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Traces in symmetric monoidal categories

SMC: a category with an associative bifunctor ®, a unit object 1 and a
family of isomorphisms cap : A® B — B® A.

Trace (A. Joyal, R. Street, D. Verity): operation turning f : AQU — B U
into TrY[f] : A — B.

Understood as a feedback along U.

Ubiquitous structure in mathematics: linear algebra, topology, knot theory,
computer science, proof theory...



Partial traces

P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing
the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

T [f(lds ®g)] = T [(1dp @ g)f]
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Partial traces and sub-categories

A straightforward way to build partial traces:

o Consider a totally traced category D.
o Take any sub-SMC C C D.

oIf f: AU — B®U isin C, it always has a trace Tr![f] in D.
(TrY[f] may or may not end up in C)

Define a partial trace Tr on C as:

if T[] € C then e [f] = Tr[f], undefined otherwise
Does any partial trace arise this way?

O. Malherbe, P. Scott, P. Selinger: representation theorem.

Allows intuitive diagrammatic reasoning also in the partially-defined case.



The representation theorem

More precisely: any partially traced category embeds in a totally traced one.
We also have a universal property (free construction):

Ec
c— T(C)

\ G

D

(where C is partially traced, T(C) is the totally traced category in which it embeds,
D is any other totally traced category, with F a traced functor from C to D)

Original proof: intermediate partial version of the Int(-) construction and
“paracategories”.

Contribution: a more direct and simplified proof.



The proof (1): the dialect construction

A generic construction D(C) on any monoidal category C.

Basic idea: add a “state space” to morphisms.

A morphism from A to B in D(C) is a pair (f, U) with
o U an object of C.
o f:A®U — B® U a morphism of C.

When composing (f,U) and (g, V) the state spaces do not interact:

g

(for the exerted eye: notice the similarity with composition in Int(-) categories)




The proof (I1): hiding and congruences

Hiding: given a partially traced C we can look at D(C) and define a hiding
operation turning (f,V) : AQ U — B® U into

HY[f,V]=(f,U®V): A—B

H[:] behaves a lot like a (total) trace.

Congruences: enforce the missing equations, for instance
(f,U® V)~ (TrV[f],U) when TrV[f] is defined

by considering the equivalence relation generated and setting
T(C) = D(C)/~ in which H[-] induces a total trace, encompassing the
original partial trace of C.



The proof (I11): a sketch

We can embed C in T(C) by setting E¢(f) = (f,1).
Is it really an embedding? We check that (f,1) ~ (g,1) implies f = g.

Because = is freely generated, we can do it by induction on chains of
elementary equivalences.

E,
c—C . 1(0)

Universal property: we can close the diagram \ G
F

D
by setting G(f,U) = TrFU[Ff].
(well defined because (f,U) ~ (g, V) implies TeFU(Ff) = TeFV (Fg))



... THANK YOU FOR YOUR ATTENTION !
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