The Teichmüller TQFT Volume Conjecture for Twist Knots

Fathi Ben Aribi

UCLouvain - Sorbonne-Université
AIM Workshop "Quantum invariants and low-dimensional topology"

19th August 2023
(joint work with François Guéritaud and Eiichi Piguet-Nakazawa)
arXiv:1903.09480, t.b.p. in Quantum Topology

Our Goal

Proving the Teichmüller TQFT volume conjecture for twist knots.

(0) Context: quantum topology, volume conjectures.
(1) Topology: triangulating the twist knot complements
(2) Geometry: the triangulations contain the hyperbolicity
(3) Algebra: computing the Teichmüller TQFT
(3) Analysis: the hyperbolic volume appears asymptotically
(Optional: parts/sketches of proofs, at the audience's preference)

Andersen-Kashaev '11: Teichmüller TQFT of a triangulated 3-manifold M, an "infinite-dimensional TQFT".
Its partition function $\left\{Z_{\mathbf{b}}(M) \in \mathbb{C}\right\}_{\mathbf{b}>0}$ yields an invariant.

Volume Conjecture (Andersen-Kashaev '11)

If M is a triangulated hyperbolic knot complement, then its hyperbolic volume $\operatorname{Vol}(M)$ appears as an exponential decrease rate in $Z_{\mathbf{b}}(M)$ for the limit $\mathbf{b} \rightarrow 0^{+}$.

Andersen-Kashaev '11: Proof for 4_{1} and 52 .
Andersen-Nissen '17: Proof for 6_{1}.

Theorem (B.A.-Guéritaud-Piguet-Nakazawa '20)

The Conjecture holds for all twist knot complements.
Piguet-Nakazawa '21: Proof for integral DF of the Whitehead link. Uemura '23: Proof for 7_{3}.

TOPOLOGY

Diagram of a knot K

Triangulation of $S^{3} \backslash K$

TOPOLOGY

TWIST
 KNOTS K_{n}

Diagram
of a knot K
Triangulation of $S^{3} \backslash K$
(t)

TOPOLOGY

TWIST
KNOTS K

HYPERBOLIC
GEOMETRY

Hyperbolic volume
$\operatorname{vol}\left(S^{3} \backslash K\right)$

TOPOLOGY

QUANTUM INVARIANTS

$$
J_{K}(N, q)
$$

Diagram of a knot K
Triangulation
of $S^{3} \backslash K$

Colored Jones polynomials

Teichmüller TQFT
$Z_{\mathbf{b}}\left(S^{3} \backslash K\right)$
TH_{3}

HYPERBOLIC GEOMETRY

Hyperbolic

 volume$\operatorname{vol}\left(S^{3} \backslash K\right)$

TOPOLOGY

TWIST
KNOTS K_{n}

Diagram

$$
\text { of a knot } K
$$

Triangulation of $S^{3} \backslash K$

QUANTUM
INVARIANTS

$$
J_{K}(N, q) \xrightarrow{q=e^{2 i \pi / N}, N \rightarrow \infty} \sim e^{N \frac{\operatorname{vol}\left(s^{3} \backslash K\right)}{2 \pi}}
$$

Colored Jones
polynomials
:---:
TQFT

$Z_{\mathbf{b}}\left(S^{3} \backslash K\right)$

HYPERBOLIC GEOMETRY

A tetrahedron $=$ compact, truncated or ideal (without vertices).

A triangulation $X=\left(T_{1}, \ldots, T_{N}, \sim\right)$ of a 3-manifold $M=$ N tetrahedra and a gluing relation \sim of faces pairwise.

Example: $\left(T_{1}, T_{2}, \sim\right)$ triangulates either S^{3} (compact $\left.T_{i}\right)$,

$(2,3)$-Pachner moves are moves between ideal triangulations.
Matveev-Piergallini: X and X^{\prime} triangulate the same M if and only if they are related by a finite sequence of Pachner moves.
\Rightarrow Useful for constructing topological invariants for M.

3
source of the picture: Wikipedia

Our tetrahedra have ordered vertices (\Rightarrow oriented edges too). \leadsto two possible signs $\epsilon(T) \in\{ \pm\}$.

A triangulation $X=\left(T_{1}, \ldots, T_{N}, \sim\right)$ of a 3-manifold M is the datum of N tetrahedra and a gluing relation \sim pairing their faces while respecting the vertex order.

We consider ideal triangulations of open 3-manifolds, i.e. where the tetrahedra have their vertices removed.

$X^{3}=\left\{T^{+}, T^{-}\right\}, \quad X^{2}=\{A, B, C, D\}, \quad X^{1}=\{\rightarrow, \rightarrow\}, \quad X^{0}=\{\cdot\}$ face maps $x_{0}, \ldots, x_{3}: X^{3} \rightarrow X^{2}$, for example $x_{0}\left(T^{+}\right)=B$.

Thurston: from a diagram of a knot K, one can construct an ideal triangulation X of the knot complement $M=S^{3} \backslash K$.

The n-th twist $k n o t K_{n}$ and the triangulation $X_{n}\left(n\right.$ odd, $\left.p=\frac{n-3}{2}\right)$

Theorem (TH 1, B.A.-P.N. '18)

For all $n \geqslant 2$, we construct an ideal triangulation X_{n} of the complement of the twist knot K_{n}, with $\left\lfloor\frac{n+4}{2}\right\rfloor$ tetrahedra.

Thurston: from a diagram of a knot K, one can construct an ideal triangulation X of the knot complement $M=S^{3} \backslash K$.

The n-th twist knot K_{n} and the triangulation $X_{n}\left(n\right.$ odd, $\left.p=\frac{n-3}{2}\right)$

Theorem (TH 1, B.A.-P.N. '18)

For all $n \geqslant 2$, we construct an ideal triangulation X_{n} of the complement of the twist knot K_{n}, with $\left\lfloor\frac{n+4}{2}\right\rfloor$ tetrahedra.

Sketch of proof of TH1: First draw a tetrahedron around each crossing of K, whose diagram lives in the equatorial plane of S^{3}.

Then collapse the tetrahedra into segments ($K \leadsto \cdot$). Hence the collapsed S^{3} decomposes into two polyhedra.
Finally, triangulate the two polyhedra (several possible ways).
\mathcal{A}_{X} is the space of angle structures on $X=\left(T_{1}, \ldots, T_{N}, \sim\right)$, i.e. of 3 N -tuples $\alpha \in(0, \pi)^{3 N}$ of dihedral angles on edges, such that the angle sum is π at each vertex and 2π around each edge.

$\mathcal{A}_{X}=\left\{\left.\alpha=\left(\begin{array}{l}\alpha_{1}^{+} \\ \alpha_{2}^{+} \\ \alpha_{3}^{+} \\ \alpha_{1}^{-} \\ \alpha_{2}^{-} \\ \alpha_{3}^{-}\end{array}\right) \in(0, \pi)^{6} \right\rvert\,\right.$

$$
\left.\left\lvert\, \begin{array}{c}
\alpha_{1}^{+}+\alpha_{2}^{+}+\alpha_{3}^{+}=\pi \\
\alpha_{1}^{-}+\alpha_{2}^{-}+\alpha_{3}^{-}=\pi \\
(\rightarrow) 2 \alpha_{1}^{+}+\alpha_{3}^{+}+2 \alpha_{2}^{-}+\alpha_{3}^{-}=2 \pi \\
(\rightarrow) 2 \alpha_{2}^{+}+\alpha_{3}^{+}+2 \alpha_{1}^{-}+\alpha_{3}^{-}=2 \pi
\end{array}\right.\right\} \ni\left(\begin{array}{c}
\frac{\pi}{3} \\
\vdots \\
\frac{\pi}{3}
\end{array}\right)
$$

α fixed \sim angle maps $\alpha_{1}, \alpha_{2}, \alpha_{3}: X^{3} \rightarrow \mathbb{R}$, for example $\alpha_{2}\left(T^{+}\right)=\alpha_{25 / 26}^{+}$

The 3-dimensional hyperbolic space is $\mathbb{H}^{3}=\mathbb{R}^{2} \times \mathbb{R}_{>0}$ with

$$
(d s)^{2}=\frac{(d x)^{2}+(d y)^{2}+(d z)^{2}}{z^{2}}
$$

a metric which has constant curvature -1 .

A knot is hyperbolic if its complement M can be endowed with a complete hyperbolic metric of finite volume $\operatorname{Vol}(M)$.
\leadsto a specific $\alpha \in \mathcal{A}_{X}$ on $X=\left(T_{1}, \ldots, T_{N}, \sim\right)$ triangulation of M.

$$
\begin{gathered}
\alpha_{1}+\alpha_{2}+\alpha_{3}=\pi \\
T \hookrightarrow \mathbb{H}^{3}
\end{gathered}
$$

$\sum_{\text {edge }} \alpha_{j}=2 \pi \quad(+$ others $)$
gluing gives a manifold

For all $n \geqslant 2$, the twist knot K_{n} is hyperbolic.
Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \geqslant 2$, the triangulation X_{n} of $S^{3} \backslash K_{n}$ is geometric, i.e. it admits an angle structure $\alpha^{0} \in \mathcal{A}_{X_{n}}$ corresponding to the complete hyperbolic structure on the complement of K_{n}.
X geometric $\Leftrightarrow \exists$ solution to the nonlinear gluing equations of X (difficult!)

Casson-Rivin, Futer-Guéritaud: approach via \mathcal{A}_{X}, the solutions to the linear part: maximising the volume fonctional.

Dilogarithm function: $\operatorname{Li}_{2}(z)=-\int_{0}^{z} \log (1-u) \frac{d u}{u} \quad$ for $z \in \mathbb{C} \backslash[1, \infty)$.
Volume functional Vol: $\mathcal{A}_{X} \rightarrow \mathbb{R}_{\geqslant 0}$ (strictly concave) is:

$$
\operatorname{Vol}(\alpha):=\sum_{T \in X^{3}} \Im \operatorname{Li}_{2}(z(T))+\arg (1-z(T)) \log |z(T)|,
$$

where $z(T)=\left(\frac{\sin \alpha_{3}(T)}{\sin \alpha_{2}(T)}\right)^{\epsilon(T)} e^{i \alpha_{1}(T)} \in \mathbb{R}+i \mathbb{R}_{>0}$ encodes the angles of T.

Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \geqslant 2$, the triangulation X_{n} of $S^{3} \backslash K_{n}$ is geometric, i.e. it admits an angle structure $\alpha^{0} \in \mathcal{A}_{X_{n}}$ corresponding to the complete hyperbolic structure on the complement of K_{n}.

Sketch of proof of TH2:

- Check that the open polyhedron \mathcal{A}_{X} is non-empty.
- General fact: the complete structure α^{0} exists $\Leftrightarrow \frac{\max }{\mathcal{A}_{X}} \mathrm{Vol}$ is reached in \mathcal{A}_{X}.
- Prove that $\frac{\max }{\mathcal{A}_{X}}$ Vol cannot be on $\partial \mathcal{A}_{X}$ (case-by-case).
$S\left(\mathbb{R}^{n}\right)=$ rapidly decreasing functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$.
$S^{\prime}\left(\mathbb{R}^{n}\right)=$ dual of $S\left(\mathbb{R}^{n}\right)$, tempered distributions.
Example: $X^{2}=\{A, B\}$, Dirac delta function
$\delta(A) \in S^{\prime}\left(\mathbb{R}^{X^{2}}\right) \cong S^{\prime}\left(\mathbb{R}^{2}\right) \quad$ acts by: $\quad \forall f \in S\left(\mathbb{R}^{2}\right)$,
$\delta(A) \cdot f=\iint_{(A, B) \in \mathbb{R}^{2}} d A d B \delta(A) f(A, B)=\int_{B \in \mathbb{R}} d B f(0, B) \in \mathbb{C}$.
4 Product of Dirac deltas is sometimes but not always defined.
$\delta(A) \delta(A)$ is not defined (because of linear dependance).
$\delta(A+B) \delta(A-B)=\frac{1}{2} \delta(A) \delta(B)=\left(f \mapsto \frac{1}{2} f(0,0)\right)$ is well-defined.

Partition function for the triangulation $\mathbf{X}\left(\right.$ and $\left.\alpha \in \mathcal{A}_{X}, \mathbf{b}>0\right)$:

$$
Z_{\mathbf{b}}(X, \alpha)=\int_{\bar{x} \in \mathbb{R}^{x^{2}}} d \bar{x} \prod_{T_{1}, \ldots, T_{N}} p_{\mathbf{b}}(T)(\alpha)(\bar{x}) \quad \in \mathbb{C} .
$$

Tetrahedral operator: $p_{\mathbf{b}}(T)(\alpha)(\bar{x}) \in S^{\prime}\left(\mathbb{R}^{X_{2}}\right)$ is equal to

$$
\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right) e^{\left(2 \pi i \epsilon(T) x_{0}(T)+\left(\mathbf{b}+\mathbf{b}^{-1}\right) \alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi} \epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}
$$

Faddeev's quantum dilogarithm:

$$
\Phi_{\mathbf{b}}(x):=\exp \left(\int_{z \in \mathbb{R}+i 0^{+}} \frac{e^{-2 i z x} d z}{4 \sinh (z \mathbf{b}) \sinh \left(z \mathbf{b}^{-1}\right) z}\right)
$$

Proposition (Andersen-Kashaev '11)

$\left|Z_{\mathbf{b}}(X, \alpha)\right|$ is invariant under angled Pachner moves on (X, α).

Partition function for the triangulation $\mathbf{X}\left(\right.$ and $\left.\alpha \in \mathcal{A}_{X}, \mathbf{b}>0\right)$:

$$
Z_{\mathbf{b}}(X, \alpha)=\int_{\bar{x} \in \mathbb{R}^{x^{2}}} d \bar{x} \prod_{T_{1}, \ldots, T_{N}} p_{\mathbf{b}}(T)(\alpha)(\bar{x}) \quad \in \mathbb{C} .
$$

Tetrahedral operator: $p_{\mathrm{b}}(T)(\alpha)(\bar{x}) \in S^{\prime}\left(\mathbb{R}^{X_{2}}\right)$ is equal to

$$
\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right) e^{\left(2 \pi i \epsilon(T) x_{0}(T)+\left(\mathbf{b}+\mathbf{b}^{-1}\right) \alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi} \epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}
$$

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M.
(1) $\exists \lambda_{X}$ linear combination of dihedral angles, \exists smooth function $J_{X}: \mathbb{R}_{>0} \times \mathbb{R} \rightarrow \mathbb{C}$ such that \forall angle structures $\alpha, \forall \mathbf{b}>0$,

$$
\left|Z_{\mathbf{b}}(X, \alpha)\right|=\left|\int_{x \in \mathbb{R}} J_{X}(\mathbf{b}, x) e^{-\left(\mathbf{b}+\mathbf{b}^{-1}\right) \times \lambda_{X}(\alpha)} d x\right|
$$

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M.
(1) $\exists \lambda_{X}$ linear combination of dihedral angles, \exists smooth function $J_{X}: \mathbb{R}_{>0} \times \mathbb{R} \rightarrow \mathbb{C}$ such that \forall angle structures $\alpha, \forall \mathbf{b}>0$,

$$
\left|Z_{\mathbf{b}}(X, \alpha)\right|=\left|\int_{x \in \mathbb{R}} J_{X}(\mathbf{b}, x) e^{-\left(\mathbf{b}+\mathbf{b}^{-1}\right) \times \lambda_{X}(\alpha)} d x\right|
$$

(2) The hyperbolic volume $\operatorname{Vol}(M)$ is obtained as the following semi-classical limit:

$$
\lim _{\mathbf{b} \rightarrow 0^{+}} 2 \pi \mathbf{b}^{2} \log \left|J_{X}(\mathbf{b}, 0)\right|=-\operatorname{Vol}(M)
$$

Theorem (TH3, B.A.-P.N. '18)

(1) is proven for all twist knots, via algebraic computations.

Theorem (TH4, B.A.-G.-P.N. '20)

(2) is proven for all twist knots, via asymptotic analysis.

Proof of TH3, easiest example: For $K=4_{1}$, we find $Z_{\mathbf{b}}(X, \alpha)=$

$$
\iiint \int \frac{d A d B d C d D}{} \frac{d(B-D+C) \delta(C-A+B) \quad \Phi_{\mathbf{b}}\left(D-B+\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi}\left(\alpha_{2}^{-}+\alpha_{3}^{-}\right)\right)}{e^{\left(2 \pi i B+\left(\mathbf{b}+\mathbf{b}^{-1}\right) \alpha_{3}^{+}\right)(C-A)} e^{\left(-2 \pi i C+\left(\mathbf{b}+\mathbf{b}^{-1}\right) \alpha_{3}^{-}\right)(B-D)} \Phi_{\mathbf{b}}\left(A-C-\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi}\left(\alpha_{2}^{+}+\alpha_{3}^{+}\right)\right)} .
$$

Then we change the variables: $2 x=B+C+\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)$, $2 y=B-C+\frac{i\left(\mathbf{b}+\mathbf{b}^{-1}\right)}{2 \pi}\left(\alpha_{1}^{+}+\alpha_{1}^{-}-2 \pi\right)$ and $A=D=B+C$.

Thus, by taking the module, $\left|Z_{\mathbf{b}}(X, \alpha)\right|=$

$$
\left|\iint \frac{d x d y \Phi_{\mathbf{b}}(x+y)}{e^{-8 \pi i x y} \Phi_{\mathbf{b}}(x-y)} e^{-\left(\mathbf{b}+\mathbf{b}^{-1}\right)\left(\left(2 \alpha_{2}^{+}+\alpha_{3}^{+}\right)(x+y)+\left(2 \alpha_{2}^{-}+\alpha_{3}^{-}\right)(x-y)\right)}\right|
$$

Finally we obtain (1) via $(\rightarrow) 2 \alpha_{1}^{+}+\alpha_{3}^{+}+2 \alpha_{2}^{-}+\alpha_{3}^{-}=2 \pi$, with
$J_{X}(\mathbf{b}, x)=\int_{y \in \Gamma} d y e^{8 \pi i x y} \frac{\Phi_{\mathbf{b}}(x+y)}{\Phi_{\mathbf{b}}(x-y)}$ and $\lambda_{X}(\alpha)=4 \alpha_{2}^{+}+2 \alpha_{3}^{+}$.

The saddle point method gives (under technical conditions) asymptotics of complex integrals with parameters of the form:

$$
\left|\int_{\Gamma} \exp \left(\frac{1}{\mathbf{b}^{2}} V(z)\right) d z\right| \underset{\mathbf{b} \rightarrow 0^{+}}{\approx} \exp \left(\frac{1}{\mathbf{b}^{2}} \Re(V)\left(z_{0}\right)\right)
$$

$$
\left(\lambda \leftrightarrow \frac{1}{b^{2}}\right)
$$

$$
\exp (\lambda \cdot 1)+\exp (\lambda \cdot 2)+\exp (\lambda \cdot(-1)) \underset{\lambda \rightarrow \infty}{\approx} \exp (\lambda \cdot 2)
$$

$z_{0}=$ saddle point

Theorem (TH4, B.A.-G.-P.N. '20)

$$
\lim _{\mathbf{b} \rightarrow 0^{+}} 2 \pi \mathbf{b}^{2} \log \left|J_{X_{n}}(\mathbf{b}, 0)\right|=-\operatorname{Vol}\left(S^{3} \backslash K_{n}\right)
$$

Sketch of proof: (a) Semi-classical approximation:

$$
\left|J_{X_{n}}(\mathbf{b}, 0)\right| \underset{\mathbf{b} \rightarrow 0^{+}}{\approx}\left|\int_{\Gamma} \exp \left(\frac{1}{\mathbf{b}^{2}} V(z)\right) d z\right| .
$$

comes from $\log \Phi_{\mathbf{b}} \underset{\mathbf{b} \rightarrow 0^{+}}{\approx} \mathrm{Li}_{2}+$ technical error bounds
(b) Saddle point method:

$$
\left|\int_{\Gamma} \exp \left(\frac{1}{\mathbf{b}^{2}} V(z)\right) d z\right| \underset{\mathbf{b} \rightarrow 0^{+}}{\approx} \exp \left(\frac{1}{\mathbf{b}^{2}} \Re(V)\left(z_{0}\right)\right)
$$

we check that z_{0} exists thanks to TH 2 (geometricity).
(c) Finally, $\Re(V)\left(z_{0}\right)=-\frac{1}{2 \pi} \operatorname{Vol}\left(S^{3} \backslash K_{n}\right), \quad$ from $\mathrm{Li}_{2} \leftrightarrow \operatorname{Vol}$.

Ongoing projects:

(with Guéritaud) Proof for fibered M^{3} with fiber a punctured torus
(with Baseilhac) Vol Conj for BB invariants for twist knots

Future possible directions:

Algorithm Knot diagram \longrightarrow Triangulation (many choices)
Combinatorial simplifications in $Z_{\mathbf{b}}(X, \alpha)(\leftrightarrow$ NZ datum?)
New formulations of Teichmüller TQFT (links, unordered X)
More analysis for asymptotic expansion (\rightarrow 1-loop invariant?)
Apply geometric triangulations to other volume conjectures
Hope: \exists geometric triangulation \Rightarrow volume conjecture is true.

