MAT 2348 — assignment #2

Due: february 23rd. Numeric answers need to be justified. Don't Panic.

A. Let *A* and *B* be two finite sets with card(A) = n and $card(B) = m \ge n$. How many injections from *A* to *B* are there?

B. We consider a set *H* and a binary relation \bot on *H*, that is to say a subset $\bot \subseteq H \times H$. We write $a \bot b$ for $(a, b) \in \bot$. We suppose moreover that the relation is symmetric: $a \bot b$ if and only if $b \bot a$. Now, for any subset $A \subseteq H$ we can define

$$A^{\perp} = \{ b \in H \mid \text{for all } a \in A, a \perp b \}$$

then of course we can apply this $(\cdot)^{\perp}$ operation again to get for instance $(A^{\perp})^{\perp}, ((A^{\perp})^{\perp})^{\perp}...$ in that case, we do not write the parenthesis to make it more readable: $A^{\perp\perp}, A^{\perp\perp\perp}...$

- 1. Show that for any subset $A \subseteq H$, we have $A \subseteq A^{\perp \perp}$.
- 2. Show that if $A \subseteq B$, then $B^{\perp} \subseteq A^{\perp}$.
- 3. Show that if $A \subseteq B$, then $A^{\perp \perp} \subseteq B^{\perp \perp}$.
- 4. Show that for any subset $A \subseteq H$, we have $A^{\perp} = A^{\perp \perp \perp}$.

This situation with an "orthogonality relation" occurs in various domains: linear algebra, logic ... and it always present this basic set of properties. The operation $(\cdot)^{\perp\perp}$ is usually seen as a "closure" operation, so the subsets such that $A = A^{\perp\perp}$ are called "closed".

C. We let the snake from the path problem move in 3D now:

- 1. Starting at the point (0,0,0) in cartesian coordinates, how many paths are there that reach (5,5,5) using only the moves X = (+1,0,0), Y = (0,+1,0) and Z = (0,0,+1)?
- 2. How many such path always stay below the plane x = z?

(hint: remember that the Catalan numbers $b_n = \frac{1}{n+1} {\binom{2n}{n}}$ count the number of path that remain below the diagonal in the 2D version of the problem. Draw a picture!)

D. How many 6 letter words written with the letters "A,B,C" that use at least each letter once are there? Can you explain how this is related to Stirling numbers?

E. Consider a square with sides of length 2. How much points can we place inside the square without having two of them at a distance $\sqrt{2}$ or less of each other?

F. Let $f : \mathbb{N} \to \mathbb{N}$ a function such that f(n+1) = 2f(n) + 1 and f(0) = 0. Let $g : \mathbb{N} \to \mathbb{N}$ defined as $g(n) = 2^n - 1$ for all n. Show by induction that f = g.