
MAT 2348 (winter 2015) final exam — solutions

Closed book exam. No calculators allowed.

Numeric answers need to be justified. You can use the result of a previous question in an
answer even you did not answer it. More difficult questions are marked with a *, do what you
know how to do first. Don’t Panic.

A. This is an arrangement with types problem, with two elements of type A, T and one of type
O, W : 6!

2!2!1!1! possibilities.
If the two T need to be side by side, we can consider them as a single letter, and we get 5!

2!1!1!1!
possibilities.

There are 5!
2!2!1! words starting by O (as much as letters made with the letters of TTAWA , hence

by the sum principle there are 6!− 5!
2!2!1! words that do not start by O .

B.
X

1+2X = ∑∞
n=0(−2)nXn+1 .

1
(1+X)(2−3X)

= 1/5
1+X + 3/5

2−3X = 1/5
1+X + 3/10

1−(3/2)X = ∑∞
n=0(1/5)(−1)nXn + (3/10)(3/2)n .

(eX − 1)2 = e2X − 2eX + 1 = 1 + ∑∞
n=0(2

n − 2)Xn

n!

C. f (X) = 1
(1−X)2 generates n + 1, derive it then multiply the result by X to get X f ′(X) = 2X

(1−X)3

generates n(n + 1) , then perform the same operation again to get that g(X) = 2X+4X2

(1−X)4 generates

n2(n + 1) .

h(X) = e3X generates 3n

n! .

D. The exponential generating function for this problem is

(eX − 1)(eX − 1)eXeX = (e2X − 2eX + 1)e2X = e4X − 2e3X + e2X =
∞

∑
n=0

(4n − 2.3n + 2n)
Xn

n!

The coefficient of Xn

n! (and therefore the number of n -letter words we look for) is (4n − 2.3n + 2n) .

E.

1. The generating function of the problem is 1
(1−X)3 = ∑∞

k=0 (
k+3−1

k )Xk and therefore we have

(k+3−1
k ) solutions.

2. In that case the generating function is (X + X3 + X5 + · · · )3 = X3

(1−X2)3 = ∑∞
k=0 (

k+3−1
k )X2k+3 .

So the coefficient of Xk (which equals the number of solutions) is 0 when k is even or smaller
than 3 and (k′+3−1

k′ ) when k = 2k′ + 3.
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3. The generating function in that case is X
(1−X)

(1+X+X2 +X3) 1
(1−X)

= X(1−X4)
(1−X)3 = ∑∞

k=0 (
k+3−1

k )Xk+1−

∑∞
k=0 (

k+3−1
k )Xk+5 . Hence the number of solutions for k ≥ 5 is (k−1+3−1

k−1 ) − (k−5+3−1
k−5 ) =

(k+1
k−1)− (k−3

k−5) , 0 for k = 0 and (k+1
k−1) for 1 ≤ k ≤ 4.

F.

1. We apply the inclusion-exclusion principle: let Fi be the set of multiples of i . We have |F4| = 25,
|F5| = 20 and |F6| = 16. Moreover |F4 ∩ F5| = |F20| = 5, |F4 ∩ F6| = |F12| = 8 and |F5 ∩ F6| =
|F30| = 3. Finally, |F4 ∩ F5 ∩ F6| = |F60| = 1.

By the inclusion-exclusion principle |F4 ∪ F5 ∪ F6| = 25 + 20 + 16− 5− 8− 3 + 1 = 46. Then
by the sum principle, there are 100− 46 = 54 non-multiples.

2. We aply the formula for exactly one in the inclusion-exclusion situation: E1 = |F4|+ |F5|+ |F6| −
2(|F4 ∩ F6|+ |F4 ∩ F5|+ |F5 ∩ F6|) + 3|F4 ∩ F5 ∩ F6| = 25 + 20 + 16− 2(5 + 8 + 3) + 3(1) = 32.

G.

1. We apply the pidgeonhole principle: the “holes” being intervals [1, 7] [8, 14] · · · [92, 98][99, 100] .
There are 15 such intervals, and whenever two numbers belong to the same interval they are at
a distance strictly less than 7. Now, if we pick 16 numbers between 1 and 100, two of them
must be in the same interval by the pidgeonhole principle, and therefore be at a distance strictly
less than 7.

*2. The corners removed are of the same solor, say black. Suppose we can cover the chessboard,
which has 64− 2 = 62 squares: 32 white and 30 black. To do this we need 31 dominos which
cover 2 squares each. Now each domino must cover exactly one black and one white square. In
particular, there must be a bijection between dominos and black squares. But this is impossible
since we have 31 dominos and 30 black squares.

H. We apply the GF method:

1. GF for an : f (X) = X
(2−X)(1−X)

= 1/9
1−5X + −2/9

2−X = 1/9
1−5X + −1/9

1−X/2 , hence an = (1/9)(5n −
(1/2)n) .

2. GF for bn : g(X) = 2X
1−4X+4X2 = 2X

(1−2X)2 . Hence an = 2( n
n−1)2

n−1 = n2n

*3. GF for cn : h(X) = 1
1−X−X2 = 1

(φ+X)(ψ+X)
with φ = 1+

√
5

2 and ψ = 1−
√

5
2 (remember how to

solve 2nd degree polynomials!). Then the partial fraction decomposition gives:

f (X) = (1/
√

5)( ψ
X+ψ −

φ
X+φ ) = (1/

√
5)( 1

1+X/ψ −
1

1+X/φ )

so that cn = (1/
√

5)((−1/ψ)n − (−1/φ)n) . By the way, one can notice that −1/ψ = φ , so that
the expression simplifies as cn = (1/

√
5)(φn+1 − ψn+1) .

4. f (X) = 3+15X2

1−X+5X2+X3
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5. f (X) = X5

(1+6X4)(1−X)2

I. We know that (X + 1)α+2 = ∑∞
n=0 (

α+2
n )Xn , and moreover (X + 1)α + 2X(X + 1)α + X2(X +

1)α = ∑∞
n=0 (

α
n)Xn + 2 ∑∞

n=0 (
α
n)Xn+1 + ∑∞

n=0 (
α
n)Xn+2 . Looking at the coefficient of Xn for n ≥ 2,

we get the required equality.

J.

1.

2. d – a – a – a – b – c / d – a – a – b – c / d – c

3. a – b – c – a (and its 3 rotations) and a – a are the two cycles of G .

4. G′ has only one cycle. The number of cycles in a graph is clearly preserved by isomorphism, so
G and G′ cannot be isomorphic.

5. Not isomorphic either (degree argument for instance), actually I made a mistake as I wanted
them to be isomorphic. Well, you get points anyway.

K.

1. χA∩B(x) = χA(x).χB(B)

2. Yes, the complement of A in E : 1− χA = χE\A

3. χA∪B = χA(x) + χB(B)− χA(x).χB(B) (we use inclusion-exclusion here)

4. This is the cardinal of A : we count 1 for each x such that χA(x) = 1, i.e. x ∈ A .
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