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Our Goal

Proving the Andersen–Kashaev volumeconjecturefor twistknots.

···

crossingsn
0 Context: quantum topology, volume conjectures.

1 Topology: triangulating the twist knot complements

2 Geometry: the triangulations contain the hyperbolicity

3 Algebra: computing the Teichmüller TQFT

4 Analysis: the hyperbolic volume appears asymptotically

(Optional: parts/sketches of proofs, at the audience’s preference)
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Andersen–Kashaev ’11: Teichmüller TQFT of a triangulated
3-manifold M, an ”infinite-dimensional TQFT”.

Its partition function {Zb(M) ∈ C}b>0 yields an invariant.

Volume Conjecture (Andersen–Kashaev ’11)

The hyperbolic volume Vol(S3 \ K ) appears as an exponential
decay rate in Zb(S3 \ K ) for the limit b→ 0+.

Andersen–Kashaev ’11: Proof for 41 and 52.

Andersen–Nissen ’17: Proof for 61.

Theorem (B.A.–Guéritaud–Piguet-Nakazawa ’20)

The Conjecture holds for all twist knot complements.

Piguet-Nakazawa ’21: Proof for integral DF of the Whitehead link.
Uemura ’23: Proof for 73.

B.A.-Guéritaud ’24+: Proof for Σ1,1-bundles over S1.

Theorem (B.A.-Wong ’24)

Stronger Conjectures hold for FAMED geometric triangulations.
Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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A tetrahedron = compact, truncated or ideal (without vertices).

!

A triangulation X = (T1, . . . ,TN ,∼) of a 3-manifold M =
N tetrahedra and a gluing relation ∼ of faces pairwise.

Example : (T1,T2,∼) triangulates either S3 (compact Ti ),
(S3 \ 4 points) (ideal Ti ) or (S3 \ 4 balls) (truncated Ti ).

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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(2, 3)-Pachner moves are moves between ideal triangulations.

Matveev-Piergallini: X and X ′ triangulate the same M if and only
if they are related by a finite sequence of Pachner moves.

⇒ Useful for constructing topological invariants for M.

source of the picture: Wikipedia
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Our tetrahedra have ordered vertices (⇒ oriented edges too).
; two possible signs ε(T ) ∈ {±}.

A triangulation X = (T1, . . . ,TN ,∼) of a 3-manifold M is the
datum of N tetrahedra and a gluing relation ∼ pairing their
faces while respecting the vertex order.

We consider ideal triangulations of open 3-manifolds, i.e. where
the tetrahedra have their vertices removed.

S3 \ = =

−

+
0 1 2 3

0123

T+

0

1

23

B

D

C A

T−

0

1

32

C

A

D B

X 3 = {T+,T−}, X 2 = {A,B,C ,D}, X 1 = {→,�}, X 0 = {·}
face maps x0, . . . , x3 : X 3 → X 2, for example x0(T+) = B.
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Thurston: from a diagram of a knot K , one can construct an
ideal triangulation X of the knot complement M = S3 \ K .

···

crossingsn
−

−

−

+ + +

tetrahedrap

The n-th twist knot Kn and the triangulation Xn (n odd, p = n−3
2

)

Theorem (TH 1, B.A.-P.N. ’18)

For all n > 2, we construct an ideal triangulation Xn of the

complement of the twist knot Kn, with

⌊
n + 4

2

⌋
tetrahedra.
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Sketch of proof of TH1: First draw a tetrahedron around each
crossing of K , whose diagram lives in the equatorial plane of S3.

. . .
E

BAF

·(�
(observer)

B3
+

B3
−

E

B

A

F

Then collapse the tetrahedra into segments (K ; ·).
Hence the collapsed S3 decomposes into two polyhedra.
Finally, triangulate the two polyhedra (several possible ways).
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AX is the space of angle structures on X = (T1, . . . ,TN ,∼), i.e.
of 3N-tuples α ∈ (0, π)3N of dihedral angles on edges, such that
the angle sum is π at each vertex and 2π around each edge.

S3 \ =
T+

α+
1

α+
1

α+
2

α+
2

α+
3

α+
3

0

1

23

B

D

C A

T−

α−
1

α−
1

α−
3

α−
3

α−
2

α−
2

0

1

32

C

A

D B

AX =


α =



α+
1

α+
2

α+
3

α−1
α−2
α−3

 ∈ (0, π)6

∣∣∣∣∣∣∣∣∣∣∣∣

α+
1 + α+

2 + α+
3 = π

α−1 + α−2 + α−3 = π

(→) 2α+
1 + α+

3 + 2α−2 + α−3 = 2π

(�) 2α+
2 + α+

3 + 2α−1 + α−3 = 2π


3


π
3
...
π
3



α fixed ; angle maps α1, α2, α3 : X 3 → R, for example α2(T+) = α+
2 .
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The 3-dimensional hyperbolic space is H3 = R2 × R>0 with

(ds)2 =
(dx)2 + (dy)2 + (dz)2

z2
,

a metric which has constant curvature −1.

A knot is hyperbolic if its complement M can be endowed with a
complete hyperbolic metric of finite volume Vol(M).
; a specific α ∈ AX on X = (T1, . . . ,TN ,∼) triangulation of M.

∞

α1α3

α2

α1 α3
α2

α1 + α2 + α3 = π
∑

edge αj = 2π (+ others)

T ↪→ H3 gluing gives a manifold
Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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For all n > 2, the twist knot Kn is hyperbolic.

Theorem (TH2, B.A.-G.-P.N. ’20)

For all n > 2, the triangulation Xn of S3 \ Kn is geometric, i.e. it
admits an angle structure α0 ∈ AXn corresponding to the
complete hyperbolic structure on the complement of Kn.

X geometric ⇔ ∃ solution to the nonlinear gluing equations of X
(difficult!)

Casson-Rivin, Futer-Guéritaud: approach via AX , the solutions to
the linear part: maximising the volume fonctional.

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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Dilogarithm function: Li2(z) = −
∫ z

0 log(1− u)duu for z ∈ C \ [1,∞).

Volume functional Vol : AX → R>0 (strictly concave) is:

Vol(α) :=
∑
T∈X 3

=Li2(z(T )) + arg(1− z(T )) log |z(T )|,

where z(T ) =

(
sinα3(T )

sinα2(T )

)ε(T )

e iα1(T ) ∈ R + iR>0 encodes the angles of T .

Theorem (TH2, B.A.-G.-P.N. ’20)

For all n > 2, the triangulation Xn of S3 \ Kn is geometric, i.e. it admits an angle
structure α0 ∈ AXn corresponding to the complete hyperbolic structure on the
complement of Kn.

Sketch of proof of TH2:

Check that the open polyhedron AX is non-empty.

General fact: the complete structure α0 exists ⇔ max
AX

Vol is

reached in AX .

Prove that max
AX

Vol cannot be on ∂AX (case-by-case).
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S(Rn) = rapidly decreasing functions f : Rn → C.

S ′(Rn) = dual of S(Rn), tempered distributions.

Example: X 2 = {A,B}, Dirac delta function

δ(A) ∈ S ′(RX 2
) ∼= S ′(R2) acts by: ∀f ∈ S(R2),

δ(A)·f =

∫∫
(A,B)∈R2

dAdB δ(A) f (A,B) =

∫
B∈R

dB f (0,B) ∈ C.

Product of Dirac deltas is sometimes but not always defined.

δ(A)δ(A) is not defined (because of linear dependance).

δ(A + B)δ(A− B) = 1
2δ(A)δ(B) = (f 7→ 1

2 f (0, 0)) is well-defined.

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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Partition function for the triangulation X (and α ∈ AX , b > 0):

Zb(X , α) =

∫
x∈RX2

dx
∏

T1,...,TN

pb(T )(α)(x) ∈ C.

Tetrahedral operator: pb(T )(α)(x) ∈ S ′(RX2) is equal to

δ (x0(T )− x1(T ) + x2(T )) e(2πiε(T )x0(T )+(b+b−1)α3(T ))(x3(T )−x2(T ))

Φb

(
(x3(T )− x2(T ))− i(b+b−1)

2π ε(T )(α2(T ) + α3(T ))
)ε(T )

.

Faddeev’s quantum dilogarithm:

Φb(x) := exp

(∫
z∈R+i0+

e−2izx dz

4 sinh(zb) sinh(zb−1)z

)
.

Proposition (Andersen-Kashaev ’11)

|Zb(X , α)| is invariant under angled Pachner moves on (X , α).

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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Partition function for the triangulation X (and α ∈ AX , b > 0):

Zb(X , α) =

∫
x∈RX2

dx
∏

T1,...,TN

pb(T )(α)(x) ∈ C.

Tetrahedral operator: pb(T )(α)(x) ∈ S ′(RX2) is equal to

δ (x0(T )− x1(T ) + x2(T )) e(2πiε(T )x0(T )+(b+b−1)α3(T ))(x3(T )−x2(T ))

Φb

(
(x3(T )− x2(T ))− i(b+b−1)

2π ε(T )(α2(T ) + α3(T ))
)ε(T )

.

Volume Conjecture (Andersen-Kashaev ’11)

Let X be a triangulation of a hyperbolic knot complement M.

(1) ∃ λX linear combination of dihedral angles, ∃ smooth function
JX : R>0 × R→ C such that ∀ angle structures α, ∀ b > 0,

|Zb(X , α)| =

∣∣∣∣∫
x∈R

JX (b, x)e−(b+b−1)xλX (α)dx

∣∣∣∣ .
Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots



22/27

Introduction Topology (triangulations) Geometry (angles) Algebra (TQFT) Analysis (asymptotics) Conclusion

Volume Conjecture (Andersen-Kashaev ’11)

Let X be a triangulation of a hyperbolic knot complement M.

(1) ∃ λX linear combination of dihedral angles, ∃ smooth function
JX : R>0 × R→ C such that ∀ angle structures α, ∀ b > 0,

|Zb(X , α)| =

∣∣∣∣∫
x∈R

JX (b, x)e−(b+b−1)xλX (α)dx

∣∣∣∣ .
(2) The hyperbolic volume Vol(M) is obtained as the following

semi-classical limit:

lim
b→0+

2πb2 log |JX (b, 0)| = −Vol(M).

Theorem (TH3, B.A.-P.N. ’18)

(1) is proven for all twist knots, via algebraic computations.

Theorem (TH4, B.A.-G.-P.N. ’20)

(2) is proven for all twist knots, via asymptotic analysis.

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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Proof of TH3, easiest example: For K = 41, we find Zb(X , α) =

∫∫∫∫ dAdBdCdD δ (B − D + C) δ (C − A + B) Φb

(
D − B + i(b+b−1)

2π
(α−2 + α−3 )

)
e(2πiB+(b+b−1)α+

3 )(C−A)e(−2πiC+(b+b−1)α−
3 )(B−D)Φb

(
A− C − i(b+b−1)

2π
(α+

2 + α+
3 )
) .

Then we change the variables: 2x = B + C + i(b+b−1)
2π

(α+
1 − α

−
1 ),

2y = B − C + i(b+b−1)
2π

(α+
1 + α−1 − 2π) and A = D = B + C .

Thus, by taking the module, |Zb(X , α)| =∣∣∣∣∫∫ dxdy Φb (x + y)

e−8πixyΦb (x − y)
e−(b+b−1)((2α+

2 +α+
3 )(x+y)+(2α−2 +α−3 )(x−y))

∣∣∣∣
Finally we obtain (1) via (→) 2α+

1 + α+
3 + 2α−2 + α−3 = 2π, with

JX (b, x) =
∫
y∈Γ dye

8πixy Φb (x + y)

Φb (x − y)
and λX (α) = 4α+

2 + 2α+
3 .
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The saddle point method gives (under technical conditions)

asymptotics of complex integrals with parameters of the form:∣∣∣∣∫
Γ

exp

(
1

b2
V (z)

)
dz

∣∣∣∣ ≈
b→0+

exp

(
1

b2
<(V )(z0)

)
.

λ

exp(λ · 1)

+ +

+ + ≈
λ→∞

exp(λ · 2)

(
λ↔ 1

b2

)

λ

exp(λ · 2)

λ

exp(λ · (−1))

z ∈ Γ

<(V )(z)

·1
·<(V )(z0) = 2

·z0 ·
−1

z0 = saddle point
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Theorem (TH4, B.A.-G.-P.N. ’20)

lim
b→0+

2πb2 log |JXn(b, 0)| = −Vol(S3 \ Kn).

Sketch of proof: (a) Semi-classical approximation:

|JXn(b, 0)| ≈
b→0+

∣∣∣∣∫
Γ

exp

(
1

b2
V (z)

)
dz

∣∣∣∣ .
comes from log Φb ≈

b→0+
Li2 + technical error bounds

(b) Saddle point method:∣∣∣∣∫
Γ

exp

(
1

b2
V (z)

)
dz

∣∣∣∣ ≈
b→0+

exp

(
1

b2
<(V )(z0)

)
.

we check that z0 exists thanks to TH2 (geometricity).

(c) Finally, <(V )(z0) = − 1
2πVol(S

3 \ Kn), from Li2 ↔ Vol.
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B.A. - Wong ’24: For general M, TH3 (Algebra) & TH4 (Analysis)
follow from the triangulation being geometric and FAMED.

A triangulation is FAMED (Face Adjaceny Matrices with Edge
Duality) if there is a specific matrix relation between

the face gluing matrices associated with
δ (x0(T )− x1(T ) + x2(T )) and x3(T )− x2(T )

For 41:


−1 1 1 0
0 1 1 −1
0 0 1 −1
−1 1 0 0


the Neumann-Zagier matrices associated with edge
equations on the angle/shape structures.

For 41: (→) 2α+
1 + α+

3 + 2α−2 + α−3 & λX (α) = 4α+
2 + 2α+

3

→ Asymptotics of Zb(X , α), of JX (b, x), weak AJ-conjecture
→ The Xn for the twist knots are FAMED

Fathi Ben Aribi The Andersen–Kashaev Volume Conjecture for Twist Knots
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Ongoing projects:

(with Guéritaud) Proof for fibered M3 with fiber a punctured torus

(with Baseilhac) Vol Conj for BB invariants for twist knots

Future possible directions:

Algorithm Knot diagram −→ Triangulation (many choices)

New formulations of Teichmüller TQFT (links, unordered X )

Apply geometric triangulations to other volume conjectures

Hope: ∃ geometric triangulation ⇒ volume conjecture is true.
It suffices to prove that every triangulation is FAMED!
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