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1 Introduction

Consider particles that move in Zd according to a random walk, branching into independent copies at
each time. It starts with one particle at the origin of Zd. If we have a particle at time t in position x, it
chooses at random one of its 2d nearest neighbosr, moves there and dies, leaving k children with probability
qt;x(k). Then each particle follows the same behaviour independently. The o�spring distributions qt;x are
assumed to be i.i.d. in time and space following the common law . We refer to (qt;x)t;x as the environment.
We call this model the branching random walk in random environment and we abbreviate it by BRWRE.
It was introduced by Birkner in his thesis [5]. It is a case of stochastic interacting system where the only
interaction between particles is the sharing of the same environment. It is a population model that could
be used in biology. It generalises other simpler branching processes such as the Galton-Watson process
and the Smith-Wilkinson process.

We will focus on the question of extinction and survival of this process. Let Bt be the set of particles
in BWRE at time t, and denote the survival event by

fsurvivalg = fBt 6= ? for all t 2 Ng

This dissertation will begin with the study of two articles, one by Comets and Yoshida [8] giving a
characterisation of survival cases, but leaving open the critical case, and the other by Garet and Marchand
[10] taking care of the critical case. This will be followed by some development about an open case for
extinction and survival of BRWRE which will be the focal point of this dissertation.

In [8], the authors use the link between the well-studied directed polymers in random environment
(abbreviated by DPRE) and the BRWRE to show that survival of the BRWRE is linked to the free
energy of the associated directed polymer. If the free energy is positive, survival happens with positive
probability and extinction is sure if it is negative. This article also shows that the exponential growth
rate of the population in case of survival is given by the free energy.

In [10], the authors prove the conjecture made by [8] that in the critical case there is extinction. This
is done by adapting the techniques developed in [4] and expounded in [13] to prove the extinction of the
critical contact process.

Interestingly, one of the case discussed in the proof of the second paper is excluded by the hypotheses
that are made in both papers. It is the case of possible sterile environment where with positive probability
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the reproduction law is simply �0, in other words, particles that move there die with no children. This
case is excluded in the �rst paper because it enables to use the link between directed polymers in random
environment and BRWRE very productively. A few results will be proven here that are, at the same
time, original and easy. A few unsucessful leads for further results will also be expounded here. The
characterisation of survival and extinction in that case is an open problem.

Notations : We write P[X] for
R
XdP and P[X : A] for

R
A
XdP for a random variable X and an

event A on a probability space. For x 2 Rd, jxj = jx1j+ � � �+ jxdj

1.1 Classical branching processes

We start by recalling the results on the simpler Galton-Watson process and Smith-Wilkinson process
of which the BRWRE is a generalisation. This is useful not only to appreciate the growing complexity of
the branching processes but also for embedding and comparison arguments that will be important later
on.

The Galton-Watson process is the number Nt of members of the tth generation of a population where
we start with N0 = 1 and each member of a generation reproduces independently according to the same

o�spring distribution q. We have the following well-known theorem. Here, m =
1P
k=0

kq(k) is the mean

number of children an individual has. We assume q(1) < 1 and m <1. See for reference [1].

Theorem 1.1 One has
a) P(survival) > 0 if and only if m > 1.

b) If m > 1 and
P1
k=1 k ln(k)q(k) <1, then

fsurvivalg = f lim
t!1

Nt=m
t 2]0;1[g;P� a:s:

The Smith-Wilkinson process is the simplest branching process with random environment. The o�-
spring distribution is now random : (qt)t2N is a sequence of i.i.d. probability measures on N. We denote
the common law . The law under a given environment q = (qt) is Pq. We denote the law of q by
Q = 
N. The overall probability is P . We have

P(�) =

Z
Q(dq)Pq(�)

We assume qt(1) < 1 and mt <1 where mt is the mean of qt.

Theorem 1.2 Suppose that Q[j ln(mt)j] <1. Then
a)[3, Theorems1-3] Either

Pq(survival) > 0;Q-a.s.

or
Pq(survival) = 0;Q-a.s.

The former case holds if and only if

Q[ln(mt)] > 0 and Q[ln
1

1� qt(0)
] <1 (1.1)
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b)[2, Theorem 1] In addition to the latter condition, suppose that

Q[m�1
t

X
k�1

qt(k)k ln k] <1 (1.2)

then

fsurvivalg = f lim
t!1

Nt
m0:::mt�1

2]0;1[g;P-a.s.

1.2 Branching random walk in random environment

Di�erent equivalent de�nitions of BRWRE describing the same dynamics as explained in the intro-
duction are possible, namely in terms of number of particles at time-space locations as in [10] or a more
precise de�nition where the genealogy of each particle is encoded as in [8]. A description purely in terms
of number of particles would not be su�cient for this dissertation as we use monotonicity properties given
by the genealogy both to prove the results of [8] and for a coupling argument in section 4.

We intoduce a tree whose vertices will encode the genealogy of each particle

T =
[
t2N

f1g � Nt

For � 2 T , j�j is the generation of �, that is to say its length minus one. The children of the particle
labeled � = (1; �1; ::; �t) will be labeled ((1; �1; ::; �t; �t+1) with �t+1 between 1 and k where k is the
number of children of our particle. We denote Tt the set of all vertices of generation t and for � 2 Tt+s,
�jt = (1; �1; ::; �t) the ancestoral history of � up to time t.

We now formalise the de�nition of our BRWRE. We �rst take care of the spatial motion. Let p(�; �)
be the transition probability for simple random walk on Zd that is to say p(x; y) = 1=2d if jx � yj = 1

and 0 otherwise. We de�ne (
X ;FX) as the set (Zd)N�Z
d�T with the product �-�eld and for X 2 
X ,

X ! Xt;x;� as the projection. We de�ne PX 2 P(
X ;FX) as the product measure such that

PX(Xt;x;� = y) = p(x; y) for all (t; x; �) 2 N� Zd � T and y 2 Zd

Xt;x;� will be the the position at time t+ 1 of the children of the particle labeled � when it occupies the
time-space location (t; x).

We de�ne the o�spring distribution. We set 
q = P(N)N�Z
d

. Each q 2 
q is an environment and
qt;x is the o�spring distribution of the particles in (t; x). The set P(N) is equipped by the natural Borel
�-�eld induced from that of [0; 1]N. We de�ne Fq as the product �-�eld on 
q. The random environment
is simply the choice of a law  which will be the common law of the i.i.d. qt;x, we denote Q = 
N�Z

d

,
Q 2 P(
q;Fq).

We then de�ne, following [10], 
U =]0; 1[N�Z
d�T with the Borel �-�eld and for U 2 
U , U ! Ut;x;� as

the projection. PU is the product uniform measure on ]0; 1[. The Ut;x;� are used to generate the progeny
of the particle with genealogy � at x at time t thanks to the law qt;x. Another formulation, used in [8],
would have been possible by considering integer valued variables of law qt;x but this means that the
probability measure on this space would have depended on 
q. Finally we de�ne (
;F),


 = 
X � 
U � 
q, F = FX 
FU 
Fq
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and Pq;P 2 P(
;F)
Pq = PX 
PU 
 �q;P

 = PX 
PU 
Q

We de�ne a Markov chain (Bt)t2N with values in �nite subsets of Zd � T , inductively by B0 = (0; 1)
a single particle at the origin, the common ancestor of all other particles, and for t � 1,

Bt =
[

(x;�)2Bt�1

f(y; �) 2 Zd � Tt;Xt�1;x;� = y; �jt�1 = �; �t such as
�tX
i=0

qt�1;x(i) � Ut�1;x;�g (1.3)

We call this process the branching random walk in random environment (BRWRE). Writing (x; �) 2 Bt
means that the particle with ancestoral history � is in position x at time t. The number of children of a
particle is Kt;x;� = max(k 2 N;

Pk
i=0 qt;x(i) � Ut;x;�) and its law is qt;x. We de�ne the set of particles at

x at time t,
Bt;x = f(y; �) 2 Bt; y = xg

We consider the �ltration Ft = �(Xs;�;�; Us;�;�; qs;�; s � t � 1) for t � 1, F0 = f?;
g to which Bt is
adapted.

We have the following recursion :

jB0;yj = �0;y, jBt;yj =
X

(x;�)2Bt�1

�y(Xt�1;x;�)Kt�1;x;� , t � 1; y 2 Zd (1.4)

1.3 The associated directed polymers in random environment

In this subsection, with mt;x =
P
k2N kqt;x(k), we assume

Q[m0;0 +m�1
0;0] <1 (1.5)

Note that the assumption Q[m�1
0;0] <1 forbids the possibility of

Q(q0;0(0) = 1) > 0 (1.6)

which will be the condition that we will investigate in section 4.
Let (St)t2N be the symmetric simple random walk on Zd starting from the origin de�ned on (
S ;FS ;PS).

We then introduce the partition function of directed polymer in random environment (DPRE),

Zt;x = PS [�t : St = x] and Zt = PS [�t]

where

�t =

t�1Y
u=0

mu;Su

The polymer measure is the law with weights �t on the path space, and a directed polymer in the
environment q is a path sampled from this law. The link between the DPRE and the BRWRE is that

Proposition 1.1 Zt;x = Pq[jBt;xj] and Zt = P
q[jBtj]
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Proof : [14, Lemma 1.3.1] The second equality is obtained from the �rst by summing over all x 2 Zd.
For the �rst one, we compute the following conditional expectation thanks to (1.4).

Pq[jBt;xj j Ft] =
X

(xt�1;�)2Bt�1

Pq[�x(Xt�1;xt�1;�)Kt�1;xt�1;� ]

=
X

(xt�1;�)2Bt�1

p(xt�1; x)mt�1;xt�1
=

X
xt�12Zd

jBt�1;xt�1
jp(xt�1; x)mt�1;xt�1

and then,

Pq[jBt;xj] =
X

x1;::;xt�12Zd

t�1Y
i=0

p(xi; xi+1)mi;xi = PS [�t : St = x]

2

This link is the most important tool there is to study the BRWRE. The DPRE is less random than
the BRWRE as the o�spring distributions are replaced by their means. A natural question is to determine
what properties of the DPRE are transferred to the BRWRE. For example, it is known that the DPRE
undergoes a phase transition from the weak disorder phase where it follows a law of large numbers and
a central limit theorem (delocalization) to the strong disorder phase (localization) where it concentrates
on a few trajectories. This phase transition also happens for the BRWRE, in the strong disorder phase,
a positive proportion of the population will concentrate in certain space-time location. Those properties
are not a consequence of the results for DPRE but rather the proofs are inspired by the corresponding
proofs for DPRE. For reference, see [12, 11]. This link is fundamental but should not make us forget
that the questions of interest are very di�erent between the two models. In the BRWRE, the question of
survival and extinction is a central question while it has no meaning for DPRE.

We now turn to the de�nition of the free energy for DPRE. We set � = f� 2 Rd; j� j� 1g and, for
� 2 � \ Qd, N�(�) = ft 2 N�; t� 2 Zd; t � tj�j 2 2Ng and N(�) = f0g [ N�(�. It is the set of all times t
when a simple walk on Zd can verify st = t�. In particular, PS(St = t�) � (2d)�t > 0 for all t 2 N(�).
We have N(�) = n(�)N.

Observe that (1.5) and j ln(u)j � max(u; u�1) for u > 0 implies thatQj lnZtj <1 andQj lnZt;xj <1
for all (t; x) 2 N� � Zd.

Proposition 1.2 There exists a concave, upper semi-continuous function  : � ! R such that for all
� 2 � \Qd,

 (�) = lim
t!1
t2N�(�)

1

t
Q[lnZt;t�]

 is symmetric in the sense that  (�) =  (j��(1)j; ::; j��(d)j) for any permutation � of f1; ::; dg. The
maximum of this function is attained for� = 0. Moreover, the following limit

	 = lim
t!1

1

t
Q[lnZt]

also exists and equals  (0).

This is a rewording by [8] of [7, Theorem 1.2]. The number 	 is called the free energy of the polymer and
 (�) is the directional free energy.
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1.4 Generating functions and comparisons between processes

The study of the Galton-Watson process can be done through the generating function of its �xed
o�sprong distribution,

q̂(s) =

1X
k=0

skq(k) = P[sN1 ]

One can also de�ne generating functions for the Smith-Wilkinson process and the BRWRE. Comparison
between those generating functions leads to the following inequality between the survival probabilities of
the BRWRE with o�spring distribution , of the Galton-Watson process de�ned by q(�) = Q(q0;0(�)) and
of the Smith-Wilkinson process with o�spring distribution . We denote by �GW and �SW respectively
the survival probability of that Galton-Watson process and of that Smith-Wilkinson process. One has

�SW � P(survival) � �GW (1.7)

The associated Galton-Watson process is a BRWRE where the o�spring distribution is deterministic while
the Smith-Wilkinson process is obtained by replacing Zd by a singleton. This inequality can be under-
stood heuristically : compared to the Galton-Watson process, the Smith-Wilkinson process has a higher
probability of extinction because catastrophic environment happens where there is a large probability of
having no children. In such an environment, there is a large probability of extinction and this can happen
even if the mean of the o�spring distribution is large. The second condition in (1.1) can be interpreted
in such a way, it makes sure that those catastrophic environment are not too frequent, allowing survival.
For the BRWRE, catastrophic environment can cause extinction, for example, if q0;0 is catastrophic then
we can easily have extinction at the �rst step and therefore we have the second inequality. But after
the second step, all the particles are not in the same location and thus the probability that they will all
encounter a catastrophic environment is smaller which explains the �rst inequality. The �uctuation of
the o�spring distribution are modulated by the spatial movement.

We will use the second inequality of (1.7) in section 4 and therefore we include a proof following [8] in
order to be as self-contained as possible concerning the results on BRWRE under con�tion condition(1.6),
the focal point of this dissertation.

For q 2 P(N), we denote as before

q̂(s) =

1X
k=0

skq(k) for s 2 [0; 1]:

We agree on the convention 00 = 1. For a �xed q 2 
q and t 2 N, we de�ne �t : [0; 1]
Z
d

! [0; 1]Z
d

by

�t(�) = (�t;x(�))x2Zd , �t;x(�) =
X
y2Zd

p(x; y)q̂t;x(�y):

Therefore (�t)t2N is a sequence of i.i.d. random maps on the probability space (
q;Fq;Q).

Proposition 1.3 For � 2 [0; 1]Z
d

and t 2 N�,

Pq[�Bt jFt�1] = �t�1(�)
Bt�1 (1.8)

with the notation
�Bt =

Y
x2Zd

�jBt;xj
x
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As a consequence,
Pq[�Bt ] = �0;0 � �1 � ::: � �t�1(�)

This proposition allows us to call �t the generating function of the branching random walk with envi-
ronment (qt;x).

Proof : We only have to prove (1.8). We begin by writing :

�Bt =
Y
y2Zd

�jBt;yj
y =

Y
y2Zd

Y
(x;�)2Bt�1

�Kt�1;x;��y(Xt�1;x;�)
y =

Y
(x;�)2Bt�1

Y
y2Zd

�Kt�1;x;��y(Xt�1;x;�)
y

=
Y

(x;�)2Bt�1

Y
y2Zd

�
1 + (�Kt�1;x;�

y � 1)�y(Xt�1;x;�)
�

=
Y

(x;�)2Bt�1

0
@1 +

X
y2Zd

(�Kt�1;x;�
y � 1)�y(Xt�1;x;�)

1
A

=
Y

(x;�)2Bt�1

X
y2Zd

�Kt�1;x;�
y �y(Xt�1;x;�)

where on the third line, we have used that
Y
y2Y

(1 + xy) = 1 +
X
A�Y

Y
y2A

xy for any �nite set Y and (xy)y2Y 2 R
Y

The terms with jAj � 2 vanishes here. Since

Pq[
X
y2Zd

�Kt�1;x;�
y �y(Xt�1;x;�)jFt�1] = �x;t�1(�);

we get
Pq[�Bt jFt�1] =

Y
(x;�)2Bt�1

�x;t�1(�) = �t�1(�)
Bt�1

2

Lemma 1.1 Let q(k) = Q[q0;0(k)], k 2 N. For s 2 [0; 1],

P [sjBtj] � (q̂ � � � � � q̂)(s):

where q̂ appears t times in the right hand-side.

Proof : It follows from (1.8) and Jensen's inequality that

P[sjBtjjFt�1] =
Y
x2Zd

Q[q̂0;0(s)
n]n=jBt�1;xj �

Y
x2Zd

Q[q̂0;0(s)]
jBt�1;xj = q̂(s)jBt�1j

And the lemma follows by iteration.

2
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We can now prove the second inequality in (1.7). It is well-known that, for Nt the Galton-Watson
process we are interested in and s 2 [0; 1],

P[sNt ] = (q̂ � � � � � q̂)(s)

where q̂ appears t times. We haveP [0jBtj] = P(Bt = ?) and thereforeP(survival) = 1�limt!1P
 [0jBtj]

and similar formulae for �GW . Therefore the second inequality of (1.7) follows from lemma 1.1.

2

Another result demonstrated thanks to the generating functions is the following zero-one law :

Either, Pq(survival) > 0, Q-a.s. or Pq(survival) = 0, Q - a.s..

This of course does not remain true under (1.6), the best we can hope for being P(survival) > 0. This
also tells us that under (1.6) we have a di�erent behaviour than for the Smith-Wilkinson process.

2 Extinction and survival in the non-critical case

In this section we again assume condition (1.5)

Q[m0;0 +m�1
0;0] <1

in order to use proposition 1.2 on the free energy of the DPRE which provides the most important part
of the proof. It will allow us to adapt the results of theorem 1.2 on the Smith-Wilkinson process to the
BRWRE.

2.1 Criteria for global and local survival, and growth rates

Theorem 2.1 (global growth) Let " > 0.
a) We have, P-a.s.,

jBtj � e(	+")t for all large t's.

In particular,
P(survival) = 0 if 	 < 0

b) Suppose 	 > 0 and

Q ln
1

1� q0;0(0)
<1 (2.1)

Then
Pq(survival) > 0, Q-a.s.

Suppose 	 > 0, (2.1) and

Q

�
Pq[jBt;0j ln jBt;0j]

Zt;0

�
<1 for all t 2 2N� (2.2)

Then,

fsurvivalg = f lim
t!1

1

t
ln jBtj = 	g, P-a.s.
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This theorem identi�es the free energy as the growth rate of the BRWRE. It leaves open the case 	 = 0.
We see the local version of this theorem next.

Theorem 2.2 (local growth) Let � 2 � \Qd and " > 0.
a) We have, P-a.s.,

jBt;t�j � e( (�)+")t for all large t's.

In particular,
P(Bt;t� 6= ?in�nitely often) = 0 if  (�) < 0

b) Suppose  (�) > 0 and (2.1) Then

Pq(Bt;t� 6= ? for all t 2 N(�)) > 0, Q-a.s.

Suppose  (�) > 0, (2.1) and

Q

�
Pq[jBt;�j ln jBt;�j]

Zt;�

�
<1 for all t 2 2N� (2.3)

Then,

fBt;t� 6= ? for all t 2 N(�)g � f lim
t!1

1

t
ln jBtj =  (�)g, P-a.s.

Those two theorems are the main results from [8]. We will focus on the proof of the criteria for extinction
and survival leaving out the proofs of the local results and of the growth rate.

2.2 Proof of 2.1 a) and 2.2 a)

We need a concentration result on the partition function of the DPRE in order to prove the �rst part
of the result.

Proposition 2.1 There are constants c1, c2 2]0;1[, such that

Q

�
1

t
j lnZt �Q[lnZt]j > "

�
� 2 exp(�c1"

2t);

for all " 2]0; c2] and t 2 N, and

Q

�
1

t
j lnZt;t� �Q[lnZt;t�]j > "

�
� 2 exp(�c1"

2t);

for all " 2]0; c2], � 2 � \Qd and t 2 N�(�).

This is proven in [8] thanks to a series of general martingale inequalities. We can now turn to the proof of
2.1 a). It will slightly di�er from the one given in [8] which contained a wrong inequality (this was easily
corrected).

Thanks to proposition 1.2 and proposition 2.1, there exists T such that for all t � T ,

Q[lnZt] � t(	 +
"

4
) and Q

�
lnZt � Q[lnZt] +

"

4
t
�
� 2 exp(�c01"

2t):
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and we have lnZt � (	 + "
2 )t) lnZt � Q[lnZt] +

"
4 t and therefore,

Q
�
Zt � e(	+

"
2 )t
�
� 2 exp(�c01"

2t)

On the other hand, we have for any � = �(q) 2 f0; 1g that

Pq
�
jBtj � e(	+")t

�
� Pq

�
jBtj � e(	+")t

�
�+ 1� � � e�(	+")tZt�+ 1� �

by Chebyshev inequality. We take � = 1fZt < e(	+
"
2 )tg and take Q expectation to obtain

P
�
jBtj � e(	+")t

�
� e�

"
2 t +Q

�
Zt � e(	+

"
2 )t
�
� e�

"
2 t + 2 exp(�c01"

2t)

We therefore have jBtj � e(	+")t for all large t's by Borel-Cantelli lemma. This proves theorem 2.1 a).
The proof of theorem 2.2 a) is similar.

2.3 Proof of survival

The main idea of the proof of survival is to embed a Smith-Wilkinson process in our BRWRE and
then to use theorem 1.2. Schematically, the result on growth rate also follows from theorem 1.2 as (2.2)
and (2.3) are the analogs of (1.2).

Lemma 2.1 (Survival along subsequence of times)
Suppose � 2 � \Qd, (2.1) and that there exists T 2 N�(�) such that

Q[lnZT;T�] > 0 (2.4)

Then
Pq(BsT;sT� 6= ? for all s � 1) > 0, Q-a.s.

Let us �rst see how this lemma proves the �rst part of 2.1 b), the result on survival. If 	 =  (0) > 0, then
by proposition 1.2, for any large enough T , we have Q[lnZT;0] > 0 and we have survival of the BRWRE.

Proof of the lemma : We will embed a Smith-Wilkinson process into (BsT;sT�). The embedded process
is simply the process of the particles that go from (0; 0) to (T; T�) to (2T; 2T�) and so on. We introduce
some notation to write this down precisely. For (s; z; �) 2 N � Zd � Ts, we de�ne the (s; z; �)-branch
(Bs;z;�t )t2N of (Bt)t2N inductively by Bs;z;�0 = (z; �) and for t � 1,

Bs;z;�t =
[

(x;�)2Bs;z;�
t�1

f(y; �) 2 Zd � Ts+t;Xs+t�1;x;� = y; �js+t�1 = �; �s + t � Ks+t�1;x;�g

This means restarting a BRWRE from a single particle in (s; z) whose ancestoral history is �. If (z; �) 2 Bs,
then Bs;z;�t � Bs+t for all t's.

Note also that Bs;z;�� is a function of f(Xs+�;�;� ;Ks+�;�;�); �js = �g and therefore fBs;z;�� g�2Ts are i.i.d.
under Pq.

As for the BRWRE, the set of particles of Bs;z;�t which occupy the site x by Bs;z;�t;x .
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We �x a T such that (2.4) holds. We de�ne a markov chain (B�
s ) with values in �nite subsets of T .

We start by B�
0 = f1g and for s � 1,

B�
s =

[
�2B�

s�1

B�
s;�, with B

�
s;� = f� 2 TsT ; (ST�; �) 2 B

(s�1)T;(s�1)T�;�
T g

B�
s is the set of all genealogies that were in tT� at time tT , for all t � s. It is clear that jB�

s j � jBsT;sT�j
for all s 2 N. We now prove that jB�

� j is a Smith-Wilkinson process.
For a �xed s, fB�

s;�g�2T(s�1)T
are i.i.d. under Pq because as noted earlier fBs;z;�� g�2Ts are i.i.d. under

Pq.
Furthermore, if we denote q�s the common distribution of jB�

s;�j, in other words the random o�spring
ditribution of jB�

s j, then, by time-space shift invariance, we see that (q�s )s2N is an i.i.d. sequence. In other
words q�s depends only on what happens between time (s� 1)T and sT in a �nite space box of constant
size.

We now have to see that jB�
� j veri�es the hypotheses of theorem 1.2 :

Q lnm�
1 > 0 and Q ln

1

1� q�1(0)
<1

where m�
1 is the mean of q�1 .

We have that jB�
1 j = jBT;T�j and hence m�

1 = P
q[jBT;T�j] = ZT;T�. It follows from (2.4) that

Q lnm�
1 = Q lnZT;T� > 0

For the second part, we take a path x0; x1; � � �; xT on Zd with x0 = 0 and xT = T�. Then,

1� q�1(0) = P
q(BT;T� 6= ?) �

T�1Y
t=0

1� qt;xt(0)

2d

and,

Q ln
1

1� q�1(0)
� TQ ln

1

1� q0;0(0)
+ T ln(2d) <1

Therefore, we have P(survival of jB�
� j) > 0, P(survival of jBsT;ST�j) > 0 and �nally P(survival) > 0.

2

3 Extinction in the critical case

In [8] Comets and Yoshida conjectured that for the critical case 	 = 0 of the BRWRE, there was
extinction. This conjecture was based on the similarity between the BRWRE and another well-known
model, the contact process for which extinction is known in the critical case.

The contact process consists of a time-continuous modelisation of the spread of an infectious disease
on Zd. An infected particle heals after an exponential time of parameter 1 and the disease spreads to any
neighbor after an exponential time of parameter � if the particle is still infected. The critical case for
this process is when 2d� = 1. Bezuidenhout and Grimett in their important article [4] proved that the
critical contact process dies out. A conceptual step is to see the process in dimension d+1 where the last
dimension is time.

Garet and Marchand adapted the techniques of [4] to the case of the BRWRE in [10] to prove the
following theorem :

11



Theorem 3.1 Assume (1.5). Then

	() = 0) P(survival) = 0

This was proven under the condition

P(q0;0(0) > 0) > 0 and P(q0;0(0) + q0;0(1) < 1) > 0

meant to avoid trivial cases of extinction and survival. But the result remains true without them except
for the case P(q0;0(1) = 1) = 1 where we have obvious survival.

As this is a quite technical proof, and that we cannot add much to it, we will not give a full proof
here but rather try and explain the main parts of the proof and the way they �t together.

3.1 Strategy of proof

The main idea in [4] is to characterise survival by a local event. To say this in the setting of the
BRWRE, for a �xed law  allowing the BRWRE to survive, there exists a local event A, that only
depends on a �nite space-time box [[0; T ]]� [[�L;L]]d where [[a; b]] is the set of integers from a to b, and
a level p0 < 1 such that

P(A) > p0 (3.1)

and
For every law 0 on P(N), P

0

(A) > p0 ) P
0

(survival) > 0 (3.2)

Then for � 2 [0; 1], we de�ne �, a perturbation of , with less particles. For � close enough to 1, we
will show in subsection 3.2 thanks to (3.1) and (3.2) that we have survival. The fact that the event is
local is crucial as we will see. But if  was critical then � is subcritical and therefore goes extinct. This
is a contradiction and we have that the critical BRWRE dies out.

We now turn to the de�nition of the block event. First, some notations. We de�ne Bt the set of all
sites occupied by the BRWRE at time t. For an initial con�guration C � Zd, we denote BCt the BRWRE
starting from C = BC0 with one particle in each point of C. For L 2 N we de�ne LBt the BRWRE
restricted to the space box [[�L;L]]d meaning we forget all particles that go out of this box. Finally, set
for every integer n � 1,

Dn = fx 2 Zd ; jxj � n and
nX
i=1

xi 2 2Zg

For n even, Dn is the maximal set reachable by the BRWRE can reach at time n.
For any positive integers n;L; T , with n � L, we de�ne

An;L;T = f9x 2 [[L+ n; 2L+ n]]� [[0; 2L]]d�1; t 2 [[T; 2T ]], x+Dn �2L+2n B
Dn

t g

This is our local event. It means that if we start from Dn, we get another Dn at a later time and translated
on the right in the �rst dimension and with positive other d � 1 dimensions. And this only depends on
what happens on a larger space-time box, hence we can say the event is local. Of course, if we change the
sign of one dimension, the results on the event remain true. We need to rewrite (3.1) and (3.2) for more
clarity. What is shown in the proof is

12



Proposition 3.1 One has
a) For a given  that allows survival, for every ", there exists integers n;L; T , with n � L, such that

P(An;L;T ) � 1� "

b)There exists an " such that for any 0 and any integers n;L; T , with n � L,

P
0

(An;L;T ) � 1� ") P
0

(survival) > 0

In [10], only 3.1a) was proved arguing that the proof of 3.1b) in the case of the BRWRE is the same
as the one given in [4] and also expounded in [13]. Following the latter reference, we can only agree with
[10]. We now expound a brief outline of the proof of 3.1b) and then 3.1a).

The idea for 3.1b) is that starting from Dn, we can get with great probability a new Dn translated
on the right and on the left (on the �rst coordinate) at a later time. Each of those Dn, can in their turn
create two new Dn. This gives rise to an oriented percolation. Actually, if we use the raw event An;L;T ,
we cannot make sure we have a macroscopic grid to have a percolation on. Therefore, we do several steps,
several events An;L;T translated in time and space starting from the Dn given by the earlier event/step,
compensating the irregularity of the steps thanks to symetry (we can change the sign of any coordinate
in a given step) to obtain that with great probability if we start with a Dn in a space-time box, we
obtain a new Dn at another space-time box of the same size and at �xed distance on the right (or on the
left) and this only depends on what happens in a larger space-time box (cf �gure 3.1). This allows us to
imbed an oriented percolation in our BRWRE in which a vertex will be open if we succeeded to go from
an earlier space-time box to the space-time box corresponding to the vertex. Unfortunately, we don't
have independence between adjacent variables as the larger space-time boxes that we are restricted to in
order to go from one space-time box to another in our grid are overlapping. But thanks to localisation,
variables for a given time are k-dependent, which means that they are independent if they are associated
to points that are far enough. Thanks to [13, Theorem B26], we know that for a k-dependent family of
Bernoulli variables, the variables stochastically dominates a family of independent Bernoulli variables of
parameter p. Our oriented percolation can then be made supercritical for a good choice of " and this
provides survival.

The idea of the proof of 3.1a) is that for a law  such that survival is possible, if we start from Dn

with n large, the probability of extinction will be small. But now, if there are not many particles going
out of a space-time box, all of them dying happens with a reasonable probability and it implies extinction
which has a small probability. This tells us that there are a lot of particles going out of a box with
great probability. We prove this part here. Let us denote NL;T the number of particles on the top and
sides of our space-time box, "0, �0 such that P(q0;0(0) > "0) > �0 and FL;T the �-algebra generated
by all variables in the space-time box [[�L;L]]d � [[0; T ]].Let us take two increasing sequences Lj , Tj of
integers.Observe that we have extinction if all the particles die when going out of the box. Then, if on
every occupied site of the top and sides of the boxes we have an environment such that q0;0(0) > "0, we
get

1fNLj;Tj
<kg("0�0)

k � P(extinctionjFLj ;Tj )

since we have at most k occupied sites.
Thus, we have, by the martingale convergence theorem, that P(extinctionjFLj ;Tj ) almost surely

converges to 1extinction. And then lim supj!1fNLj ;Tj < kg � fExtinctiong and

lim sup
j!1

P(NLj ;Tj < k) � P(Extinction)
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Figure 1 � The black boxes are the target boxes of the steps. The irregularity of the steps is compensated
by the choice of the direction of the steps. The big red box is the box to which we are restricted. The red
box centered on (0; 1) and (1; 1) would overlap and we therefore do not have independence. The labels
(n;m) are the nodes of the grid we will have an oriented percolation on. The numbers a and b are two
integers
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This tells us that we can choose a space-time box such that with great probability we will have a lot
of particles on the top and on the side of it. Thanks to the FKG inequality, we know that with great
probability we will have a lot of particles on the top and side of any given orthant of our box. We add
to this the fact that starting from one particle, we have with positive probability a Dn at a later time.
Since we have a lot of particles on the top and the sides of our orthant, with great probability one of
them will give birth to a Dn at a later time (see �gure 2). But they have to be far in order for us to have
independence between the events that one particle gives birth to a Dn. In order to have enough particles
that are far enough, we only need to have so many occupied sites that we can �nd a subset of occupied
sites that are far enough from each other.

This argument however can not be immediately applied to the BRWRE. This is where the proof di�ers
the most from the one for the critical contact process. There can be a lot of particles in the BRWRE but
concentrated on a few sites and therefore, we do not have independence between the di�erents attempts
to give birth to an Dn. This is why in [10], the authors consider the case where Q(q0;0(0) = 1) > 0 as in
this case, we can adapt the proof expounded just before to show that there were many particles on the
top and sides of our space-time box to obtain that there are many occupied sites on the top and sides of
the box. If we denote "1 = P(q0;0(0) = 1), and NL;T the number of occupied sites on the top and sides
of a space-time box, by setting sterile environment on the k occupied sites, we get

1fNLj;Tj
<kg"

k
1 � P

(extinctionjFLj ;Tj )

and the end of the proof follows as before. In this case, it is possible to prove the result using only
that there are a large number of occupied sites. In the complementary case, however we have to say that
either a lot of sites will be occupied or that there will be a very large population on one site. It is not too
hard to see that starting from a large population on one site if we don't have sterile environment, we get
with great probability a Dn at a later time.

The condition (1.6) was excluded from [10] by making the same assumptions (1.5) as in [8] in order
to prove the conjecture formulated in that article. We have seen that this is an important assumption to
use the link between the DPRE and the BRWRE. However, to prove the result of [10] it is super�uous.
Therefore, [10] proves more than theorem 3.1. They also prove that we will have extinction for critical
cases under assumption (1.6).

3.2 Proof of extinction in the critical case

We will expound here how proposition 3.1 is used to prove extinction in the critical case as outlined
in the previous subsection. We do this mainly because we will adapt the proof given here to the case
(1.6) in section 4. Our presentation of this proof di�ers from that given in [10], where the authors de�ned
the BRWRE without mentioning genealogies, instead simply counting the number of particles at each
time-space location.

We consider  that allows survival. By proposition 3.1b), we choose " > 0 such that for any 0,
P

0

(An;L;T ) � 1� ") P
0

(survival) > 0. Then by proposition 3.1a), we choose positive integers n;L; T ,
with n � L such that P(An;L;T ) > 1� ". We denote by Cn = [[�(2L+2n); 2L+2n]]d� [[0; T ]] the space
time box inside of which An;L;T happens.

Then for � 2 [0; 1], we de�ne � the image of  by the map

q 7! �q + (1� �)�0

where �0 is the Dirac mass in zero.
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Figure 2 � If we start Dn with n large enough, with great probability we will have a lot of particles on
the top and side of any given orthant. From there, we try to get a complete set Dn generated by one of
those particles. Figure from [4, Figure 1]
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We de�ne a BRWRE (Bt)t2N with  as common law of the o�spring distribution as in section 1.3 that
we start in Dn. We then enlarge our probability space and introduce the (Yt;x;�)t2N;x2Zd;�2Tt that are
Bernoulli variables of parameter � 2 [0; 1] and are independent of every variable introduced previously.
We denote by P the law on this new probability space. We de�ne a new BRWRE starting from Dn

B�t =
[

(x;�)2B�
t�1

f(y; �) 2 Zd � Tt;Yt�1;x;� = 1; Xt�1;x;� = y; �jt�1 = �; �t � Kt�1;x;�g

It is the process obtained by tossing a coin before deciding if a particle reproduces. Note that the ge-
nealogies are not complete any more : there can be a third child but no �rst or second one. This is of
no concern for the rest of the proof. The common law of the o�spring distribution of this process is �

under P and it is coupled with Bt. For any t 2 N; x 2 Zd, the mean m�
t;x of the o�spring distribution

of (B�t ) veri�es m
�
t;x = �mt;x and then the partition function of the DPRE associated with (B�t ) veri�es

Z�t = �tZt and

	(�) = lim
t!1

1

t
Z�t = ln �+	()

This tells us that if we �nd a � < 1 such that we have survival, we will have that if 	() = 0 then we
have almost sure extinction as explained in the previous subsection.

Let M 2 N and de�ne T Mt = f1g � [[0;M ]]t � Tt and then the event

BM = f8(x; t) 2 Cn; 8� 2 T
M
t ;Kt;x;� �Mg

on which all particles in Cn have less than M children.
On the event

BM \
\

(x;t)2Cn;�2TM
t

fYt;x;� = 1g;

we have by induction that Bt = B�t for every (x; t) 2 Cn. Then

P
�

(An;L;T ) � P

0
@An;L;T \BM \

(x;t)2Cn;�2TM
t

fYt;x;� = 1g

1
A

= �jCnjjT
M
2T jP(An;L;T \BM )

= �jCnjjT
M
2T jP(An;L;T \BM )

Taking M , then � large enough, we get

P
�

(An;L;T ) � 1� "

and therefore
P

�

(survival) > 0

2
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4 Extinction and survival with possible sterile environment

In this section, we consider the case

Q(q0;0(0) = 1) > 0 (4.1)

that is disjoint of the case (1.5) that allowed us to use the link between the DPRE and the BRWRE. It is
not clear how one could use this link nevertheless as we will see in subsection 4.4. The result of theorem
2.1 can be seen as a consequence of theorem 1.2 on the Smith-Wilkinson process. Here, we will not be
able to use Smith-Wilkinson process in the same fashion.

All of these remarks make that case interesting as it suggests that the BRWRE behaves di�erently
here or at least that the techniques needed to study it are di�erent.

This case is more tractable than the more general Q[m�1
0;0] = 1 because we do not have to consider

odd integrability problems.

4.1 Oriented percolation of fertile environment

Set p = Q(q0;0(N
�) > 0) so that (4.1) is equivalent to p < 1. Then we can write

 = p0 + (1� p)��0

where 0 is the law of qt;x conditioned on qt;x(N�) > 0. We say that (t; x) is a fertile site when qt;x(N�) > 0.
Each (t,x) has independently probability p of being fertile. If we consider the oriented percolation of fertile
sites in N�Zd, if it does not percolate i.e. if there is no fertile in�nite path starting from the origin then
our BRWRE will go extinct. It is known [9] that there is a critical value for p which we call pc (that
depends on the dimension d) such that p � pc is equivalent to no percolation a.s. and p > pc is equivalent
to percolation with a positive probability. Therefore we already have a su�cient result for extinction :

Proposition 4.1 If p � pc then P
(survival) = 0

To have survival, we will need to be on the event where we have percolation. This is not a very pleasant
situation as this means conditioning on an event that depends on in�nitely many variables. We will to a
large extent fail to overcome this di�culty.

There are a few results known on the oriented percolation model. For instance, in the case d+ 1 = 2
that we will restrict ourselves to in 4.3, Durett showed in [9] that when percolation happens, it occurs in a
cone i.e. if we denote the rightmost point at time t by rt then on the event of percolation limt!1

rt
t
= �(p)

for an � 2]0; 1] and we have limp!pc �(p) = 0.
In the following, we will indi�erently say open or fertile and closed or sterile.

4.2 Simple results on extinction and survival

We expose here four results that will set the landscape of survival and extinction for the BRWRE
with possible sterile environment. The �rst comes from the comparison with the Galton-Watson process.
Set m = P

0

[m0;0] then P [m0;0] = mp.

Proposition 4.2 If mp � 1 then P(survival) = 0
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Figure 3 � This phase diagram contains all the results of subsection 4.1 and subsection 4.2. In red, we
have the critical curve that separates survival on the upper side from extinction. The black lines indicate
proven results. We also proved that we have survival in a neighborhood of the blue line.
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This is an immediate consequence of (1.7). The mean of the o�spring distribution of the Galton-Watson
process is mp and thus the condition implies extinction for the Galton-Watson process and therefore also
for the BRWRE. We can remark that the comparison with the Smith-Wilkinson process is of no use here
as its probability of survival is 0 in the case of possible sterile environment.

We now consider a simpler case in which when we have fertile environment, we always have the same
o�spring distribution. When this is a super�uous hypothesis, we will say it but this will allow us to have
simpler notations. We can write for q 2 P(N) and p 2 [0; 1]

 = (p; q) = p�q + (1� p)��0 (4.2)

We denote m the mean of q. The next result is the �rst result that gives a su�cient condition for
survival.This result and its proof was communicated by Nobuo Yoshida.

Proposition 4.3 If m > 2d and p > pc then we have P(p;q)(survival) > 0

Proof : We have p > pc therefore with positive probability, we have percolation. In particular, on
that event, we can take a path from 0 to 1 such that we only have fertile environment on the path. We
consider Nt the number of particles that always stay on that path. The event of percolation is de�ned
on (
q;Fq;Q) and therefore for any open path that we take, assuming we do the choice independently
of 
U , we have that Nt is a Galton-Watson process and its o�spring distribution is q�(k) = q(k)

2d for all
k � 1. Therefore, its mean is m

2d and thanks to theorem 1.1, we can conclude that if m > 2d and p > pc
then we have P(p;q)(survival) > 0.

2

The result is still true without hypothesis (4.2), if we replace the hypothesism > 2d byQ
0

[ln 1
1�q0;0(0)

] <

1 and Q
0

[lnm0;0] > ln 2d, the process we considered becomes a Smith-Wilkinson process that veri�es
the hypotheses of theorem 1.2. For the second condition, we have 1� q�0(0) =

1�q0(0)
2d .

The important thing here is that we have survival for all p > pc. A natural question that we can ask
is what is the best bound on m that we will call mc such that, we still have survival for all p > pc.

mc = inf
m2R

f8p > pc; 8q 2 Pm(N);P
(p;q)(survival) > 0g

where Pm(N) denotes the set of o�spring distributions with mean m.
A question of interest is the following

Question 1 Are there choices of q 2 P(N) such that P(p;q)(survival) > 0, 8p > pc with the mean of q
strictly smaller than mc ?

It seems unlikely because all the results we have seen on survival in this dissertation depended only on
the means of the o�spring distributions, except for the second condition for the Smith-Wilkinson process
that propagated to theorem 2.1 but it seems unrelated. This is not intuitively clear and seems hard to
answer to.

Of course, as we can see from the proof, we only used the existence of one path and therefore, there
must be some room for improvement. This is however harder than it seems as we will see in 4.4.

Our two last results come from a coupling on di�erent values of p. We construct (
q;Fq;Q) di�erently
as with (4.2), it became much simpler. We de�ne 
q = 
V =]0; 1[N�Z

d

with the Borel �-�eld and for
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V 2 
V , V ! Vt;x as the projection. The probability measurePV is the product uniform measure on ]0; 1[.
For p 2 [0; 1] and q 2 P(N), q 6= �0, we have  = (p; q) as de�ned in (4.2) for fqt;x = qg = fVt;x � pg
and fqt;x(0) = 1g = fVt;x > pg. We then de�ne, for a �xed q, the coupled BRWRE that we denote by Bpt
with Bp0 = f(0; 1)g i.e. starting from one particle at the origin

Bpt =
[

(x;�)2Bp
t�1

f(y; �) 2 Zd � Tt;Vt�1;x � p;Xt�1;x;� = y; �jt�1 = �; �t � Kt�1;x;�g

The Kt;x are simpler than before, they are i.i.d. random variables of law q. It is obvious that p1 < p2
implies Bp1t � Bp2t . We therefore have

Proposition 4.4 For all q 2 P(N), there is a pc(q) 2 [0; 1] such that for all p > pc(q),

P(p;q)(survival) > 0

and for all p � pc(q),
P(p;q)(survival) = 0

This is also true without the hypothesis (4.2) if we replace q by 0. pc(q) also depends on d.
A question that is similar to the previous question is the following

Question 2 Do we have pc(q) = pc(m) ? Does survival depend on something else than m?

The fact that we have extinction for the critical case comes from the last proposition of this subsection.
It brings the results of [10] exposed in section 3 to the case (4.1).

Proposition 4.5 For  = (p; q) such that P(survival) > 0, there exists p0 < p and � 2 [0; 1[ such that
for 0 = �(p0; q) = (p0; �q + (1� �)�0), we have P

0

(survival) > 0

The proof of this proposition is very close to the one explained in 3.2. Similarly, we introduce the Yt
Bernoulli random variables of parameter � and we de�ne the (p0; q)-BRWRE

Bp
0;�
t =

[
(x;�)2Bp0;�

t�1

f(y; �) 2 Zd � Tt;Yt�1;x;� = 1; Vt�1;x � p0; Xt�1;x;� = y; �jt�1 = �; �t � Kt�1;x;�g

We deal with the Yt;x;� as earlier and at the same time, we have, PV (8(t; x) 2 Cn; Vt;x =2]p0; p]) =
(p� p0)jCnj and this is independent of everything else. We do not have to consider an analog of BM here.
We conclude the same way as earlier taking M and p large enough and then �.

One of the immediate consequence of this is that for any q 2 P(N) with mean m such that m > 1,
there exists p < 1 such that P(p;q)(survival) > 0

In order to draw all the information in a phase diagram in �gure 4.2, taking into account the di�culty
of putting P(N) on an axis, we admit that survival and extinction of a (p; q)-BRWRE depends of q only
through m.

The curve pc(m) that is drawn is convex. Nothing ensures that this is the case but this seems reasonable
and this question does not seem to be out of reach.

Question 3 Let 1 = (p1; q1) and 2 = (p2; q2) that allow survival and let � 2]0; 1[. Denote � =
�1 + (1� �)2 = (�p1 + (1� �)p2; �q1 + (1� �)q2). Does � allow survival ?
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4.3 Towards a better bound for mc

We assume for simplicity that d = 1. We want to �nd a better upper bound on mc that is to say an
m such that for any q of mean greater than m and for any p > pc we have

P(p;q)(survival) > 0

The important thing here is that we want it to be true for all p > pc. We know from [9] that, if survival
happens, it has to do so in a cone that may be arbitrarily narrow. The idea we will try to develop in
order to get a better bound adresses that issue. We only need one open path as in 4.3 but now we will
try to get more fertile environment by considering the fertile sites close to our path. This could lead to a
less stringent condition on m. The main problem we have to deal with in order to achieve this is that we
condition on the existence of an in�nite cluster and this makes us lose the independence we need in the
environment to use theorem 1.2. The idea is illustrated on �gure 4.3.

We will now expound a simpler model allowing us to do explicit computations. We consider a directed
path (t;Xt)t2N where Xt is a simple random walk on Z. This will play the role of the path on the open
cluster.

We know de�ne the environment. All the sites in our path are open. We will call an inside site the site
inside every turning point, the site visited by the blue line in �gure 4.3. All the inside points are open
with probability p, independently of X (see proposition 4.7 for motivation of this.). All other sites are
closed.

We consider the branching random walk Bt with o�spring distribution q of mean m on every open
site. We de�ne it in the same way as earlier including genealogies.

Proposition 4.6 For such a branching random walk, we have survival with positive probability if m >

2
2

2+p .

Our branching random walk will have two kinds of step. The �rst kind is when it does not do a turn or
the inside site is not open. The second case is when it turns and the inside site is open. The idea is that
in that case we get more particles as they can come back to the open path. The steps are not of same
length.

We now de�ne a markov chain (B�
s ) with values in �nite subsets of T that will not have the same

time as the branching random walk (Bt). We start by B�
0 = f1g and t0 = 0. Assume we did s steps, we

are at time s for B� with corresponding time ts for B, we have fXtsg �B
�
s � Bts;Xts

. If Xts+2 6= Xts or
the inside point is sterile, we set ts+1 = ts + 1 and if Xts+2 = Xts and the inside point is open, we set
ts+1 = ts + 2. In both cases, we set

B�
s+1 = f� 2 Bts+1;Xts+1

such that �jts 2 B
�
sg

In the �rst case, every particle in B�
s independently reproduce with law q1 with q1(k) =

q(k)
2 of mean m

2
as in the proof of 4.3 (remember that we set d = 1). In the second case, every particle in B�

s reproduces
with law q2 with

q̂2(s) =

1X
k=1

q2(k)s
k = q̂1 � q̂(s)

This means that the particles at (ts; Xts) reproduce with law q and go to either of the open sites at
ts + 1 and then with probability 1

2 go to (ts + 2; Xts+2). q2 has mean m2

2 . The assumptions we made on
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Figure 4 � This exposes the way we want to prove we have a better upper bound on mc. The open
circles denote fertile sites while the black circles denote sterile sites. We want as for the proof of 4.3 to
consider a path of fertile sites in red that links 0 to 1. But if we have an open site at the corner of a
turning point of our path, we see that particles that leave the path one step before the turning point can
with probability 1=2 come back to the path just after the turning point by following the blue line. We
say that A is an inside point.
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X and the inside points give us that the second case happens with probability p
2 and therefore the �rst

one happens with probability 1� p
2 . B

�
s is only a subset of Bts;Xts

because if we turn twice in a row and
that both inside points are open, we will take advantage only of the �rst, we lose the particles that go to
the second inside point.

We have that (jB�
s j)s2N is a Smith-Wilkinson process. We now look at the hypotheses of theorem 1.2.

The second hypothesis is always veri�ed as q�(0) takes only two non 1 values and 1 � q�(0) is therefore
greater than a given constant. For the �rst one, we compute

Q ln(m1) =
p

2
ln
m2

2
+ (1�

p

2
) ln

m

2
=

2 + p

2
lnm� ln 2

and
Q ln(m1) > 0, m > 2

2
2+p

2

This would give us the bound
mc � 2

2
2+pc

.
Now let's examine the two assumptions that we made. What we needed in our simple model was that

the environment was i.i.d. and that we could easily compute the di�erent probabilities of the environment.
The latter can be left out if we accept a less explicit bound.

Our �rst hypothesis was replacing the open path on the in�nite cluster by a simple random walk.
There are di�erent possibilities for us to choose the path we take. We could choose the leftmost or
rightmost path connected to in�nity (probably not the best possible choices). Or the path that stays
closest to zero. A natural approach is to consider a random walk on the in�nite cluster. We start at
0 under the condition that it is connected to 1. This means that at least one of the two neighbors is
open and connected to in�nity at time 1. If there is only one, we choose X1 to be that one, if there are
two, X1 is either with probability 1

2 . Unfortunately, such a path will be very far from having i.i.d. steps
as every earlier step conditions what happens in the rest of time. In [6], such a random walk is de�ned
and a law of large numbers and a central limit theorem are proven for it. There are interesting tools
introduced in this article to prove those results such as a regeneration structure, a sequence (�i)i2N such
that (�i; X�i �X�i�1

) are i.i.d. Further work is needed to use this in our setting.
Our second assumption was based on the idea that once we know we have a point connected to 1

the conditioning on being in an in�nite cluster drops for earlier sites. We prove the following proposition
on oriented percolation to illustrate this. We denote �t;x = 1 if the site (t; x) is open, �t;x = 0 if the site
(t; x) is closed, (t; x) ! (t0; x0) with t < t0 the event where there is an open path from x at time t to x0

at time t0, (t; x)!1 if there is an open path starting from x at time t and of in�nite length. We denote
Ft = �(�s;x; s � t) and

A1 = f(0; 0)!1g: (4.3)

Proposition 4.7 Let (t; x) 2 N� Zd and A 2 Ft with A � f(0; 0)! (t; x)g, then

P(A \ f(t; x)!1gjA1) = P(A):

Proof :One has

P(A \ f(t; x)!1gjA1) =
P(A \ f(t; x)!1g \A1)

P(A1)
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since A \ f(t; x)!1g � A1, this is equal to

=
P(A \ f(t; x)!1g)

P(A1)
= P(A)

P((t; x)!1)

P(A1)
= P(A)

where we used the independence between what happens before and after t under P and shift-invariance.

2

This tells us that we can lose the in�nite conditioning in certain conditions. This, however is far from
what we would like to have. We would like to replace (t; x) ! 1 by Xt = x but this is not possible as
Xt depends on Ft. If we try to work without a random walk, using directly this proposition, the problem
we encounter is that the negation of (t; x)!1 is not easily dealt with.

4.4 Analogous quantities to free energy and conjecture

Under the assumption (4.1), the quantity 	 = limt!1
1
t
Q[lnZt] as de�ned in proposition 1.2 is always

equal to �1 as on Ac1 (where A1 is de�ned in4.3), Zt = 0 for t large enough and this event has positive
probability. We can however consider the quantity 	̂(!) = limt!1

1
t
lnZt(!) for each ! 2 
 if the limit

exists. Under condition (4.2),

Zt =
m

2d

t

Nt

with Nt = jfopen oriented paths from 0; 0) to (y; t) for y 2 Zdgj. If we had a result of the form 1
t
lnNt !

C when t ! 1 with positive probability, then on this event, we would have 	̂ = lnm � ln 2d + C and
we could hope that if this quantity is positive, we would have survival. Unfortunately, the existence of
the limit of 1

t
lnNt is still an open problem for a large range of parameters. Nevertheless, in [15], Yoshida

proved that

Theorem 4.1 If d � 3, there exists p0 such that if p > p0 then, almost surely on the event of percolation,

lim
t!1

1

t
lnNt = ln 2d+ ln p

The result in [15] is actually stronger. It states that under the same hypotheses limt!1
Nt

(2dp)t exists and
is positive with positive probability.

This result tells us that if d � 3, and p � p0, with positive probability, we have 	̂ = lnmp. On this
event, 	̂ > 0 , mp > 1. This reminds us of the condition of proposition 4.2. We have the following
conjecture

Conjecture 1 If d � 3 and p � p0

mp > 1, P(p;q)(survival) > 0

The fact that survival implies mp > 1 is proposition 4.2. It corresponds to the "easy" case in theo-
rem 2.1 (and many other problems in probability where the upper bound follows from straightforward
inequalities), we have the "di�cult" part of the result left to prove. This conjecture is based on the fact
that 1.1 remains true even under (4.1). Therefore, if 	̂ > 0 with positive probability, it means that for
a �xed environment on this event (the event depends only on 
q), the mean of the population grows
exponentially, which suggests survival. To prove this, we cannot work in the same fashion as in section
2. Indeed, we do not have an analogous quantity of the directional free energy as, if we look at (s; s�) for
� 2 � [Qd, it might be closed.
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