
MALL- proof equivalence is Logspace-complete,
via binary decision diagrams

TLCA 2015, Warszawa, Polska

Marc Bagnol — University of Ottawa



Rule permutations and the equivalence problem

Permutations: in sequent calculus presentation of a logic we have a number
of permutation equivalences, such as

〈π〉
A, B, C, D

O
A O B, C, D

O
A O B, C O D

∼

〈π〉
A, B, C, D

O
A, B, C O D

O
A O B, C O D

or more specifically (MALL-)

〈π〉
A, C

〈µ〉
B, C

N
A N B, C

〈ν〉
D
⊗

A N B, C⊗ D

∼

〈π〉
A, C

〈ν〉
D
⊗

A, C⊗ D

〈µ〉
B, C

〈ν〉
D
⊗

B, C⊗ D
N

A N B, C⊗ D

These permutations mirror the commutative conversions of the cut-elimination
procedure in sequent calculus.

Equivalence problem (MALL-equiv)

Given two MALL- proofs π and µ , are they related by permutations?

2 / 10



Proofnets

Proofnets (Girard): canonical combinatorial objects for equivalence classes.

Motivation: better understanding of the logic, finer study of its
cut-elimination procedure.

A few logics (MLL-) enjoy a completely satisfactory notion of proofnet.

In many cases: open problem.

Heijltjes, Houston: settled the case of MLL with unit, negatively.

Method: study and determine the complexity of the equivalence problem. In
the case of MLL with units it is Pspace-complete.

3 / 10



Proofnets for MALL-

Monomial nets (Girard): based on boolean weights attached to the edges of
the net, Ptime but not canonical.

Slice nets (Hughes & Van Glabbeek): set of slices, i.e. different “versions” of
the net. Canonical but exponential blow-up.

In an unpublished note, Hughes argues that a notion of proofnet for MALL- both
Ptime and canonical is unlikely to exist.

We study the equivalence problem to determine whether we get the same
type of impossibility result as in MLL with units.

4 / 10



Binary Decision Diagrams

First (wrong) intuition: the missing step in canonicity for monomial nets
amounts to equivalence of boolean formulas (coNP-complete).

A closer look reveals that these net involve only a specific type of formulas,
that we call binary decision diagrams (BDD).

Definition

A BDD is a binary tree with nodes labeled by boolean
variables and leaves labelled by 1 and 0 .
Subclass: oBDD read the variables in a specified order.
(can be seen as boolean formulas built only with a
If x Then · Else · construction)

Two BDD are equivalent (φ ∼ ψ ) if they give the same answers for all
assignments of variables (e.g. If x Then 1 Else 1 ∼ 1 .)

5 / 10



BDD slicings

An intermediate notion between monomial nets and slice nets.

〈π〉
Γ

7→ Bπ

Basic idea: to each N connective in Γ associate a boolean variable. To each
pair of dual atoms α, α? in Γ associate a BDD.

Example:

π =

α, α?
⊕l

α⊕ β, α?

β, β?
⊕r

α⊕ β, β?
Nx

α⊕ β, α? Nx β?

Bπ [α, α?] = If x Then 1 Else 0

Bπ [β, β?] = If x Then 0 Else 1

Equivalence: define B ∼ B′ as B[α, α?] ∼ B′[α, α?] for all α, α? .

Theorem

We have π ∼ µ if and only if Bπ ∼ Bµ .

6 / 10



A chain of reductions (I)

The notion of BDD slicing gives a reduction:

MALL-equiv → BDDequiv

Then we can obtain

oBDDequiv → MALL-equiv

by encoding ordered BDD with a MALL- proof mimicking the tree structure.

Relies on the ⊗/ N rule commutation.

7 / 10



A chain of reductions (II)

We complete the chain by considering the Logspace-complete problem ORD :

Given a line graph G , two vertices f and s , do we have f < s in the induced
total order?

It reduces to oBDDequiv:

b · · · f f+ · · · s s+ · · · 1
y

x b · · · f f+ · · · s s+ · · · 0
y

b · · · f f+ · · · s s+ · · · 0

Lemma

The following chain of (AC0 ) reductions holds:

ORD → oBDDequiv → MALL-equiv → BDDequiv

8 / 10



The main theorem

The restricted nature of BDD makes their equivalence sit far below coNP.

Lemma

The equivalence of BDD problem (BDDequiv) is in Logspace.

Summing up, the complexity of MALL-equiv:

Theorem

ORD → oBDDequiv → MALL-equiv → BDDequiv
(Logspace-hard) (∈ Logspace)

Therefore the equivalence problem for MALL- is Logspace-complete.

9 / 10



Conclusion

Equivalence can be decided efficiently.

This does not settle the question of proofnets: building a canonical
representative efficiently is stronger than solving equivalence efficiently.

Some ideas for an impossibility result: (?)

◦ canonical representative

◦ cut-elimination

◦ optimization problems for BDD

. . . Thank you for your attention !

10 / 10


