MAT 1341C Test #4 (Winter 2016)

April 4th — Professor: Marc Bagnol

	Ente	Enter Multiple	
	Choice Answers Here		
Family name:	1	С	
First name:	2	Е	
Student number:	3	D	
Judent number.			
DGD group:	Marke	Marker's Use Only	
	4		
	5		
	6		
	7 [Bonus]		
	Total		

PLEASE READ THESE INSTRUCTIONS VERY CAREFULLY.

- 1. You have 80 minutes to complete this exam.
- 2. This is a closed book exam, and no notes of any kind are permitted. The use of calculators, cell phones, or similar devices is not permitted. All cybernetic implants not necessary for life-support must be disabled at the beginning of the exam.
- 3. Read each question carefully, and **answer all questions in the space provided after each question.** For questions 4 to 7, you may use the backs of pages if necessary, but be sure to indicate to the marker that you have done this.
- 4. Questions 1 to 3 are multiple choice. These questions are worth 1 point each and no part marks will be given. **Please record your answers in the table above.**
- 5. Questions 4 to 6 and are worth 6 points each, and part marks can be earned. The correct answers here require justification written legibly and logically: you must convince the marker that you know why your solution is correct.
- 6. Question 7 is a challenging bonus question and is worth 3 points. It is *much* more difficult to obtain marks in the bonus question, so spend your time accordingly. You can earn 100% without attempting Q.7.
- 7. Where it is possible to check your work, do so.
- 8. Good luck! Bonne chance!

1. What is the dimension of the subspace of
$$\mathbb{R}^5$$
 spanned by $\begin{bmatrix} 1\\1\\2\\3\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\-3\\5\\3\\1\\1\\3 \end{bmatrix}$ and $\begin{bmatrix} 3\\-7\\8\\-1\\5\\5 \end{bmatrix}$?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4
- **F.** 5

2. Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$
. The third row of B^{-1} is:

- **A.** [0 1 -1]
- **B.** [-1 1 0]
- **C.** [-2 0 1]
- **D.** [1 -1 0]
- **E.** [1 0 -1]
- **F.** *B* is not invertible.

3. The sequence of vectors
$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ is:

- **A.** Orthonormal
- **B.** Orthogonal, but not orthonormal because $u_1 \cdot u_2 \neq 0$
- **C.** Orthogonal, but not orthonormal because $u_3 \cdot u_3 \neq 1$
- **D.** Not orthogonal because $u_1 \cdot u_2 \neq 0$
- **E.** Not orthogonal because $u_1 \cdot u_3 \neq 0$
- **F.** None of the above is correct.

(Additional space for questions 1,2,3)

4. Let

$$A = \begin{bmatrix} 1 & -3 & 0 & 2 \\ 2 & -6 & 1 & 6 \\ 1 & -3 & 1 & 4 \end{bmatrix}$$

(a) Find a basis for the row-space of A.

(b) Find a basis for the column-space of A.

(c) Find a basis for $\text{Null}(A) = \{ X \in \mathbb{R}^4 \mid AX = \mathbf{0} \}.$

(d) Find a matrix B such that Col(A) = Null(B).

ANSWERS:

(a) We apply the row-space algorithm, for this we apply Gauss reduction to A which gives us:

$$\begin{bmatrix}
1 & -3 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

dropping the last row of 0s, we get that $\begin{bmatrix} 1 & -3 & 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix}$ is a basis of Row(A).

(b) On the CREF of A computed above we see that columns 1 and 3 are holding a pivot. The column-space algorithm tells us that the corresponding columns of A

form a basis, that is $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is a basis of Col(A).

(c) For that we solve the linear system $AX = \mathbf{0}$, we already have reduced A so we can directly read the general solution off the CREF: we have two free variables x_2 , x_4 and

the solutions are
$$\begin{bmatrix} 3x_2 - 2x_4 \\ x_2 \\ -2x_4 \\ x_4 \end{bmatrix}.$$

From this we get the basis setting $x_2 = 1$, $x_4 = 0$ and $x_2 = 0$, $x_4 = 1$ which gives us

in the end that $\begin{bmatrix} 3\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -2\\0\\-2\\1 \end{bmatrix}$ is a basis of Null(A).

(d) We have our basis of Col(A) from question (b): $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ so a vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ will be

4

in Col(A) iff the system $\begin{bmatrix} 1 & 0 & | & x \\ 2 & 1 & | & y \\ 1 & 1 & | & z \end{bmatrix}$ has a solution. We apply Gauss reduction to

get:
$$\begin{bmatrix} 1 & 0 & | & x \\ 0 & 1 & | & y-2x \\ 0 & 0 & | & x-y+z \end{bmatrix}$$
. So this system is consistent iff $x-y+z=0$ that is iff
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \text{Null}(\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}).$$

5. Let
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ and $U = \operatorname{Span}(e_1, e_2, e_3)$.

- (a) Use the Gram Schmidt algorithm to find an orthogonal basis of U.
- (b) Compute the projection of $\begin{bmatrix} 1\\1\\2\\2 \end{bmatrix}$ on U.
- (c) Extend the basis found in (a) into a basis of \mathbb{R}^4 .

ANSWERS:

(a) Start by setting $e'_1 := e_1$

Then
$$e'_2 = e_2 - \frac{e'_1 \cdot e_2}{e'_1 \cdot e'_1} e'_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} - (1/2) \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{bmatrix}$$

Then
$$e_3' = e_3 - \frac{e_1' \cdot e_3}{e_1' \cdot e_1'} e_1' - \frac{e_2' \cdot e_3}{e_2' \cdot e_2'} e_2' = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} - (0) \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} - (0) \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

So our basis is
$$e_1' = \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$$
, $e_2' = \begin{bmatrix} 1/2\\0\\0\\1/2 \end{bmatrix}$, $e_3' = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$. To make our lives easier for next

questions, let's rescale the second vector to
$$e_2' = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
.

(b) Since we have an OG basis of U the projection of $v = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$ on U is given by

$$\operatorname{proj}_{U}(v) = \frac{e'_{1} \cdot v}{e'_{1} \cdot e'_{1}} e'_{1} + \frac{e'_{2} \cdot v}{e'_{2} \cdot e'_{2}} e'_{2} + \frac{e'_{3} \cdot v}{e'_{3} \cdot e'_{3}} e'_{3} = (-1/2) \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} + (3/2) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + (3/2) \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1\\3/2\\3/2\\2 \end{bmatrix}$$

(c) We apply now the algorithm to complete a basis to e'_1, e'_2, e'_3 : we write these vectors as the rows of a 3 matrix:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and reduce it to get

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We are missing a pivot on the third column, so adding the vector $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ will give us a basis of \mathbb{R}^4 .

- **6.** State whether each of the following statements is (always) true [T], or is (possibly) false [F], in the box after the statement.
 - If you say the statement may be false, you <u>must give an explicit counter-example</u> with numbers, matrices, or functions, as is appropriate!
 - If you say the statement is always true, you must give a clear explanation.
 - (a) If A is an invertible matrix and AB = 0 then B = 0.

EXPLANATION:

If A^{-1} is defined then from AB = 0 we get by multiplying by A^{-1} on both sides:

$$A^{-1}AB = A^{-1}0$$

$$(A^{-1}A)B = 0$$

$$IB = 0$$

$$B = 0$$

ANSWER:

(b) If A is a 5×6 matrix and the dimension of Null(A) is 4, then the dimension of Col(A) is 2.

EXPLANATION:

We have the rank theorem: (number of bound variables + number of free variables = number of columns)

$$rank(A) + dim(Null(A)) = 6$$

$$rank(A) + 4 = 6$$

$$rank(A) = 2$$

Moreover we know that $\dim(\operatorname{Col}(A)) = \operatorname{rank}(A)$, so in the end $\dim(\operatorname{Col}(A)) = 2$.

ANSWER:

(c) A linearly independent sequence is always orthogonal.

EXPLANATION:

The basis of \mathbb{R}^2 : $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is not orthogonal.

ANSWER:

(d) If a 4×4 matrix has rank 4, then its rows are linearly independent.

EXPLANATION:

In that situation, the 4 rows of the matrix span a vector space of dimension 4 (remember that we know $\dim(\operatorname{Row}(A)) = \operatorname{rank}(A)$). This is only possible if they are linearly independent.

ANSWER:

7. Let *A* be a 5×3 matrix. Show that there cannot be a 3×5 matrix *B* such that $AB = I_5$. (remember the notation I_5 is for the 5×5 identity matrix)

ANSWER:

Whatever B we choose columns of AB are all linear combinations of the columns of A.

If we could have
$$AB = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 then it would mean that $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, are all in $Col(A)$ and therefore that $Col(A) = \mathbb{R}^5$. But this is impossible since $Col(A)$ has dimension at most 3, since the rank of A is at most 3.