MAT 2348 — exercise sheet #1

A Basic exercises

A.1 Sets

- 1. Let $A = \{1, 2, 4\}$ and $B = \{1, 4, 5\}$. Compute $A \cup B, A \cap B, A \setminus B, A \times B$.
- 2. Show that if $A \subseteq B$ and $B \subseteq A$, then A = B.
- 3. Show that if $A \subseteq B$ then $card(B) = card(A) + card(B \setminus A)$. (*hint: use the sum principle*)

A.2 Sum and product principles

- 1. A store sells 3 different types of fruit, 4 types of vegetable and 6 different types of cookies. How many different choices can be made if we want to buy:
 - (a) One item?
 - (b) One of each type of items? (i.e. one fruit, one vegetable, one cookie)
 - (c) Two items of different type?
- 2. We consider sequences of length 5 such that the first character is either a letter of a digit, and the remaining ones are digits. How many such sequences are there? Same question with sequences of length *n*.

A.3 Arrangements and combinations

- 1. We draw a sequence of 5 cards from a deck of 32 cards. How many such sequences are there?
- 2. We draw a hand of 5 cards (*i.e.* the order in which we draw them do not count) from a deck of 32 cards. How many such hands are there?
- 3. How many different shuffles of the word HELLO are there? Of the word ELLEN?
- 4. Same question as above, but considering only shuffles where the two L are side by side.

B Advanced exercises

B.1 Sets

- 1. Can you guess (and even prove?) a formula for $card(A \cup B)$? That is, the sum principle when $A \cap B$ is not empty. (*hint: draw potatoids*)
- 2. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. This is called the distributivity of \cap over \cup . What about the distributivity of \cup over \cap ?
- 3. Show that A.1.3 is false when $A \not\subseteq B$.

B.2 Counting subsets

If *A* is a set, then a *subset* of *A* is any *B* such that $B \subseteq A$. Suppose *A* has *n* elements.

- 1. How many subsets of *A* of size *k* (for $0 \le k \le n$) are there?
- 2. Show that there are 2^n different subsets of *A*.
- 3. Can you use this to compute $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n}$?

B.3 The round table

A group of 6 people sit at a round table. We consider that they are in the same *configuration* if each one of them has the same neighbour (*i.e.* configurations are considered up to rotation of the table). How many configurations are there?

If you want to push further, you can do Grimaldi's 1.1-1.2 exercises: 3, 5, 9, 11, 21, 31, 37.