Fuglede–Kadison determinants over free groups and Lehmer's constants

Fathi Ben Aribi

UCLouvain

19 july 2022

Overview of the talk

Fuglede–Kadison 1952: $\det_G(A) = e^{\operatorname{trace}(\ln(A))} \in \mathbb{R}_{\geqslant 0}$ for $(\infty$ -dimensional) positive G-equivariant operators A on $\ell^2(G)$.

 \rightarrow Building block of L^2 -Alexander torsions of knots/3-manifolds, powerful topological invariants (Li-Zhang 2006, Dubois-Friedl-Lück 2014)

 \triangle In general, $\det_G(A)$ is hard to compute.

Goal

New computations of FK determinants via Cayley graphs.

Theorem (B.A. 2022)

For the free group $\mathbb{F}_2 = \langle x, y | \rangle$, we have $\det_{\mathbb{F}_2} (1 + x + y) = \frac{2}{\sqrt{3}}$.

Corollary (B.A. 2022)

New bounds on possible values of \det_G for a large class of G.

Overview of the talk

Fuglede-Kadison 1952: $\det_G(A) = e^{\operatorname{trace}(\ln(A))} \in \mathbb{R}_{>0}$ for (∞ -dimensional) positive *G*-equivariant operators *A* on $\ell^2(G)$.

 \rightarrow Building block of L²-Alexander torsions of knots/3-manifolds, powerful topological invariants (Li-Zhang 2006, Dubois-Friedl-Lück 2014)

!\ In general, $\det_G(A)$ is hard to compute.

Goal

New computations of FK determinants via **Cayley graphs**.

Theorem (B.A. 2022)

For the free group $\mathbb{F}_2 = \langle x, y | \rangle$, we have $\det_{\mathbb{F}_2} (1 + x + y) = \frac{2}{\sqrt{3}}$.

Corollary (B.A. 2022)

New bounds on possible values of det_G for a large class of G.

Overview of the talk

Fuglede-Kadison 1952: $\det_G(A) = e^{\operatorname{trace}(\ln(A))} \in \mathbb{R}_{>0}$ for (∞ -dimensional) positive *G*-equivariant operators *A* on $\ell^2(G)$.

 \rightarrow Building block of L^2 -Alexander torsions of knots/3-manifolds, powerful topological invariants (Li-Zhang 2006, Dubois-Friedl-Lück 2014)

!\ In general, $\det_G(A)$ is hard to compute.

Goal

New computations of FK determinants via **Cayley graphs**.

Theorem (B.A. 2022)

For the free group $\mathbb{F}_2 = \langle x, y | \rangle$, we have $\det_{\mathbb{F}_2} (1 + x + y) = \frac{2}{\sqrt{3}}$.

Corollary (B.A. 2022)

New bounds on possible values of \det_G for a large class of G.

First Part:

Fuglede–Kadison determinants and Cayley graphs

Motivation: The elusive L^2 -Alexander invariant of knots

Li-Zhang 2006: The L²-Alexander invariant of knots

$$\Delta_K^{(2)}(t) = \det_{\pi_1(S^3 \setminus K)}(A(K, t)) \text{ is a continuous function in } t > 0.$$

$$(\det_{\pi_1(S^3 \setminus K)} = \text{Fuglede-Kadison determinant and } A(K, t) = \text{Fox matrix})$$

→ volume ∇, genus *, monodromy entropy *, relative volume ◊
(Lück-Schick 1999, Dubois-Friedl-Lück 2016, Liu 2017, Friedl-Lück 2019, B.A.-Friedl-Herrmann 2021)

Goal (Lück 2002, Dasbach-Lalin 2009, Kricker-Wong 2021, B.A. 2022)

New computations of FK determinants via Cayley graphs.

Fuglede-Kadison determinants

Let G be a finitely presented group (e.g. $G = \pi_1(S^3 \setminus K)$).

Regular representation $G \curvearrowright \ell^2(G) \leadsto \text{Ring action } \mathbb{C}G \curvearrowright \ell^2(G)$.

Any $A = \sum a_g \cdot g \in \mathbb{C}G$, as a G-equivariant operator on $\ell^2(G)$, has a trace $\operatorname{tr}_G(A) := a_{1_G} \in \mathbb{C}$ and a **Fuglede–Kadison determinant**

$$\det_G(A) := \lim_{\epsilon \to 0^+} \exp\left(\frac{1}{2} \operatorname{tr}_G\left(\ln(A^*A + \epsilon \operatorname{Id})\right)\right) \in \mathbb{R}_{\geqslant 0}.$$

(ln(A) = functional calculus, you can think "power series").

 $\underline{\mathsf{Ex}}$: For G finite, $\ell^2(G) \cong \mathbb{C}^{|G|}$, and $\det_G(A) = \det(|A|)^{\frac{1}{|G|}}$.

 $\underline{\mathsf{Ex}}$: $\mathsf{det}_{G}(a \cdot \mathsf{Id}) = |a|$.

 $\underline{\operatorname{Ex}}$: $\det_G(\operatorname{Id} + a \cdot R_g) = \max(1, |a|)$ for g of infinite order.

In general: $det_G(A)$ is hard to compute.

Fuglede-Kadison determinants

Let G be a finitely presented group (e.g. $G = \pi_1(S^3 \setminus K)$).

Regular representation $G \curvearrowright \ell^2(G) \leadsto \text{Ring action } \mathbb{C}G \curvearrowright \ell^2(G)$.

Any $A = \sum a_g \cdot g \in \mathbb{C}G$, as a G-equivariant operator on $\ell^2(G)$, has a trace $\operatorname{tr}_G(A) := a_{1_G} \in \mathbb{C}$ and a Fuglede–Kadison determinant

$$\det_{G}(A) := \lim_{\epsilon \to 0^{+}} \exp\left(\frac{1}{2} \operatorname{tr}_{G}\left(\ln(A^{*}A + \epsilon \operatorname{Id})\right)\right) \in \mathbb{R}_{\geqslant 0}.$$

(ln(A) = functional calculus, you can think "power series").

 $\underline{\operatorname{Ex}}$: For G finite, $\ell^2(G) \cong \mathbb{C}^{|G|}$, and $\det_G(A) = \det(|A|)^{\frac{1}{|G|}}$.

 $\underline{\mathsf{Ex}}$: $\mathsf{det}_{G}(a \cdot \mathsf{Id}) = |a|$.

 $\underline{\operatorname{Ex}}$: $\det_G(\operatorname{Id} + a \cdot R_g) = \max(1, |a|)$ for g of infinite order.

In general: $det_G(A)$ is hard to compute.

Fuglede-Kadison determinants

Let G be a finitely presented group (e.g. $G = \pi_1(S^3 \setminus K)$).

Regular representation $G \curvearrowright \ell^2(G) \leadsto \text{Ring action } \mathbb{C}G \curvearrowright \ell^2(G)$.

Any $A = \sum a_g \cdot g \in \mathbb{C}G$, as a G-equivariant operator on $\ell^2(G)$, has a trace $\operatorname{tr}_G(A) := a_{1_G} \in \mathbb{C}$ and a Fuglede–Kadison determinant

$$\det_{G}(A) := \lim_{\epsilon \to 0^{+}} \exp\left(\frac{1}{2} \operatorname{tr}_{G}\left(\ln(A^{*}A + \epsilon \operatorname{Id})\right)\right) \in \mathbb{R}_{\geqslant 0}.$$

(ln(A) = functional calculus, you can think "power series").

 $\underline{\operatorname{Ex}}$: For G finite, $\ell^2(G) \cong \mathbb{C}^{|G|}$, and $\det_G(A) = \det(|A|)^{\frac{1}{|G|}}$.

 $\underline{\mathsf{Ex}} \colon \det_{\mathsf{G}} (a \cdot \mathrm{Id}) = |a|.$

 $\underline{\operatorname{Ex}}$: $\det_G(\operatorname{Id} + a \cdot R_g) = \max(1, |a|)$ for g of infinite order.

In general: $det_G(A)$ is hard to compute.

Computing det_G from Cayley graphs

Via
$$\ln(1-X) = -\sum_{n\geqslant 1} \frac{X^n}{n}$$
, for injective A and any $0 < \lambda < \|A\|^{-2}$,

$$\det_{G}(A) := \lim_{\epsilon \to 0^{+}} \exp\left(\frac{1}{2} \operatorname{tr}_{G} \left(\ln(A^{*}A + \epsilon \operatorname{Id})\right)\right)$$

$$= \dots = \lambda^{-1/2} \exp\left(-\frac{1}{2} \sum_{n \geqslant 1} \frac{1}{n} \operatorname{tr}_{G} \left(\left(\operatorname{Id} - \lambda A^{*}A\right)^{n}\right)\right),$$

which depends only on the sequence $c_n := \operatorname{tr}_G((A^*A)^n)$.

To $A^*A = \sum_{\text{finite}} a_{g_i} \cdot g_i \in \mathbb{C}G$, associate the **weighted Cayley graph** Γ_{A^*A} with group $\langle g_i \rangle_G$, generating set the g_i , and weights a_{g_i} .

Now $c_n = \operatorname{tr}_{\mathcal{G}}((A^*A)^n)$ is exactly the **number of loops** on Γ_{A^*A} based in 1 of **length** n (counted with **weights** $\prod a_{g_j}$).

Computing \det_G from Cayley graphs

Via
$$\ln(1-X) = -\sum_{n\geqslant 1} \frac{X^n}{n}$$
, for injective A and any $0 < \lambda < \|A\|^{-2}$,

$$\det_{G}(A) := \lim_{\epsilon \to 0^{+}} \exp\left(\frac{1}{2} \operatorname{tr}_{G} \left(\ln(A^{*}A + \epsilon \operatorname{Id})\right)\right)$$

$$= \dots = \lambda^{-1/2} \exp\left(-\frac{1}{2} \sum_{n \geq 1} \frac{1}{n} \operatorname{tr}_{G} \left(\left(\operatorname{Id} - \lambda A^{*}A\right)^{n}\right)\right),$$

which depends only on the sequence $c_n := \operatorname{tr}_G((A^*A)^n)$.

To $A^*A = \sum_{\text{finite}} a_{g_i} \cdot g_i \in \mathbb{C}G$, associate the **weighted Cayley graph** Γ_{A^*A} with group $\langle g_i \rangle_G$, generating set the g_i , and weights a_{g_i} .

Now $c_n = \operatorname{tr}_G((A^*A)^n)$ is exactly the **number of loops** on Γ_{A^*A} based in 1 of **length** n (counted with **weights** $\prod a_{g_j}$).

Computing $\det_{\mathbb{F}_d}$ from trees

In general, to compute **every** $c_n = \operatorname{tr}_G((A^*A)^n)$, we consider the **generating series** $u_{A^*A}(z) = \sum_{n \in \mathbb{N}} c_n \cdot z^n$.

Relators of G, topology of $\Gamma_{A^*A} \rightsquigarrow$ functional equations in u_{A^*A} .

Lemma (Bartholdi 1999, Dasbach-Lalin 2009)

For
$$G = \mathbb{F}_2 = \langle x, y \rangle$$
, we have $u_{(1+x^{-1}+y^{-1})(1+x+y)}(z) = \frac{4}{1+3\sqrt{1-8z}}$.

Theorem (B.A. 2022)

For
$$G = \mathbb{F}_2 = \langle x, y \rangle$$
, we have $\det_{\mathbb{F}_2} (1 + x + y) = \frac{2}{\sqrt{3}}$.

Helped by Γ being a **tree** and A^*A being very **symmetric**.

(Also works for
$$1+x_1+\ldots+x_d$$
 and $x_1+x_1^{-1}+\ldots+x_d+x_d^{-1}$ in \mathbb{ZF}_d)

Computing $\det_{\mathbb{F}_d}$ from trees

In general, to compute **every** $c_n = \operatorname{tr}_G((A^*A)^n)$, we consider the **generating series** $u_{A^*A}(z) = \sum_{n \in \mathbb{N}} c_n \cdot z^n$.

Relators of G, topology of $\Gamma_{A^*A} \rightsquigarrow$ **functional equations** in u_{A^*A} .

Lemma (Bartholdi 1999, Dasbach-Lalin 2009)

For
$$G = \mathbb{F}_2 = \langle x, y \rangle$$
, we have $u_{(1+x^{-1}+y^{-1})(1+x+y)}(z) = \frac{4}{1+3\sqrt{1-8z}}$.

Theorem (B.A. 2022)

For
$$G = \mathbb{F}_2 = \langle x, y \rangle$$
, we have $\det_{\mathbb{F}_2} (1 + x + y) = \frac{2}{\sqrt{3}}$.

Helped by Γ being a **tree** and A^*A being very **symmetric**.

(Also works for
$$1+x_1+\ldots+x_d$$
 and $x_1+x_1^{-1}+\ldots+x_d+x_d^{-1}$ in \mathbb{ZF}_d)

Possible hints for the L^2 -Alexander invariant

What about $\det_{\mathbb{F}_2}(1+x+t\cdot y)$? What we know so far:

 Γ is the same, but the **functional equations** get more complicated.

Knowing $f(t) = \det_{\mathbb{F}_2} (1 + x + t \cdot y)$ could give **hints** of the general form of the L^2 -Alexander invariant $\Delta_K^{(2)}(t)$.

(Are $f(t), \Delta_K^{(2)}(t)$ piecewise monomial? piecewise smooth?)

Possible hints for the L^2 -Alexander invariant

What about $\det_{\mathbb{F}_2}(1+x+t\cdot y)$? What we know so far:

 Γ is the same, but the **functional equations** get more complicated.

Knowing $f(t) = \det_{\mathbb{F}_2}(1 + x + t \cdot y)$ could give **hints** of the **general form** of the L^2 -Alexander invariant $\Delta_K^{(2)}(t)$.

(Are $f(t), \Delta_K^{(2)}(t)$ piecewise monomial? piecewise smooth?)

Upper approximations of det_G

For any $N \geqslant 1$, since $\mathrm{Id} - \lambda A^*A > 0$, we get the **upper bounds**

$$\det_{G}(A) = \lambda^{-1/2} \exp\left(-\frac{1}{2} \sum_{n \geq 1} \frac{1}{n} \operatorname{tr}_{G}\left(\left(\operatorname{Id} - \lambda A^{*}A\right)^{n}\right)\right)$$

$$\leq \lambda^{-1/2} \exp\left(-\frac{1}{2} \sum_{n = 1}^{N} \frac{1}{n} \operatorname{tr}_{G}\left(\left(\operatorname{Id} - \lambda A^{*}A\right)^{n}\right)\right).$$

$$\underline{\mathsf{Ex}}$$
: $G = \pi_1(S^3 \setminus 4_1)$, $\Delta_{4_1}^{(2)}(t) = \det_G(1 - t \cdot g_1 - t \cdot g_2 - t \cdot g_3 + t^2 \cdot g_4) \leqslant f_N(t)$.

Second Part:

Bounds on Lehmer's constants of groups

Mahler measures (Lehmer 1933, Mahler 1962)

The **Mahler measure** of a polynomial $P \in \mathbb{C}\left[X^{\pm 1}\right] \cong \mathbb{C}[\mathbb{Z}]$ is

$$\mathcal{M}(P) := \exp\left(rac{1}{2\pi}\int_0^{2\pi} \ln\left|P\left(e^{i heta}
ight)
ight|d heta
ight) \in \mathbb{R}_{\geqslant 0}.$$

Examples:

- $\mathcal{M}\left(C \cdot \prod_{i=1}^{r} (X \alpha_i)\right) = |C| \cdot \prod_{i=1}^{r} \max(1, |\alpha_i|).$
- $\mathcal{M}(L) = 1.176280818...$ for **Lehmer's polynomial** $L(X) = X^{10} + X^9 X^7 X^6 X^5 X^4 X^3 + X + 1.$

Lehmer's Problem (1933)

Do we have $\inf\{\mathcal{M}(P) > 1 \mid P \in \mathbb{Z}[X]\} > 1$? or even = 1.176...?

⇔ algebraic numbers, hyperbolic systoles, ... (Smyth 2008, Pham-Thilmany 2021)

Mahler measures (Lehmer 1933, Mahler 1962)

The **Mahler measure** of a polynomial $P \in \mathbb{C}\left[X^{\pm 1}\right] \cong \mathbb{C}[\mathbb{Z}]$ is

$$\mathcal{M}(P) := \exp\left(rac{1}{2\pi}\int_0^{2\pi} \ln\left|P\left(e^{i heta}
ight)
ight|d heta
ight) \in \mathbb{R}_{\geqslant 0}.$$

Examples:

- $\mathcal{M}\left(C \cdot \prod_{i=1}^{r} (X \alpha_i)\right) = |C| \cdot \prod_{i=1}^{r} \max(1, |\alpha_i|).$
- $\mathcal{M}(L) = 1.176280818...$ for **Lehmer's polynomial** $L(X) = X^{10} + X^9 X^7 X^6 X^5 X^4 X^3 + X + 1.$

Lehmer's Problem (1933)

Do we have $\inf\{\mathcal{M}(P) > 1 \mid P \in \mathbb{Z}[X]\} > 1$? or even = 1.176...?

⇔ algebraic numbers, hyperbolic systoles, ... (Smyth 2008, Pham-Thilmany 2021)

Mahler measures (Lehmer 1933, Mahler 1962)

The **Mahler measure** of a polynomial $P \in \mathbb{C}\left[X^{\pm 1}\right] \cong \mathbb{C}[\mathbb{Z}]$ is

$$\mathcal{M}(P) := \exp\left(rac{1}{2\pi}\int_0^{2\pi} \ln\left|P\left(e^{i heta}
ight)
ight|d heta
ight) \in \mathbb{R}_{\geqslant 0}.$$

Examples:

- $\mathcal{M}\left(C \cdot \prod_{i=1}^{r} (X \alpha_i)\right) = |C| \cdot \prod_{i=1}^{r} \max(1, |\alpha_i|).$
- $\mathcal{M}(L) = 1.176280818...$ for **Lehmer's polynomial** $L(X) = X^{10} + X^9 X^7 X^6 X^5 X^4 X^3 + X + 1.$

Lehmer's Problem (1933)

Do we have $\inf\{\mathcal{M}(P) > 1 \mid P \in \mathbb{Z}[X]\} > 1$? or even = 1.176...?

Lehmer's constants of groups

Proposition (Schmidt 1995, Lück 2002)

For
$$G = \mathbb{Z}$$
, and $P \in \mathbb{C}\left[X^{\pm 1}\right] \cong \mathbb{C}[\mathbb{Z}]$, we have $\det_{\mathbb{Z}}(P) = \mathcal{M}(P)$.

<u>Lück 2019:</u> **Lehmer's constant** of the group *G*:

$$\Lambda_1^w(G) := \inf\{ \det_G(A) > 1 \mid A \in \mathbb{Z}G \curvearrowright \ell^2(G) \text{ injective} \} \in [1, 2].$$

Examples:
$$\Lambda_1^w(\{1\}) = 2$$
, $\Lambda_1^w(\mathbb{Z}/2) = \sqrt{3}$, $\Lambda_1^w(\mathbb{Z}/n) \underset{n \to \infty}{\to} 1$.

Lehmer-Lück Problem (Lück 2019)

For which G do we have
$$\Lambda_1^w(G) > 1$$
? or $\Lambda_1^w(G) = 1.176...$?

Lehmer-Lück for $G = \mathbb{Z} \Leftrightarrow \text{Lehmer's Problem (since } \det_{\mathbb{Z}} = \mathcal{M})$.

Lehmer's constants of groups

Proposition (Schmidt 1995, Lück 2002)

For
$$G = \mathbb{Z}$$
, and $P \in \mathbb{C}\left[X^{\pm 1}\right] \cong \mathbb{C}[\mathbb{Z}]$, we have $\det_{\mathbb{Z}}(P) = \mathcal{M}(P)$.

<u>Lück 2019:</u> **Lehmer's constant** of the group *G*:

$$\Lambda_1^w(G) := \inf\{\det_G(A) > 1 \mid A \in \mathbb{Z}G \curvearrowright \ell^2(G) \text{ injective}\} \in [1,2].$$

Examples:
$$\Lambda_1^w(\{1\}) = 2$$
, $\Lambda_1^w(\mathbb{Z}/2) = \sqrt{3}$, $\Lambda_1^w(\mathbb{Z}/n) \underset{n \to \infty}{\to} 1$.

Lehmer-Lück Problem (Lück 2019)

For which G do we have
$$\Lambda_1^w(G) > 1$$
? or $\Lambda_1^w(G) = 1.176...$?

Lehmer-Lück for $G = \mathbb{Z} \Leftrightarrow \text{Lehmer's Problem (since } \det_{\mathbb{Z}} = \mathcal{M})$.

Lehmer's constants of groups

Proposition (Schmidt 1995, Lück 2002)

For $G=\mathbb{Z}$, and $P\in\mathbb{C}\left[X^{\pm 1}\right]\cong\mathbb{C}[\mathbb{Z}]$, we have $\det_{\mathbb{Z}}(P)=\mathcal{M}(P)$.

<u>Lück 2019:</u> **Lehmer's constant** of the group *G*:

$$\Lambda_1^w(G) := \inf\{\det_G(A) > 1 \mid A \in \mathbb{Z}G \curvearrowright \ell^2(G) \text{ injective}\} \in [1,2].$$

Examples:
$$\Lambda_1^w(\{1\}) = 2$$
, $\Lambda_1^w(\mathbb{Z}/2) = \sqrt{3}$, $\Lambda_1^w(\mathbb{Z}/n) \underset{n \to \infty}{\to} 1$.

Lehmer-Lück Problem (Lück 2019)

For which G do we have $\Lambda_1^w(G) > 1$? or $\Lambda_1^w(G) = 1.176...$?

Lehmer-Lück for $G = \mathbb{Z} \Leftrightarrow \text{Lehmer's Problem (since } \det_{\mathbb{Z}} = \mathcal{M})$.

New bounds for the Lehmer-Lück Problem

Lehmer-Lück Problem (Lück 2019)

For which G do we have $\Lambda_1^w(G) > 1$? or $\Lambda_1^w(G) = 1.176...$?

In general,
$$H \overset{\iota}{\hookrightarrow} G \Rightarrow \forall A \in \mathbb{Z}H$$
, $\det_G(\iota(A)) = \det_H(A)$.
 $\Rightarrow \Lambda_1^w(G) \leqslant \Lambda_1^w(H)$.

Proposition (Lehmer 1933)

For
$$G \neq \{1\}$$
 torsionfree, $\Lambda_1^w(G) \leqslant \Lambda_1^w(\mathbb{Z}) \leqslant \mathcal{M}(L) = 1.176...$

Theorem (B.A. 2022)

For $G = \mathbb{F}_2 = \langle x, y \rangle$, we have $\det_{\mathbb{F}_2}(1 + x + y) = \frac{2}{\sqrt{3}} = 1.15...$ \rightarrow For all G with **free subgroups**, we have $\Lambda_1^w(G) \leqslant 1.15...$

New bounds for the Lehmer-Lück Problem

Lehmer-Lück Problem (Lück 2019)

For which G do we have $\Lambda_1^w(G) > 1$? or $\Lambda_1^w(G) = 1.176...$?

In general, $H \overset{\iota}{\hookrightarrow} G \Rightarrow \forall A \in \mathbb{Z}H$, $\det_G(\iota(A)) = \det_H(A)$. $\Rightarrow \Lambda_1^w(G) \leqslant \Lambda_1^w(H)$.

Proposition (Lehmer 1933)

For $G \neq \{1\}$ torsionfree, $\Lambda_1^w(G) \leqslant \Lambda_1^w(\mathbb{Z}) \leqslant \mathcal{M}(L) = 1.176...$

Theorem (B.A. 2022)

For $G = \mathbb{F}_2 = \langle x, y \rangle$, we have $\det_{\mathbb{F}_2}(1 + x + y) = \frac{2}{\sqrt{3}} = 1.15...$ \rightarrow For all G with free subgroups, we have $\Lambda_1^w(G) \leq 1.15...$

L²-torsions and hyperbolic volumes

Let M be a 3-manifold. Let $C^{(2)}(M):=\ell^2(\pi_1M)\underset{\mathbb{Z}\pi_1(M)}{\otimes}C_*(\widetilde{M},\mathbb{Z}).$

$$\underline{\mathit{L}^{2}\text{-Torsion of }\mathit{M}}\colon \mathit{T}^{(2)}(\mathit{M}) := \prod_{k \in \mathbb{N}} \det_{\pi_{1}(\mathit{M})} \left(\partial_{k}^{\mathit{C}^{(2)}(\mathit{M})} \right)^{(-1)^{k}} \in \mathbb{R}_{>0}.$$

Theorem (Burghelea-Friedlander-Kappeler-McDonald 1996, Lott-Mathai 1992, Lück-Schick 1999)

Let M be a (closed or cusped) hyperbolic 3-manifold. Then

$$T^{(2)}(M) = \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right).$$

Theorem (B.A. 2022)

For an infinite number of hyperbolic 3-manifolds M and all

$$G > \pi_1(M)$$
, we have $\Lambda_1^w(G) \leqslant \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right) < 1.15...$

Key: $rk(\pi_1(M)) = 2$ (e.g. Dehn fillings on the Whitehead link)

L²-torsions and hyperbolic volumes

Let M be a 3-manifold. Let $C^{(2)}(M):=\ell^2(\pi_1M)\underset{\mathbb{Z}\pi_1(M)}{\otimes}C_*(\widetilde{M},\mathbb{Z}).$

$$\underline{\mathit{L}^{2}\text{-Torsion of }\mathit{M}}\colon \mathit{T}^{(2)}(\mathit{M}) := \prod_{k \in \mathbb{N}} \det_{\pi_{1}(\mathit{M})} \left(\partial_{k}^{\mathit{C}^{(2)}(\mathit{M})} \right)^{(-1)^{k}} \in \mathbb{R}_{>0}.$$

Theorem (Burghelea-Friedlander-Kappeler-McDonald 1996, Lott-Mathai 1992, Lück-Schick 1999)

Let M be a (closed or cusped) hyperbolic 3-manifold. Then

$$T^{(2)}(M) = \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right).$$

Theorem (B.A. 2022)

For an infinite number of hyperbolic 3-manifolds M and all

$$G > \pi_1(M)$$
, we have $\Lambda_1^w(G) \leqslant \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right) < 1.15...$

Key: $rk(\pi_1(M)) = 2$ (e.g. Dehn fillings on the Whitehead link)

L²-torsions and hyperbolic volumes

Let M be a 3-manifold. Let $C^{(2)}(M):=\ell^2(\pi_1M)\underset{\mathbb{Z}\pi_1(M)}{\otimes}C_*(\widetilde{M},\mathbb{Z}).$

$$\underline{L^2\text{-Torsion of }M\colon\thinspace T^{(2)}(M):=\prod_{k\in\mathbb{N}}\det_{\pi_1(M)}\left(\partial_k^{C^{(2)}(M)}\right)^{(-1)^k}\in\mathbb{R}_{>0}.$$

Theorem (Burghelea-Friedlander-Kappeler-McDonald 1996, Lott-Mathai 1992, Lück-Schick 1999)

Let M be a (closed or cusped) hyperbolic 3-manifold. Then

$$T^{(2)}(M) = \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right).$$

Theorem (B.A. 2022)

For an infinite number of hyperbolic 3-manifolds M and all

$$G > \pi_1(M)$$
, we have $\Lambda_1^w(G) \leqslant \exp\left(\frac{\operatorname{Vol}(M)}{6\pi}\right) < 1.15...$

 $\underline{\text{Key:}} \operatorname{rk}(\pi_1(M)) = 2 \text{ (e.g. Dehn fillings on the Whitehead link)}$

Thank you for your attention!