## MAT 2348 - assignment \#3

Due: March $26^{\text {th }}$. Numeric answers need to be justified. Don't Panic.
A. Compute the rook polynomial for the board

B. If you have not already done it in \#7.B.1, find the generating function for the sequence of cubes: $f(X)=1^{3}+2^{3} X+3^{3} X^{2}+\cdots$

Then use it to compute the formula for the sum of cubes $F(n)=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$.
C. Give the sequence generated by the following functions:

$$
\frac{2 X-3}{1+X} \quad \frac{1}{4-X} \quad \frac{1}{(1-X)(2+X)} \quad \frac{1+X}{\left(1-X^{2}\right)}
$$

D. Consider the equation $x_{1}+x_{2}+x_{3}=n$ with the $x_{i}$ positive integers.

Give the generating functions for the problem with the following constraints:

1. $x_{1} \geq 2$ and $x_{2} \geq 4$
2. $x_{3} \leq 9$
3. $x_{1} \geq 3$ and $x_{1}$ is odd
E. We consider a generating function $f(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots$
4. We set $f(X) f(X)=b_{0}+b_{1} X+b_{2} X^{2}+\cdots$, compute the value of $b_{i}$ in terms of the $a_{i}$.
5. Considering the special case where $f(X)=(1+X)^{n}$, express the coefficient of $X^{n}$ in

$$
(1+X)^{n}(1+X)^{n}
$$

3. Give the coefficient of $X^{n}$ in $(1+X)^{2 n}$ directly.
4. Use this to show that $\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i}^{2}$.
