MAT 2348 — assignment #2 (solutions)

A. Choosing an injection from *A* to *B* is the same thing as choosing an arrangement without repetition of *n* elements (one for each element in *A*) among *m*. That is to say there are $\mathbf{A}_n^m = \frac{m!}{n!}$ choices.

В.

- 1. A *x* is in $A^{\perp\perp} = (A^{\perp})^{\perp}$ by definition if $x \perp y$ for any $y \in A^{\perp}$. If $x \in A$, we have $x \perp y$ (and hence $y \perp x$) for all $y \in A^{\perp}$, therefore $x \in A^{\perp\perp}$. That is to say $A \subseteq A^{\perp\perp}$
- 2. Let $x \in B^{\perp}$. By definition we have $x \perp y$ for all y in B. Since $A \subseteq B$, $x \perp y$ for all $y \in A$ and therefore $x \in A^{\perp}$.
- 3. The above property gives us already $B^{\perp} \subseteq A^{\perp}$. We can then apply it a second time, to B^{\perp} and A^{\perp} , which gives $A^{\perp\perp} \subseteq B^{\perp\perp}$.
- 4. The first question gives us $A \subseteq A^{\perp\perp}$ and $A^{\perp} \subseteq (A^{\perp})^{\perp\perp}$. Applying the second question to $A \subseteq A^{\perp\perp}$, we get $(A^{\perp\perp})^{\perp} \subseteq A^{\perp}$. Therefore $A^{\perp} = A^{\perp\perp\perp}$.

C. If we forget about the second coordinate (*i.e.* we project on X/Z axis) we are looking at the 2D version of the problem with b_5 possibilities. By inserting five Y moves in a ten X/Z sequence, we get a 3D path as required. There are $\binom{11+5-1}{5}$ ways of inserting the Y moves (11 containers, 5 elements).

By the product principle, we get a total of $b_5\binom{11+5-1}{5}$ possibilities.

D. Indeed a 6 letter word is the same thing as a function from $\{1, 2, 3, 4, 5, 6\}$ to $\{A, B, C\}$: to each position, associate a letter. The word uses each letter at least once if and only if the function is surjective, hence the relation to Stirling numbers.

We can solve this directly: let us call F_A , F_B , F_C the set of words that do not use A, B, C respectively. By the inclusion-exclusion principle, the cardinal of the set of words that miss one of the letters is

$$|F_{A} \cup F_{B} \cup F_{C}| = |F_{A}| + |F_{B}| + |F_{B}| - (|F_{A} \cap F_{B}| + |F_{B} \cap F_{C}| + |F_{A} \cap F_{C}|) + |F_{A} \cap F_{B} \cap F_{C}|$$

= 3(2⁶) - 3(1⁶) + 0

By the sum principle, the number of words that miss none of the three letters is $3^6 - 3(2^6) + 3(1^6)$.

E. A square of side length 2 can be cut into four squares of side length 1 as follows:

with each of the small squares having side length 1, so that two points inside such a square are at a distance of at most $\sqrt{2}$.

By the pigeonhole principle, if we place five points in the square, two of them will end up in the same small square, thus being at a distance at most $\sqrt{2}$.

On the other hand, if we place only four points, we can put them for instance at the angles of the square so that they are at a distance at least 2 of each other. Hence 5 is the lowest possible answer.

F. We prove by induction:

for all *n*, the statement "S[n] : f(n) = g(n)" holds

Base case: f(0) = 0 and $g(0) = 2^0 - 1 = 0$. So S[0] holds.

Induction step: suppose S[n] holds *i.e.* f(n) = g(n). Then

$$f(n+1) = 2f(n) + 1 = 2g(n) + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 1 = g(n+1)$$

that is to say S[n+1] holds.

Conclusion: we have S[0] and $S[n] \Rightarrow S[n+1]$. By induction, S[n] holds for all n.