
MAT 2348 — midterm exam

B.

1. We can consider this as a “bars and bullets” problem with 3− 1 bars and 12 bullets, which
gives (12+3−1

12 ) possibilities.

2. A solution with even numbers is the same thing (setting yi =
xi
2 ) as a solution to y1 + y2 + y3 =

6, so there are (6+3−1
6 ) possibilities.

3. A solution with numbers greater or equal to 1 is the same thing (setting yi = xi − 1) as a
solution to y1 + y2 + y3 = 9, so there are (9+3−1

9 ) possibilities.

4. We will use the IE principle: setting Fi the set of solutions such that xi ≥ 6, we have by the IE
principle that |F1 ∪ F2 ∪ F3| = S1 − S2 + S3 (notations as in the statement of the principle).

Now by the same type of reasonning as in previous answers, |Fi| = (7+3−1
7 ) , |Fi ∩ Fj| = (2+3−1

2 )
for i 6= j and |F1 ∩ F2 ∩ F3| = 0.

So we have S1 = 3(7+3−1
7 ) , S2 = 3(2+3−1

2 ) and S3 = 0. The number of solutions is then (by
applying the sum principle)

(12+3−1
12 )− |F1 ∪ F2 ∪ F3| = (12+3−1

12 )− 3(7+3−1
7 ) + 3(2+3−1

2 )

Alternative solution (defeating my initial idea of testing if you know the how to apply IE principle):

Set yi = 5− xi , so that the problem becomes finding solutions to y1 + y2 + y3 = 3 with yi ≥ 0
(and yi ≤ 5, but this does not matter. . . so this is a special case, the trick does not work with = 7
for instance) so that we have (3+3−1

3 ) = 10 possible solutions.

C.

1. By the binomial theorem (x + y)11 = ∑1
k=0 1(11

k )xkyn−k and the coefficient of x5y6 is therefore
(11

5 ) . Then, (2x + 3y)11 = ∑1
k=0 1(11

k )(2x)k(3y)n−k and the coefficient of x5y6 is (11
5 )2

536 .

2. By the binomial theorem, ∑n
k=0 = (n

k)(−2)k = (−2 + 1)n = (−1)n .

D. If we associate to each line its number of black squares, we can apply the pigeonhole principle:
there are n + 1 possible number of black square per line (it can range from 0 to n ) and 2n lines, as
2n > n + 1 (for n ≥ 1) there must be two lines that hold the same number of black squares.

E.

1. (2n+2
n+1 ) =

(2n+2)!
(n+1)!(n+1)! =

(2n+2)(2n+1)(2n)!
n!n!(n+1)2 = (2n+2)(2n+1)

(n+1)2 (2n
n ) .



2. We prove by induction
S[n] : f (n) = g(n)

Base case: by hypothesis f (0) = 1 = 2.0 + 1 = g(0) , so S[0] holds.

Induction step: suppose S[n] holds. Then we have

f (n + 1) = f (n) + 2 =(by S[n] ) g(n) + 2 = 2n + 1 + 2 = g(n + 1)

so that S[n + 1] holds.

By induction S[n] holds for all n .

3. We fix c and prove by induction

S[n] : ∑n
k=c (

k
c) = (n+1

c+1)

Base case: ∑c
k=c (

k
c) = (c

c) = 1 = (c+1
c+1) , so S[c] holds.

Induction step: suppose S[n] holds. Then we have

∑n+1
k=c (

k
c) = (n+1

c ) + ∑n
k=c (

k
c) =(by S[n] ) (

n+1
c ) + (n+1

c+1) =(Pascal’s rule) (
n+2
c+2)

so that S[n + 1] holds.

By induction S[n] holds for all n .

F.

1. If we have a triple, we can define a function as follows:

f (x)


1 if x ∈ A
2 if x ∈ B
3 if x ∈ C

Conversely, given a function we can define a triple as

A = [ f ]−1(1) B = [ f ]−1(2) C = [ f ]−1(3)

This establishes a correspondance (which is clearly a bijection) between the triples considered
and functions. By the isomorphism principle, there as many of each of them.

2. The number of functions from E to {1, 2, 3} is 3n , by the above question, this is also the number
of triples.

3. Such a pair is the same thing as an above triple if we write it as A \ B , B \ A , A ∩ B . So there
are as many pairs as pairwise disjoint triples.

Alternative answer: apply the sum principle reasoning on the size of A . If A is of size k , then we
have (n

k) choices for A and then B contains all the elements that are not in A plus a subset of
A , with 2k possibilities. So in the end the total number of possibilities is ∑n

k=0 (
n
k)2

k = 3n by the
binomial theorem.
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