Introduction 0000000 ometry (angles)

Algebra (TQFT)

Analysis (asyı 00

The Teichmüller TQFT Volume Conjecture for Twist Knots

Fathi Ben Aribi

UCLouvain - Sorbonne-Université

AIM Workshop "Quantum invariants and low-dimensional topology"

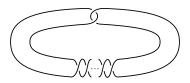
19th August 2023

(joint work with François Guéritaud and Eiichi Piguet-Nakazawa)

arXiv:1903.09480, t.b.p. in *Quantum Topology*

Our Goal

Proving the Teichmüller TQFT volume conjecture for twist knots.



- **Ontext:** quantum topology, volume conjectures.
- **O Topology: triangulating** the twist knot complements
- **@ Geometry**: the triangulations contain the hyperbolicity
- Algebra: computing the Teichmüller TQFT
- **One Analysis:** the hyperbolic volume appears asymptotically

(Optional: parts/sketches of proofs, at the audience's preference)

<u>Andersen–Kashaev '11:</u> **Teichmüller TQFT** of a **triangulated** 3-manifold M, an "**infinite-dimensional** TQFT".

Its partition function $\{Z_{\mathbf{b}}(M) \in \mathbb{C}\}_{\mathbf{b}>0}$ yields an invariant.

Volume Conjecture (Andersen–Kashaev '11)

If *M* is a triangulated hyperbolic knot complement, then its hyperbolic volume Vol(M) appears as an exponential decrease rate in $Z_b(M)$ for the limit $b \to 0^+$.

<u>Andersen–Kashaev '11:</u> Proof for 4_1 and 5_2 . <u>Andersen–Nissen '17:</u> Proof for 6_1 .

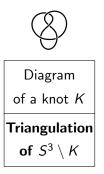
Theorem (B.A.–Guéritaud–Piguet-Nakazawa '20)

The Conjecture holds for all twist knot complements.

Piguet-Nakazawa '21: Proof for integral DF of the Whitehead link. <u>Uemura '23:</u> Proof for 7₃.

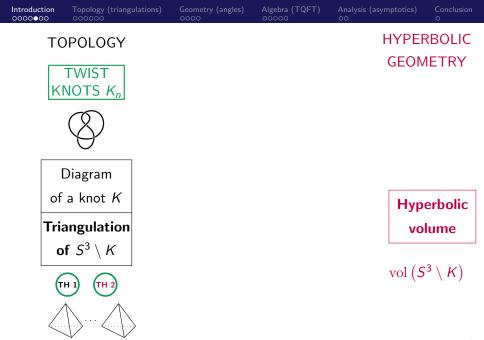
Topology (triangulations) 000000	Geometry (angles) 0000		Conclusion 0

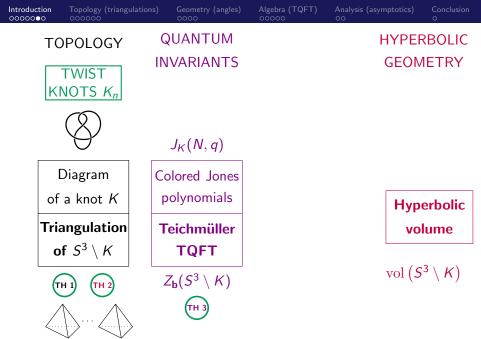
TOPOLOGY

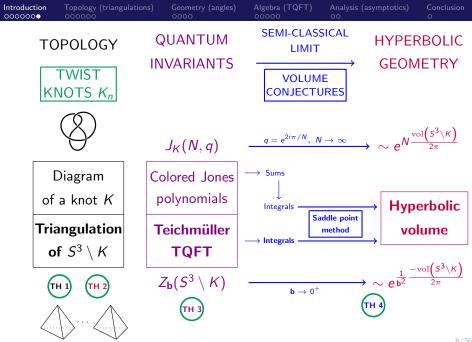


of a knot *K*

of $S^3 \setminus K$



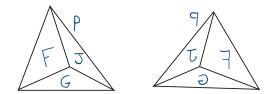




Fathi Ben Aribi The Teichmüller TQFT Volume Conjecture for Twist Knots

A **tetrahedron** = compact, truncated or **ideal** (without vertices).

A triangulation $X = (T_1, ..., T_N, \sim)$ of a 3-manifold M = N tetrahedra and a gluing relation \sim of faces pairwise.



Example : (T_1, T_2, \sim) triangulates either S^3 (compact T_i), $(\overline{S^3 \setminus 4 \text{ points}})$ (ideal T_i) or $(S^3 \setminus 4 \text{ balls})$ (truncated T_i).

Fathi Ben Aribi

The Teichmüller TQFT Volume Conjecture for Twist Knots

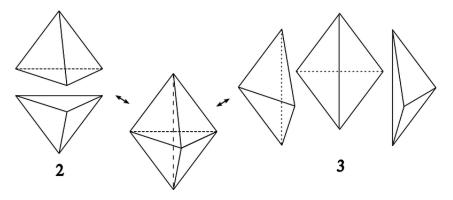
 Introduction
 Topology (triangulations)
 Geometry (angles)
 Algebra (TQFT)
 Analysis (asymptotics)
 Conclusion

 0000000
 00000
 00000
 00000
 00
 0
 0

(2,3)-Pachner moves are moves between ideal triangulations.

Matveev-Piergallini: X and X' triangulate the same M if and only if they are related by a **finite sequence** of Pachner moves.

 \Rightarrow Useful for constructing **topological invariants** for *M*.



source of the picture: Wikipedia

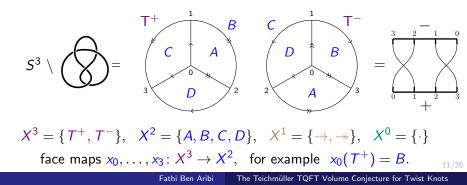
 Introduction
 Topology (triangulations)
 Geometry (angles)
 Algebra (TQFT)
 Analysis (asymptotics)
 Conclusion

 000000
 00000
 0000
 00000
 00
 0
 0

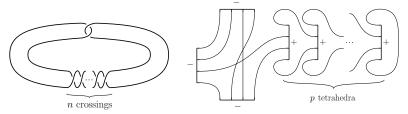
Our tetrahedra have ordered vertices (\Rightarrow oriented edges too). \rightsquigarrow two possible signs $\epsilon(T) \in \{\pm\}$.

A triangulation $X = (T_1, \ldots, T_N, \sim)$ of a 3-manifold M is the datum of N tetrahedra and a gluing relation \sim pairing their faces while respecting the vertex order.

We consider **ideal triangulations** of **open** 3-manifolds, i.e. where the tetrahedra have their **vertices removed**.



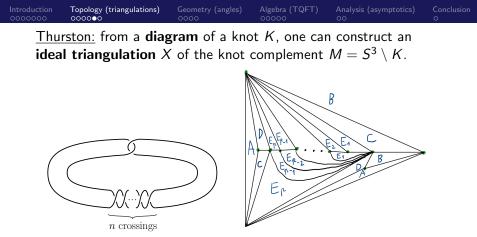
<u>Thurston</u>: from a **diagram** of a knot K, one can construct an **ideal triangulation** X of the knot complement $M = S^3 \setminus K$.



The *n*-th twist knot K_n and the triangulation X_n (*n* odd, $p = \frac{n-3}{2}$)

Theorem (TH 1, B.A.-P.N. '18)

For all $n \ge 2$, we construct an ideal triangulation X_n of the complement of the twist knot K_n , with $\left|\frac{n+4}{2}\right|$ tetrahedra.



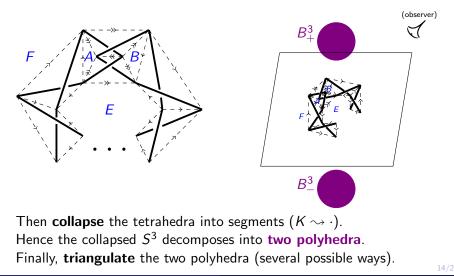
The *n*-th twist knot K_n and the triangulation X_n (*n* odd, $p = \frac{n-3}{2}$)

Theorem (TH 1, B.A.-P.N. '18)For all $n \ge 2$, we construct an ideal triangulation X_n of the
complement of the twist knot K_n , with $\lfloor \frac{n+4}{2} \rfloor$ tetrahedra.

 Introduction
 Topology (triangulations)
 Geometry (angles)
 Algebra (TQFT)
 Analysis (asymptotics)
 Conclusion

 0000000
 00000●
 00000
 00
 00
 0

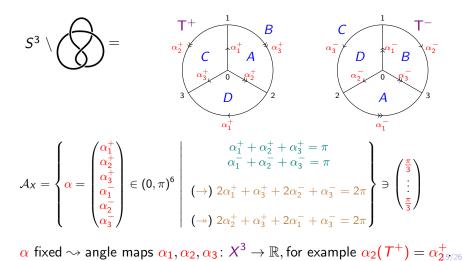
<u>Sketch of proof of TH1</u>: First draw a tetrahedron around each **crossing** of K, whose diagram lives in the **equatorial plane** of S^3 .



 \mathcal{A}_X is the space of **angle structures** on $X = (T_1, \ldots, T_N, \sim)$, i.e. of 3N-tuples $\alpha \in (0, \pi)^{3N}$ of **dihedral angles** on edges, such that the angle sum is π at each vertex and 2π around each edge.

Algebra (TQFT)

Geometry (angles)



Fathi Ben Aribi The Teichmüller TQFT Volume Conjecture for Twist Knots

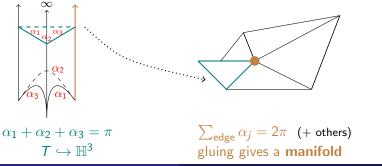
The 3-dimensional hyperbolic space is $\mathbb{H}^3 = \mathbb{R}^2 \times \mathbb{R}_{>0}$ with

$$(ds)^2 = \frac{(dx)^2 + (dy)^2 + (dz)^2}{z^2},$$

a metric which has constant curvature -1.

A knot is **hyperbolic** if its complement M can be endowed with a complete hyperbolic metric of finite **volume** Vol(M).

 \rightsquigarrow a specific $\alpha \in \mathcal{A}_X$ on $X = (T_1, \ldots, T_N, \sim)$ triangulation of M.



Fathi Ben Aribi The Teichmüller TQFT Volume Conjecture for Twist Knots

	Topology (triangulations)	Geometry (angles)	Algebra (TQFT)	Conclusion
0000000		0000		

For all $n \ge 2$, the twist knot K_n is **hyperbolic**.

Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \ge 2$, the triangulation X_n of $S^3 \setminus K_n$ is **geometric**, *i.e.* it admits an angle structure $\alpha^0 \in \mathcal{A}_{X_n}$ corresponding to the **complete** hyperbolic structure on the complement of K_n .

X geometric $\Leftrightarrow \exists$ solution to the **nonlinear** gluing equations of X (difficult!)

<u>Casson-Rivin, Futer-Guéritaud</u>: approach via A_X , the solutions to the **linear** part: maximising the **volume fonctional**.

 $\begin{array}{c|c} \text{Introduction} & \text{Topology (triangulations)} & \text{Geometry (angles)} & \text{Algebra (TQFT)} & \text{Analysis (asymptotics)} & \text{Conclusion} \\ \hline \textbf{Oilogarithm function:} & \text{Li}_2(z) = -\int_0^z \log(1-u)\frac{du}{u} & \text{for } z \in \mathbb{C} \setminus [1,\infty). \end{array}$

Volume functional Vol: $\mathcal{A}_X \to \mathbb{R}_{\geq 0}$ (strictly concave) is:

$$\operatorname{Vol}(\alpha) := \sum_{T \in X^3} \operatorname{SLi}_2(z(T)) + \arg(1 - z(T)) \log |z(T)|,$$

where $z(T) = \left(\frac{\sin \alpha_3(T)}{\sin \alpha_2(T)}\right)^{\epsilon(T)} e^{i\alpha_1(T)} \in \mathbb{R} + i\mathbb{R}_{>0}$ encodes the angles of T .

Theorem (TH2, B.A.-G.-P.N. '20)

For all $n \ge 2$, the triangulation X_n of $S^3 \setminus K_n$ is geometric, i.e. it admits an angle structure $\alpha^0 \in \mathcal{A}_{X_n}$ corresponding to the complete hyperbolic structure on the complement of K_n .

Sketch of proof of TH2:

- Check that the open polyhedron A_X is **non-empty**.
- <u>General fact</u>: the complete structure α^0 exists $\Leftrightarrow \max_{\overline{\mathcal{A}_X}}$ Vol is reached in \mathcal{A}_X .
- Prove that $\max_{\overline{A_X}}$ Vol cannot be on ∂A_X (case-by-case).

 $S(\mathbb{R}^n)$ = rapidly decreasing functions $f : \mathbb{R}^n \to \mathbb{C}$.

 $S'(\mathbb{R}^n)$ = dual of $S(\mathbb{R}^n)$, tempered distributions.

$$\delta(A) \cdot f = \iint_{(A,B) \in \mathbb{R}^2} dA dB \, \delta(A) \, f(A,B) = \int_{B \in \mathbb{R}} dB \, f(0,B) \in \mathbb{C}.$$

A Product of Dirac deltas is sometimes but not always defined.

 $\delta(A)\delta(A)$ is not defined (because of **linear dependance**).

 $\delta(A+B)\delta(A-B) = \frac{1}{2}\delta(A)\delta(B) = (f \mapsto \frac{1}{2}f(0,0))$ is well-defined.

 Introduction
 Topology (triangulations)
 Geometry (angles)
 Algebra (TQFT)
 Analysis (asymptotics)
 Conclusion

 0000000
 00000
 0000
 0000
 00
 0
 0

Partition function for the triangulation X (and $\alpha \in A_X$, **b** > 0):

$$Z_{\mathbf{b}}(X,\boldsymbol{\alpha}) = \int_{\overline{x} \in \mathbb{R}^{X^2}} d\overline{x} \prod_{T_1,\ldots,T_N} p_{\mathbf{b}}(T)(\boldsymbol{\alpha})(\overline{x}) \qquad \in \mathbb{C}.$$

Tetrahedral operator: $p_{\mathbf{b}}(\mathcal{T})(\boldsymbol{\alpha})(\overline{x}) \in S'(\mathbb{R}^{X_2})$ is equal to

 $\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right)e^{\left(2\pi i\epsilon(T)x_{0}(T)+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}\epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}$

Faddeev's quantum dilogarithm:

$$\Phi_{\mathbf{b}}(x) := \exp\left(\int_{z \in \mathbb{R} + i0^+} \frac{e^{-2izx} dz}{4\sinh(z\mathbf{b})\sinh(z\mathbf{b}^{-1})z}\right)$$

Proposition (Andersen-Kashaev '11)

 $|Z_{\mathbf{b}}(X, \alpha)|$ is invariant under angled Pachner moves on (X, α) .

IntroductionTopology (triangulations)Geometry (angles)Algebra (TQFT)Analysis (asymptotics)Conclusion00000000000000000000000000

Partition function for the triangulation X (and $\alpha \in A_X$, **b** > 0):

$$Z_{\mathbf{b}}(X,\boldsymbol{\alpha}) = \int_{\overline{x}\in\mathbb{R}^{X^2}} d\overline{x} \prod_{T_1,\ldots,T_N} p_{\mathbf{b}}(T)(\boldsymbol{\alpha})(\overline{x}) \qquad \in \mathbb{C}.$$

Tetrahedral operator: $p_{\mathbf{b}}(T)(\boldsymbol{\alpha})(\overline{\mathbf{x}}) \in S'(\mathbb{R}^{X_2})$ is equal to

 $\frac{\delta\left(x_{0}(T)-x_{1}(T)+x_{2}(T)\right)e^{\left(2\pi i\epsilon(T)x_{0}(T)+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}(T)\right)\left(x_{3}(T)-x_{2}(T)\right)}}{\Phi_{\mathbf{b}}\left(\left(x_{3}(T)-x_{2}(T)\right)-\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}\epsilon(T)\left(\alpha_{2}(T)+\alpha_{3}(T)\right)\right)^{\epsilon(T)}}$

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M. (1) $\exists \lambda_X$ linear combination of dihedral angles, \exists smooth function $J_X : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{C}$ such that \forall angle structures α , \forall **b** > 0,

$$|Z_{\mathbf{b}}(X,\boldsymbol{\alpha})| = \left| \int_{x \in \mathbb{R}} J_X(\mathbf{b},x) e^{-(\mathbf{b}+\mathbf{b}^{-1}) \times \lambda_X(\boldsymbol{\alpha})} dx \right|.$$

Introduction

angles) Algeb

Algebra (TQFT) 000●0

Analysis (asymp

Conclusion O

Volume Conjecture (Andersen-Kashaev '11)

Let X be a triangulation of a hyperbolic knot complement M.

(1) $\exists \lambda_X \text{ linear combination of dihedral angles, } \exists \text{ smooth function} J_X : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{C} \text{ such that } \forall \text{ angle structures } \alpha, \forall \mathbf{b} > 0,$

$$|Z_{\mathbf{b}}(X,\boldsymbol{\alpha})| = \left| \int_{x \in \mathbb{R}} J_X(\mathbf{b},x) e^{-(\mathbf{b}+\mathbf{b}^{-1}) \times \lambda_X(\boldsymbol{\alpha})} dx \right|.$$

(2) The hyperbolic volume Vol(M) is obtained as the following semi-classical limit:

$$\lim_{\mathbf{b}\to 0^+} 2\pi \mathbf{b}^2 \log |J_X(\mathbf{b},\mathbf{0})| = -\mathrm{Vol}(M).$$

Theorem (TH3, B.A.-P.N. '18)

(1) is proven for all twist knots, via algebraic computations.

Theorem (TH4, B.A.-G.-P.N. '20)

(2) is proven for all twist knots, via asymptotic analysis.

Fathi Ben Aribi

The Teichmüller TQFT Volume Conjecture for Twist Knots

Proof of TH3, easiest example: For $K = 4_1$, we find $Z_{\mathbf{b}}(X, \alpha) =$

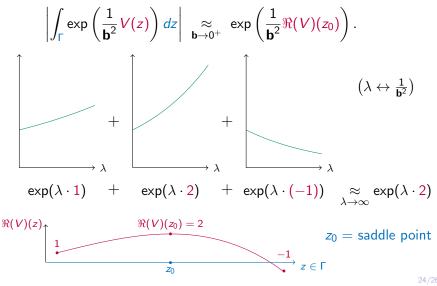
 $\iiint \frac{dAdBdCdD}{e^{\left(2\pi iB+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}^{+}\right)(C-A)}e^{\left(-2\pi iC+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}^{-}\right)(B-D)}\Phi_{\mathbf{b}}\left(D-B+\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}(\alpha_{2}^{-}+\alpha_{3}^{-})\right)}}{e^{\left(2\pi iB+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}^{+}\right)(C-A)}e^{\left(-2\pi iC+(\mathbf{b}+\mathbf{b}^{-1})\alpha_{3}^{-}\right)(B-D)}\Phi_{\mathbf{b}}\left(A-C-\frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}(\alpha_{2}^{+}+\alpha_{3}^{+})\right)}}.$

Then we change the variables: $2x = B + C + \frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}(\alpha_1^+ - \alpha_1^-),$ $2y = B - C + \frac{i(\mathbf{b}+\mathbf{b}^{-1})}{2\pi}(\alpha_1^+ + \alpha_1^- - 2\pi)$ and A = D = B + C.

Thus, by taking the module, $|Z_{\mathbf{b}}(X,\alpha)| =$ $\left| \iint \frac{dxdy \ \Phi_{\mathbf{b}}(x+y)}{e^{-8\pi i x y} \Phi_{\mathbf{b}}(x-y)} e^{-(\mathbf{b}+\mathbf{b}^{-1})\left((2\alpha_{2}^{+}+\alpha_{3}^{+})(x+y)+(2\alpha_{2}^{-}+\alpha_{3}^{-})(x-y)\right)} \right|$

Finally we obtain (1) via $(\rightarrow) 2\alpha_1^+ + \alpha_3^+ + 2\alpha_2^- + \alpha_3^- = 2\pi$, with $J_X(\mathbf{b}, x) = \int_{y \in \Gamma} dy e^{8\pi i x y} \frac{\Phi_{\mathbf{b}}(x+y)}{\Phi_{\mathbf{b}}(x-y)} \text{ and } \lambda_X(\alpha) = 4\alpha_2^+ + 2\alpha_3^+.$ IntroductionTopology (triangulations)Geometry (angles)Algebra (TQFT)Analysis (asymptotics)Conclusion000000000000000000000000000000

The **saddle point method** gives (under technical conditions) **asymptotics** of complex **integrals with parameters** of the form:



Fathi Ben Aribi The Teichmüller TQFT Volume Conjecture for Twist Knots

Theorem (TH4, B.A.-G.-P.N. '20)

$$\lim_{\mathbf{b}\to 0^+} 2\pi \mathbf{b}^2 \log |J_{X_n}(\mathbf{b}, 0)| = -\operatorname{Vol}(S^3 \setminus K_n).$$
Sketch of proof: (a) Semi-classical approximation:

$$|J_{X_n}(\mathbf{b}, 0)| \underset{\mathbf{b}\to 0^+}{\approx} \left| \int_{\Gamma} \exp\left(\frac{1}{\mathbf{b}^2} V(z)\right) dz \right|.$$
comes from $\log \Phi_{\mathbf{b}} \underset{\mathbf{b}\to 0^+}{\approx} \operatorname{Li}_2$ + technical error bounds
(b) Saddle point method:

$$\left| \int_{\Gamma} \exp\left(\frac{1}{\mathbf{b}^2} V(z)\right) dz \right| \underset{\mathbf{b}\to 0^+}{\approx} \exp\left(\frac{1}{\mathbf{b}^2} \Re(V)(z_0)\right).$$
we check that z_0 exists thanks to TH2 (geometricity).

(c) Finally, $\Re(V)(z_0) = -\frac{1}{2\pi} \operatorname{Vol}(S^3 \setminus K_n)$, from $\operatorname{Li}_2 \leftrightarrow \operatorname{Vol}$.

Analysis (asymptotics) Conclusion

Ongoing projects:

(with Guéritaud) Proof for **fibered** M^3 with fiber a punctured torus (with Baseilhac) Vol Conj for **BB invariants** for **twist knots**

Future possible directions:

Algorithm Knot diagram \rightarrow Triangulation (many choices) Combinatorial simplifications in $Z_{\mathbf{b}}(X, \alpha)$ (\leftrightarrow NZ datum?) New formulations of Teichmüller TQFT (links, unordered X) More analysis for asymptotic expansion (\rightarrow 1-loop invariant?) Apply geometric triangulations to other volume conjectures <u>Hope</u>: \exists geometric triangulation \Rightarrow volume conjecture is true.