MAT 1341C Diagnostic Test (Winter 2016)

February 22nd — Professor: Marc Bagnol

Enter Multiple

					Enter Munipie			
Family name:				Choice Answers Here				
First name:					1	С		
Student number:					2	Е		
					3	С		
DGD group:								
	θ	$\cos \theta$	$\sin \theta$		Marke	Marker's Use Only		
	0 $\pi/6$	$\frac{1}{\sqrt{3}/2}$	1/2		4			
	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$		5			
	$\pi/3$	1/2	$\sqrt{3}/2$		6			
	$\pi/2$	0	1		7 [Bonus]			
					Total			

PLEASE READ THESE INSTRUCTIONS VERY CAREFULLY.

- 1. You have 80 minutes to complete this exam.
- 2. This is a closed book exam, and no notes of any kind are permitted. The use of calculators, cell phones, or similar devices is not permitted. All cybernetic implants not necessary for life-support must be disabled at the beginning of the exam.
- 3. Read each question carefully, and **answer all questions in the space provided after each question.** For questions 4 to 7, you may use the backs of pages if necessary, but be sure to indicate to the marker that you have done this.
- 4. Questions 1 to 3 are multiple choice. These questions are worth 1 point each and no part marks will be given. **Please record your answers in the table above.**
- 5. Questions 4 to 6 and are worth 6 points each, and part marks can be earned. The correct answers here require justification written legibly and logically: you must convince the marker that you know why your solution is correct.
- 6. Question 7 is a challenging bonus question and is worth 3 points. It is *much* more difficult to obtain marks in the bonus question, so spend your time accordingly. You can earn 100% without attempting Q.7.
- 7. Where it is possible to check your work, do so.
- 8. Good luck! Bonne chance!

1. Let $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid xy = 0 \right\}$. Which of the following statements is true?

- **A.** *W* is a subspace of \mathbb{R}^3
- **B.** $0 \in W$ but W is not stable by scaling.
- **C.** *W* stable by scaling but is not stable by addition.
- **D.** $0 \in W$ and W is stable by addition.
- **E.** *W* is stable by scaling and addition.
- **F.** 0 ∉ W

2. Suppose that a vector space V can be spanned by a sequence of 45 vectors, and that V has a linearly independent sequence with 23 vectors. Then it is always true that:

- **A.** $\dim(V) < 45$
- **B.** $\dim(V) > 45$
- **C.** $23 < \dim(V) \le 45$
- **D.** $23 \le \dim(V) < 45$
- **E.** $23 \le \dim(V) \le 45$
- **F.** None of the above is true.

3. Which of the following is a spanning sequence of

$$\left\{ \left[\begin{bmatrix} a \\ b \\ 0 \\ d \end{bmatrix} \in \mathbb{R}^4 \, \middle| \, a - b = 0 \right. \right\}$$

- **A.** $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
- $\mathbf{B.} \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$
- $\mathbf{C.} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$
- **D.** $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$
- **E.** $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$

F. None of the above are correct.

4. Consider the vector space $\mathbb{F}(\mathbb{R})$ consisting of all functions from \mathbb{R} to \mathbb{R} . Consider the vectors f, g, h, k defined by:

$$f(x) = 1$$
 $g(x) = (\cos(x))^2$ $h(x) = \sin(x)$ $k(x) = 4(\sin(x))^2$

and let $W = \operatorname{Span}(f, g)$.

- (a) Show that the sequence f, g is linearly independent.
- (b) Show that $h \notin W$
- (c) Use a trigonometric identity to show that $k \in W$.
- (d) What is the dimension of *W*?

Remember that you must justify your answers.

ANSWERS:

(a) Suppose we have $a, b \in \mathbb{R}$ such that $af + bg = \mathbf{0}$.

This means that for all x, $a + b(\cos(x))^2 = 0$. But then by taking x to be $\pi/2$ and 0 we get the equations

$$\begin{cases} a = 0 \\ a + b = 0 \end{cases}$$

which have for only solution a = b = 0.

We can therefore conclude (by the LI test) that f, g is LI.

(b) Suppose there are $a, b \in \mathbb{R}$ such that h = af + bg.

This means that for all x, $sin(x) = a + b(\cos(x))^2$. Taking this time x to be $\pi/2$ and $-\pi/2$ gives us

$$\begin{cases} 1 = a \\ -1 = a \end{cases}$$

which has no solution.

We can therefore conclude that $h \notin \text{Span}(f, g)$.

(c) From the trigonometric identity $(\cos(x))^2 + (\sin(x))^2 = 1$ we can derive

$$g + \frac{1}{4}k = f$$
 and therefore $k = 4f - 4g$

that is to say $k \in \text{Span}(f, g)$.

(d) The sequence f, g spans W and is LI, therefore it is a basis of W (with two elements) and we can conclude that W is of dimension 2.

3

5. Let $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid x + y + z = 0 \right\}$

- (a) Show that *W* is a subspace. (note: you can avoid using the subspace test here)
- (b) Find a basis for W.
- (c) What is the dimension of *W*?
- (d) Is $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ a basis of W?

Remember that you must justify your answers.

ANSWERS:

- (a) W is a plane in \mathbb{R}^3 going through the origin and we saw that in that case it is a subspace of \mathbb{R}^3 .
- (b) Let's consider the vectors $u = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. They both satisfy the equation so they are in W.

We can show that u, v is LI: if we have $a, b \in \mathbb{R}^2$ such that $au + bv = \mathbf{0}$ (that is to say $a \begin{bmatrix} 1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$) then we must have (looking line by line)

$$\begin{cases} a = 0 \\ -a + b = 0 \\ -b = 0 \end{cases}$$

and the only possibility is a = b = 0 so indeed u, v is LI.

Let us now show that u, v spans W. Let $h = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be a vector of W: we need to show that h is a linear combination of u, v. We look at the combination $xu - zv = \begin{bmatrix} -x \\ -z \end{bmatrix}$.

Because $h \in W$ we have y = -x - z, and hence $xu - zv = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = w$. So w is indeed a linear combination of u, v.

Conclusion: the sequence of vectors $u, v \in W$ is LI, and spans W, it is a basis of W.

- (c) We built a basis of *W* with two vectors, the dimension of *W* is therefore 2.
- (d) Because *W* has dimension 2 all its bases are sequences of 2 vectors so this cannot be a basis of *W*.

4

- **6.** State whether each of the following statements is (always) true [T], or is (possibly) false [F], in the box after the statement.
 - If you say the statement may be false, you <u>must give an explicit counter-example</u> with numbers, matrices, or functions, as is appropriate!
 - If you say the statement is always true, you must give a clear explanation.
 - (a) $X = \{ f \in \mathbb{F}(\mathbb{R}) \mid f(0) = 1 \}$ is a subspace of the function space $\mathbb{F}(\mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} .

EXPLANATION:

The set X does not contain the zero function (which is the zero vector of $\mathbb{F}(\mathbb{R})$) so by the subspace test it cannot be a subspace of $\mathbb{F}(\mathbb{R})$.

ANSWER: **F**

(b) If u, v, w is linearly dependent, then $u \in \operatorname{Span}(v, w)$

EXPLANATION:

Take for instance in \mathbb{R}^2 the vectors $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Then, because of $w = \mathbf{0}$ the sequence is LD, but u is not in $\mathrm{Span}(v,w) = \mathrm{Span}(v,\mathbf{0}) = \mathrm{Span}(v)$.

6. (cont.)

(c) Any set of three vectors in \mathbb{R}^2 is linearly dependent.

EXPLANATION:

We know that \mathbb{R}^2 has dimension 2, therefore the maximum size of any LI sequence in \mathbb{R}^2 is 2, hence a sequence of 3 vectors in \mathbb{R}^2 is necessarily LD.

ANSWER: T

(d) If v_1, v_2, v_3 and v_4 are nonzero vectors in a vector space V, and $U = \text{Span}(v_1, v_2, v_3, v_4)$ then $\dim(U) = 4$.

EXPLANATION:

If the vectors are LD, the dimension of their span can be much smaller, eg. in \mathbb{R}^2 we can take $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ which spans \mathbb{R}^2 , of dimension 2.

ANSWER: **F**

7. [Challenge/Bonus]

Suppose that u, v, w are nonzero vectors in \mathbb{R}^4 and that the following are all true:

$$u \cdot v = 0$$

$$u \cdot w = 0$$

$$v \cdot w = 0$$

Show that u, v, w is linearly independent.

ANSWER:

First note that the fact that vectors are nonzero implies $||u|| \neq 0$, $||v|| \neq 0$, $||w|| \neq 0$.

Now suppose we have $a,b,c \in \mathbb{R}$ such that $au + bv + cw = \mathbf{0}$. Then by taking the dot product with u on both sides we get

$$u \cdot (au + bv + cw) = u \cdot \mathbf{0}$$

$$\Leftrightarrow a(u \cdot u) + b(u \cdot v) + c(u \cdot w) = 0$$

$$\Leftrightarrow a||u||^2 + 0 + 0 = 0$$

$$\Leftrightarrow a||u||^2 = 0 \quad \text{(we have } ||u|| \neq 0 \text{ so we can simplify)}$$

$$\Leftrightarrow a = 0$$

doing the same with v and w we get b = 0 and c = 0.

Therefore u, v, w is LI.