MAT 2348 — exercises #5

A Functions

Let $f : A \to B$ and $g : B \to C$ be two functions. Show the two lemmas we used in class:

- If $g \circ f$ is injective, then f is injective
- If $g \circ f$ is surjective, then g is surjective

B Induction

- 1. Show by induction that $\sum_{k=0}^{n} k(k!) = (n+1)! 1$.
- 2. Let $f(n) = \sum_{k=0}^{n} 2^k$. Compute the first values of f(f(1), f(2), f(3)...) and conjecture the general formula. Then prove it correct by induction.
- 3. Show that if A and B are finite sets and $card(A) \leq card(B)$ then there exist an injection $f : A \rightarrow B$. (*hint: as we did in class for bijections, induction on the cardinal of A*)
- 4. Show that $(\cos(\theta) + \sin(\theta))^n = \cos(n\theta) + \sin(n\theta)$ for all *n*. (*hint: remember your trigonometry*, $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)...)$
- 5. Let S(n) be the statement "for all n, $\sum_{k=0}^{n} k = \frac{(n+\frac{1}{2})^2}{2}$ ". Prove that for all n, $S(n) \Rightarrow S(n+1)$. However, does S(0) hold? S(1)? S(2)?... (morality: be careful with the base case!)

C Induction and well ordering

(for the moment I leave it as a problem without intermediary questions, let's see how far you can get)

The well-ordering of \mathbb{N} is the following property:

"Given any subset *A* of \mathbb{N} , there exist an element m_A of *A* (we call it the *minimum* element of *A*) such that for any $x \in A$ we have $m_A \leq x$."

We want to show that the induction principle is a consequence of the well-ordering property. So suppose we don't know if the induction principle holds and that we have a sentence S(n) that depends on an integer n, such that

S(0) holds and $S(n) \Rightarrow S(n+1)$ holds for all n

Try to show that S(n) holds for all n using the well-ordering property rather than the induction principle.

Grimaldi's exercises 4.1: 1, 2, 16, 23.