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Proving the Andersen—Kashaev volume conjecture for twistknots.

VS

O Context: quantum topology, volume conjectures.

© Topology: triangulating the twist knot complements

@ Geometry: the triangulations contain the hyperbolicity
© Algebra: computing the Teichmiiller TQFT

@ Analysis: the hyperbolic volume appears asymptotically

(Optional: parts/sketches of proofs, at the audience’s preference)
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Andersen Kashaev '11: Telchmuller TQFT of a trlangulated
3-manifold M, an "infinite-dimensional TQFT".

Its partition function {Z,(M) € C}p> yields an invariant.

Volume Conjecture (Andersen—Kashaev '11)

The hyperbolic volume Vol(S3 \ K) appears as an exponential
decay rate in Z,(S3\ K) for the limit b — 0.

Andersen—Kashaev '11: Proof for 4; and 55.

Andersen—Nissen '17: Proof for 6.

Theorem (B.A.-Guéritaud—Piguet-Nakazawa '20)

The Conjecture holds for all twist knot complements.

Piguet-Nakazawa '21: Proof for integral DF of the Whitehead link.
Uemura '23: Proof for 73.

B.A.-Guéritaud '24+: Proof for X1 1-bundles over S*.

Theorem (B.A.-Wong '24)

Stronger Conjectures hold for FAMED geometric triangulations.
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A tetrahedron = compact, truncated or ideal (without vertices).

A - &

A triangulation X = (Ty,..., Ty, ~) of a 3-manifold M =
N tetrahedra and a gluing relation ~ of faces pairwise.

NN

Example : (T, T2, ~) triangulates either S3 (compact T;),
(S3\ 4 points) (ideal T;) or (S3\ 4 balls) (truncated T,).
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(2,3)-Pachner moves are moves between ideal triangulations.

Matveev-Piergallini: X and X’ triangulate the same M if and only
if they are related by a finite sequence of Pachner moves.

= Useful for constructing topological invariants for M.

source of the picture: Wikipedia
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Our tetrahedra have ordered vertices (= oriented edges too).
~> two possible signs ¢(T) € {+}.

A triangulation X = (Ty,..., Ty, ~) of a 3-manifold M is the
datum of N tetrahedra and a gluing relation ~ pairing their
faces while respecting the vertex order.

We consider ideal triangulations of open 3-manifolds, i.e. where
the tetrahedra have their vertices removed.

o (%) |

)(32{7—+’_I—7}7 X2:{A78’C7D}’ Xl :{%ﬂ}’ XO:{}
face maps xqg,...,x3: X3 - X2, for example Xo(T+) — B.

Fathi Ben Aribi The Andersen—Kashaev Volume Conjecture for Twist Knots



Introduction Topology (triangulations) etry (angles) a (TQFT) Analysis (asymptotics)

[e]e]e] Jo]e]

Thurston: from a diagram of a knot K, one can construct an
ideal triangulation X of the knot complement M = S3\ K.

oy

N
n CI'()SSil’lgS —

The n-th twist knot K, and the triangulation X, (n odd,p = 232)

\/_/

p tetrahedra

Theorem (TH 1, B.A.-P.N. '18)

For all n > 2, we construct an ideal triangulation X, of the

4
complement of the twist knot K, with {%J tetrahedra.
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Thurston: from a diagram of a knot K, one can construct an
ideal triangulation X of the knot complement M = S3\ K.

n crossings

The n-th twist knot K, and the triangulation X, (n odd, p = 53)

2

Theorem (TH 1, B.A.-P.N. '18)

For all n > 2, we construct an ideal triangulation X,, of the

4
complement of the twist knot K, with {%J tetrahedra.
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00000@

Sketch of proof of TH1: First draw a tetrahedron around each
crossing of K, whose diagram lives in the equatorial plane of S3.

(observer)

B3 ¢

Then collapse the tetrahedra into segments (K ~> -).
Hence the collapsed S decomposes into two polyhedra.
Finally, triangulate the two polyhedra (several possible ways).
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Ax is the space of angle structures on X = (Ty,..., Ty, ~), i.e.
of 3N-tuples o € (0, 7)3N of dihedral angles on edges, such that
the angle sum is 7 at each vertex and 27 around each edge.

C T

Qg

“1

af ozf +a§r +(y;r =7
T - < ~
[ a; +a, tay =7 %
Q+ 6

Ax=(a=| 2 [e(0,nm + >
o (0,) (=) 2af +aF +2a;, +a3 =27 i
o, 3
Qg (=) 203 + a3 +2a7 +a3 =27

o fixed ~» angle maps a1, as, a3: X3 = R, for example ax(T) = g
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The 3-dimensional hyperbolic space is H? = R? x R~ with

(dx)? + (dy)? + (dz)?
22

(ds)? =

b
a metric which has constant curvature —1.
A knot is hyperbolic if its complement M can be endowed with a

complete hyperbolic metric of finite volume Vol(M).
~» a specific « € Ax on X =(Ty,..., Ty, ~) triangulation of M.

aptaxt+az3=m Zedge oj = 27 (4 others)
T — H3 gluing gives a manifold
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For all n > 2, the twist knot K, is hyperbolic.

Theorem (TH2, B.A.-G.-P.N. '20)

For all n > 2, the triangulation X, of s3 \ K, is geometric, i.e. it
admits an angle structure o° € Ax, corresponding to the
complete hyperbolic structure on the complement of K.

X geometric < 3 solution to the nonlinear gluing equations of X
(difficult!)

Casson-Rivin, Futer-Guéritaud: approach via Ay, the solutions to
the linear part: maximising the volume fonctional.
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Dilogarithm function: Liy(z) = — [ log(1 — u) forz € C\ [1, 00).

Volume functional Vol: Ax — R (strictly concave) is:

Vol(a) :== ) SLia(2(T)) + arg(1 — 2(T)) log |2(T),

Tex3 o«
sinasz(T)

(T
where z(T) = (W) e“1(T) € R + iR~ encodes the angles of T.

Theorem (TH2, B.A.-G.-P.N. '20)

For all n > 2, the triangulation X, of S3 \ Kn is geometric, i.e. it admits an angle
structure o € Ax, corresponding to the complete hyperbolic structure on the
complement of Kp,.

Sketch of proof of TH2:
@ Check that the open polyhedron Ax is non-empty.

@ General fact: the complete structure o exists < max Vol is
Ax
reached in Ax.

@ Prove that max Vol cannot be on d.Ax (case-by-case).
Ax
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Algebra (TQFT)
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S(R™) = rapidly decreasing functions f: R" — C.
S'(R™) = dual of S(R"), tempered distributions.

Example: X2 = {A, B}, Dirac delta function
5(A) € S'(RX*) = S'(R?) acts by:  Vf € S(R?),

S(A)-f = //(A’B)GRZ dAdB §(A) f(A, B) = /BGR dB f(0,B) € C.

A Product of Dirac deltas is sometimes but not always defined.
J(A)d(A) is not defined (because of linear dependance).

5(A+ B)5(A— B) = L5(A)8(B) = (f — 1£(0,0)) is well-defined.
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Partition function for the triangulation X (and o € Ax, b > 0):

Zo(X, 0) = / o II a(Me)m  ec
x€ Ti T

5Ty
Tetrahedral operator: p,(T)(a)(X) € S'(R*?) is equal to
8 (xo(T) = x1(T) + xo( T)) e(Zre(TIa(T)+(b+b71)as(T)) (xa(T) —2(T))

0 ((a(T) o T)) = e TY(0a(T) 4 05(7)))

Faddeev’s quantum dilogarithm:

® ( ) . / ef2izx dz
X) = €eX .
b P\ |ockiior 4sinh(zb)sinh(zb~1)z

Proposition (Andersen-Kashaev '11)

|Zy(X, )| is invariant under angled Pachner moves on (X, ).
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Partition function for the triangulation X (and o € Ax, b > 0):

ax.a)= [ ax ] mM0E  ec
XERX T

1oy I'N

Tetrahedral operator: p,(T)(a)(X) € S'(R*?) is equal to

8 (xo(T) = x1(T) + xo( T)) eZre(TIa(T)+(b+b71)as(T)) (xa(T) =2 (T))

0 ((xa(T) — x2(T)) — D T (0a(T) 4+ 03(T)))

Volume Conjecture (Andersen-Kashaev '11)
Let X be a triangulation of a hyperbolic knot complement M.

(1) 3 Ax linear combination of dihedral angles, 3 smooth function
Jx: Rsp X R — C such that V angle structures o, ¥V b > 0,

|1 Z6(X, )| =

/ Jx (b, x)e~(B+™)x() gy
x€eR

o
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Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M.
(1) 3 Ax linear combination of dihedral angles, 3 smooth function
Jx: Rsg X R — C such that ¥V angle structures «;, ¥V b > 0,

| Zb(X, )| = / Jx(b,X)e*(b+b_1)x>\><((¥)dx
x€R

(2) The hyperbolic volume Vol(M) is obtained as the following
semi-classical limit:

lim 27b? log|Jx(b,0)] = —Vol(M).
b—0+

Theorem (TH3, B.A.-P.N. '18)

(1) is proven for all twist knots, via algebraic computations.

Theorem (TH4, B.A.-G.-P.N. '20)

(2) is proven for all twist knots, via asymptotic analysis.
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Proof of TH3, easiest example: For K = 44, we find Z,(X, o) =

dAdBdCdD 6(B—D+ C)5(C—A+B) o, (D B+ b1 —|—a3_))
W o(2wiBH(bb =)o )(C—A) o(—2miC+(b+b—Y)ay )(B—D) Py (A c— :(b+b )(Ué; i O{;)) ’
Then we change the variables: 2x =B+ €+ ®® 0 (0; —ap),
2y=B— C+ 0 Lo —2r)and A=D =B+ C.
Thus, by taking the module, |Z,(X, o) =

// dxdy ®p(x+y) o~ (b 1)((205 +03 ) (x+y)+(205 +05 ) (x—))
e 87r/xy¢b X _y)

Finally we obtain (1) via (=) 2a, + a4 + 20, +a; = 27, with

ixy P (X +y)
b, x) = dyedmxy 227~ 72 and A = 4o +2ad .
Ix(b,x) = [ . dye o (x — y) and Ax(o) =4a, + 2a;
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The saddle point method gives (under technical conditions)
asymptotics of complex integrals with parameters of the form:

/r exp <b12V(z)> b ~ er <b128%(V)(zo)> .

(A< 5)
A A A
exp(A-1)  +  exp(A-2) + exp(A-(—1)) Ny exp(A - 2)
—00
R(V)(z R(V)(z0) =2
(v )‘ %/L)( v 7o = saddle point
-1
2 N, zefrl
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Theorem (TH4, B.A.-G.-P.N. '20)

lim 27b? log|Jx,(b,0)] = —Vol(S*\ K,).
b—0+

Sketch of proof: (a) Semi-classical approximation:

[on (L)) o

comes from log &y, ~ Li» + technical error bounds
b—0

|[Jx, (b, 0)] =~

b—0+

(b) Saddle point method:

[on (L) o

we check that zy exists thanks to TH2 (geometricity).

~  exp (JQ%(V)(ZO)) .

b—0+

. _ 1 3 .
(c) Finally, R(V)(z0) = —5-Vol(5°\ K,), from Lis <> Vol.



B.A. - Wong "24: For general M, TH3 (Algebra) & TH4 (Analysis)
follow from the triangulation being geometric and FAMED.

A triangulation is FAMED (Face Adjaceny Matrices with Edge
Duality) if there is a specific matrix relation between

@ the face gluing matrices associated with
1) (XO(T) — Xl(T) + X2(T)) and X3(T) — XQ(T)

-1 1 1 0
0O 1 1 -1
For 44: 0 0 1 —1
-1 1 0 O

o the Neumann-Zagier matrices associated with edge
equations on the angle/shape structures.

For 41: (=) 201 + a3 + 20, + a3 & Ax(a) =4a3 + 203
— Asymptotics of Zy(X, «), of Jx(b, x), weak AJ-conjecture
— The X, for the twist knots are FAMED
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Ongoing projects:

(with Guéritaud) Proof for fibered M3 with fiber a punctured torus

(with Baseilhac) Vol Conj for BB invariants for twist knots

Future possible directions:

Algorithm Knot diagram — Triangulation (many choices)
New formulations of Teichmiiller TQFT (links, unordered X)
Apply geometric triangulations to other volume conjectures

Hope: 3J geometric triangulation = volume conjecture is true.
It suffices to prove that every triangulation is FAMED!
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