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Traces in symmetric monoidal categories

SMC: a category with an associative bifunctor ⊗ , a unit object 1 and a
family of isomorphisms σA,B : A⊗ B→ B⊗ A .

Trace (A. Joyal, R. Street, D. Verity): operation turning f : A⊗U → B⊗U
into TrU [ f ] : A→ B .

U U

A B
f

Understood as a feedback along U .

Ubiquitous structure in mathematics: linear algebra, topology, knot theory,
computer science, proof theory. . .
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Partial traces

P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing
the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

TrU[ f (IdA ⊗ g)
]
� TrU′ [(IdB ⊗ g) f

]

a

U g U′ U � U′ U g U′

A B A B
f f
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Partial traces and sub-categories

A straightforward way to build partial traces:

◦ Consider a totally traced category D .

◦ Take any sub-SMC C ⊆ D .

◦ If f : A⊗U → B⊗U is in C , it always has a trace TrU [ f ] in D .
(TrU [ f ] may or may not end up in C )

Define a partial trace T̂r on C as:

if TrU [ f ] ∈ C then T̂r
U
[ f ] = TrU [ f ] , undefined otherwise

Does any partial trace arise this way?

O. Malherbe, P. Scott, P. Selinger: representation theorem.

Allows intuitive diagrammatic reasoning also in the partially-defined case.
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The representation theorem

More precisely: any partially traced category embeds in a totally traced one.
We also have a universal property (free construction):

C T(C)

D

EC

F G

(where C is partially traced, T(C) is the totally traced category in which it embeds,
D is any other totally traced category, with F a traced functor from C to D )

Original proof: intermediate partial version of the Int(·) construction and
“paracategories”.

Contribution: a more direct and simplified proof.
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The proof (I): the dialect construction

A generic construction D(C) on any monoidal category C .

Basic idea: add a “state space” to morphisms.

A morphism from A to B in D(C) is a pair ( f , U) with

◦ U an object of C .

◦ f : A⊗U → B⊗U a morphism of C .

When composing ( f , U) and (g, V) the state spaces do not interact:

V V

(g, V) ◦ ( f , U) = U U

A C
f g

(for the exerted eye: notice the similarity with composition in Int(·) categories)
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The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at D(C) and define a hiding
operation turning ( f , V) : A⊗U → B⊗U into

HU [ f , V] = ( f , U ⊗V) : A→ B

H[·] behaves a lot like a (total) trace.

Congruences: enforce the missing equations, for instance

( f , U ⊗V) ≈ (TrV [ f ], U) when TrV [ f ] is defined

by considering the equivalence relation generated and setting
T(C) = D(C)/≈ in which H[·] induces a total trace, encompassing the
original partial trace of C .
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The proof (III): a sketch

We can embed C in T(C) by setting EC ( f ) = ( f , 1) .

Is it really an embedding? We check that ( f , 1) ≈ (g, 1) implies f = g .

Because ≈ is freely generated, we can do it by induction on chains of
elementary equivalences.

Universal property: we can close the diagram

C T(C)

D

EC

F G

by setting G( f , U) = TrFU [F f ] .
(well defined because ( f , U) ≈ (g, V) implies TrFU(F f ) = TrFV(Fg) )
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. . . Thank you for your attention !
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