MALL' proof equivalence is Logspace-complete, via binary decision diagrams

TLCA 2015, Warszawa, Polska

Marc Bagnol - University of Ottawa

Rule permutations and the equivalence problem

Permutations: in sequent calculus presentation of a logic we have a number of permutation equivalences, such as

$$
\begin{gathered}
\langle\pi\rangle \\
\frac{A, B, C, D}{A \& B, C, D} \\
A \& B, C \& D \\
\hline
\end{gathered} \sim \quad \frac{\begin{array}{c}
\langle\pi\rangle \\
\frac{A, B, C, D}{A \& B, C \& D}
\end{array}>}{8}
$$

or more specifically (MALE")

These permutations mirror the commutative conversions of the cut-elimination procedure in sequent calculus.

Equivalence problem (MALL-equiv)

Given two MALL' proofs π and μ, are they related by permutations?

Proofnets

Proofnets (Girard): canonical combinatorial objects for equivalence classes.

Motivation: better understanding of the logic, finer study of its cut-elimination procedure.

A few logics (MLL') enjoy a completely satisfactory notion of proofnet. In many cases: open problem.

Heijltjes, Houston: settled the case of MLL with unit, negatively.

Method: study and determine the complexity of the equivalence problem. In the case of MLL with units it is Pspace-complete.

Proofnets for MALL

Monomial nets (Girard): based on boolean weights attached to the edges of the net, Ptime but not canonical.

Slice nets (Hughes \& Van Glabbeek): set of slices, i.e. different "versions" of the net. Canonical but exponential blow-up.

In an unpublished note, Hughes argues that a notion of proofnet for MALL- both Ptime and canonical is unlikely to exist.

We study the equivalence problem to determine whether we get the same type of impossibility result as in MLL with units.

Binary Decision Diagrams

First (wrong) intuition: the missing step in canonicity for monomial nets amounts to equivalence of boolean formulas (coNP-complete).

A closer look reveals that these net involve only a specific type of formulas, that we call binary decision diagrams (BDD).

Definition

A BDD is a binary tree with nodes labeled by boolean variables and leaves labelled by 1 and 0 .
Subclass: ${ }^{\circ}$ BDD read the variables in a specified order. (can be seen as boolean formulas built only with a If x Then \cdot Else construction)

Two BDD are equivalent $(\phi \sim \psi)$ if they give the same answers for all assignments of variables (e.g. If x Then 1 Else $1 \sim 1$.)

BDD slicings

An intermediate notion between monomial nets and slice nets.

$$
\begin{gathered}
\langle\pi\rangle \\
\Gamma
\end{gathered} \mapsto \quad \mathcal{B}_{\pi}
$$

Basic idea: to each \& connective in Γ associate a boolean variable. To each pair of dual atoms α, α^{\star} in Γ associate a BDD.

Example:

$$
\pi=\frac{\frac{\alpha, \alpha^{\star}}{\alpha \oplus \beta, \alpha^{\star}} \oplus_{1} \frac{\beta, \beta^{\star}}{\alpha \oplus \beta, \beta^{\star}} \oplus_{\mathrm{r}}}{\alpha \oplus \beta, \alpha^{\star} \&_{x} \beta^{\star}} \&_{x} \quad \mathcal{B}_{\pi}\left[\alpha, \alpha^{\star}\right]=\text { If } x \text { Then } \mathbf{1} \text { Else } \mathbf{0}\left[\beta, \beta^{\star}\right]=\text { If } x \text { Then } \mathbf{0} \text { Else } \mathbf{1}
$$

Equivalence: define $\mathcal{B} \sim \mathcal{B}^{\prime}$ as $\mathcal{B}\left[\alpha, \alpha^{\star}\right] \sim \mathcal{B}^{\prime}\left[\alpha, \alpha^{\star}\right]$ for all α, α^{\star}.

Theorem

We have $\pi \sim \mu$ if and only if $\mathcal{B}_{\pi} \sim \mathcal{B}_{\mu}$.

A chain of reductions (1)

The notion of BDD slicing gives a reduction:

MALL`equiv \rightarrow BDDequiv

Then we can obtain
${ }^{\circ}$ BDDequiv \rightarrow MALL"equiv
by encoding ordered BDD with a MALL proof mimicking the tree structure.
Relies on the $\otimes / \&$ rule commutation.

A chain of reductions (II)

We complete the chain by considering the Logspace-complete problem ORD:
Given a line graph G, two vertices f and s, do we have $f<s$ in the induced total order?

It reduces to ${ }^{\circ}$ BDDequiv:

Lemma

The following chain of $\left(\mathrm{AC}_{0}\right)$ reductions holds:
ORD $\rightarrow{ }^{\circ}$ BDDequiv \rightarrow MALL`equiv \rightarrow BDDequiv

The main theorem

The restricted nature of BDD makes their equivalence sit far below coNP.

Lemma

The equivalence of BDD problem (BDDequiv) is in Logspace.

Summing up, the complexity of MALL-equiv:
Theorem
$\underset{\text { (Logspace-hard) }}{\text { ORD }}$$\rightarrow{ }^{\circ}$ BDDequiv \rightarrow MALL-equiv $\rightarrow \underset{\substack{\text { BDDequiv } \\(\in \text { Logspace })}}{\text { B }}$

Therefore the equivalence problem for MALL' is Logspace-complete.

Conclusion

Equivalence can be decided efficiently.
This does not settle the question of proofnets: building a canonical representative efficiently is stronger than solving equivalence efficiently.

Some ideas for an impossibility result: (?)

- canonical representative
- cut-elimination
- optimization problems for BDD
... Thank you for your attention !

