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Inspiration: Proof Theory, GoI and Implicit Complexity

Subsystems of LL that capture complexity classes.

GoI is a semantics of cut-elimination, allows to study it abstractly.

→ What can GoI say about ICC?
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Resolution-based Geometry of Interaction

Resolution-based GoI: more syntactical flavour, better suited for
complexity analysis, related to logic programming.

Within the “resolution semiring” used to build the GoI model, find a
suitable “semiring of logspace” .

3 / 22



Related work

Baillot, Pedicini: Elementary complexity and geometry of
interaction (2001)
Girard: Normativity in Logic (2010)
Aubert, Seiller: Characterizing coNL by a Group Action
(2012), Logarithmic Space and Permutations (2013)
Aubert, Bagnol: Unification and logarithmic space (2014)
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The Resolution Semiring
An algebraic view of logic programs
Enables vocabulary and tools from abstract algebra
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Flows

Flow: a pair t ↼ u of (first-order) terms with var(t) ⊆ var(u).
(considered up to renaming of variables)

Think of t ↼ u as ‘match ... with u -> t’ in a ML-style
language, or as a (safe) clause t a u in logic programming.

Product:
(u ↼ v)(t ↼ w) := uθ ↼ wθ

where θ = MGU(v , t), may be undefined. (resolution rule of LP)

Examples: ( • is a binary symbol written in infix notation)(
g(x)↼ f(x)

)(
y ↼ g(y)

)
= g(x)↼ g(f(x))(

g(x)↼ x •c
)(
y •y ↼ f(y)

)
= g(c)↼ f(c)

6 / 22



Wires

Wires: sets of flows. (i.e. logic programs)
The set of wires has a structure of semiring:

L = {l1, . . . , ln} = l1 + · · ·+ ln =
∑

i

li

L+ K = L ∪ K (sum)

0 = ∅ (neutral for +)

LK :=
∑

l∈L, k∈K
lk defined

lk (product)

I := x ↼ x (neutral for product)

We write R the set of wires, the resolution semiring.
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Somewhere to start

Unification is Ptime-complete.

Theorem (Dwork, Kellenakis, Mitchell – 1984)

The matching problem (unifying two terms when one of the terms
has no variable) is in DLogspace.

And therefore the product FG can be computed in logspace if
either F or G contains only closed flows.
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Words and Observations
Representing inputs as wires
Accepting/rejecting
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Words

The encoding of words in R comes from the Church encoding of
words in LL/λ-calculus and their GoI representation.
Another intuition: transitions of an automaton

configuration term: c •L/R •s •m •H(p)

c is the symbol under the reading head.
L/R is the direction of the next move of the head.
s is the internal state of the automaton.
m is the memory of the automaton (pointers, for instance).
H(p) is the position of the head.

The action of the encoding can be understood as moving the head.
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Words

Formal definition: if W = c1 . . . cn is a word of length n and
p0, p1, . . . , pn ∈ P distinct (position) constants:

W [p0, p1, . . . , pn] := ? •R •x •y •H(p0)� c1 •L •x •y •H(p2)
+ c1 •R •x •y •H(p1)� c2 •L •x •y •H(p2)
+ · · ·
+ cn •R •x •y •H(pn)� ? •L •x •y •H(p0)

Well-suited for log-space computation: interactive, Q/A model.
Configurations can be stored within logarithmic space.
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Observations

Observations are elements of a fixed semiring A, and cannot use
the position constants.
An observation φ accepts a representation W [p0, . . . , pn] if

(φW [p0, . . . , pn])
k = 0 for some k (nilpotency)

Corresponds to termination (strong normalization) of computation
in GoI, and boundedness in LP.

Potential issue: different representations of the same word.

Theorem (Normativity)

Let φ be an observation, W a word. If φW [p0, . . . , pn] is
nilpotent for one choice of p0, . . . , pn , then it is for all choices.

We define, for any observation φ,

L(φ) := {W word | φW [pi ] nilpotent for any choice of [pi ] }
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The Balanced Semiring
Logspace and the height of variables
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Balanced Flows

We seek a semiring with a nilpotency problem space-efficiently
tractable.

Balance: t ↼ u is balanced if for any variable x , all occurences of
x in t and u have the same height (distance from the root).
Intuitively, this forbids to stack symbols on top of a variable to
store information.

Examples:
f(x)↼ x not balanced
g(x •x)↼ f(x •g(y)) balanced

Preserved by sum and product: subsemiring of balanced wires.
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Deciding nilpotency

Balanced flows behave well w.r.t. height of terms.
Given a balanced F , we can tell its nilpotency by observing its
behaviour on closed terms of height h(F ).

Basic idea: build a graph G(F )
vertices are closed terms of height at most h(F ), using only
the symbols in F
edge from u to v when v ∈ F (u)

Theorem

If F is balanced, G(F ) is acyclic iff. F is nilpotent.

This reduces nilpotency to cycle search in a directed graph.
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Logarithmic space
Soundness: via the graph above
Completeness: encoding of pointer machines
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Space soundness

We consider balanced observations.
Moreover, we say an observation φ is deterministic if
card

(
φ(t)

)
≤ 1 for any closed t .

Theorem

If φ is a balanced observation, L(φ) is in co-NLogspace.
If moreover φ is deterministic, L(φ) is in DLogspace.

Proof. First show that G
(
φW [pi ]

)
can be generated in logarithmic

space.Then use the fact that the acyclicity problem for directed
graphs is solvable in logarithmic space.
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Space completeness

Conversely we have:

Theorem

If L is in co-NLogspace then there is a balanced observation
φ such that L(φ) = L .

If L is in DLogspace then there is a deterministic balanced
observation φ such that L(φ) = L .

Proof. By an encoding of pointer machines: automata with a
reading head and a fixed number of auxiliairy pointers, a standard
(qualitative) characterization of logarithmic space computation.
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Elements of encoding

Representing pointer manipulation with balanced terms: the
configurations are

c •L/R •s •A(pi1 , . . . , pik ) •H(p)

where A(pi1 , . . . , pik ) represents the stored positions of k auxiliairy
pointers.
For instance:

· · · •A(x , . . . , x) •H(x)↼ · · · •A(y1, . . . , yn) •H(x)

Encodes the operation “move all the pointers to the position of the
reading head”.
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Work in progress...
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Work in Progress

Logspace predicates vs. Logspace functions.
Find other semirings that correspond to other complexity
classes.
Possible method: consider a light logic capturing the
complexity class C, look at the GoI translation, try to guess
the corresponding “C semiring”.

Compare/relate with other work on the complexity of logic
programming.
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Thank you.
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