duction Topology (triangulations) Geometry 0000 0000 0000 Algebra (TQFT) 000 Analysis (asympto 00 Conclusion

The Teichmüller TQFT volume conjecture for twist knots

Fathi Ben Aribi

UCLouvain

29th January 2022

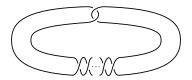
(joint work with François Guéritaud and Eiichi Piguet-Nakazawa) arXiv:1903.09480

"Topology and Geometry of Low-dimensional Manifolds 2022"

These slides are available on my webpage.

Our Goal

Proving the Teichmüller TQFT volume conjecture for twist knots.



- Ontext: quantum topology, volume conjectures.
- **O Topology: triangulating** the **twist knot** complements
- **@ Geometry**: the triangulations contain the hyperbolicity
- **Over the Second Second**
- **One Analysis:** the hyperbolic volume appears asymptotically

Introduction	Topology (triangulations)	Geometry (angles)	Algebra (TQFT)	Analysis (asymptotics)	Conclusion
000000	0000	0000	000	00	00

'84: Jones polynomial, new knot invariant.

'90: Witten retrieves the Jones polynomial via quantum physics.

90s: **New topological invariants** (TQFTs of **Reshitikin-Turaev**, **Turaev-Viro**, ...) are discovered via the intuition from physics.

<u>Andersen-Kashaev '11:</u> **Teichmüller TQFT** of a **triangulated** 3-manifold M, an "**infinite-dimensional** TQFT".

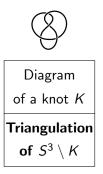
Its partition function $\{Z_{\mathbf{b}}(M) \in \mathbb{C}\}_{\mathbf{b}>0}$ yields an invariant of M.

Volume Conjecture (Andersen-Kashaev '11)

If *M* is a triangulated hyperbolic knot complement, then its hyperbolic volume Vol(M) appears as an exponential decrease rate in $Z_{\mathbf{b}}(M)$ for the limit $\mathbf{b} \to 0^+$.

Introduction	Topology (triangulations)	Geometry (angles)	Algebra (TQFT)	Conclusion
000000	0000	0000	000	00

TOPOLOGY



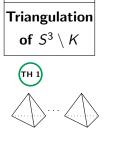
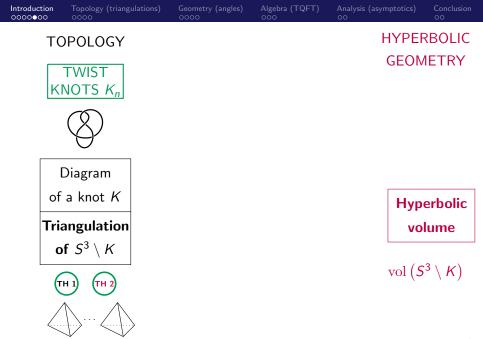
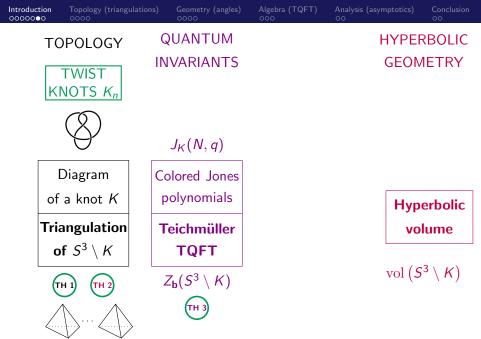


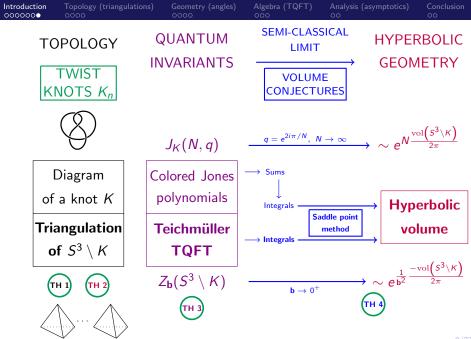
Diagram of a knot *K*



6/23



7/23

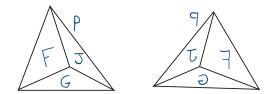


Fathi Ben Aribi The Teichmüller TQFT volume conjecture for twist knots

8/23

A **tetrahedron** = compact, truncated or **ideal** (without vertices).

A triangulation $X = (T_1, ..., T_N, \sim)$ of a 3-manifold M = N tetrahedra and a gluing relation \sim of faces pairwise.



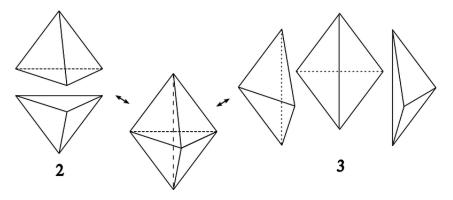
Example : (T_1, T_2, \sim) triangulates either S^3 (compact T_i), $(\overline{S^3 \setminus 4 \text{ points}})$ (ideal T_i) or $(S^3 \setminus 4 \text{ balls})$ (truncated T_i).

Introduction
000000Topology (triangulations)
0000Geometry (angles)
0000Algebra (TQFT)
000Analysis (asymptotics)
00Conclusion
00

(2,3)-Pachner moves are moves between ideal triangulations.

Matveev-Piergallini: X and X' triangulate the same M if and only if they are related by a **finite sequence** of Pachner moves.

 \Rightarrow Useful for constructing **topological invariants** for *M*.



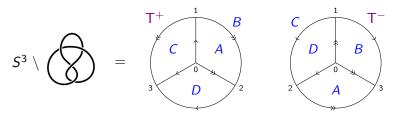
source of the picture: Wikipedia

IntroductionTopology (triangulations)Geometry (angles)Algebra (TQFT)Analysis (asymptotics)Conclusion00000000000000000000000000

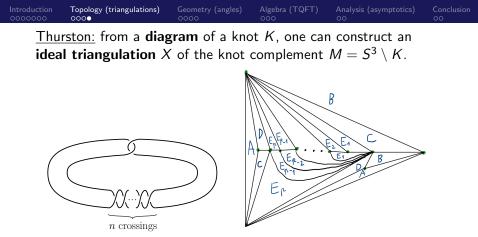
Our tetrahedra have ordered vertices (\Rightarrow oriented edges too). \rightsquigarrow two possible signs $\epsilon(T) \in \{\pm\}$.

A triangulation $X = (T_1, \ldots, T_N, \sim)$ of a 3-manifold M is the datum of N tetrahedra and a gluing relation \sim pairing their faces while respecting the vertex order.

We consider **ideal triangulations** of **open** 3-manifolds, i.e. where the tetrahedra have their **vertices removed**.

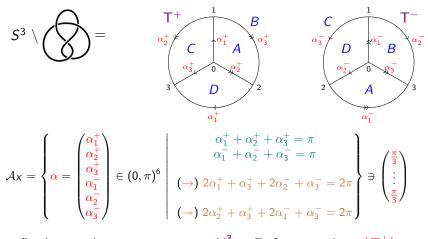


 $\begin{aligned} X^3 &= \{T^+, T^-\}, \ X^2 &= \{A, B, C, D\}, \ X^1 &= \{\rightarrow, \twoheadrightarrow\}, \ X^0 &= \{\cdot\} \\ \text{face maps } x_0, \dots, x_3 \colon X^3 \to X^2, \ \text{for example } x_0(T^+) &= B. \end{aligned}$



The *n*-th twist knot K_n and the triangulation X_n (*n* odd, $p = \frac{n-3}{2}$)

Theorem (TH 1, B.A.-P.N. '18) For all $n \ge 2$, we construct an ideal triangulation X_n of the complement of the twist knot K_n , with $\left\lfloor \frac{n+4}{2} \right\rfloor$ tetrahedra.



 α fixed \rightsquigarrow angle maps $\alpha_1, \alpha_2, \alpha_3 \colon X^3 \to \mathbb{R}$, for example $\alpha_2(T^+) = \alpha^+_{2_{3/23}}$ Fathi Ben Aribi The Teichmüller TQFT volume conjecture for twist knots

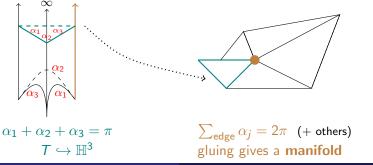
The 3-dimensional hyperbolic space is $\mathbb{H}^3 = \mathbb{R}^2 \times \mathbb{R}_{>0}$ with

$$(ds)^2 = \frac{(dx)^2 + (dy)^2 + (dz)^2}{z^2},$$

a metric which has constant curvature -1.

A knot is **hyperbolic** if its complement M can be endowed with a complete hyperbolic metric of finite **volume** Vol(M).

 \rightsquigarrow a specific $\alpha \in \mathcal{A}_X$ on $X = (T_1, \ldots, T_N, \sim)$ triangulation of M.



For all $n \ge 2$, the twist knot K_n is **hyperbolic**.

Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \ge 2$, the triangulation X_n of $S^3 \setminus K_n$ is **geometric**, i.e. it admits an angle structure $\alpha^0 \in \mathcal{A}_{X_n}$ corresponding to the **complete** hyperbolic structure on the complement of K_n .

X geometric $\Leftrightarrow \exists$ solution to the **nonlinear** gluing equations of X (difficult!)

Existence of a geometric X for any $M \rightsquigarrow$ **Open question** !

<u>Casson-Rivin</u>, Futer-Guéritaud: approach via A_X , the solutions to the **linear** part: maximising the **volume fonctional**.

 $\begin{array}{c} \text{Introduction} \\ \text{occo} \end{array} \begin{array}{c} \text{Topology (triangulations)} \\ \text{occo} \end{array} \begin{array}{c} \text{Geometry (angles)} \\ \text{occ} \end{array} \begin{array}{c} \text{Algebra (TQFT)} \\ \text{occ} \end{array} \begin{array}{c} \text{Analysis (asymptotics)} \\ \text{occ} \end{array} \begin{array}{c} \text{Conclusion} \\ \text{occ} \end{array} \end{array}$

Volume functional Vol: $\mathcal{A}_X \to \mathbb{R}_{\geq 0}$ (strictly concave) is:

$$\operatorname{Vol}(\alpha) := \sum_{T \in X^3} \operatorname{SLi}_2(z(T)) + \arg(1 - z(T)) \log |z(T)|,$$

where $z(T) = \left(\frac{\sin \alpha_3(T)}{\sin \alpha_2(T)}\right)^{\epsilon(T)} e^{i\alpha_1(T)} \in \mathbb{R} + i\mathbb{R}_{>0}$ encodes the angles of T .

Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \ge 2$, the triangulation X_n of $S^3 \setminus K_n$ is geometric, i.e. it admits an angle structure $\alpha^0 \in \mathcal{A}_{X_n}$ corresponding to the complete hyperbolic structure on the complement of K_n .

Sketch of proof of TH2:

- Check that the open polyhedron A_X is **non-empty**.
- <u>General fact</u>: the complete structure α^0 exists $\Leftrightarrow \max_{\overline{\mathcal{A}_X}}$ Vol is reached in \mathcal{A}_X .
- Prove that $\max_{\overline{A_X}}$ Vol cannot be on ∂A_X (case-by-case).

Partition function for the triangulation X (and $\alpha \in A_X$, **b** > 0):

$$Z_{\mathbf{b}}(X,\boldsymbol{\alpha}) = \int_{\overline{x} \in \mathbb{R}^{X^2}} d\overline{x} \prod_{T_1,\ldots,T_N} p_{\mathbf{b}}(T)(\boldsymbol{\alpha})(\overline{x}) \qquad \in \mathbb{C}.$$

Tetrahedral operator: $p_{\mathbf{b}}(\mathcal{T})(\boldsymbol{\alpha})(\overline{x}) \in S'(\mathbb{R}^{X_2})$ is equal to

 $\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right)e^{\left(2\pi i\epsilon(T)x_{0}(T)+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}\epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}$

Faddeev's quantum dilogarithm:

$$\Phi_{\mathbf{b}}(x) := \exp\left(\int_{z \in \mathbb{R} + i0^+} \frac{e^{-2izx} dz}{4\sinh(z\mathbf{b})\sinh(z\mathbf{b}^{-1})z}\right)$$

Proposition (Andersen-Kashaev '11)

 $|Z_{\mathbf{b}}(X, \alpha)|$ is invariant under angled Pachner moves on (X, α) .

Partition function for the triangulation X (and $\alpha \in A_X$, **b** > 0):

$$Z_{\mathbf{b}}(X,\boldsymbol{\alpha}) = \int_{\overline{x}\in\mathbb{R}^{X^2}} d\overline{x} \prod_{T_1,\ldots,T_N} p_{\mathbf{b}}(T)(\boldsymbol{\alpha})(\overline{x}) \qquad \in \mathbb{C}.$$

Tetrahedral operator: $p_{\mathbf{b}}(T)(\alpha)(\overline{x}) \in S'(\mathbb{R}^{\chi_2})$ is equal to

 $\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right)e^{\left(2\pi i\epsilon(T)x_{0}(T)+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}\epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}$

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M. (1) $\exists \lambda_X$ linear combination of dihedral angles, \exists smooth function $J_X : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{C}$ such that \forall angle structures α , \forall **b** > 0,

$$|Z_{\mathbf{b}}(X,\boldsymbol{\alpha})| = \left| \int_{x \in \mathbb{R}} J_X(\mathbf{b},x) e^{-(\mathbf{b}+\mathbf{b}^{-1}) \times \lambda_X(\boldsymbol{\alpha})} dx \right|.$$

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M.
(1) ∃ λ_X linear combination of dihedral angles, ∃ smooth function J_X: ℝ_{>0} × ℝ → ℂ such that ∀ angle structures α, ∀ b > 0,

$$|Z_{\mathbf{b}}(X,\boldsymbol{\alpha})| = \left| \int_{x \in \mathbb{R}} J_X(\mathbf{b},x) e^{-(\mathbf{b}+\mathbf{b}^{-1}) \times \lambda_X(\boldsymbol{\alpha})} dx \right|.$$

Algebra (TQFT)

(2) The hyperbolic volume Vol(M) is obtained as the following semi-classical limit:

$$\lim_{\mathbf{b}\to 0^+} 2\pi \mathbf{b}^2 \log |J_X(\mathbf{b},0)| = -\mathrm{Vol}(M).$$

Theorem (TH3, B.A.-P.N. '18)

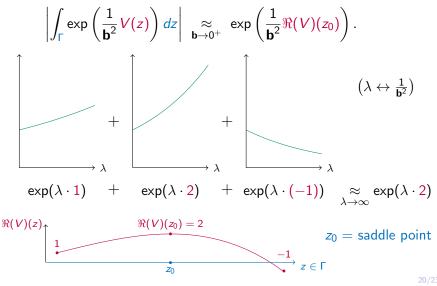
(1) is proven for all twist knots, via algebraic computations.

Theorem (TH4, B.A.-G.-P.N. '20)

(2) is proven for all twist knots, via asymptotic analysis.

IntroductionTopology (triangulations)Geometry (angles)Algebra (TQFT)Analysis (asymptotics)Conclusion000000000000000000000000

The **saddle point method** gives (under technical conditions) **asymptotics** of complex **integrals with parameters** of the form:



Fathi Ben Aribi The Teichmüller TQFT volume conjecture for twist knots

Theorem (TH4, B.A.-G.-P.N. '20)

$$\lim_{\mathbf{b}\to 0^+} 2\pi \mathbf{b}^2 \log |J_{X_n}(\mathbf{b}, 0)| = -\operatorname{Vol}(S^3 \setminus K_n).$$
Sketch of proof: (a) Semi-classical approximation:

$$|J_{X_n}(\mathbf{b}, 0)| \approx |\int_{\Gamma} \exp\left(\frac{1}{\mathbf{b}^2} V(z)\right) dz|.$$
comes from $\log \Phi_{\mathbf{b}} \approx \operatorname{Li}_2$ + technical error bounds
(b) Saddle point method:

$$\left|\int_{\Gamma} \exp\left(\frac{1}{\mathbf{b}^2} V(z)\right) dz\right| \approx \exp\left(\frac{1}{\mathbf{b}^2} \Re(V)(z_0)\right).$$
we check that z_0 exists thanks to TH2 (geometricity).

(c) Finally, $\Re(V)(z_0) = -\frac{1}{2\pi} \operatorname{Vol}(S^3 \setminus K_n)$, from $\operatorname{Li}_2 \leftrightarrow \operatorname{Vol}$.

Future possible directions:

Understand the **combinatorial simplifications** in $Z_{\mathbf{b}}(X, \alpha)$ (\leftrightarrow Neumann-Zagier matrices?)

Hope: \exists geometric triangulation of M \Rightarrow the Teichmüller TQFT Volume Conjecture is true.

Apply geometric triangulations to other volume conjectures:

- Chen-Yang volume conjecture for Turaev-Viro invariants,
- Baseilhac–Benedetti volume conjecture for Quantum Hyperbolic Invariants.

Topology (triangulations)	Geometry (angles)	Algebra (TQFT)	Conclusion
			00

Thank you for your attention!