MAT 2348 - assignment \#2

Due: february $23^{r d}$. Numeric answers need to be justified. Don't Panic.
A. Let A and B be two finite sets with $\operatorname{card}(A)=n$ and $\operatorname{card}(B)=m \geq n$. How many injections from A to B are there?
B. We consider a set H and a binary relation \perp on H, that is to say a subset $\perp \subseteq H \times H$. We write $a \perp b$ for $(a, b) \in \perp$. We suppose moreover that the relation is symmetric: $a \perp b$ if and only if $b \perp a$. Now, for any subset $A \subseteq H$ we can define

$$
A^{\perp}=\{b \in H \mid \text { for all } a \in A, a \perp b\}
$$

then of course we can apply this $(\cdot)^{\perp}$ operation again to get for instance $\left(A^{\perp}\right)^{\perp},\left(\left(A^{\perp}\right)^{\perp}\right)^{\perp} \ldots$ in that case, we do not write the parenthesis to make it more readable: $A^{\perp \perp}, A^{\perp \perp \perp} \ldots$

1. Show that for any subset $A \subseteq H$, we have $A \subseteq A^{\perp \perp}$.
2. Show that if $A \subseteq B$, then $B^{\perp} \subseteq A^{\perp}$.
3. Show that if $A \subseteq B$, then $A^{\perp \perp} \subseteq B^{\perp \perp}$.
4. Show that for any subset $A \subseteq H$, we have $A^{\perp}=A^{\perp \perp \perp}$.

This situation with an "orthogonality relation" occurs in various domains: linear algebra, logic ... and it always present this basic set of properties. The operation $(\cdot)^{\perp \perp}$ is usually seen as a "closure" operation, so the subsets such that $A=A^{\perp \perp}$ are called "closed".
C. We let the snake from the path problem move in 3D now:

1. Starting at the point $(0,0,0)$ in cartesian coordinates, how many paths are there that reach $(5,5,5)$ using only the moves $X=(+1,0,0), Y=(0,+1,0)$ and $Z=(0,0,+1)$?
2. How many such path always stay below the plane $x=z$?
(hint: remember that the Catalan numbers $b_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count the number of path that remain below the diagonal in the 2D version of the problem. Draw a picture!)
D. How many 6 letter words written with the letters " A, B, C " that use at least each letter once are there? Can you explain how this is related to Stirling numbers?
E. Consider a square with sides of length 2 . How much points can we place inside the square without having two of them at a distance $\sqrt{2}$ or less of each other?
F. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ a function such that $f(n+1)=2 f(n)+1$ and $f(0)=0$. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ defined as $g(n)=2^{n}-1$ for all n. Show by induction that $f=g$.
