Link invariants from L^2 -Burau maps of braids

Fathi Ben Aribi

UCLouvain

16 november 2021

Introduction

Nine decades of invariants

Context and main result

B.A., Conway 2018: Construction of the L^2 -Burau maps $\mathcal{B}_{t,\gamma}^{(2)}$ of the braid groups \mathcal{B}_n , with t>0 and $\gamma\colon\mathbb{F}_n\twoheadrightarrow G$.

For $\gamma \colon \mathbb{F}_n \twoheadrightarrow G_K$, relation with $T_K^{(2)}(t)$ the L^2 -Alexander torsion.

Question

Which other link invariants can be built via $\det \left(\mathcal{B}_{t,\gamma}^{(2)} - \operatorname{Id} \right)$?

Theorem (B.A. 2021)

- For γ lower than G_K : twisted L^2 -Alexander invariants.
- **2** For some other γ : no link invariance.

<u>Method</u>: Apply Markov moves of braids to $\mathcal{B}_{t,\gamma}^{(2)}$.

Plan of the talk

- Burau representation and generalizations
- L²-Burau maps
- **3** L^2 -Burau maps and L^2 -Alexander torsions
- Finding new link invariants

Burau representation and generalizations

Braids

The **braid group** B_n is defined by the presentation

$$\langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_i = \sigma_i \sigma_i \ \text{for} \ |i-j| \geqslant 2 \rangle$$

and a braid $\beta \in B_n$ also has a **topological description**, as a 1-submanifold of $\mathbb{D}^2 \times [0,1]$ with no horizontal tangent.

Braids and links

The closure $\hat{\beta}$ of a braid $\beta \in B_n$ is a link in \mathbb{S}^3 .

$$eta=\sigma_1\;\sigma_3$$
 $\hat{eta}=2$ -0

 $\hat{\beta}=$ 2-component unlink

Markov moves on braids $\sqcup_{n\geqslant 1} B_n$ are:

- Markov 1, the **conjugation**: $\beta \mapsto \alpha^{-1}\beta\alpha$, where $\alpha, \beta \in B_n$.
- Markov 2, the **stabilisations**: $B_n \ni \beta \mapsto \sigma_n^{\pm 1} \beta \in B_{n+1}$.

Theorem (Markov 1935)

 $\hat{\beta}$ and $\hat{\beta}'$ are isotopic links iff β and β' are related by a finite number of Markov moves.

The Burau representations

Burau representation:

$$\mathcal{B}\colon B_n\ni\sigma_i\ \mapsto\ \mathrm{Id}_{i-1}\oplus\begin{pmatrix}1-T&1\\T&0\end{pmatrix}\oplus\mathrm{Id}_{n-i-1}\in GL_n(\mathbb{Z}[T,T^{-1}])$$

Reduced Burau representation:

$$\overline{\mathcal{B}}\colon B_n\ni \sigma_i \mapsto \operatorname{Id}_{i-2}\oplus \begin{pmatrix} 1 & I & 0\\ 0 & -T & 0\\ 0 & 1 & 1 \end{pmatrix} \oplus \operatorname{Id}_{n-i-2}\in GL_{n-1}(\mathbb{Z}[T,T^{-1}])$$

Theorem (Burau 1936)

Let $\beta \in B_n$. Then the Alexander polynomial $\Delta_{\hat{\beta}}$ of the link $\hat{\beta}$ satisfies (up to product by a unit of $\mathbb{Z}[T, T^{-1}]$):

$$\Delta_{\hat{\beta}}(T) = \frac{1-T}{1-T^n} \det \left(\overline{\mathcal{B}}(\beta) - \mathrm{Id}_{n-1} \right).$$

Braids and free groups

Free group
$$\mathbb{F}_n = \langle x_1, \dots, x_n \mid \rangle \cong \pi_1(D^2 \setminus \{p_1, \dots, p_n\}).$$

 $g_1 = x_1, g_2 = x_1x_2, \dots, g_n = x_1 \dots x_n$ also generate \mathbb{F}_n .

<u>Artin:</u> A braid $\beta \in B_n$ induces an automorphism $h_\beta \in Aut(\mathbb{F}_n)$.

$$B_n \hookrightarrow Aut(\mathbb{F}_n)$$

Fox calculus

The **Fox derivatives** on \mathbb{F}_n are linear maps $\frac{\partial}{\partial x_i} \colon \mathbb{ZF}_n \to \mathbb{ZF}_n$ (where i = 1, ..., n), inductively defined by:

$$\frac{\partial}{\partial x_i}(x_j) = \delta_{i,j}, \qquad \frac{\partial}{\partial x_i}\left(x_j^{-1}\right) = -\delta_{i,j}x_j^{-1},$$
$$\frac{\partial}{\partial x_i}(uv) = \frac{\partial}{\partial x_i}(u) + u\frac{\partial}{\partial x_i}(v).$$

 $\left(\frac{\partial f(x_j)}{\partial x_i}\right)_{\dots} \in GL_n(\mathbb{ZF}_n)$ is the **Fox jacobian** of $f \in Aut(\mathbb{F}_n)$.

$$\underline{\text{Example:}} \ h_{\sigma_1} \colon x_1 \mapsto x_1 x_2 x_1^{-1}, x_2 \mapsto x_1, \quad g_1 \mapsto g_2 g_1^{-1}, g_2 \mapsto g_2.$$

$$\left(\frac{\partial h_{\sigma_1}(x_j)}{\partial x_i}\right) = \begin{pmatrix} 1 - x_1 x_2 x_1^{-1} & 1 \\ x_1 & 0 \end{pmatrix}, \left(\frac{\partial h_{\sigma_1}(g_j)}{\partial g_i}\right) = \begin{pmatrix} -g_2 g_1^{-1} & 0 \\ 1 & 1 \end{pmatrix}.$$

$$Aut(\mathbb{F}_n) \hookrightarrow GL_n(\mathbb{ZF}_n)$$

The change of coefficients $\kappa(\Phi_n, \gamma, t)$

We construct a **ring morphism** $\kappa(\Phi_n, \gamma, t)$ for

- $\Phi_n \colon \mathbb{F}_n \to \mathbb{Z}, x_i \mapsto 1$, the **augmentation** epimorphism,
- $\gamma \colon \mathbb{F}_n \to G$ such that Φ_n factors through γ ,
- t > 0.

We define $\kappa(\Phi_n, \gamma, t) \colon \mathbb{ZF}_n \to \mathbb{R}G$ by $g \mapsto t^{\phi(g)}\gamma(g)$.

Example: For n = 2 and $\gamma = T^{\Phi_2}$: $(\mathbb{F}_2 \to T^{\mathbb{Z}} = \{T^m, m \in \mathbb{Z}\})$,

$$\kappa(\Phi_2, T^{\Phi_2}, t) \colon \begin{pmatrix} 1 - x_1 x_2 x_1^{-1} & 1 \\ x_1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 - tT & 1 \\ tT & 0 \end{pmatrix}$$
 (Burau),

$$\begin{pmatrix} -g_2g_1^{-1} & 0 \\ 1 & 1 \end{pmatrix} \mapsto \begin{pmatrix} -tT & 0 \\ 1 & 1 \end{pmatrix}$$
 (reduced Burau).

$$\kappa(\Phi_n, \gamma, t)$$
 induces $GL_n(\mathbb{ZF}_n) \to GL_n(\mathbb{R}G)$.

A family of maps between Artin and Burau

$$B_n \overset{Artin}{\hookrightarrow} Aut(\mathbb{F}_n) \overset{Fox}{\hookrightarrow} GL_n(\mathbb{ZF}_n) \overset{\kappa(\Phi_n,\gamma,t)}{\longrightarrow} GL_n(\mathbb{R}G)$$

We consider the maps

$$\beta \mapsto \kappa(\Phi_n, \gamma, t) \left(\frac{\partial h_{\beta}(x_j)}{\partial x_i}\right)_{1 \leq i, j \leq n}$$

for different $\gamma \colon \mathbb{F}_n \to G$.

(**reduced**: with g_j, g_i and $\leqslant n-1$ instead)

• $\gamma = \mathrm{Id}_{\mathbb{F}_n}$: jacobian of the **Artin action**, always **injective**.

$$B_2 \ni \sigma_1 \mapsto \begin{pmatrix} 1 - t x_1 x_2 x_1^{-1} & 1 \\ t x_1 & 0 \end{pmatrix}, \qquad B_2 \ni \sigma_1 \mapsto \begin{pmatrix} -t g_2 g_1^{-1} \end{pmatrix}.$$

• $\gamma = T^{\Phi_n}$: Burau representation, non injective for $n \ge 5$.

$$B_2 \ni \sigma_1 \mapsto \begin{pmatrix} 1 - tT & 1 \\ tT & 0 \end{pmatrix}, \qquad B_2 \ni \sigma_1 \mapsto (-tT).$$

L^2 -Burau maps

The general idea of L^2 -invariants

15/31

An L^2 point of view

$$B_n \overset{Artin}{\hookrightarrow} Aut(\mathbb{F}_n) \overset{Fox}{\hookrightarrow} GL_n(\mathbb{ZF}_n) \overset{\kappa(\Phi_n, \gamma, t)}{\longrightarrow} GL_n(\mathbb{R}G)$$

<u>Problem</u>: Extracting info from $M_n(\mathbb{R}G)$ if G is not abelian. \rightsquigarrow On $\ell^2(G)$ there is the **Fuglede-Kadison determinant**.

We replace the algebra $\mathbb{R}G$ by the Hilbert space

$$\ell^2(G) := \left\{ \sum_{g \in G} \lambda_g g \; \middle| \; \lambda_g \in \mathbb{C}, \sum_{g \in G} |\lambda_g|^2 < \infty
ight\}.$$

Typical **bounded** *G*-equivariant operators:

$$R_h: \ell^2(G) \to \ell^2(G), g \mapsto gh,$$

the **right multiplication** operator by $h \in G$.

The operation R. induces $GL_n(\mathbb{R}G) \hookrightarrow B\left(\ell^2(G)^n\right)$.

L^2 -Burau maps of braids

$$B_n \overset{Artin}{\hookrightarrow} Aut(\mathbb{F}_n) \overset{Fox}{\hookrightarrow} GL_n(\mathbb{ZF}_n) \overset{\kappa(\Phi_n,\gamma,t)}{\longrightarrow} GL_n(\mathbb{R}G) \overset{R.}{\hookrightarrow} B\left(\ell^2(G)^n\right),$$

The L^2 -Burau map associated to t > 0 and $\gamma \colon \mathbb{F}_n \to G$ is:

$$\mathcal{B}_{t,\gamma}^{(2)} \colon \begin{pmatrix} B_n & \to & B\left(\ell^2(G)^n\right) \\ \beta & \mapsto & R_A \end{pmatrix}, \text{ with } A = \kappa(\Phi_n, \gamma, t) \left(\frac{\partial h_\beta(x_j)}{\partial x_i}\right)_{1 \leqslant i, j \leqslant n}.$$

The **reduced** L^2 -Burau map associated to the same t, γ is:

$$\overline{\mathcal{B}}_{t,\gamma}^{(2)} : \begin{pmatrix} B_n \to B\left(\ell^2(G)^{n-1}\right) \\ \beta \mapsto R_{A'} \end{pmatrix}, \text{with } A' = \kappa(\Phi_n,\gamma,t) \left(\frac{\partial h_\beta(g_j)}{\partial g_i}\right)_{1\leqslant i,j\leqslant n-1},$$

where $g_1 = x_1, g_2 = x_1 x_2, \ldots, g_n = x_1 \ldots x_n$ also generate \mathbb{F}_n .

L^2 -Burau maps of braids

$$B_n \overset{Artin}{\hookrightarrow} Aut(\mathbb{F}_n) \overset{Fox}{\hookrightarrow} GL_n(\mathbb{ZF}_n) \overset{\kappa(\Phi_n,\gamma,t)}{\longrightarrow} GL_n(\mathbb{R}G) \overset{R.}{\hookrightarrow} B\left(\ell^2(G)^n\right),$$

The L^2 -Burau map associated to t > 0 and $\gamma \colon \mathbb{F}_n \to G$ is:

$$\mathcal{B}_{t,\gamma}^{(2)} \colon \begin{pmatrix} B_n & \to & B\left(\ell^2(G)^n\right) \\ \beta & \mapsto & R_A \end{pmatrix}, \text{ with } A = \kappa(\Phi_n, \gamma, t) \left(\frac{\partial h_\beta(x_j)}{\partial x_i}\right)_{1 \leqslant i, j \leqslant n}.$$

The **reduced** L^2 -Burau map associated to the same t, γ is:

$$\overline{\mathcal{B}}_{t,\gamma}^{(2)} : \begin{pmatrix} B_n \to B\left(\ell^2(G)^{n-1}\right) \\ \beta \mapsto R_{A'} \end{pmatrix}, \text{ with } A' = \kappa(\Phi_n, \gamma, t) \left(\frac{\partial h_\beta(g_j)}{\partial g_i}\right)_{1 \leqslant i, j \leqslant n-1},$$

where $g_1 = x_1$, $g_2 = x_1 x_2$, ..., $g_n = x_1 ... x_n$ also generate \mathbb{F}_n .

18/31

Multiplicativity and computations

(Anti-)multiplication formula: $\forall \alpha, \beta \in B_n$,

$$\mathcal{B}_{t,\gamma}^{(2)}(\alpha\beta) = \mathcal{B}_{t,\gamma}^{(2)}(\beta) \circ \mathcal{B}_{t,\gamma \circ h_{\beta}}^{(2)}(\alpha).$$

Consequence: The more **injective** $\gamma \colon \mathbb{F}_n \twoheadrightarrow G$ is, the less $\mathcal{B}_{t,\gamma}^{(2)}$ looks like an (anti-)**group representation**.

 $\mathcal{B}_{t,\gamma}^{(2)}$ is an (anti-)rep. of the **subgroup** $\{\beta \in \mathcal{B}_n, \gamma \circ h_\beta = \gamma\}$.

We can still **compute** $\mathcal{B}_{t,\gamma}^{(2)}(\beta)$ via the images of the σ_i .

$$\mathcal{B}_{t,\gamma}^{(2)} \colon B_2 \ni \sigma_1 \mapsto \begin{pmatrix} \operatorname{Id} - tR_{\gamma(x_1 x_2 x_1^{-1})} & \operatorname{Id} \\ tR_{\gamma(x_1)} & 0 \end{pmatrix} \in B\left(\ell^2(G)^{\oplus 2}\right).$$

$$\overline{\mathcal{B}}_{t,\gamma}^{(2)} \colon B_2 \ni \sigma_1 \mapsto \left(-tR_{\gamma(g_2g_1^{-1})}\right) \in B\left(\ell^2(G)\right).$$

L^2 -Burau maps and L^2 -Alexander torsions

Fuglede-Kadison determinants of *G*-equivariant operators

The von Neumann trace $\operatorname{tr}_{\mathcal{G}}: (\lambda_1 Id + \ldots + \lambda_g R_g) \mapsto \lambda_1 \in \mathbb{C}$.

The Fuglede-Kadison determinant det_G is :

$$\det_{G} \colon R_{M_{n}(\mathbb{Z}G)}(\subset B(\ell^{2}(G)^{n})) \to \mathbb{R}_{\geqslant 0}$$

$$\det_{G}(A) := \lim_{\epsilon \to 0^{+}} \left(\exp \circ \left(\frac{1}{2} \mathrm{tr}_{G} \right) \circ \ln \right) (A^{*}A + \epsilon Id).$$

 \longleftrightarrow counting loops on the **Cayley graph** of G. (hard to compute!)

 $\underline{\mathsf{Ex}:}$ If $g \in \mathcal{G}$ has ∞ order, then $\mathsf{det}_{\mathcal{G}}(\mathrm{Id} + t R_g) = \mathsf{max}\{1, |t|\}.$

Ex: For $G = \mathbb{Z}/3\mathbb{Z}$: $\ell^2(G) = \mathbb{C}^3$, R_g is a permutation matrix, $\operatorname{tr}_G = \frac{1}{3}\operatorname{tr}_{\mathbb{C}}$, $\det_G = |\det|^{1/3}$.

Theorem (B.A. 21)

For
$$G = \mathbb{F}_2 = \langle x, y | \rangle$$
, $\det_G (1 + x + y) = \frac{2}{\sqrt{3}}$.

L²-Alexander torsions of links

(Dubois-Friedl-Lück 14) L^2 -Alexander torsion of the link L:

$$T_L^{(2)}: \begin{pmatrix} \mathbb{R}_{>0} & \longrightarrow & \mathbb{R}_{>0} \\ t & \longmapsto & T_L^{(2)}(t) \end{pmatrix}$$

defined with $\det_{\pi_1(S^3\setminus L)}$ and **Fox calculus**.

Some properties:

(Lück-Schick 99)
$$T_L^{(2)}(1)$$
 contains the **volume** of $S^3 \setminus L$.

(Friedl-Lück, Liu 15)
$$T_L^{(2)}(0^+)$$
, $T_L^{(2)}(+\infty)$ yield the **genus** $g(L)$.

(Miscellaneous)
$$T_L^{(2)}$$
 is the **zero map** iff L is **split**.

L^2 -Burau map at the link group

For $\gamma = \gamma_{\beta} \colon \mathbb{F}_n \to G_{\beta} \cong \pi_1 \left(S^3 \setminus \hat{\beta} \right)$ quotient by $h_{\beta}(x_i) = x_i$, the **reduced** L^2 -Burau map $\overline{\mathcal{B}}_{t,\gamma_{\beta}}^{(2)}$ gives the L^2 -Alexander torsion $T_{\hat{\beta}}^{(2)}$:

Theorem (B.A.-Conway 18)

Let $\beta \in B_n$, $L = \hat{\beta}$ its closure and t > 0. Then:

$$\mathcal{T}_L^{(2)}(t) \cdot \max(1,t)^n = \det_{\mathcal{G}_L} \left(\overline{\mathcal{B}}_{t,\gamma_\beta}^{(2)}(\beta) - \operatorname{Id}^{\oplus (n-1)} \right).$$

Finding new link invariants

Markov functions

Markov moves on braids $\sqcup_{n\geqslant 1}B_n$ are:

- Markov 1, the **conjugation**: $\beta \mapsto \alpha^{-1}\beta\alpha$, where $\alpha, \beta \in B_n$.
- Markov 2, the **stabilisations**: $B_n \ni \beta \mapsto \sigma_n^{\pm 1}\beta \in B_{n+1}$.

<u>Markov</u>: $\hat{\beta}$ and $\hat{\beta}'$ are **isotopic links** iff β and β' are related by a finite number of **Markov** moves.

A function F on $\sqcup_{n\geqslant 1}B_n$ is a **Markov function** if it is invariant under all the Markov moves.

→ F provides a invariant of knots and links.

Question

For which
$$\gamma \colon \mathbb{F}_n \twoheadrightarrow G$$
 is $\beta \mapsto \det_G \left(\overline{\mathcal{B}}_{t,\gamma}^{(2)}(\beta) - \mathrm{Id}^{\oplus (n-1)} \right)$ a Markov function?

Markov-admissibility of a family of epimorphisms

A family $\mathcal Q$ of epimorphisms of free groups

$$Q = \left\{ Q_{\beta} \colon \mathbb{F}_{n(\beta)} \twoheadrightarrow G_{Q_{\beta}} \mid \beta \in \sqcup_{n \geqslant 1} B_n \right\}$$

is **Markov-admissible** if for all pairs of braids β, β' related by a Markov move, Q_{β} and $Q_{\beta'}$ are "comparable".

$$\mathbb{F}_{n} \xrightarrow{h_{\alpha}} \mathbb{F}_{n} \qquad \mathbb{F}_{n} \xrightarrow{\iota_{n}} \mathbb{F}_{n+1} \\
\downarrow Q_{\beta} \qquad \qquad \downarrow Q_{\alpha^{-1}\beta\alpha} \qquad \qquad \downarrow Q_{\beta} \qquad \qquad \downarrow Q_{\sigma_{n}^{\varepsilon}\beta} \\
\downarrow G_{Q_{\beta}} \xrightarrow{\exists \chi_{\beta,\alpha}^{\mathcal{Q}}} G_{Q_{\alpha^{-1}\beta\alpha}} \qquad \qquad \downarrow G_{Q_{\beta}} \xrightarrow{\exists \sigma_{\beta,\varepsilon}^{\mathcal{Q}}} G_{Q_{\sigma_{n}^{\varepsilon}\beta}}$$

Goal: Constructing a **Markov function** on $\sqcup_{n\geqslant 1}B_n$ via \mathcal{Q} .

Several Markov-admissible families of epimorphisms

- $Id_{\mathbb{F}_n} := \text{the identity on } \mathbb{F}_n$.
- φ_n := the **abelianisation** of \mathbb{F}_n , onto \mathbb{Z}^n .
- $\gamma_{\beta} :=$ the quotient by $h_{\beta}(x_i) = x_i \pmod{\beta}$.
- Φ_n := the **augmentation** of \mathbb{F}_n , onto \mathbb{Z} .

Is det $\left(\mathsf{Burau}^{(2)}-\mathrm{Id}\right)$ a **Markov function?** \checkmark : Yes. X : No.

Obtaining a Markov function

For $Q = \{Q_{\beta}\}_{\beta \in \sqcup_{n \geqslant 1} B_n}$ Markov-admissible and t > 0, we define:

$$F_{\mathcal{Q}} := \left(egin{array}{ccc} \sqcup_{n\geqslant 1} B_n &
ightarrow & \mathcal{F}(\mathbb{R}_{>0},\mathbb{R}_{>0})/\{t\mapsto t^m,m\in\mathbb{Z}\} \ & eta & arphi & \left[t\mapsto rac{\det_{G_{Q_{eta}}}\left(\overline{\mathcal{B}}_{t,Q_{eta}}^{(2)}(eta)-\operatorname{Id}^{\oplus(n-1)}
ight)}{\max(1,t)^n}
ight]
ight)$$

Theorem (B.A. 2021)

- If $\{Q_{\beta}\} = \{\psi_{\beta} \circ \gamma_{\beta}\}$, then $F_{\mathcal{Q}}$ is a Markov function, and the associated invariant is a L^2 -Alexander torsion twisted by ψ_{β} .
- ② If the Q_{β} are the identity maps $\mathrm{Id}_{\mathbb{F}_{n(\beta)}}$ or the abelianisations $\varphi_{n(\beta)}$, then $F_{\mathcal{Q}}$ is not a Markov function.

Sketch of proof for Theorem 1

Conjugation : For $\gamma \colon \mathbb{F}_n \twoheadrightarrow G$, the product formula gives:

$$\overline{\mathcal{B}}_{t,\gamma}^{(2)}(\alpha^{-1}\beta\alpha) = \overline{\mathcal{B}}_{t,\gamma}^{(2)}(\alpha) \circ \overline{\mathcal{B}}_{t,\gamma\circ h_{\alpha}}^{(2)}(\beta) \circ \left(\overline{\mathcal{B}}_{t,\gamma\circ h_{\alpha^{-1}\beta\alpha}}^{(2)}(\alpha)\right)^{-1},$$

a **conjugation** if γ goes deep enough so that $\gamma \circ h_{\alpha^{-1}\beta\alpha} = \gamma$.

$$\checkmark \text{ for } \gamma = \psi_{\beta} \circ \gamma_{\beta}.$$

<u>Stabilisations</u>: Via elementary operations, we get

$$\overline{\mathcal{B}}_{t,\gamma}^{(2)}\left(\sigma_n^{\pm 1}\beta\right) \approx \begin{pmatrix} \overline{\mathcal{B}}_{t,\gamma}^{(2)}(\beta) & * \\ (\gamma \circ h_\beta - \gamma)(*) & * \end{pmatrix},$$

where * has a known Fuglede-Kadison determinant.

$$\checkmark$$
 for $\gamma = \psi_{\beta} \circ \gamma_{\beta}$.

Computing Fuglede-Kadison determinants for Theorem 2

In both cases we prove that $F_{\mathcal{Q}}(\sigma_1^{-1}) \neq F_{\mathcal{Q}}(\sigma_2\sigma_1^{-1})$.

<u>Difficulty:</u> In order to prove that two Fuglede-Kadison determinants are **different**, we must **compute** them.

- For the abelianisations $\varphi_n \colon \mathbb{F}_n \to \mathbb{Z}^n$, $F_{\mathcal{Q}}(\sigma_2 \sigma_1^{-1}) = \det_{\mathbb{Z}^2} (\operatorname{Id} + R_{\mathsf{X}} + R_{\mathsf{y}}) = 1.38135... \neq 1 = F_{\mathcal{Q}}(\sigma_1^{-1})$. (Boyd, computations of **Mahler measures**)
- For the identity maps $\operatorname{Id}_{\mathbb{F}_n}$, $F_{\mathcal{Q}}(\sigma_2\sigma_1^{-1}) = \det_{\mathbb{F}_2}\left(\operatorname{Id} + R_x + R_y\right) = \frac{2}{\sqrt{3}} = 1.15... \neq 1 = F_{\mathcal{Q}}(\sigma_1^{-1})$ (Bartholdi, Dasbach-Lalin, B.A. 21, **counting paths** on **trees**)

Potential future leads

- Finding larger classes of Q such that F_Q is not a Markov function.
- Trying to obtain link invariants from L²-Burau maps via other formulas than det(· - Id).
- (with C. Anghel-Palmer) Adapting these techniques to future L^2 versions of **Lawrence representations** of the braid groups, which are known to yield **quantum invariants**.