speed camera at a frequency of 8000 frames/s and with
a resolution of 704 × 1024 pixels2. A geometrical analysis
permits a phase inversion of the images and the reconstruction
of the wave field [34,35]. The images are recorded once a
statistically stationary regime is reached which takes only a
few seconds. Experiments are repeated to increase the amount
of data and to achieve a good convergence in the statistical
properties measured.

B. Numerical simulations

We complement the experimental measurements with nu-
merical solutions to the augmented Föppl–Von Karman equa-
tions (aFVKE). We write down the projection of Eq. (6) in
Fourier space for a wave vector k:

∂ttζk = −C2k4ζk − (
Txk2

x + Tyk2
y

)
ζk + 1

ρ
{ζ , χ}k + Fk + Dk,

(11)

where Fk and Dk are the forcing and dissipative terms in
spectral space, respectively. We recall the reader that we
allow for anisotropic tension (Tx �= Ty) which pertains to the
experimental setup. This equation is studied by means of
two distinct pseudospectral algorithms, documented in this
section, depending on the presence of rigidity (i.e., the case
of stretched plates with finite kc) or its absence (i.e., the
case of membranes with kc → ∞). Both the stretched plate
code (SPC) and the membrane code (MC) employ a Fourier
decomposition of the variables ζ and χ and implement peri-
odic boundary conditions, which differ from the experimental
boundary conditions. However, the impact of boundary con-
ditions on the wave state has been shown to be marginal [27],
provided that the size of the domain is significantly larger than
the forcing wavelength. We thus have confidence in the ability
of the simulations reported thereafter to capture the mean-
ingful statistical properties of the experimental wave field.
Both codes are standard pseudospectral solvers of Eq. (11),
namely, the nonlinear terms are evaluated in physical space
and then transformed back to Fourier space. All fields are
fully dealiased. Such kind of codes have the advantage of
being extremely accurate, as numerical errors due to spatial
discretization decrease exponentially with the number of mesh
points (in one spatial dimension). For a general description
of pseudospectral codes see Ref. [36]. We present below
the particulars of the SPC and MC codes which differ in
their time-stepping method and in the forcing and dissipation
employed.
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1. The stretched plate code

The SPC is an evolution of the code previously used
in Refs. [27,29,37]. The time stepping of Eq. (11) is done
by means of the second-order exponential time-differencing
ETD2RK scheme of Cox and Matthews [38]. The code has
been developed in view of providing a way to bridge the gap
between imperfect experimental realizations of wave turbu-
lence and the ideal hypotheses of the weak turbulence theory.

For instance, the code implements the possibility to modify
independently the tension along the two directions Tx and Ty.
This offers the possibility to reproduce the anisotropic tension
present in the experiments where the transverse tension van-
ishes: Ty = 0.

A similar approach is adopted with dissipation. As reported
by Miquel and Mordant [37], the experimental dissipation can
be modelled with a linear damping Dk = −γk∂tζk, where γk

has the analytic form:

γ
exp
k = γ1 + γ2k2 . (12)

In absence of tension, Miquel et al. [27] reported that this
expression of the dissipation, where the parameters γ1 and γ2

are obtained by fitting the experimental data, could reproduce
qualitatively the experimental spectra of elastic wave turbu-
lence. Thereafter, we refer to this case as the “experimental
dissipation.” This dissipation is much different from the ideal
dissipation considered in the weak turbulence theory, which
assumes the existence of a transparency window of wave
numbers where damping vanishes and, consequently, energy
is conservatively transferred. Indeed, it has been shown in
Ref. [27] that the theoretical scaling predicted by the theory is
recovered when the dissipation rate is set to zero within a wave
number interval [kl , kh]. In the following, “ideal dissipation”
refers to a damping coefficient following Eq. (12), except
between kl = 5 m−1 and kh = 240 m−1, where it is set to zero.

We adopt a forcing that differs from the spatially localized,
harmonic, experimental forcing. We force resonantly a crown
of modes k at their linear frequency ωk:

Fk(t ) = F0e
− k−k0

2ν2
k eiϕk cos(ωkt + φk ). (13)

The crown of forced wave numbers is centered around k0 =
5π m−1, with a width σk = 2π m−1. Random phases φk and
ϕk are introduced to obtain a disordered forcing.

The spatial resolution is moderate (2882) so that the sim-
ulations can be run to obtain long-time series, up to the
equivalent of 300 s of experiments for the longest ones. As
in experiments, the deformation and the vertical velocity are
recorded in time for subsequent spectral analysis.

2. The membrane code

We complement the previous numerical simulation with
simulations at higher resolution from a second pseudospectral
code, parallelized using GPU computing. We integrate the
Föppl–von Kármán equations (6) in their dimensionless form
and in the limit of pure tension (E = 0) which corresponds
to a nondispersive membrane. By contrast with the stretched
plane code described above, the membrane code implements a
random forcing and some hyperviscous dissipation. In Fourier

space, Eq. (11) becomes

∂ttζk = −1

4
k2ζk + 1

ρ
{ζ , χ}k + Fk − ν0kα∂tζk, (14)

where ν0 and Fk(t ) are the rescaled damping coefficient and
rescaled external forcing, respectively. We supply the system
with periodic boundary conditions in a square domain of
size 2π . The forcing Fk is white noise in time of variance
f 2
0 and its Fourier modes are nonzero only for wave vectors

ki < |k| � k f . A standard second-order Runge-Kutta time-
stepping scheme is implemented. Dealiasing is made by using
the standard 2/3 rule [36] that is applied after computing
each quadratic term. The largest wave number is kmax = N/3,
where N is the resolution. In numerics we set an hyperviscous
dissipation with α = 6. Two resolutions were used: N =
10242 and N = 5122.

The main parameters of experiments and numerical simu-
lations are given in Table I.

III. INVESTIGATION OF THE STRETCHED PLATE

A. Experimental results

In this part, experiments were carried out with two values
of the applied tension Tx = 4 kN/m (E1) and Tx = 10 kN/m
(E2). These values of T correspond to a crossover frequency
ωc/2π equal to 290 Hz and 725 Hz, respectively. A numerical
simulation (N1) was also performed using parameters close to
the experiment E1 so that to permit a qualitative comparison
between the two.

In order to study the energy distribution, a Fourier analysis
is applied to the deformation and normal velocity (v = ∂ζ

∂t )
of the waves in the x-y space and in time. This yields a
frequency-wave-number spectra of the normal velocity noted
E v (kx, ky, ω). We use the spectrum of the normal velocity
rather than the one of the deformation E ζ for convenience.
Indeed the decay of E v (kx, ky, ω) with the frequency or wave
number is slower than that of E ζ . The relation between the
two spectra is simply E v (kx, ky, ω) = ω2E ζ (kx, ky, ω). In
the following, we often show the spectrum summed over the
direction of the wave vector k which is noted E v (k, ω).

Figure 2(a) shows the spectrum E v (kx, 0, ω) of the wave
propagating along the direction of stretching for experiment
E1. Figure 2(b) shows the spectrum in the y direction orthogo-
nal to the stretching, along which no tension is applied. In both
cases the energy is localized along a curved line. In Fig. 2(a)
the energy is localized on the linear dispersion relation (5) that
takes into account the tension. By contrast in Fig. 2(b), the
energy is localized on the dispersion relation without tension
(8). In Fig. 2(c), we show the experiment E2 with a value of
the tension which is 2.5 times higher. Due to the increased
tension, the energy falls on a dispersion relation that is more
shifted from the one with T = 0. No sign of a qualitative
change of behavior can be seen. For instance in Ref. [13]
the change from weak turbulence to soliton was visible in
the fact that the energy was lying on a straight line over the
whole range of frequencies. Here the energy remains on the
predicted dispersion relation which is now anisotropic due to
the stretching which is applied only in the x direction. The
energy cascades to higher frequencies in a way consistent with
the phenomenology of the WTT. For E2 (highest tension), the
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TABLE I. Description of the various experiments (exp) and of Föppl–von Karman numerical simulations (FvK-NS). C2 is such that
the dispersion relation is ωk = (C2k4 + T

ρh k2)1/2. It corresponds to the dispersive part. The experimental value has been estimated to be

C2
exp = 0.6084 from the observed dispersion relation. T is the tension per unit length (when not specified Tx = Ty). ωc and kc are the crossover

frequency and wave number between dispersive and nondispersive waves [Eq. (10)]. They are expressed as a function of the forcing frequency
ω f and forcing wave number k f = 5π rad/m, respectively. N is the number of grid point in numerical simulations; “dissipation” is the
dissipative scheme that is used in the FvK-NS (see Sec. II B). kd = 240 rad/m is the dissipative cutoff of the “ideal” dissipation scheme;
“forcing scale” specifies whether the forcing acts at large scale to investigate the direct cascade or at small scale to study the inverse cascade.

Description Name C2 T (kN/m) ωc kc N Dissipation Forcing scale

Exp. stretched plate E1 C2
exp Tx = 4, Ty = 0 290 Hz, 10 ω f 7k f Large

Exp. stretched plate E2 C2
exp Tx = 10, Ty = 0 725 Hz, 25 ω f 17k f Large

FvK-NS stretched plate N1 C2
exp Tx = 4, Ty = 0 290 Hz, 3.5 ω f 2.6k f 2882 Experimental Large

FvK-NS stretched plate N2 C2
exp 4 3.5 ω f 2.6k f 2882 Ideal Large

FvK-NS stretched plate N3 C2
exp/2 4 5 ω f 3.7k f 2882 Ideal Large

FvK-NS stretched plate N4 C2
exp/5 4 8 ω f 5.8k f 2882 Ideal Large

FvK-NS stretched plate N5 C2
exp/10 4 12 ω f 8.3k f 2882 Ideal Large

FvK-NS stretched plate N6 C2
exp/100 4 37 ω f 26k f > kd 2882 Ideal Large

FvK-NS stretched plate N7 C2
exp/1000 4 117 ω f 83k f > kd 2882 Ideal Large

FvK-NS membrane N8 0 2882 Ideal Large
FvK-NS membrane N9 0 10242 Hypervisc. Small
FvK-NS membrane N10 0 5122 Hypervisc. Small
FvK-NS membrane N11 0 2882 Ideal Small

FIG. 2. (a) Normalized spatiotemporal spectrum E v (kx, 0, ω)/E v (k f , 0, ω f ) of the velocity field in the stretching direction for experiment
E1 with Tx = 4 kN/m and Ty = 0. The crossover frequency ωc/2π = 290 Hz is shown as a vertical dashed line. (b) Same dataset but the
spectrum E v (0, ky, ω)/E v (0, k f , 0, ω f ) is shown. (c) E v (kx, 0, ω)/E v (k f , 0, ω f ) for experiment E2 with a larger value of the tension Tx =
10 kN/m and the maximum amplitude forcing permitted by the electromagnetic shaker. The crossover frequency ωc/2π = 725 Hz is shown
as a vertical dashed line. (d) E v (kx, 0, ω)/E v (k f , 0, ω f ) for a numerical simulation N1 with Tx = 4 kN/m and C2

exp indented to reproduce
qualitatively the experiment E1. In all cases the black line corresponds to the dispersion relation taking into account the tension (5) and the
white line corresponds to the dispersion relation without tension (8).
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FIG. 3. Normalized spatiotemporal spectrum of the velocity field E v (k, ω)/E v (k f , ω f ) for the FvK-NS: (a) N2 with C2
exp, (b) N5, C2

exp/10,
(c) N6, C2

exp/100, and (d) N7, C2
exp/1000. In all cases the black line corresponds to the dispersion relation (5) and the white line corresponds

to the dispersion relation without tension (8). In (a) and (b) the vertical dashed line shows the crossover frequency ωc [which is not in the
displayed range for (c) and (d)].

cascade seems to stop at lower frequencies. Due to the strong
stretching the shaker cannot operate at large amplitude and it
may affect the injection. It is also possible that dissipation is
altered as well.

The numerical simulation N1 shown in Fig. 2(d) is also
qualitatively consistent with the WTT picture. Note that the
energy lies also on a line that is actually even below the
linear dispersion relation with tension for intermediate values
of the frequency (around 400 Hz). This extra shift is actu-
ally predicted by the WTT and was also observed in plates
without tension [28]. In the simulation, the nonlinearity must
be stronger than in the experiment, possibly due to distinct
forcing and boundary conditions.

The experimental and numerical results shown in this part
do not show hints of any qualitative change of dynamics of
the vibrations of the plate. The spectra remain qualitatively
consistent with what is expected from the WTT. No hint
of localized structures such as shocks or solitons can be
observed. In comparison with the unstretched case, the only
difference is the change of the dispersion relation due to the
contribution of the tension in (7).

In experiments, the only parameter that can be tuned is
the strength of stretching T . In order to gradually evolve
toward the pure membrane, we would rather change the C2

parameter by changing the thickness of the plate. This cannot

be achieved experimentally as no plate thinner than 0.5 mm
could be found when keeping the same size. Thus in next part
we use numerical simulations to investigate the limit C2 going
to zero.

B. Numerical investigation of the transition to the pure
membrane: C2 → 0

We examine the effects of dispersion on wave turbulence
by running numerical simulations with a constant tension and
decreasing gradually the value of C2 from the experimental
value C2

exp = 0.6084 down to C2 = C2
exp/1000 (N2 to N7).

The wave number of the forcing is kept constant so that in
the range of resolved wave numbers, the waves are less and
less dispersive when C2 is reduced. The amplitude of the
forcing is kept constant and the resulting rms steepness of the
plate is also almost constant close to the value 2.3 ± 0.3%.
The tension is now applied isotropically in the x and in the y
direction and we use the “ideal dissipation” scheme in order
to remove the impact of wideband dissipation in the inertial
range and to be in the theoretical framework.

We compare the spatiotemporal spectra E v (k, ω) for the
case of the experimental C2

exp down to C2
exp/1000 in Fig. 3 (for

a given value of the isotropic tension T ). We observe that,
in all cases, the energy is concentrated around the dispersion
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FIG. 4. Snapshots of the deformation of the plate for the FvK-NS: (a) N2 with C2
exp, (b) N5 with C2

exp/10, (c) N6 with C2
exp/100, and (d) N7

with C2
exp/1000.

relation taking into account the tension such as stated in (5).
This means that even though the media is being less and less
dispersive, for all the values of C2 tested, the vibration of the
plates remains in a state of weak turbulence.

Snapshots of the surface elevation of the same numerical
simulations shown in Fig. 3 are represented in Fig. 4. At all
values of C2, the snapshots show a random wave distribution
and no extreme events seem to appear. In order to have a
quantitative information of the decay of the spectrum with the
wave number, we extract the wave-number-only spectrum of
the normal velocity E v (k) for the FvK-NS N2 to N7 (Fig. 5).
The spectrum is seen to steepen when C2 is reduced. At the
highest value of C2 comparable to the one of the experimental
steel plate, the spectrum is consistent at high wave number
with the prediction of the WTT for a plate without tension.
When decreasing C2, the shape of the spectrum evolves by
developing a steeper region at k below kc. In the three larger
values of C2 for which kc remains moderate, the spectrum
at k > kc is qualitatively consistent with the prediction for
the nonstretched plate. Indeed, at k > kc the correction to the
no-tension dispersion relation is negligible and this explains
why the spectrum keeps a shape compatible with the theory
without tension. At the lowest value of C2 (lowest curve),
the spectrum is significantly steeper compatible with a k−4/3

decay at intermediate values of k. This scaling is actually con-
sistent with the WTT prediction of the pure membrane with
C2 = 0 (see Sec. IV B 1 below). At high k a departure from
the k−4/3 scaling is observed which is probably a reminiscent
effect of dispersion as kc remains finite (although larger than
the dissipative cutoff).

Thus we have experimental and numerical support of the
fact that a pure membrane with C2 = 0 should still exhibit
a regime of weak turbulence. These observations must be
contrasted with the case of surface water waves for which a
transition to a solitonic regime was observed when reducing
the dispersion of the waves (by reducing the water depth) [13].
In the next section, we focus on the asymptotic case of the
pure membrane for which C2 = 0. We first apply the WTT
formalism to this case. Then we compare its predictions with
numerical simulations.

IV. THE VIBRATING NONLINEAR ELASTIC MEMBRANE

A. Application of the WTT to the membrane

1. Kinetic equation

From the modifed Föppl–von Kármán equations (3) and
(4), one notices that only the linear term differs from the
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FIG. 5. E v (k)/E v (k f ) for FvK-NS N2 to N7, i.e., for C2 decreas-
ing from C2

exp to C2
exp/1000 with a constant tension. The slope of the

deformation is kept roughly constant equal to about 2%. The circles
correspond to the crossover wave number kc for the corresponding
FvK-NS (when it is small than the dissipative cutoff kd = 15k f ).
The bottom dashed line shows the theoretical scaling predicted by
WTT applied to the pure membrane (C2 = 0) E v (k) ∝ k−4/3. The
top dashed line shows the theoretical shape k log1/3(kd/k) expected
from the WTT applied to the plate [15].

well-studied case of elastic plates without tension. Further-
more, one can show that the so-called kinetic equation (equa-
tion for the slow temporal evolution of the wave spectrum)
obtained for elastic plates under tension only differs in the dis-
persion relation with the one obtained for T = 0 in Ref. [15].
We shall consider the Fourier transform

ζ (r, t ) = 1

2π

∫
ζkeik·rdk

and the canonical transformation

ζk = Xk√
2

(Ak + A∗
−k ), (15)

with Xk = 1/
√

ωkρh. In the weakly nonlinear limit, a kinetic
equation for the evolution of the wave action spectrum nk =
〈AkA∗

k〉/L2 can be obtained. The mean value 〈 · 〉 represents
an ensemble average and L is the size of the plate. Formally,
the kinetic equation is given by (for a detailed derivation see
Ref. [22])

dnp

dt
= 12π

∑
s1s2s3=±1

∫ ∣∣J−pk1k2k3

∣∣2
nk1 nk2 nk3 np

×
(

1

np
− s1

nk1

− s2

nk2

− s3

nk3

)
δ(k1 + k2 + k3 − p)

× δ
(
s1ωk1 + s2ωk2 + s3ωk3 − ωp

)
dk123, (16)

where si = ±1 and the scattering matrix introduced in
Ref. [15] is given by

Jpk1k2k3

=
(

1

|p + k1|4 + 1

|k2 + k3|4
) |p × k1|2|k2 × k3|2

48ρ2h2√ωpωk1ωk2ωk3

+ permutations of indices 1, 2, 3. (17)

In order to derive the kinetic equation above, the existence
of a resonant manifold is assumed. Namely, a manifold in
wave-vector space that satisfies

h(k1, k2, p) = s1ω(k1) + s2ω(k2) + s3ω(k3) − ω(p) = 0,

(18)

with s1k1 + s2k2 + s3k3 + p = 0. In general, an extra techni-
cal condition needed to perform a saddle-point-like approxi-
mation is required. It is assumed that gradients of h(k1, k2, p)
have to be different from zero on the resonant manifold. Under
these assumptions, the multiscale asymptotic expansion used
to derive the kinetic equation remains bounded [22,39] (see
Appendix A). The kinetic equation contains two different
groups of terms depending on the type of resonance: the
2 ↔ 2 interaction (e.g., s1 = −1 and s2 = s3 = 1) and the
3 ↔ 1 interaction (e.g., s1 = s2 = s3 = 1). The 2 ↔ 2 inter-
action is common in systems that are phase invariant (e.g.,
nonlinear Schrödinger equation) or have a nondecay disper-
sion relation (ωk ∼ kα with α < 1), such systems have an
extra conserved quantity named the wave action N = ∫

npdp.
The 3 ↔ 1 type of interaction is less common, since require
a decay dispersion relation α � 1 and the symmetry of the
Hamiltonian under reflection ζ → −ζ . Such interaction pre-
vents the wave action conservation, thus a priori wave action
is not conserved for the membrane.

As it was first shown by Zakharov, stationary out-of-
equilibrium solutions of the kinetic equation can be found [4].
Whenever the dispersion relation and the scattering ma-
trix are homogeneous functions, such solutions, known as
Kolmogorov-Zakharov spectra, can be obtained analytically.
The limit T → 0 (no tension) corresponds to the case of
elastic plates, for which the kinetic equation with ωk = Ck2

was derived in Ref. [15]. In the other limit, h3E � T , that
corresponds to a nonlinear membrane, the linear term be-

comes nondispersive with ωk =
√

T
ρh k. Special care needs

to be taken in this limit as the gradient of h(k1, k2, p) can
identically vanish on the resonant manifold for some type of
interactions (see Appendix B). Such interactions seem to be
the responsible for the growth of strong nonlinearities that
can lead to the formation of shock waves and the breakdown
of the wave turbulence theory [11,12]. It remains an open
question under which circumstance nondispersive nonlinear
wave systems either focalize energy into rays leading to shock
wave formation or redistribute angularly the energy through
nonlinearity so that shock wave formation is suppressed.

In general, a nondispersive system with a cubic nonlinear-
ity contains 2 ↔ 2 and 3 ↔ 1 wave interactions. We can show
that for 2 ↔ 2 interactions, the resonant manifold contains
collinear train waves (parallel or antiparallel waves) but also
nontrivial solutions (see Appendix B and Fig. 10). In this
case, the multiscale expansion leading to the kinetic equation
remains bounded and its derivation is justified. In the case
of 3 ↔ 1 interactions, the resonant manifold only contains
collinear solutions and special care is needed. The behavior
of collinear interactions seems to be case dependent and will
be addressed elsewhere. In the particular case of an elastic
membrane, eventual divergences in the multiscale expansion
are healed by the scattering matrix (17). Indeed, collinear
interactions of waves are completely suppressed by the vector
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products in Jpk1k2k3 . It follows that only 2 ↔ 2 noncollinear
interactions contribute to the kinetic Eq. (16), which ensures
its validity (see Appendix B). The kinetic equation then
simplifies to

dnp

dt
= 36π

∫
|J−pk1k2k3 |2nk1 nk2 nk3 np

×
(

1

np
+ 1

nk1

− 1

nk2

− 1

nk3

)
δ(k1 + k2 + k3 − p)

× δ
(
ωp + ωk1 − ωk2 − ωk3

)
dk123. (19)

An important consequence of the fact that in (19) only
2 ↔ 2 interactions are present, is the conservation of the wave
action N = ∫

npdp. Associated to this (weak) invariant, a
new cascade is expected to emerge. Note that N is not an
invariant of the full Föppl–von Kármán equations (4), and
such a cascade can be expected only within the validity of
the weak wave turbulence theory.

2. Stationary out-of-equilibrium spectra

Considering the standard Zakharov transformation, two
different out-of-equilibrium solutions can be found [4,5]. The
first one corresponds to a constant energy flux P and leads to
a direct cascade. It reads n(k) = CpP1/3k−10/3 with Cp a con-
stant that could be in principle calculated numerically from
the kinetic equation. In terms of the amplitude deformation
spectrum, it becomes 〈|ζk|2〉 ∼ P1/3k−13/3. If one consider the
sum over the angles, then it becomes

E ζ (k) ∼ 〈|ζk|2〉k ∼ P1/3k−10/3 . (20)

The second out-of-equilibrium solution corresponds to a con-
stant flux of wave action Q. It leads to an inverse cascade
and reads n(k) = CqQ1/3k−3. Cq is also a constant that can
be calculated from the kinetic equation. Summing over the
angles, we obtain for the spectrum of ζ

E ζ (k) ∼ 〈|ζk|2〉k ∼ Q1/3k−3. (21)

3. Stationary equilibrium solutions

Let us also remind the reader that another statistical steady
state exists that corresponds to thermodynamic equilibrium
(with no flux). The exact solution in thermodynamic equi-
librium has two asymptotes: one corresponding to energy
equipartition and the second one corresponding to wave action
equipartition. The expected spectra for both cases are

E ξ

k ∝ k−1 for energy equipartition, (22)

E ξ

k ∝ k−2 for wave action equipartition. (23)

B. Direct energy cascade

1. Results

As shown in the previous section the WTT prediction
for the spectrum of the direct energy cascade is E ζ (k) ∝
k− 10

3 , while the case of the tensionless plate is E ζ (k) ∝
k−3 ln1/3(k�/k). Discarding the logarithmic corrections, it
means that the distinction between the two spectra is quite
small. Figure 6 shows the spectrum for the high-resolution

100 101 102
10-2

10-1

100

101

102
run N9

FIG. 6. Wave-number spectrum of the deformation E ζ (k) for the
high-resolution FvK-NS N9 of the pure membrane. The spectrum
has been compensated either by k10/3 (solid line), which is the WTT
prediction for a membrane, or by k3 (dashed line), corresponding to
the WTT prediction for a plate with C2 > 0 and T = 0 (discarding
the logarithmic corrections). Forcing acts in modes k ∈ (1, 4).

FvK-NS N9 of the pure membrane. It is consistent with the
−10/3 spectral exponent expected from the direct cascade
in the membrane. The FvK-NS shows unambiguously that
the scaling is distinct from the plate one with spectral ex-
ponent −3. Figure 7(a) shows the wave-number-frequency
spectrum of the moderate resolution run N11. As expected
in weak turbulence, the energy is localized around the linear
dispersion relation. The snapshot of the deformation shows
that the deformation is totally disordered with no visible lo-
calized singular structures. If the spectrum of the deformation
is E ζ (k) ∝ k− 10

3 and the frequency is linear in k, then, if the
motion is made only of waves, the velocity spectrum should
follow: E v (k) = ω(k)2E ζ (k) ∝ k− 4

3 . This is the scaling ob-
served in Fig. 5 at the lowest value of C2.

C. Inverse energy cascade

In an elastic plate the presence of 3 ↔ 1 wave resonances
prevents the conservation of wave action and thus the ob-
servation of a true inverse cascade [15]. Note that a seem-
ingly inverse cascade was nonetheless reported in numerical
simulations [40] but its physical origin remains largely to be
explained. For the membrane, as mentioned above, no such
3 ↔ 1 interaction exists so that an inverse cascade related to
the conservation of wave action is predicted corresponding
to a deformation spectrum E ξ

k ∝ k−3.To check the presence
of an inverse cascade, we perform numerical simulations
by forcing at high wave numbers. As shown in Fig. 8(a)
the high-resolution FvK-NS N10 shows the development of
an inertial range at scales larger than the forcing one. The
scaling observed in the inertial range is fully compatible with
the WTT prediction for the inverse cascade of wave action.
Figure 8(b) shows the frequency-wave-number spectrum of
a moderate resolution FvK-NS N11. Again, the energy is
localized in the vicinity of the linear dispersion relation in
agreement with the phenomenology of WTT.

D. Evolution of the nonlinearity with the scale

The hypothesis underlying the WTT is the scale separation
between the slow nonlinear timescale tNL of the evolution
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FIG. 7. (a) Wave-number-frequency spectrum E ζ spectrum of
the height of the waves for the same moderate resolution simulation
shown in Fig. 6(a). The black line is the linear dispersion. (b) Snap-
shot of the deformation of the membrane for the same simulation.

of the wave spectrum and the fast oscillation of the linear
timescale tL = 2π/ωk . Following Newell et al. [41], in the
framework of WTT, the ratio tNL/tL is supposed to behave as
tNL/tL ∝ P−2/3k−2γ /3+2α , where γ is the degree of homogene-
ity in k of the scattering matrix J−1s1s2s3

−pk1k2k3
and α is the degree of

homogeneity of the dispersion relation. Here γ = 2 and α = 1
for the membrane so that:

tNL/tL ∝ P−2/3k2/3. (24)

It means that the nonlinearity is getting weaker with k. Thus
no breakdown of the weak nonlinearity hypothesis should be
expected at high k if the nonlinearity is weak at low k. The
nonlinear timescale appears as a widening δωNL ∝ 1/tNL of
the energy concentration around the dispersion relation. Thus

10-2 10-1 100

10-4

10-2

100
run N10

FIG. 8. (a) FvK-NS N10 forced at small scale. The dashed
line shows the k−3 scaling expected from the WTT predictions.
(b) Wave-number-frequency spectrum of the deformation for a mod-
erate resolution simulation N11 forced at k f = 200 rad/m. The solid
black line is the linear dispersion relation.

FIG. 9. Evolution of the normalized spectral widening δω/ω as a
function of k for the pure membrane (FvK-NS N8). The dashed line
is the WTT prediction δω/ω ∝ k−2/3.
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the ratio δωNL/ωk should behave as

δωNL/ωk ∝ P2/3k−2/3. (25)

The widening δω can be extracted from the wave-number-
frequency spectrum E (k, ω). At a given value of k, a Gaussian
profile in ω can be fitted to E (k, ω) [of Fig. 7(b)] around
the maximum of energy (which corresponds to the dispersion
relation). The result is shown in Fig. 9. The observed decay
for the spectral width of the membrane is indeed following
the scaling 1/k2/3, which supports the fact that the observed
turbulence in the membrane is consistent with the WTT.

V. CONCLUSION

In this article, we compared experimentally and numeri-
cally the statistical properties of wave turbulence in a vibrating
membrane to that of weak turbulence in a vibrating plate that
had been studied before. The fundamental difference between
the membrane and the plate is that the waves are not dispersive
in the membrane as opposed to the case of the plate. Other
systems such as acoustics or shallow water surface waves
show that weak turbulence is no longer present but coherent
structures such as shocks or solitons are observed. Here no
such structures are observed when evolving continuously from
the plate to the membrane and a state of weak turbulence is
observed numerically in the membrane. This comes from the
fact that the nonlinear coupling vanishes for collinear waves
so that to prevent a strong cumulative effect of nonlinearity
along rays yielding shocks for instance. Here only 2 ↔ 2
interactions are possible that cause an angular redistribution
of energy so that the systems remains weakly turbulent. A
difference between the membrane and the plate is thus the
presence of an inverse cascade for the membrane that should
not exist for the plate (which is actually the object of a
controversy [40]). Thus there is a class of such systems that
can develop weak turbulence of nondispersive waves. The
case of weak gravitational waves is similar, the nonlinear
coupling also vanishes for 3 ↔ 1 interactions [14] so that
weak turbulence should also exist for such waves.
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APPENDIX A: SADDLE-POINT-LIKE APPROXIMATION

Wave turbulence theory is based on a multiscale pertur-
bation expansion, in which the kinetic equation emerges as
a condition to keep bounded the long-time-limit behavior of
the expansion. The general formalism can be found in several
works [39,41], in particular for elastic plates in Ref. [22]. The
wave turbulence formalism requires the understanding of the

long-time behavior of the integrals

I (p) =
∫

F (k1, k2, p)
eit h(k1,k2,p) − 1

ih(k1, k2, p)
dk1dk2 (A1)

and

E (p) =
∫

F (k1, k2, p)
∫ t

0

eiτ h(k1,k2,p) − 1

ih(k1, k2, p)
dτ dk2dk1,

(A2)

where F (k1, k2, p) is a regular function and as a shorthand
notation one defines

h(k1, k2, p) = s1ω(k1) + s2ω(k2) + s3ω(k3) + sω(p)

with k3 = p − k1 − k2. In general, for nondispersive waves
the later expression I (p) and E (p) has a well-established
asymptotic behaviors given by

lim
t→∞ I (p) =

∫
sgn(t )πF (k1, k2, p)δ(h(k1, k2, p)) dk2dk1

+ iP
∫

F (k1, k2, p)

h(k1, k2, p)
dk2dk1 (A3)

and

lim
t→∞

E (p)

t
=

∫
sgn(t )πF (k1, k2, p)δ[h(k1, k2, p)]dk2dk1

+ iP
∫

F (k1, k2, p)

h(k1, k2, p)
dk2dk1 (A4)

with P the principal value of the integral. A good compre-
hension of these asymptotic behaviors are crucial for studying
the nondispersive limit. Therefore in this Appendix we give a
detailed derivation of the asymptotic behaviors (A3) and (A4).

The long-time limit of the integral (A1) is dominated by
the behavior near the manifold defined by h(k1, k2, p) = 0,
namely the resonant manifold. If no resonant manifold exist,
i.e., h(k1, k2, p) �= 0, then the Riemann-Lebesgue lemma im-
plies that the oscillatory term vanishes in the limit t → ∞,
hence

lim
t→∞ I (p) = i

∫
F (k1, k2, p)

h(k1, k2, p)
dk1dk2, (A5)

and no evolution of the wave amplitude exists since only
the real part of I (p) contributes to it. If a resonant manifold
exists, then the integral I (p) is dominated by the region
close to such manifold. Generically one can consider that
for each p and k1 exist a vector k∗

2 (α) parametrized by a
single parameter α which satisfies h(k1, k∗

2, p) = 0 (we will
omit unless necessary α in k∗

2). Considering that the resonant
manifold is contained in a small 2d-dimensional volume �

the integral I (p) can be rewritten as

lim
t→∞ I (p) = lim

t→∞

∫
�

F (k1, k2, p)
eit h(k1,k2,p) − 1

ih(k1, k2, p)
dk2dk1

+ i
∫
R2d /�

F (k1, k2, p)

h(k1, k2, p)
dk2dk1, (A6)

where in the region R2d/� we made use of the Riemman-
Lebesgue lemma. Close to the resonant manifold (i.e., k2

∈ �),

h(k1, k2, p) ≈ ∇k2 h(k1, k∗
2, p) · δk2 + . . . (A7)
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with

∇k2 h(k1, k∗
2, p) = s2ω

′(k∗
2 )

k∗
2

|k∗
2 | − s3ω

′(k∗
3 )

k∗
3

|k∗
3 |

and δk2 = k2 − k∗
2. If the gradient ∇k2 h(k1, k∗

2, p) vanishes
at the resonant manifold, then the approximation (A7) is not
correct and the asymptotic behaviors (A4) and (A3) are not
longer valid. Such is the case for most nondispersive systems
and is the main cause for the breakdown of the standard wave
turbulence theory on these systems. The particular case of an
elastic membrane will be discussed in Appendix B. Using one
more time the Riemman-Lebesgue lemma in (A6) in the limit
lim t → ∞ one gets

I (p) =
∫

F (k1, k2, p)
eit ∇k2 h(k1,k∗

2 ,p)·δk2 − 1

ih(k1, k2, p)
dk2dk1. (A8)

One can easily corroborate that ∇k2 h(k1, k∗
2, p) · k‖

2 =
∂αh(k1, k∗

2, p) = 0, where k‖
2 ≡ ∂αk∗

2 is the tangent vector
of the resonant manifold. Therefore, defining the orthogonal
vector k⊥

2 such ∇k2 h(k1, k∗
2, p) · k⊥

2 = ||∇k2 h(k1, k∗
2, p)||k⊥

2 ,
one can perform a change of variable which leads to

lim
t→∞ I (p) = lim

t→∞

∫
G(k1, k2, p)

× eit ||∇k2 h(k1,k∗
2 ,p)||k⊥

2 − 1

ih(k1, k2, p)
dk⊥

2 dαdk1, (A9)

where G(k1, k2, p) = F (k1, k2, p)J (k1, k2, p) and J (k1,

k2, p) is the determinant of the Jacobian of the change of
variable. We shall consider that G(k1, k2, p) is a regular
function.

The integral in the variable dk⊥
2 is of the type

Ĩ =
∫ ∞

−∞
g(x)

eih′(0)xt − 1

ih(x)
dx,

where h(x) ≈ h′(0)x for |x| ≈ 0 and h′(0) > 0. The integrand
is regular in 0, hence

Ĩ = lim
ε→0

[∫ −ε

−∞
g(x)

eih′(0)xt

ih(x)
dx +

∫ ∞

ε

g(x)
eih′(0)xt

ih(x)
dx

]

+ iP
∫ ∞

−∞

g(x)

h(x)
dx (A10)

and a simple contour integrations leads to

Ĩ = sgn(t )π
g(0)

h′(0)
+ iP

∫ ∞

−∞

g(x)

h(x)
dx. (A11)

Therefore the expression (A9) is given by

lim
t→∞ I (p) =

∫
sgn(t )π

G(k1, k∗
2, p)

‖∇k2 h(k1, k∗
2, p)‖ δ(k⊥

2 ) dk⊥
2 dαdk1

+ iP
∫

G(k1, k2, p)

h(k1, k2, p)
dk⊥

2 dαdk1. (A12)

The first term is evaluated at k⊥
2 = 0, which corresponds to the

resonant manifold given by the solutions of h(k1, k2, p) = 0,
and hence we can rewrite the last expression as

lim
t→∞ I (p) =

∫
sgn(t )πG(k1, k2, p)δ(h(k1, k2, p)) dk⊥

2 dαdk1

+ iP
∫

G(k1, k2, p)

h(k1, k2, p)
dk⊥

2 dαdk1. (A13)

Finally, coming back to the original variables dk⊥
2 dα → dk2,

one leads to the desired result (A3).
The second class of integral (A4) can be rewritten as

E (p) =
∫

F (k1, k2, p)
1 − eit h(k1,k2,p) + ith(k1, k2, p)

h(k1, k2, p)2

× dτ dk2dk1. (A14)

The same procedure that was used to obtain (A9) leads in the
long-time limit to the expression

lim
t→∞

E (p)

t
= lim

t→∞
1

t

∫
G(k1, k2, p)

1 − eit ||∇k2 h(k1,k∗
2 ,p)||k⊥

2 + ith(k1, k2, p)

h(k1, k2, p)2
dk⊥

2 dαdk1. (A15)

The integral in the variable dk⊥
2 is of the type

Ẽ =
∫ ∞

−∞
g(x)

1 − eih′(0)xt + ith(x)

h(x)2
dx,

where h(x) ≈ h′(0)x for |x| ≈ 0 and h′(0) > 0. Integrating by
part once and considering ∂xh �= 0 one gets

Ẽ = −i
∫ ∞

−∞

∂

∂x

[
g(x)

∂xh

]
eih′(0)xt − 1

ih(x)
dx

+ t
∫ ∞

−∞
g(x)

h′(0)
∂xh eih′(0)xt − 1

ih(x)
dx (A16)

and a simple contour integrations leads to

Ẽ = t

[
sgn(t )π

g(0)

h′(0)
+ iP

∫ ∞

−∞

g(x)

h(x)
dx

]
− isgn(t )π

1

h′(0)

× ∂

∂x

[
g(x)

∂xh

]
x=0

+ P
∫ ∞

−∞

1

h(x)

∂

∂x

[
g(x)

∂xh

]
dx. (A17)

Therefore the expression (A15) is given by

lim
t→∞

E (p)

t
=

∫
sgn(t )π

G(k1, k∗
2, p)

||∇k2 h(k1, k∗
2, p)|| δ(k⊥

2 ) dk⊥
2 dαdk1

+ iP
∫

G(k1, k2, p)

h(k1, k2, p)
dk⊥

2 dαdk1 (A18)

and following the same procedure as for I (p) we obtain the
desired result (A4).
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APPENDIX B: NONDISPERSIVE WAVES

For dispersive waves the long-time behavior of the in-
tegrals (A3) and (A4) are guaranteed since the gradients
|∇ki h(k1, k∗

2, p)| are nonzero over the resonant manifold. For
nondispersive waves the situation is more subtle. In par-
ticular, for acoustic waves [11,12], where the nonlinearity
is quadratic, the local behavior of the associated function
h(k1, k2, p) near the resonant manifold is not linear but
quadratic. Indeed, it is easy to show that the gradients of
h(k1, k2, p) are exactly zero on the manifold. In such cases
the long-time limit behavior of the integral strongly depends
on the space dimension. It has been shown that for the
three-dimensional case, it is possible to find a similar kinetic
equation, but with a restriction that only allows resonant
interactions between collinear waves. Therefore no angular
energy redistribution is possible.

The elastic plate under a strong tension corresponds to a
two-space dimensional system with linear dispersion relation
ω(k) = √

T/ρh|k| and a cubic nonlinearity. The resonant
manifold is given by

h(k1, k2, p) = c(s1|k1| + s2|k2| + s3|p − k1 − k2| − |p|)
= 0, (B1)

where c = √
T/ρh. For the sake of simplicity, we have chosen

s = −1. Two different solutions (or manifolds) exist. The first
solution is similar to the one found for the acoustic problem,
which represents a collinear interaction, that is, k∗

1 = α1p and
k∗

2 = α2p. Then, the resonant condition reduces to:

s1|α1| + s2|α2| + s3|1 − α1 − α2| − 1 = 0. (B2)

For the 3 ↔ 1 interaction (s1 = s2 = s3 = 1) one has that
the manifold is given for any (α1, α2) with α1 > 0, α2 > 0
and 1 − α1 − α2 > 0. For the 2 ↔ 2 interaction (s1 = s2 = 1
and s3 = −1) the solution is given for any (α1, α2) while
α1 > 0, α2 > 0 and α1 + α2 − 1 > 0. It is easy to see that near
the resonant manifold the first contribution to h(k1, k2, p) is
quadratic in k because

∇ki h(k∗
1, k∗

2, p) = c
p
|p|

(
si

αi

|αi| − s3
1 − α1 − α2

|1 − α1 − α2|
)

= 0.

Then the long-time limit of integrals (A1) and (A2) are
not given by the expressions (A3) and (A4). In general the

FIG. 10. The resonant manifold for k2/p = .5 (a), k2/p = 1 (b),
k2/p = 1.5 (c), and k2/p = 100 (d). θp = π by choosing the system
of coordinates.

asymptotic behavior of (A1) and (A2) is not well established,
but fortunately for the particular case of an elastic plates the
scattering coefficient (17) strongly vanishes for collinear wave
vectors. Therefore, at least up to the second-order expansion,
the collisional integral is trivial.

Remarkably, as we said at the beginning, there exist an-
other solution to (B1) which corresponds to 2 ↔ 2 interaction
of noncollinear waves. This solution can be expressed in polar
coordinates as:

k2 = k1 p[1 − cos(θp − θ1)]

k1[1 − cos(θ2 − θ1)] − p[1 − cos(θ2 − θp)]
, (B3)

k1 + k2 > p. (B4)

The resonant manifold is displayed in Fig. 10 for different
values of k2/p. We have set θp = π by choosing the system of
reference. The trivial collinear resonant manifold is given by
curve θ1 = θ2 = π . One can easily verify that over the mani-
fold described by such solution the gradient of h(k1, k2, p) is
not zero and the standard weak wave turbulence description
can be applied. Finally, one gets the same kinetic equation
(16) keeping in mind that the 3 ↔ 1 interaction does not
contribute.
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