MAT 2348 — midterm exam

No calculators allowed.

Numeric answers need to be justified. You can use the result of a previous question in an answer even you did not answer it. *More difficult questions are marked with a *, do what you know how to do first.* Don't Panic.

A. Remind briefly the formulas for arrangements, combinations and arrangements with types. *(here, exceptionally, you do not need to justify)*

B. We consider the equation $x_1 + x_2 + x_3 = 12$ with x_1, x_2, x_3 positive integers.

- 1. How many solutions are there?
- 2. How many solutions such that x_1, x_2, x_3 are even are there?
- 3. How many solutions such that $x_1, x_2, x_3 \ge 1$ are there?
- *4. How many solutions such that $x_1, x_2, x_3 \le 5$ are there?

C.

- 1. What is the coefficient of x^5y^6 in the development of $(x + y)^{11}$? Of $(2x + 3y)^{11}$?
- 2. What is the value of $\sum_{k=0}^{n} {n \choose k} (-2)^k$?

D. We consider a $n \times n$ board with black and white squares. A *line* in the board is either a row or a column. Show that at least two lines have the same number of black squares.

E.

- 1. Show that $\binom{2n+2}{n+1} = \frac{(2n+2)(2n+1)}{(n+1)^2} \binom{2n}{n}$.
- 2. We have a function on positive integers f such that f(0) = 1 and f(n+1) = f(n) + 2 for all n. Prove by induction that for all n, f(n) = 2n + 1
- *3. Prove by induction that for any $c \ge 1$, $\sum_{k=c}^{n} {k \choose c} = {n+1 \choose c+1}$. (*hint: fix c and do the induction on n*)

***F.** We have a set *E* with *n* elements.

- 1. Explain why there are as many triples (A, B, C) of *pairwise disjoint* subsets of *E* such that $A \cup B \cup C = E$ and functions from *E* to the set $\{1, 2, 3\}$.
- 2. Deduce how many such triples there are.
- 3. How many pairs (A, B) of (not necessarily disjoint) subsets of *E* such that $A \cup B = E$ are there?