L^{2}-torsion and hyperbolic volume (HQI Workshop, CIRM)

Fathi Ben Aribi
UCLouvain
9th February 2021

Introduction

Plan of the talk

(1) Introduction
(2) Reidemeister torsions
(3) Topological L^{2}-torsion
(9) Analytic L^{2}-torsion
(6) Connexion with hyperbolic volume

Theorem (Lück-Schick 99, others)

Let M^{3} be a complete hyperbolic manifold (closed or cusped) with finite volume $\operatorname{vol}(M)$. Then:

- its L^{2}-Betti numbers $b_{*}^{(2)}(M)$ are all 0 ,
- its topological and analytic L^{2}-torsions $\left(T^{(2)}\right.$ and $\left.\rho^{(2)}\right)$ satisfy

$$
T^{(2)}(M)=\exp \left(\rho^{(2)}(M)\right)=\exp \left(\frac{\operatorname{vol}(M)}{6 \pi}\right)
$$

Nine decades of invariants

Lück-Schick, 99

Hyperbolic
Volume
(Thurston, ...)

The principle of (topological) L^{2}-invariants

Reidemeister torsions

Reidemeister torsion : the example of S^{1}

$$
\begin{aligned}
& C_{1}(\widetilde{X}) \quad C_{0}(\widetilde{X}) \\
& C_{*}(\widetilde{X})=0 \rightarrow \underset{n \in \mathbb{Z}}{\oplus} \mathbb{Z}\left(g^{n} \widetilde{a}\right) \underset{(g-1)}{\underset{(g \in \mathbb{Z}}{ }} \underset{n}{\oplus} \mathbb{Z}\left(g^{n} \widetilde{p}\right) \rightarrow 0 \\
& \begin{array}{cc}
{ }^{\prime \prime} & { }^{\prime \prime} \\
\mathbb{Z}[G] \widetilde{a} & \mathbb{Z}[G] \widetilde{p}
\end{array} \\
& G=\pi_{1}(X)=\langle g \mid\rangle \cong \mathbb{Z} \\
& C_{*}(X)=0 \rightarrow \begin{array}{c}
C_{1}(X) \\
\mathbb{Z}_{a}
\end{array} \xrightarrow[(0)]{{ }_{(0)}} \begin{array}{c}
C_{0}(X) \\
\mathbb{Z} p
\end{array} \rightarrow 0
\end{aligned}
$$

$\left(C_{*}(\tilde{X}), \partial\right)$ contains the topological info of the CW-complex X.
Reidemeister torsion is an invariant obtained from $\left(C_{*}(\widetilde{X}), \partial\right)$.

Reidemeister torsion : the example of S^{1}

From a group representation $\phi: G \rightarrow G L_{d}(K)$, you can build the twisted cellular chain complex $C_{*}(X, \phi):=K^{d} \otimes_{\mathbb{Z} G} C_{*}(\widetilde{X})$.

$$
\begin{gathered}
C_{*}(\widetilde{X})=0 \rightarrow \mathbb{Z}[G] \widetilde{a} \underset{(g-1)}{\partial} \mathbb{Z}[G] \widetilde{p} \rightarrow 0 \\
C_{*}(X, \phi)=0 \rightarrow K^{d}(1 \otimes \widetilde{a}) \underset{\left(\phi(g)-l d_{K^{d}}\right)}{\stackrel{\partial^{\phi}}{\longrightarrow}} K^{d}(1 \otimes \widetilde{p}) \rightarrow 0
\end{gathered}
$$

$b_{*}(X, \phi) \in \mathbb{N}$ are the twisted Betti numbers. If they are zero, we can define the Reidemeister torsion $T(X, \phi) \in K^{*} / \operatorname{det}(\phi(K))$ as an alternated product of determinants of submatrices of ∂^{ϕ}.

If $\phi(g)-I d$ is invertible, then $T\left(S^{1}, \phi\right)=\frac{1}{\operatorname{det}(\phi(g)-I d)}$.

Topological L^{2}-torsions

Base (Hilbert) space: $\ell^{2}(G)$, completion of $\mathbb{C} G$.
Right-multiplication operator $R_{g}: \ell^{2}(G) \rightarrow \ell^{2}(G), h \mapsto h g$.
von Neumann trace $\operatorname{tr}_{G}:\left(\lambda_{1} / d+\ldots+\lambda_{g} R_{g}\right) \mapsto \lambda_{1} \in \mathbb{C}$.
von Neumann dimension $\operatorname{dim}_{G}: \ell^{2}(G)^{\oplus r} \mapsto r \geqslant 0$.
Fuglede-Kadison determinant $\operatorname{det}_{G}(A) \geqslant 0$ of the G-equivariant operator A over $\ell^{2}(G)$, defined by:

$$
\operatorname{det}{ }_{G}(A)=\lim _{\epsilon \rightarrow 0^{+}}\left(\exp \circ\left(\frac{1}{2} \operatorname{tr}_{G}\right) \circ \ln \right)\left(A^{*} A+\epsilon \operatorname{ld}\right)
$$

Example: $G=\mathbb{Z} / 3 \mathbb{Z} \cdot \ell^{2}(G)=\mathbb{C}^{3}, R_{g}$ is a permutation matrix,
$\operatorname{tr}_{G}=\frac{1}{3} \operatorname{tr}_{\mathbb{C}}, \operatorname{dim}_{G}=\frac{1}{3} \operatorname{dim}_{\mathbb{C}}, \operatorname{det}_{G}=|\operatorname{det}|^{1 / 3}$.

$$
\begin{gathered}
C_{*}^{(2)}(X)=\ell^{2}(G) \underset{\mathbb{Z} G}{\otimes} C_{*}(\widetilde{X}) \\
=0 \rightarrow \ell^{2}(G)(1 \otimes \widetilde{a}) \underset{(R g-l d)}{\stackrel{\partial^{(2)}}{\longrightarrow}} \ell^{2}(G)(1 \otimes \widetilde{p}) \rightarrow 0 \\
C_{*}(\widetilde{X})=0 \rightarrow \mathbb{Z}[G] \widetilde{a} \underset{(g-1)}{\frac{\partial}{\longrightarrow}} \mathbb{Z}[G] \widetilde{p} \rightarrow 0
\end{gathered}
$$

L^{2}-torsion is a variant of Reidemeister torsion, with a twist by the infinite-dimensional right regular representation $G \stackrel{R}{\hookrightarrow} B\left(\ell^{2}(G)\right)$.

$$
b_{*}^{(2)}(X)=\operatorname{dim}_{G}\left(\operatorname{Ker}\left(\partial^{(2)}\right) / \overline{\operatorname{Im}\left(\partial^{(2)}\right)}\right) \in \mathbb{R}_{\geqslant 0}
$$

are the L^{2} Betti numbers of X. If they vanish, we define the L^{2}-torsion $T^{(2)}(X) \in \mathbb{R}_{>0}$ as an alternated product of $\operatorname{det}_{G}\left(\partial^{(2)}\right)$.

For S^{1}, we have $T^{(2)}\left(S^{1}\right)=\frac{1}{\operatorname{det}_{G}\left(R_{g}-I d\right)}=1$.

Computing the L^{2}-torsion

$M=S^{3} \backslash 4_{1}$ is hyperbolic, with volume $\operatorname{vol}(M)=2.029 \ldots$
$\underline{\text { Lück-Schick, etc. : }} T^{(2)}(M)=\exp \left(\frac{\operatorname{vol}(M)}{6 \pi}\right)=1.113 \ldots$

From $G=\pi_{1}(M)=\left\langle x, y \mid x y x^{-1} y x=y x y^{-1} x y\right\rangle$, we compute
$T^{(2)}(M)=\operatorname{det}_{G}(A)$ with $A=I d-R_{y}-R_{x y x^{-1}}-R_{y x y^{-1}}+R_{x y x^{-1} y}$.
(From a braid closure presentation for G, A is a L^{2}-Burau map).

Via developing $\operatorname{det}_{G}=\exp \operatorname{tr}_{G} \ln$, we can compute $T^{(2)}(M)$ from the sequence of $\operatorname{tr}_{G}\left(\left(A^{*} A\right)^{n}\right), n \in \mathbb{N}$ (not known in general). \rightsquigarrow counting closed paths on the Cayley graph of G.

Analytic L^{2}-torsions

Laplacian on differential forms

M^{d} riemannian, $\Omega^{p}(M):=C^{\infty}\left(M,\left(T_{x} M\right)^{*}\right)$ its space of p-forms.
L^{2} metric on $\Omega^{*}(M) \rightsquigarrow$ adjoint d^{*}, Laplacian $\Delta_{p}:=d d^{*}+d^{*} d$.
Hodge-de Rham : Betti number $b_{p}(M)=\operatorname{dim}$ ker Δ_{p}.
Example: $M=S^{1}=\mathbb{R} / \mathbb{Z}$.
$\Omega^{0}\left(S^{1}\right)=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f 1-$ periodic $\}$
$\Omega^{1}\left(S^{1}\right)=\{f \cdot d x \mid f: \mathbb{R} \rightarrow \mathbb{R} 1-$ periodic $\}$

$$
0 \rightarrow \Omega^{0}\left(S^{1}\right) \xrightarrow{d} \Omega^{1}\left(S^{1}\right) \rightarrow 0
$$

$d: f \mapsto\left(f^{\prime} \cdot d x\right), \quad d^{*}:(f \cdot d x) \mapsto\left(-f^{\prime}\right), \quad \Delta: f \mapsto-f^{\prime \prime}$
$H_{0}\left(S^{1}\right)$ and $H_{1}\left(S^{1}\right)$ are the constants, thus $b_{0}\left(S^{1}\right)=b_{1}\left(S^{1}\right)=1$.

Lapalacian and analytic torsion (sketch)

Δ has eigenvalues $\lambda_{n} \geqslant 0$ for all $n \in \mathbb{N}$. We want to define

$$
\operatorname{det}(\Delta) "=" \prod_{n \in \mathbb{N}} \lambda_{n}
$$

We can do this via (...) the operator $e^{-t \Delta}$ and its trace

$$
\operatorname{tr}_{C^{\infty}(M)}\left(e^{-t \Delta}\right)=\sum_{n \in \mathbb{N}} e^{-t \lambda_{n}}
$$

Analytic torsion: $\rho(M):=\frac{-1}{2} \sum_{p \geqslant 0}(-1)^{p} p \cdot \ln \left(\operatorname{det}\left(\Delta_{p}\right)\right)$
Example : $M=S^{1}=\mathbb{R} / \mathbb{Z}, \quad \Delta: f \mapsto-f^{\prime \prime}$.
$\left.\overline{\lambda_{n}=(2 \pi n}\right)^{2}, \operatorname{det}(\Delta)=1, \quad \rho\left(S^{1}\right)=0$.

Theorem (Cheeger-Muller, without details)

Analytic torsion $\rho(M)$ equals Reidemeister torsion $\ln (T(M))$.

Interlude on the heat kernel

If $f: M \rightarrow \mathbb{R}$ is the temperature and t is the time, then $e^{-t \Delta}(f): M \rightarrow \mathbb{R}$ is the temperature at the time t.

Indeed, $g(t, x):=\left(e^{-t \Delta}(f)\right)(x)$ satisfies the heat equation

$$
\frac{\partial}{\partial t} g(t, x)+\Delta_{x} g(t, x)=0
$$

The heat kernel $e^{-t \Delta}(x, y) \in \mathbb{R}$ is the ratio of temperature transferred from y to x during t. It satisfies
$\forall f \in C^{\infty}(M), \forall x \in M, \quad\left(e^{-t \Delta}(f)\right)(x)=\int_{M} e^{-t \Delta}(x, y) f(y) d \operatorname{vol}_{M}(y)$
Example : $M=S^{1}=\mathbb{R} / \mathbb{Z}: \quad e^{-t \Delta}(x, y)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{|x-y|^{2}}{4 t}}$.

Analytic L^{2}-Betti numbers

Let E complete Riemannian and $G \curvearrowright E$ cocompact by isometries. Let $M=E / G, G=\pi_{1}(M), \mathcal{F} \subset E$ fundamental domain for G.
$\underline{\text { Example : } E=\mathbb{H}^{3}, M \text { hyperbolic closed. }}$
$\underline{\text { Example }: ~} E=\mathbb{R}, M=S^{1}=\mathbb{R} / \mathbb{Z}, \mathcal{F}=(0,1)$.
Analytic L^{2}-Betti number:
$b_{P}^{(2)}(M)=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}}\left(e^{-t \Delta_{p}}(x, x)\right) d \operatorname{vol}_{M}(x)$
Dodziuk: $b_{p}^{(2), \text { ana }}(M)=b_{p}^{(2), \text { topo }}(M)$.
Example : $M=S^{1}=\mathbb{R} / \mathbb{Z}, \quad e^{-t \Delta}(x, x)=\frac{1}{\sqrt{4 \pi t}}$,
$b_{0}^{(2)}\left(S^{1}\right)=b_{1}^{(2)}\left(S^{1}\right)=\lim _{t \rightarrow \infty} \frac{1}{\sqrt{4 \pi t}} \int_{\mathcal{F}} 1=0$.

L^{2}-analytic torsion of a closed Riemannian M

Δ_{p} Laplacian on p-forms of M. We want to define

$$
\rho^{(2)}(M) "=" \frac{1}{2} \sum_{p \geqslant 0}(-1)^{p} p \cdot \ln \left(\operatorname{det}\left(\Delta_{p}\right)\right) .
$$

The heat kernel gives $\theta_{p}(M)(t):=\int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}}\left(e^{-t \Delta_{p}}(x, x)\right) d \operatorname{vol}_{M}(x)$, and the L^{2}-Betti number : $\theta_{p}(M)(\infty)=b_{p}^{(2)}(M)$.

The L^{2}-analytic torsion is defined by:

$$
\begin{aligned}
\rho^{(2)}(M):=\frac{1}{2} \sum_{p \geqslant 0}(-1)^{p} p & \left(\left.\frac{d}{d s}\right|_{s=0}\left(\frac{\int_{0}^{\epsilon} t^{s-1}\left(\theta_{p}(M)(t)-\theta_{p}(M)(\infty)\right) d t}{\Gamma(s)}\right)\right. \\
& \left.+\int_{\epsilon}^{\infty} t^{-1}\left(\theta_{p}(M)(t)-\theta_{p}(M)(\infty)\right) d t\right) .
\end{aligned}
$$

Example : $M=S^{1}=\mathbb{R} / \mathbb{Z}, \quad \theta_{p}(M)(t)=\frac{1}{\sqrt{4 \pi t}}, \quad \rho^{(2)}\left(S^{1}\right)=0$.

Connexion with hyperbolic volume

The steps

Theorem (Lück-Schick 99, others)

Let M^{3} be a complete hyperbolic manifold (closed or cusped) with finite volume $\operatorname{vol}(M)$. Then:

- its L^{2}-Betti numbers $b_{*}^{(2)}(M)$ are all 0 ,
- its topological and analytic L^{2}-torsions $\left(T^{(2)}\right.$ and $\left.\rho^{(2)}\right)$ satisfy

$$
T^{(2)}(M)=\exp \left(\rho^{(2)}(M)\right)=\exp \left(\frac{\operatorname{vol}(M)}{6 \pi}\right)
$$

This theorem was proven with several steps:

- Dodziuk: Analytic L^{2}-Betti numbers are zero.
- Burghelea-Friedlander-Kappeler-McDonald : $\left(M\right.$ closed) $T^{(2)}=e^{\rho^{(2)}}$.
- Lott-Mathai : $(M$ closed $) \rho^{(2)}(M)=\frac{\operatorname{vol}(M)}{6 \pi}$.
- Lück-Schick: extension to M cusped.

$$
\begin{gathered}
\rho^{(2)}(M)=\frac{1}{2} \sum_{p \geqslant 0}(-1)^{p} p\left(\left.\frac{d}{d s}\right|_{s=0}\left(\frac{\int_{0}^{\epsilon} t^{s-1}\left(\theta_{p}(M)(t)-\theta_{p}(M)(\infty)\right) d t}{\Gamma(s)}\right)\right. \\
\left.+\int_{\epsilon}^{\infty} t^{-1}\left(\theta_{p}(M)(t)-\theta_{p}(M)(\infty)\right) d t\right) .
\end{gathered}
$$

$\widetilde{M}=\mathbb{H}^{3}$ is homogeneous, thus $\tau_{p}(t):=\operatorname{tr}_{\mathbb{C}}\left(e^{-t \Delta_{\rho}}(x, x)\right)$ is independent of $x \in \mathbb{H}^{3}$, and its integral is simply

$$
\theta_{p}(M)(t)=\int_{\mathcal{F}} \tau_{p}(t) d t=\tau_{p}(t) \cdot \int_{\mathcal{F}} 1=\tau_{p}(t) \cdot \operatorname{vol}(M) .
$$

Hence $\frac{\rho^{(2)}(M)}{\operatorname{vol}(M)}=\frac{1}{2} \sum_{p \geqslant 0}(-1)^{p} p\left(\left.\frac{d}{d s}\right|_{s=0}\left(\frac{\int_{0}^{\epsilon} t^{s-1}\left(\tau_{p}(t)-\tau_{p}(\infty)\right) d t}{\Gamma(s)}\right)\right.$

$$
\left.+\int_{\epsilon}^{\infty} t^{-1}\left(\tau_{p}(t)-\tau_{p}(\infty)\right) d t\right)=\frac{1}{6 \pi} . \text { (Lott-Mathai) }
$$

Genralizations

In dimension 3, it generalizes to M irreducible with empty or toroidal boundary:

$$
T^{(2)}(M)=\exp \left(\frac{\operatorname{vol}(M)}{6 \pi}\right),
$$

where $\operatorname{vol}(M)$ is the Gromov norm, i.e. the sum of the hyperbolic volumes in the JSJ decomposition of M.

It also generalizes to bigger odd dimensions.

