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Overview of the talk

Fuglede-Kadison 1952:  detg(A) = ef2ee(n(4) ¢ R
for (co-dimensional) positive G-equivariant operators A on £2(G).

— Building block of L?-Alexander torsions of knots/3-manifolds,
powerful topological invariants (Li-zhang 2006, Dubois-Friedi-Liick 2014)

_
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Corollary (B.A. 2022)
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Overview of the talk

Fuglede-Kadison 1952:  detg(A) = et2ee(n(A)) ¢ R,
for (co-dimensional) positive G-equivariant operators A on £2(G).

— Building block of L?-Alexander torsions of knots/3-manifolds,
powerful topological invariants (Li-zhang 2006, Dubois-Friedi-Liick 2014)

& In general, detg(A) is hard to compute.

New computations of FK determinants via Cayley graphs.

Theorem (B.A. 2022)

For the free group Fy = (x,y

), we have detp,(1 +x +y) = \%

Corollary (B.A. 2022)

New bounds on possible values of detg for a large class of G.
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First Part:

Fuglede—Kadison
determinants
and Cayley graphs
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Motivation: The elusive L?-Alexander invariant of knots

Li-Zhang 2006: The [2-Alexander invariant of knots
A(K2)(t) = det,,(s3\k)(A(K, t)) is a continuous function in t > 0.

(dety,(s3\ k) = Fuglede-Kadison determinant and A(K, t) = Fox matrix)

~ volume V, genus *, monodromy entropy *, relative volume ¢

(Liick—Schick 1999, Dubois—Friedl-Liick 2016, Liu 2017, Friedl-Liick 2019, B.A.-Friedl-Herrmann 2021)

Goal (Liick 2002, Dasbach-Lalin 2009, Kricker-Wong 2021, B.A. 2022)
New computations of FK determinants via Cayley graphs.
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Fuglede—Kadison determinants

Let G be a finitely presented group (e.g. G = 71(S3\ K)).

Regular representation G ~ (?(G) ~ Ring action CG ~ (?(G).

Fathi Ben Aribi Fuglede—Kadison determinants over Fy and Lehmer's constants



Fuglede—Kadison determinants

Let G be a finitely presented group (e.g. G = 71(S3\ K)).
Regular representation G ~ (?(G) ~ Ring action CG ~ (?(G).
Any A=Y a,-g € CG, as a G-equivariant operator on ¢2(G), has

a trace trg(A) := a1, € C and a Fuglede—Kadison determinant

e—07t

1
det g(A) := lim exp <2trG (In(A*A+e Id))> € Rxo.

(In(A) = functional calculus, you can think “power series").
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Fuglede—Kadison determinants

Let G be a finitely presented group (e.g. G = 71(S3\ K)).
Regular representation G ~ (?(G) ~ Ring action CG ~ (?(G).

Any A=Y a,-g € CG, as a G-equivariant operator on ¢2(G), has
a trace trg(A) := a1, € C and a Fuglede—Kadison determinant

1
det g(A) := lim exp <2trG (In(A*A+e Id))> € Rxo.

e—07t

(In(A) = functional calculus, you can think “power series").
Ex: For G finite, 2(G) = CIS!, and detg(A) = det(JA[)TeT.

Ex: detg(a-1d) = |a|.
Ex: detg(Id + a- Rg) = max(1, |a|) for g of infinite order.

X

X

In general: detg(A) is hard to compute.
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Computing dets from Cayley graphs

Via In(1 — X) = =3 %2 for injective A and any 0 < \ < [|A[| 72,

n>1

1
det g(A) := 6in8+ exp <2tr(; (In(A*A+¢ Id))>

1 1 o
C=A"Y2exp (2 > ~trg ((Id — MA"A) )) :

n>1

which depends only on the sequence ¢, := trg ((A*A)").
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Computing dets from Cayley graphs

Via In(1 — X) = =3 %2 for injective A and any 0 < \ < [|A[| 72,

n>1

1
det g(A) := 6in8+ exp <2tr(; (In(A*A+¢ Id))>

1 1
—\1/2 * A\N
=AY exp<2 > :;trG((Id—AA A) )),

n>1

which depends only on the sequence ¢, := trg ((A*A)").

To A*A =} a, - g € CG, associate the weighted Cayley graph
finite

Ia=a with group (gi)G, generating set the g;, and weights ag;.

Now ¢, = trg ((A*A)") is exactly the number of loops on [ s+
based in 1 of length n (counted with weights [] ag).
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Computing detr, from trees

In general, to compute every ¢, = trg ((A*A)"), we consider the
generating series up-a(z) = Yoy Cn- 2"

Relators of G, topology of 4«4 ~~ functional equations in ua«4.

Lemma (Bartholdi 1999, Dasbach—Lalin 2009)

Theorem (B.A. 2022)
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Computing detr, from trees

In general, to compute every ¢, = trg ((A*A)"), we consider the
generating series up-a(z) = Yoy Cn- 2"

Relators of G, topology of 4«4 ~~ functional equations in ua«4.

Lemma (Bartholdi 1999, Dasbach—Lalin 2009)

For G =2 = (x,y), we have u(14 14, -1)(14x4y)(2) = ﬁ.

Theorem (B.A. 2022)

For G =Fy = (x,y), we have detp,(1 +x+y) = %

Helped by I being a tree and A*A being very symmetric.
(Also works for 1 + x3 + ...+ xg and x; +xf1+...+xd —i—x;l in ZFy4)
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Possible hints for the [2-Alexander invariant

What about detp, (1 + x + ¢ - y) ? What we know so far:

t

I is the same, but the functional equations get more complicated.
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Possible hints for the [2-Alexander invariant

What about detp, (1 + x + ¢ - y) ? What we know so far:

t

I is the same, but the functional equations get more complicated.

Knowing f(t) = detp,(1 4+ x 4 t - y) could give hints of the
general form of the L2-Alexander invariant Af)(t).

(Are f(t),Af)(t) piecewise monomial? piecewise smooth?)
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Upper approximations of detg

For any N > 1, since Id — AA*A > 0, we get the upper bounds
_ 11 « a\n
det ¢(A) = A2 exp (-2 > ~trg ((Id - AA"A) )>

n=1

< A2 exp< Z ftr(; ((1d — AA™A) )>

0 1 2 3 4

Ex: G=my($*\41), AD(t) = detc(1 —t- g —t- g — t- g5+ t* g) <fu(t).
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Second Part:

Bounds on
Lehmer’s constants
of groups
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Mahler measures (Lehmer 1933, Mahler 1962)

The Mahler measure of a polynomial P € C [X*!] = C[Z] is

M(P) :=exp <217T /Qﬁn P (em) ‘ d9> € Rxo.
0

Lehmer's Problem (1933)
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Mahler measures (Lehmer 1933, Mahler 1962)

The Mahler measure of a polynomial P € C [X*] = C[Z] is

M(P) :=exp (2::1_ /zﬁn P (em) ’ d9> € Rxo.
0

Examples:

o v (cT10x - a) ) =1c]- [ max(t,fai),

e M (L)=1.176280818... for Lehmer’s polynomial
L(X)=X04 X% - XT - X6 — X5 - X* - X3+ X+1.

Lehmer's Problem (1933)
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Mahler measures (Lehmer 1933, Mahler 1962)

The Mahler measure of a polynomial P € C [X*] = C[Z] is

M(P) :=exp <2171' /27]n P (em) ’ d9) € Rxo.
0

Examples:

o v (cT10x - a) ) =1c]- [ max(t,fai),

e M (L)=1.176280818... for Lehmer’s polynomial
L(X)=X04 X% - XT - X6 — X5 - X* - X3+ X+1.

Lehmer's Problem (1933)

Do we have inf{M(P) > 1| P e Z[X]} >17 or even =1.176...7

<> algebraic numbers, hyperbolic systoles, ... (smyth 2008, Pham-Thilmany 2021)

Fathi Ben Aribi Fuglede—Kadison determinants over F; and Lehmer's constants



Lehmer’s constants of groups

Proposition (Schmidt 1995, Liick 2002)

For G =7, and P € C [X*'] = C[Z], we have det z(P) = M(P).

Lehmer-Liick Problem (Liick 2019)
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Lehmer’s constants of groups

Proposition (Schmidt 1995, Liick 2002)

For G =7, and P € C [X*'] = C[Z], we have det z(P) = M(P).

Liick 2019: Lehmer’s constant of the group G:
AY(G):= inf{detg(A) > 1| A€ ZG ~ £%(G) injective} € [L,2].

Examples: AW({1}) =2, AY(Z/2) =+/3, N\¥(Z/n) — 1.

n—oo

Lehmer-Liick Problem (Liick 2019)
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Lehmer’s constants of groups

Proposition (Schmidt 1995, Liick 2002)

For G =7, and P € C [X*'] = C[Z], we have det z(P) = M(P).

Liick 2019: Lehmer’s constant of the group G:
AY(G):= inf{detg(A) > 1| AEZG ~ (?(G) injective} € [1,2].

Examples: AW({1}) =2, AY(Z/2) =+/3, N\¥(Z/n) — 1.

n—oo

Lehmer-Liick Problem (Liick 2019)

For which G do we have A\Y'(G) > 17 or AY(G) = 1.176...7

Lehmer-Liick for G = Z < Lehmer’s Problem (since detz = M).
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New bounds for the Lehmer-Luck Problem

Lehmer-Liick Problem (Liick 2019)

For which G do we have A\Y'(G) > 17 or AY(G) =1.176...7

In general, H <> G = VA € ZH, detg(1(A)) = dety(A).
= AY(G) < AY(H).

Proposition (Lehmer 1933)

Theorem (B.A. 2022)
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New bounds for the Lehmer-Luck Problem

Lehmer-Liick Problem (Liick 2019)
For which G do we have A\Y'(G) > 17 or AY(G) =1.176...7

In general, H <> G = VA € ZH, detg(1(A)) = dety(A).
= N/(G) < AY(H).

Proposition (Lehmer 1933)
For G # {1} torsionfree, A} (G) < AY(Z) < M(L) =1.176...

Theorem (B.A. 2022)

For G =y = (x,y), we have detp,(1 +x+y) = % =1.15....
— For all G with free subgroups, we have A\(G) < 1.15....
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L2-torsions and hyperbolic volumes

Let M be a 3-manifold. Let CA(M) := 2(m M) ® C.(M,Z).
Zm1 (M)

(—D*
[2-Torsion of M: TA(M) := ] detr, (m) <8kc(2)(M)> € Ryo.
keN

Theorem (Burghelea-FriedIander—KappeIer-McDonaId 1996, Lott-Mathai 1992, Liick-Schick 1999)

Theorem (B.A. 2022)
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L2-torsions and hyperbolic volumes

Let M be a 3-manifold. Let CA(M) := 2(m M) ® C.(M,Z).
Zm1 (M)

(-1)*
[2-Torsion of M: TA(M) := [] det,, ) (af”’“”) € Roo.
keN

Theorem (Burghelea—FriedIander—Kappeler—McDonaId 1996, Lott-Mathai 1992, Liick-Schick 1999)

Let M be a (closed or cusped) hyperbolic 3-manifold. Then
T@(M) = exp (M) i
67

Theorem (B.A. 2022)
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L2-torsions and hyperbolic volumes

Let M be a 3-manifold. Let CA(M) := 2(m M) ® C.(M,Z).
Zm1 (M)
2 Torei 2 c@(my) (V"
L2-Torsion of M: T(M) := ] det, (m) (8
keN

Theorem (Burghelea—FriedIander—KappeIer—McDonaId 1996, Lott-Mathai 1992, Liick-Schick 1999)

Let M be a (closed or cusped) hyperbolic 3-manifold. Then

T@(M) = exp <V°1(M)> .

(%

Theorem (B.A. 2022)

For an infinite number of hyperbolic 3-manifolds M and all
Vol(M
G > (M), we have AY'(G) < exp ( 06( )> < 1.15...
T

Key: rk(m1(M)) = 2 (e.g. Dehn fillings on the Whitehead link)

Fathi Ben Aribi
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Thank you for your attention!
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