MAT 2348 — assignment #4

Due: April 9th. Numeric answers need to be justified. Don't Panic.

A. We consider words made from the letters A, B, C, D give the exponential generating function for the number of n-letter words with the following constraints:

- 1. We use at least three A.
- 2. We use at most two B.
- 3. *A* and *B* are used an even number of times, *C* and *D* an odd number of times.

Then use it to compute the number of n-letter words that can be formed in each case.

B. Solve the following recurrences using the generating function method:

- 1. $a_0 = 1$ and $a_{n+1} = 5a_n n$
- 2. $a_0 = 0$, $a_1 = 1$ and $2a_{n+2} = -a_{n+1} + a_n$

C. We consider the undirected graph G given formally as the pair (V, E) with

- $V = \{a,b,c,d,ef\}$
- $\circ \ E = \{[a,c],[a,f],[b,c],[b,e],[c,d],[d,e],[e,f]\}$
- 1. Draw the graph.
- 2. What are the degrees of the vertices?
- 3. We define G' by replacing [c,d] by [c,e]. Are G and G' isomorphic?
- **D.** We consider the directed graph *G* on the right
- 1. Give the formal description of *G*.
- 2. Give a walk (that is not a trail), a trail (that is not a path) and a path from b to d.
- 3. List the cycles of the graph.
- 4. What is the minimal number of edges we would need to remove to make the graph acyclic?

