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Introduction

◦ Proof theory, sequent calculus
◦ GoI and the resolution algebra
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Sequent Calculus

Proof-theory is the branch of logic concerned with the study of proofs (rather
than propositions) as a fundamental object.

In this perspective, the tools for describing proofs are important.

A major milestone is the introduction of sequent calculus by Gentzen in his
work on consistency of arithmetic.

H1, . . . , Hn ` C1, . . . , Cm

“Under the hypothesis Hi , one of the Cj holds.”

The rules of logic are written as

P1 · · · Pn
R

C

where Pi and C are sequents.

A prooftree is a tree with nodes labeled by such rules.
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Cut-elimination and GoI

Among rules, the cut-rule

A ` B B ` C
cut

A ` C

plays a specific role, enabling deductive reasoning (from A⇒ B and B⇒ C ,
deduce A⇒ C ), composition of proofs.

A key result by Gentzen: cut-elimination.

Theorem

A proof π can be rewritten into a cut-free proof π′ with the same
conclusion.

Explicitation procedure, sheds an operational light on logic.

The GoI research program, stemming from the theory of proofnets: tools to
study this procedure abstractly.

Focus on interactive & dynamic aspects of logic.
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The resolution Algebra

The first step was a model of MLL (the very basic and primitive core of linear
logic) in terms of finite permutations.

Not enough to account for the potential infinity at work in the full
cut-elimination procedure. (structural rules, contraction. . . )

An algebra/semiring based on the resolution rule: a finite syntax that can
represent infinite sets.
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Outline

◦ Presentation of the resolution semiring

◦ GoI construction, an interpretation of λ-calculus
◦ Implicit complexity
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The Resolution Semiring

◦ A semiring with a product based on the resolution rule
◦ An algebraic view of logic programs
◦ Vocabulary and tools from abstract algebra
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Unification

Does the equation t =? u have a formal solution?

We consider (first-order) terms t, u, v, . . . built using function symbols
c, f(·), g(·, ·), . . . and variables x, y, z, . . .

The equation t =? u has a unifier if there is a substitution θ such that θt = θu .

In that case, there is a most general unifier (MGU) ψ such that any other
unifier is an instance of ψ .

Examples: ( • is a binary symbol written in infix notation)

f(x) =? f(g(y)) { x 7→ g(y) }
x •c =? y • x { x 7→ c , y 7→ c }
g(x) =? f(c) no solution

The unification problem is Ptime-complete, with subcases in Logspace.
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Flows

Flow: a pair t ↼ u of terms with var(t) ⊆ var(u) .

(considered up to renaming of variables)

Think of t ↼ u as ‘match ... with u -> t’ in a ML-style language, or
as a (safe) clause t a u in logic programming.

Product:
(u ↼ v)(t ↼ w) := θu ↼ θw

where θ = MGU(v =? t) , may be undefined. (resolution rule of LP)

Examples:(
g(x) ↼ f(x)

)(
y ↼ g(y)

)
= g(x) ↼ g(f(x))(

g(x) ↼ x •c
)(

y •y ↼ f(y)
)
= g(c) ↼ f(c)
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Wirings

Wiring: a set of flows. (i.e. logic programs)

The set of wirings has a structure of semiring:

L = {l1, . . . , ln} = l1 + · · ·+ ln = ∑
i

li

L + K = L ∪ K (sum)

0 = ∅ (neutral for + )

(l1 + · · ·+ ln) (k1 + · · ·+ km) := ∑
lik j defined

likj (product)

I := x ↼ x (neutral for product)

We write R the set of wirings, the resolution semiring.
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Geometry of Interaction

◦ Interpretation of λ-calculus in R
◦ Undecidablilty of nilpotency
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GoI Situations

Original GoI models: direct definitions and proofs.

Axiomatization led to the notion of GoI situation. Rather than prove
everything from scratch, validate the axioms.

A traced category R with a functor ! and retractions (embeddings).

eg. Embed ternary u2 into binary u1

u1(x, y • z) ↼ u2(x, y, z)

using • . (fundamental to interpret the digging rule)

GoI situations automatically yield an interactive (game-like) interpretation of
MELL/λ-calculus.
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An Undecidability Theorem

In the interpretation, we have that a λ-term t is strongly normalizing
iff. some associated wiring EX[t] is nilpotent.

Definition

A wiring F is nilpotent iff. Fn = 0 for some n .

We derive from this observation an undecidability theorem:

Theorem

The nilpotency problem is undecidable.

We will use nilpotency as an acceptance condition, therefore need to restrict it
for specific complexity classes.

13 / 22



Complexity

◦ Representation of inputs
◦ Normativity
◦ Characterisations of Logspace and Ptime
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Words

The encoding of words in R comes from the Church encoding of words in
LL/λ-calculus and their GoI representation.

Another intuition: transitions of an automaton

configuration term: c•l/r• s •m •head(p)

◦ c is the symbol under the reading head.

◦ l/r is the direction of the next move of the head.

◦ s is the internal state of the automaton.

◦ m is the memory of the automaton (pointers, for instance).

◦ head(p) is the position of the head.

The action of the encoding can be understood as moving the head.
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Words

Formal definition: if W = c1 . . . cn is a word of length n and
p0, p1, . . . , pn ∈ P distinct (position) constants:

W[p0, p1, . . . , pn] := ? •r•x•y•head(p0) � c1 •l•x•y•head(p2)
+ c1 •r•x•y•head(p1) � c2 •l•x•y•head(p2)
+ · · ·
+ cn •r•x•y•head(pn) � ? •l•x•y•head(p0)

Well-suited for Logspace computation: GoI, interactive computation,
configurations can be stored within logarithmic space.
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Observations and Normativity

Observations are elements of some fixed semiring A , and cannot use the
position constants.

An observation φ accepts a representation W[p0, . . . , pn] if

φW[p0, . . . , pn] is nilpotent

Theorem (Normativity)

Let φ be an observation, W a word. If φW[p0, . . . , pn] is nilpotent for one
choice of p0, . . . , pn , then it is for all choices.

We define, for any observation φ ,

L(φ) := {W word | φW[pi] nilpotent for any choice of [pi] }
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The balanced semiring

A semiring with a nilpotency problem space-efficiently tractable.

Balance: t ↼ u is balanced if for any variable x , all occurences of x in t and
u have the same height.

Examples:

f(x) ↼ x not balanced

g(x • x) ↼ f(x •g(y)) balanced

Intuitively, this forbids to stack symbols on top of a variable to store information.

Nilpotency can be decided by a simulation technique: instead of computing
Fn , we build a graph G(F) such that F is nilpotent iff. G(F) is acyclic.

(cycle search in a graph is a Logspace problem)
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Balanced Observations and Logspace

We consider balanced observations.

Theorem

Languages recognized by balanced observations correspond to coNLogspace

languages.

Moreover we can isolate a subclass of balanced observation that recognize
DLogspace languages.

Proof. Soundness by the simulation technique evoked above.

Completeness by encoding pointer machines.
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The Stack semiring

Flows built using only unary function symbols:

f(f(x)) ↼ g(x) , x ↼ g(x) . . .

Intuition: manipulating stack of function symbols.

These are the flows that arise when interpreting MLL.
The cut-elimination problem for MLL is Ptime-complete

Algebraic properties: we say a flow l is a cycle if l2 6= 0 and a wiring F is
cyclic if Fn contains a cycle for some n .

Lemma

F ∈ Stack is cyclic iff. it is not nilpotent.

Not valid in general: with l = c• x ↼ x •d , we have l2 = c•c ↼ d•d but
l3 = 0.
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Observations with stack and Ptime

Observation with stack: sum of flows of the form t •u ↼ v •w with

◦ t ↼ v is balanced

◦ u ↼ w ∈ Stack
◦ no shared variables

Adding a stack to pointer machines, inpired by a theorem by S. Cook
“automata with pointers and a stack correspond to polynomial time”.

Characterization of Ptime:

Theorem

Languages recognized by observations with stack correspond to Ptime

languages.

Proof. Completeness by encoding Cook’s automata.

Soundness by a polynomial decision procedure derived from the algebraic
properties of Stack . Again, simulation. The nilpotency index can be exponential.

21 / 22



Perspectives

◦ Light logics

◦ Relating recent proof theory and logic programming

◦ Consider a wider class of flows (J.-Y Girard’s stars, relax safety)

◦ Extend implicit complexity results (Pspace, NC)

◦ Decision problems vs. functions

◦ Complexity and abstract algebra

. . . Thank you for your attention
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