L²-torsion and hyperbolic volume (HQI Workshop, CIRM)

Fathi Ben Aribi

UCLouvain

9th February 2021

Introduction

Plan of the talk

- Introduction
- 2 Reidemeister torsions
- **3** Topological L^2 -torsion
- Analytic L^2 -torsion
- Onnexion with hyperbolic volume

Theorem (Lück-Schick 99, others)

Let M^3 be a complete hyperbolic manifold (closed or cusped) with finite volume vol(M). Then:

- its L^2 -Betti numbers $b_*^{(2)}(M)$ are all 0,
- its topological and analytic L²-torsions (T⁽²⁾ and $\rho^{(2)}$) satisfy

$$T^{(2)}(M) = \exp\left(
ho^{(2)}(M)
ight) = \exp\left(rac{\operatorname{vol}(M)}{6\pi}
ight)$$

Nine decades of invariants

The principle of (topological) L^2 -invariants

Reidemeister torsions

Reidemeister torsion : the example of S^1

 $(C_*(\widetilde{X}), \partial)$ contains the **topological info** of the CW-complex X. **Reidemeister torsion** is an invariant obtained from $(C_*(\widetilde{X}), \partial)$.

Reidemeister torsion : the example of S^1

From a group representation $\phi : G \to GL_d(K)$, you can build the twisted cellular chain complex $C_*(X, \phi) := K^d \otimes_{\mathbb{Z}G} C_*(\widetilde{X})$.

$$C_*(\widetilde{X}) = 0 o \mathbb{Z}[G]\widetilde{a} \overset{\partial}{\underset{(g-1)}{\longrightarrow}} \mathbb{Z}[G]\widetilde{p} o 0$$

$$\mathcal{C}_*(X,\phi) = \ 0 o \mathcal{K}^d(1\otimes \widetilde{a}) \stackrel{\partial^\phi}{\stackrel{(\phi(g)-\mathit{Id}_{\mathcal{K}^d})}{\longrightarrow}} \mathcal{K}^d(1\otimes \widetilde{p}) o 0$$

 $b_*(X,\phi) \in \mathbb{N}$ are the **twisted Betti numbers**. If they are zero, we can define the **Reidemeister torsion** $T(X,\phi) \in K^*/\det(\phi(K))$ as an alternated product of determinants of submatrices of ∂^{ϕ} .

If
$$\phi(g) - Id$$
 is invertible, then $T(S^1, \phi) = \frac{1}{\det(\phi(g) - Id)}$.

Topological L^2 -torsions

L²-invariants

Base (Hilbert) space: $\ell^2(G)$, completion of $\mathbb{C}G$.

Right-multiplication operator $R_g: \ell^2(G) \to \ell^2(G), h \mapsto hg$.

von Neumann trace $\operatorname{tr}_{G} : (\lambda_1 Id + \ldots + \lambda_g R_g) \mapsto \lambda_1 \in \mathbb{C}$.

von Neumann dimension $\dim_G : \ell^2(G)^{\oplus r} \mapsto r \ge 0.$

Fuglede-Kadison determinant det_{*G*}(*A*) \ge 0 of the *G*-equivariant operator *A* over $\ell^2(G)$, defined by:

$$\det_{G}(A) = \lim_{\epsilon \to 0^{+}} \left(\exp \circ \left(\frac{1}{2} \operatorname{tr}_{G} \right) \circ \operatorname{ln} \right) (A^{*}A + \epsilon \operatorname{Id}).$$

 $\begin{array}{l} \underline{\text{Example}:} \ G = \mathbb{Z}/3\mathbb{Z}. \ \ell^2(G) = \mathbb{C}^3, \ R_g \ \text{is a permutation matrix,} \\ \overline{\text{tr}_G = \frac{1}{3} \text{tr}_{\mathbb{C}}, \ \text{dim}_G = \frac{1}{3} \dim_{\mathbb{C}}, \ \text{det}_G = | \ \text{det} |^{1/3}. \end{array}$

Topological L^2 torsion

$$C_*^{(2)}(X) = \ell^2(G) \underset{\mathbb{Z}G}{\otimes} C_*(\widetilde{X})$$

= $0 \to \ell^2(G)(1 \otimes \widetilde{a}) \underset{(R_g \to Id)}{\overset{\partial^{(2)}}{\longrightarrow}} \ell^2(G)(1 \otimes \widetilde{p}) \to 0$
 $C_*(\widetilde{X}) = 0 \to \mathbb{Z}[G]\widetilde{a} \xrightarrow{\partial}_{(g-1)} \mathbb{Z}[G]\widetilde{p} \to 0$

*L*²-torsion is a variant of Reidemeister torsion, with a twist by the infinite-dimensional right regular representation $G \xrightarrow{R} B(\ell^2(G))$.

$$b^{(2)}_*(X) = \dim_{\mathcal{G}}\left(\operatorname{\mathit{Ker}}(\partial^{(2)}) \ / \ \overline{\operatorname{\mathit{Im}}(\partial^{(2)})}\right) \in \mathbb{R}_{\geqslant 0}$$

are the L^2 **Betti numbers** of X. If they **vanish**, we define the L^2 -torsion $T^{(2)}(X) \in \mathbb{R}_{>0}$ as an alternated product of det_G $(\partial^{(2)})$.

For
$$S^1$$
, we have $T^{(2)}(S^1) = \frac{1}{\det_G(R_g - Id)} = 1.$

Computing the L^2 -torsion

 $M = S^3 \setminus 4_1$ is hyperbolic, with volume $\operatorname{vol}(M) = 2.029...$ <u>Lück-Schick, etc.</u>: $T^{(2)}(M) = \exp\left(\frac{\operatorname{vol}(M)}{6\pi}\right) = 1.113...$

From $G = \pi_1(M) = \langle x, y | xyx^{-1}yx = yxy^{-1}xy \rangle$, we compute $T^{(2)}(M) = \det_G(A)$ with $A = Id - R_y - R_{xyx^{-1}} - R_{yxy^{-1}} + R_{xyx^{-1}y}$.

(From a braid closure presentation for G, A is a L^2 -**Burau map**).

Via developing det_G = exp tr_G ln, we can compute $\mathcal{T}^{(2)}(M)$ from the sequence of tr_G $((A^*A)^n)$, $n \in \mathbb{N}$ (not known in general). \rightsquigarrow counting closed paths on the Cayley graph of G.

Analytic L^2 -torsions

Laplacian on differential forms

 M^d riemannian, $\Omega^p(M) := C^{\infty}(M, (T_xM)^*)$ its space of *p*-forms.

 L^2 metric on $\Omega^*(M) \rightsquigarrow$ adjoint d^* , Laplacian $\Delta_p := dd^* + d^*d$.

Hodge-de Rham : Betti number $b_p(M) = \dim \ker \Delta_p$.

Example : $M = S^1 = \mathbb{R}/\mathbb{Z}$.

 $\Omega^{0}(S^{1}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \ 1 - \text{periodic} \}$ $\Omega^{1}(S^{1}) = \{ f \cdot dx \mid f : \mathbb{R} \to \mathbb{R} \ 1 - \text{periodic} \}$

$$0 \to \Omega^0(S^1) \stackrel{d}{\longrightarrow} \Omega^1(S^1) \to 0$$

 $d: f \mapsto (f' \cdot dx), \quad d^*: (f \cdot dx) \mapsto (-f'), \quad \Delta: f \mapsto -f''$

 $H_0(S^1)$ and $H_1(S^1)$ are the **constants**, thus $b_0(S^1) = b_1(S^1) = 1$.

Lapalacian and analytic torsion (sketch)

 Δ has eigenvalues $\lambda_n \ge 0$ for all $n \in \mathbb{N}$. We want to define

$$\det(\Delta)$$
 " = " $\prod_{n\in\mathbb{N}}\lambda_n$.

We can do this via (...) the operator $e^{-t\Delta}$ and its **trace**

$$\operatorname{tr}_{C^{\infty}(M)}(e^{-t\Delta}) = \sum_{n\in\mathbb{N}} e^{-t\lambda_n}.$$

Analytic torsion: $\rho(M) := \frac{-1}{2} \sum_{p \ge 0} (-1)^p p \cdot \ln (\det(\Delta_p))$ Example : $M = S^1 = \mathbb{R}/\mathbb{Z}, \quad \Delta : f \mapsto -f''.$ $\overline{\lambda_p} = (2\pi n)^2, \quad \det(\Delta) = 1, \quad \rho(S^1) = 0.$

Theorem (Cheeger-Muller, without details)

Analytic torsion $\rho(M)$ equals Reidemeister torsion $\ln(T(M))$.

If $f: M \to \mathbb{R}$ is the **temperature** and t is the **time**, then $e^{-t\Delta}(f): M \to \mathbb{R}$ is the **temperature at the time** t.

Indeed, $g(t,x) := (e^{-t\Delta}(f))(x)$ satisfies the heat equation

$$\frac{\partial}{\partial t}g(t,x)+\Delta_{x}g(t,x)=0.$$

The **heat kernel** $e^{-t\Delta}(x, y) \in \mathbb{R}$ is the ratio of temperature transferred from y to x during t. It satisfies

$$\forall f \in C^{\infty}(M), \forall x \in M, \ \left(e^{-t\Delta}(f)\right)(x) = \int_{M} e^{-t\Delta}(x,y) f(y) \, d\mathrm{vol}_{M}(y)$$

Example: $M = S^1 = \mathbb{R}/\mathbb{Z}$: $e^{-t\Delta}(x, y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x-y|^2}{4t}}$.

Analytic L²-Betti numbers

Let *E* complete Riemannian and $G \curvearrowright E$ cocompact by isometries. Let M = E/G, $G = \pi_1(M)$, $\mathcal{F} \subset E$ fundamental domain for *G*.

Example : $E = \mathbb{H}^3$, *M* hyperbolic closed.

Example : $E = \mathbb{R}$, $M = S^1 = \mathbb{R}/\mathbb{Z}$, $\mathcal{F} = (0, 1)$.

Analytic L^2 -Betti number: $b_p^{(2)}(M) = \lim_{t \to \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}} \left(e^{-t\Delta_p}(x, x) \right) d\operatorname{vol}_M(x)$ <u>Dodziuk</u>: $b_p^{(2),ana}(M) = b_p^{(2),topo}(M)$. <u>Example</u>: $M = S^1 = \mathbb{R}/\mathbb{Z}, e^{-t\Delta}(x, x) = \frac{1}{\sqrt{4\pi t}}, b_0^{(2)}(S^1) = b_1^{(2)}(S^1) = \lim_{t \to \infty} \frac{1}{\sqrt{4\pi t}} \int_{\mathcal{F}} 1 = 0$.

L^2 -analytic torsion of a closed Riemannian M

 Δ_p Laplacian on *p*-forms of *M*. We want to define

$$ho^{(2)}(M)$$
 " = " $rac{1}{2} \sum_{p \geqslant 0} (-1)^p p \cdot \ln(\det(\Delta_p)).$

The heat kernel gives $\theta_p(M)(t) := \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}}(e^{-t\Delta_p}(x,x)) d\operatorname{vol}_M(x)$, and the L^2 -Betti number : $\theta_p(M)(\infty) = b_p^{(2)}(M)$.

The L^2 -analytic torsion is defined by:

$$\begin{split} \rho^{(2)}(M) &:= \frac{1}{2} \sum_{p \ge 0} (-1)^p p\left(\frac{d}{ds}|_{s=0} \left(\frac{\int_0^\epsilon t^{s-1}(\theta_p(M)(t) - \theta_p(M)(\infty))dt}{\Gamma(s)}\right) \\ &+ \int_\epsilon^\infty t^{-1}(\theta_p(M)(t) - \theta_p(M)(\infty))dt\right). \end{split}$$

Example : $M = S^1 = \mathbb{R}/\mathbb{Z}$, $\theta_p(M)(t) = \frac{1}{\sqrt{4\pi t}}$, $\rho^{(2)}(S^1) = 0$.

Connexion with hyperbolic volume

Theorem (Lück-Schick 99, others)

Let M^3 be a complete hyperbolic manifold (closed or cusped) with finite volume vol(M). Then:

- its L^2 -Betti numbers $b_*^{(2)}(M)$ are all 0,
- its topological and analytic L^2 -torsions ($T^{(2)}$ and $\rho^{(2)}$) satisfy

$$\mathcal{T}^{(2)}(M) = \exp\left(
ho^{(2)}(M)
ight) = \exp\left(rac{\mathrm{vol}(M)}{6\pi}
ight)$$

This theorem was proven with several steps:

- Dodziuk : Analytic L²-Betti numbers are zero.
- Burghelea-Friedlander-Kappeler-McDonald : $(M \text{ closed}) T^{(2)} = e^{
 ho^{(2)}}$.
- Lott-Mathai : (*M* closed) $\rho^{(2)}(M) = \frac{\operatorname{vol}(M)}{6\pi}$.
- Lück-Schick : extension to *M* cusped.

L^2 -analytic torsion and volume for M^3 closed hyperbolic

$$\begin{split} \rho^{(2)}(M) &= \frac{1}{2} \sum_{p \ge 0} (-1)^p \rho\left(\frac{d}{ds}|_{s=0} \left(\frac{\int_0^{\epsilon} t^{s-1}(\theta_p(M)(t) - \theta_p(M)(\infty))dt}{\Gamma(s)}\right) \\ &+ \int_{\epsilon}^{\infty} t^{-1}(\theta_p(M)(t) - \theta_p(M)(\infty))dt\right). \end{split}$$

 $\widetilde{M} = \mathbb{H}^3$ is homogeneous, thus $\tau_p(t) := \operatorname{tr}_{\mathbb{C}} \left(e^{-t\Delta_p}(x, x) \right)$ is independent of $x \in \mathbb{H}^3$, and its integral is simply

$$\theta_p(M)(t) = \int_{\mathcal{F}} \tau_p(t) dt = \tau_p(t) \cdot \int_{\mathcal{F}} 1 = \tau_p(t) \cdot \operatorname{vol}(M).$$

Hence
$$\frac{\rho^{(2)}(M)}{\operatorname{vol}(M)} = \frac{1}{2} \sum_{p \ge 0} (-1)^p \rho\left(\frac{d}{ds}|_{s=0} \left(\frac{\int_0^{\epsilon} t^{s-1}(\tau_p(t) - \tau_p(\infty))dt}{\Gamma(s)}\right) + \int_{\epsilon}^{\infty} t^{-1}(\tau_p(t) - \tau_p(\infty))dt\right) = \frac{1}{6\pi}.$$
 (Lott-Mathai)

In dimension 3, it generalizes to M irreducible with empty or toroidal boundary:

$$T^{(2)}(M) = \exp\left(rac{\operatorname{vol}(M)}{6\pi}
ight),$$

where vol(M) is the **Gromov norm**, i.e. the sum of the hyperbolic volumes in the JSJ decomposition of M.

It also generalizes to bigger odd dimensions.