## MAT 2348 — exercise sheet #3

## A Counting

- 1. How many three-letter words are there are not just three times the same letter? (*like AAA*, *BBB*, *etc.*)
- 2. We have lottery tickets in a box, numbered from 1 to n. We pick one, write it down, and then put it back. If we do this k times, how many possible sequence can we write?

## B Arrangements and combinations

- 1. How many shuffle of the letters of MISSISSAUGA are there?
- 2. How many of them contain the word GAUSS? (hint: think of "GAUSS" as one big letter)
- 3. How many of them do not contain the word GAUSS?
- 4. Show that  $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$  by a combinatorial argument. (hint: a set with 2n elements can be seen as the union of two sets of n elements)

## C Binomial theorem

- 1. What is the coefficient of  $x^5y^2$  in the development of  $(2x + 3y)^7$ ?
- 2. Show that  $n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}$  using the binomial theorem. (hint: compute the derivative of  $(x+1)^n$  and that of its development)

**Grimaldi's exercises:** same as #2.