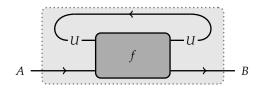
Representation of Partial Traces

MFPS XXXI, Nijmegen, Holland

MARC BAGNOL — University of Ottawa

SMC: a category with an associative bifunctor \otimes , a unit object 1 and a family of isomorphisms $\sigma_{A,B}$: $A \otimes B \to B \otimes A$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$ into $\mathsf{Tr}^{U}[f] : A \rightarrow B$.



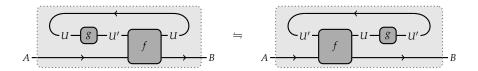
Understood as a *feedback along U*.

Ubiquitous structure in mathematics: linear algebra, topology, knot theory, computer science, proof theory...

P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

$$\mathsf{Tr}^{U}[f(\mathrm{Id}_{A}\otimes g)] \coloneqq \mathsf{Tr}^{U'}[(\mathrm{Id}_{B}\otimes g)f]$$



Partial traces and sub-categories

A straightforward way to build partial traces:

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- Take any sub-SMC $C \subseteq D$.

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\mathbf{Tr}^{U}[f]$ in \mathcal{D} . ($\mathbf{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\mathbf{Tr}}$ on C as:

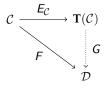
if $\mathbf{Tr}^{U}[f] \in \mathcal{C}$ then $\widehat{\mathbf{Tr}}^{U}[f] = \mathbf{Tr}^{U}[f]$, undefined otherwise

Does any partial trace arise this way?

O. Malherbe, P. Scott, P. Selinger: representation theorem.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property (free construction):



(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

Original proof: intermediate partial version of the $Int(\cdot)$ construction and "paracategories".

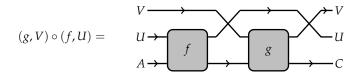
Contribution: a more direct and simplified proof.

The proof (I): the dialect construction

A generic construction D(C) on any monoidal category C. **Basic idea:** add a "state space" to morphisms.

A morphism from *A* to *B* in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with \circ *U* an object of \mathcal{C} . \circ *f* : $A \otimes U \rightarrow B \otimes U$ a morphism of \mathcal{C} .

When composing (f, U) and (g, V) the state spaces do not interact:



(for the exerted eye: notice the similarity with composition in $Int(\cdot)$ categories)

Hiding: given a partially traced C we can look at $\mathbf{D}(C)$ and define a *hiding* operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) \, : \, A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

Congruences: enforce the missing equations, for instance

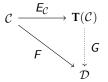
 $(f, U \otimes V) \approx (\mathbf{Tr}^{V}[f], U)$ when $\mathbf{Tr}^{V}[f]$ is defined

by considering the equivalence relation generated and setting $T(\mathcal{C}) = D(\mathcal{C}) / \approx$ in which $H[\cdot]$ induces a total trace, encompassing the original partial trace of \mathcal{C} .

We can embed C in $\mathbf{T}(C)$ by setting $E_{C}(f) = (f, \mathbf{1})$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies f = g. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram



by setting $G(f, U) = \operatorname{Tr}^{FU}[Ff]$. (well defined because $(f, U) \approx (g, V)$ implies $\operatorname{Tr}^{FU}(Ff) = \operatorname{Tr}^{FV}(Fg)$)

... Thank you for your attention !