
Multiplicative-Additive Proof Equivalence
is Logspace-complete

Marc Bagnol — JSPS postdoc at MMM, University of Tokyo

Proof equivalence and proofnets

2 / 20

The equivalence problem

In formal systems, different ways of describing the “same” object.

At a semantic level: imagine a logic L in sequent calculus, with a
cut-elimination procedure. We say that

Two L proofs π and ν (cut-free) are equivalent iff they have the same
interpretation in all denotational semantics* of L

(*categorical interpretations that collapse cut-elimination to identity)

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

3 / 20

The equivalence problem

In formal systems, different ways of describing the “same” object.

At a semantic level: imagine a logic L in sequent calculus, with a
cut-elimination procedure. We say that

Two L proofs π and ν (cut-free) are equivalent iff they have the same
interpretation in all denotational semantics* of L

(*categorical interpretations that collapse cut-elimination to identity)

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

3 / 20

The equivalence problem

In formal systems, different ways of describing the “same” object.

At a semantic level: imagine a logic L in sequent calculus, with a
cut-elimination procedure. We say that

Two L proofs π and ν (cut-free) are equivalent iff they have the same
interpretation in all denotational semantics* of L

(*categorical interpretations that collapse cut-elimination to identity)

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

3 / 20

The equivalence problem

In formal systems, different ways of describing the “same” object.

At a semantic level: imagine a logic L in sequent calculus, with a
cut-elimination procedure. We say that

Two L proofs π and ν (cut-free) are equivalent iff they have the same
interpretation in all denotational semantics* of L

(*categorical interpretations that collapse cut-elimination to identity)

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

3 / 20

The equivalence problem

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B,C ` D

In certain cases, the notion can be captured syntactically by a list of similar
rule permuations.

Equivalence becomes a syntactic notion.

Equivalence problem

The equivalence problem of a logic L is the decision problem:

“Given two L proofs π and ν , are they equivalent? ”

4 / 20

The equivalence problem

Example:
〈π〉

A,C ` D
〈µ〉

B,C ` D
⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

∼

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B,C ` D

In certain cases, the notion can be captured syntactically by a list of similar
rule permuations. Equivalence becomes a syntactic notion.

Equivalence problem

The equivalence problem of a logic L is the decision problem:

“Given two L proofs π and ν , are they equivalent? ”

4 / 20

Equivalence and commutative conversions

Curry-Howard: proofs as programs, cut-elimination as evaluation.

Equivalent but syntaxically different proofs/terms are an issue: need to
switch between equivalent representation to perform a reduction step.

〈π〉
A,C ` D

〈µ〉
B,C ` D

⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(no elimination possible)

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(⊕/⊕? elimination)

5 / 20

Equivalence and commutative conversions

Curry-Howard: proofs as programs, cut-elimination as evaluation.

Equivalent but syntaxically different proofs/terms are an issue: need to
switch between equivalent representation to perform a reduction step.

〈π〉
A,C ` D

〈µ〉
B,C ` D

⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(no elimination possible)

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(⊕/⊕? elimination)

5 / 20

Equivalence and commutative conversions

Curry-Howard: proofs as programs, cut-elimination as evaluation.

Equivalent but syntaxically different proofs/terms are an issue: need to
switch between equivalent representation to perform a reduction step.

〈π〉
A,C ` D

〈µ〉
B,C ` D

⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(no elimination possible)

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(⊕/⊕? elimination)

5 / 20

Equivalence and commutative conversions

Curry-Howard: proofs as programs, cut-elimination as evaluation.

Equivalent but syntaxically different proofs/terms are an issue: need to
switch between equivalent representation to perform a reduction step.

〈π〉
A,C ` D

〈µ〉
B,C ` D

⊕?

A⊕ B,C ` D
(

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(no elimination possible)

〈π〉
A,C ` D

(
A ` C (D

〈µ〉
B,C ` D

(
B ` C (D

⊕?

A⊕ B ` C (D

〈ν〉
` A

⊕
` A⊕ B

cut
` C (D

(⊕/⊕? elimination)

5 / 20

Down with commutations: proofnets

Commutative conversion complexify the study of cut-elimination, one has to
work modulo rule permuation.

By construction (associativity of composition in a categorical model) the cut
rule commutes with itself.

Proofnets (Girard): an approach to this issue, with combinatorial objects
(graph structures) canonically representing equivalence classes of proofs.

↪→ cut-elimination free of commutative conversions, better theoretical
understanding of the logic studied.

A B B? A?

ax

ax

⊗

A⊗ B

O

B?OA?

But is this goal always achievable?

6 / 20

Down with commutations: proofnets

Commutative conversion complexify the study of cut-elimination, one has to
work modulo rule permuation.

By construction (associativity of composition in a categorical model) the cut
rule commutes with itself.

Proofnets (Girard): an approach to this issue, with combinatorial objects
(graph structures) canonically representing equivalence classes of proofs.

↪→ cut-elimination free of commutative conversions, better theoretical
understanding of the logic studied.

A B B? A?

ax

ax

⊗

A⊗ B

O

B?OA?

But is this goal always achievable?

6 / 20

Down with commutations: proofnets

Commutative conversion complexify the study of cut-elimination, one has to
work modulo rule permuation.

By construction (associativity of composition in a categorical model) the cut
rule commutes with itself.

Proofnets (Girard): an approach to this issue, with combinatorial objects
(graph structures) canonically representing equivalence classes of proofs.

↪→ cut-elimination free of commutative conversions, better theoretical
understanding of the logic studied.

A B B? A?

ax

ax

⊗

A⊗ B

O

B?OA?

But is this goal always achievable?

6 / 20

No proofnets for MLL

But is this goal always achievable?

For some time the MLL (with units) case remained open: notions of proofnets
with jumps, complex “rewiring equivalence” (not canonical).

Heijltjes and Houston recently settled the question (negatively).

◦ Proofnet entail solving the equivalence problem: convert proofs to
proofnets, then check for equality.

◦ They studied the MLL equivalence problem and showed:

Theorem (Heijltjes and Houston, 2014)

The equivalence problem of MLL is Pspace-complete.

↪→ no notion of proofnet for MLL both canonical and low-complexity.

7 / 20

No proofnets for MLL

But is this goal always achievable?

For some time the MLL (with units) case remained open: notions of proofnets
with jumps, complex “rewiring equivalence” (not canonical).

Heijltjes and Houston recently settled the question (negatively).

◦ Proofnet entail solving the equivalence problem: convert proofs to
proofnets, then check for equality.

◦ They studied the MLL equivalence problem and showed:

Theorem (Heijltjes and Houston, 2014)

The equivalence problem of MLL is Pspace-complete.

↪→ no notion of proofnet for MLL both canonical and low-complexity.

7 / 20

No proofnets for MLL

But is this goal always achievable?

For some time the MLL (with units) case remained open: notions of proofnets
with jumps, complex “rewiring equivalence” (not canonical).

Heijltjes and Houston recently settled the question (negatively).

◦ Proofnet entail solving the equivalence problem: convert proofs to
proofnets, then check for equality.

◦ They studied the MLL equivalence problem and showed:

Theorem (Heijltjes and Houston, 2014)

The equivalence problem of MLL is Pspace-complete.

↪→ no notion of proofnet for MLL both canonical and low-complexity.

7 / 20

No proofnets for MLL

But is this goal always achievable?

For some time the MLL (with units) case remained open: notions of proofnets
with jumps, complex “rewiring equivalence” (not canonical).

Heijltjes and Houston recently settled the question (negatively).

◦ Proofnet entail solving the equivalence problem: convert proofs to
proofnets, then check for equality.

◦ They studied the MLL equivalence problem and showed:

Theorem (Heijltjes and Houston, 2014)

The equivalence problem of MLL is Pspace-complete.

↪→ no notion of proofnet for MLL both canonical and low-complexity.

7 / 20

No proofnets for MLL

But is this goal always achievable?

For some time the MLL (with units) case remained open: notions of proofnets
with jumps, complex “rewiring equivalence” (not canonical).

Heijltjes and Houston recently settled the question (negatively).

◦ Proofnet entail solving the equivalence problem: convert proofs to
proofnets, then check for equality.

◦ They studied the MLL equivalence problem and showed:

Theorem (Heijltjes and Houston, 2014)

The equivalence problem of MLL is Pspace-complete.

↪→ no notion of proofnet for MLL both canonical and low-complexity.

7 / 20

Multiplicative-additive logic

8 / 20

Multiplicative-additive logic

A basic fragment of (intutionnistic) linear logic with

Γ ` A
⊕l

Γ ` A⊕ B
Γ ` B

⊕r
Γ ` A⊕ B

Γ, A ` C Γ, B ` C
⊕?

Γ, A⊕ B ` C

in addition to linear implication (.

Similarly to MLL, no 100% satisfying notion of proofnet so far.

Source of the difficulty:

〈π〉
A, E ` C

〈µ〉
B, E ` C

⊕?

A⊕ B, E ` C
〈ν〉
` D

(?

A⊕ B, D (E ` C

∼

〈π〉
A, E ` C

〈ν〉
` D

A, D (E ` C

〈µ〉
B ` C

〈ν〉
` D

(?

B, D (E ` C
⊕?

A⊕ B, D (E ` C

(equates two objects of wildly different sizes)

9 / 20

Multiplicative-additive logic

A basic fragment of (intutionnistic) linear logic with

Γ ` A
⊕l

Γ ` A⊕ B
Γ ` B

⊕r
Γ ` A⊕ B

Γ, A ` C Γ, B ` C
⊕?

Γ, A⊕ B ` C

in addition to linear implication (.

Similarly to MLL, no 100% satisfying notion of proofnet so far.

Source of the difficulty:

〈π〉
A, E ` C

〈µ〉
B, E ` C

⊕?

A⊕ B, E ` C
〈ν〉
` D

(?

A⊕ B, D (E ` C

∼

〈π〉
A, E ` C

〈ν〉
` D

A, D (E ` C

〈µ〉
B ` C

〈ν〉
` D

(?

B, D (E ` C
⊕?

A⊕ B, D (E ` C

(equates two objects of wildly different sizes)

9 / 20

Multiplicative-additive logic

A basic fragment of (intutionnistic) linear logic with

Γ ` A
⊕l

Γ ` A⊕ B
Γ ` B

⊕r
Γ ` A⊕ B

Γ, A ` C Γ, B ` C
⊕?

Γ, A⊕ B ` C

in addition to linear implication (.

Similarly to MLL, no 100% satisfying notion of proofnet so far.

Source of the difficulty:

〈π〉
A, E ` C

〈µ〉
B, E ` C

⊕?

A⊕ B, E ` C
〈ν〉
` D

(?

A⊕ B, D (E ` C

∼

〈π〉
A, E ` C

〈ν〉
` D

A, D (E ` C

〈µ〉
B ` C

〈ν〉
` D

(?

B, D (E ` C
⊕?

A⊕ B, D (E ` C

(equates two objects of wildly different sizes)

9 / 20

Multiplicative-additive logic

A basic fragment of (intutionnistic) linear logic with

Γ ` A
⊕l

Γ ` A⊕ B
Γ ` B

⊕r
Γ ` A⊕ B

Γ, A ` C Γ, B ` C
⊕?

Γ, A⊕ B ` C

in addition to linear implication (.

Similarly to MLL, no 100% satisfying notion of proofnet so far.

Source of the difficulty:

〈π〉
A, E ` C

〈µ〉
B, E ` C

⊕?

A⊕ B, E ` C
〈ν〉
` D

(?

A⊕ B, D (E ` C

∼

〈π〉
A, E ` C

〈ν〉
` D

A, D (E ` C

〈µ〉
B ` C

〈ν〉
` D

(?

B, D (E ` C
⊕?

A⊕ B, D (E ` C

(equates two objects of wildly different sizes)

9 / 20

Multiplicative-additive logic

A basic fragment of (intutionnistic) linear logic with

Γ ` A
⊕l

Γ ` A⊕ B
Γ ` B

⊕r
Γ ` A⊕ B

Γ, A ` C Γ, B ` C
⊕?

Γ, A⊕ B ` C

in addition to linear implication (.

Similarly to MLL, no 100% satisfying notion of proofnet so far.

Source of the difficulty:

〈π〉
A, E ` C

〈µ〉
B, E ` C

⊕?

A⊕ B, E ` C
〈ν〉
` D

(?

A⊕ B, D (E ` C

∼

〈π〉
A, E ` C

〈ν〉
` D

A, D (E ` C

〈µ〉
B ` C

〈ν〉
` D

(?

B, D (E ` C
⊕?

A⊕ B, D (E ` C

(equates two objects of wildly different sizes)

9 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.

For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Multiplicative-additive proofnets

Some approaches to multiplicative-additive proofnets:

◦ Monomial nets (Girard, Laurent-Maielli): attach Boolean weights to
the edges of a graph, telling its presence/absence depending on ⊕? .

↪→ partially Ptime operations, not canonical.

◦ Slice nets (Hughes-van Glabbeek): represent proofs as list of “slices”
(list of atoms paired by axiom rules), different variants of the proof.
For instance a proof of α⊕ β ` α⊕ β will have two slices:

α⊕ β ` α⊕ β and α⊕ β ` α⊕ β

↪→ canonical but exponential blowup. (on ⊗ rules, the number of slice is multiplied)

◦ Conflict nets (Heijltjes-Houston): mechanism to remember which
axiom links cannot be present at the same time.

↪→ Ptime operations, not canonical. (but better quotient than monomial nets)

10 / 20

Complexity of multiplicative-additive proof equivalence

Leads us to our main story:

◦ What is the complexity of multiplicative-additive proof equivalence?

◦ Do we get an impossibility result as in the MLL case?

Heijltjes-Hughes argue that we cannot have both canonical and Ptime

What was known so far:
◦ Decidable (Cockett and Pastro) via a term calculus with decision

procedure for commutative conversions.

◦ Slice nets imply Exptime equivalence.

◦ Subsumed by cut-elimination equivalence, showed coNP-complete.
(Mairson-Terui)

11 / 20

Complexity of multiplicative-additive proof equivalence

Leads us to our main story:

◦ What is the complexity of multiplicative-additive proof equivalence?

◦ Do we get an impossibility result as in the MLL case?

Heijltjes-Hughes argue that we cannot have both canonical and Ptime

What was known so far:
◦ Decidable (Cockett and Pastro) via a term calculus with decision

procedure for commutative conversions.

◦ Slice nets imply Exptime equivalence.

◦ Subsumed by cut-elimination equivalence, showed coNP-complete.
(Mairson-Terui)

11 / 20

Complexity of multiplicative-additive proof equivalence

Leads us to our main story:

◦ What is the complexity of multiplicative-additive proof equivalence?

◦ Do we get an impossibility result as in the MLL case?

Heijltjes-Hughes argue that we cannot have both canonical and Ptime

What was known so far:
◦ Decidable (Cockett and Pastro) via a term calculus with decision

procedure for commutative conversions.

◦ Slice nets imply Exptime equivalence.

◦ Subsumed by cut-elimination equivalence, showed coNP-complete.
(Mairson-Terui)

11 / 20

Complexity of multiplicative-additive proof equivalence

Leads us to our main story:

◦ What is the complexity of multiplicative-additive proof equivalence?

◦ Do we get an impossibility result as in the MLL case?

Heijltjes-Hughes argue that we cannot have both canonical and Ptime

What was known so far:
◦ Decidable (Cockett and Pastro) via a term calculus with decision

procedure for commutative conversions.

◦ Slice nets imply Exptime equivalence.

◦ Subsumed by cut-elimination equivalence, showed coNP-complete.
(Mairson-Terui)

11 / 20

Complexity of multiplicative-additive proof equivalence

Leads us to our main story:

◦ What is the complexity of multiplicative-additive proof equivalence?

◦ Do we get an impossibility result as in the MLL case?

Heijltjes-Hughes argue that we cannot have both canonical and Ptime

What was known so far:
◦ Decidable (Cockett and Pastro) via a term calculus with decision

procedure for commutative conversions.

◦ Slice nets imply Exptime equivalence.

◦ Subsumed by cut-elimination equivalence, showed coNP-complete.
(Mairson-Terui)

11 / 20

Binary Decision Slicing

12 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .
(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.
(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .
(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.
(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .

(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.
(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .
(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.
(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .
(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.

(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Trees

First (wrong) intuition: equivalence of monomial nets amounts to
equivalence of Boolean formulas (coNP-complete).

A closer look reveals that they involve only a specific type of formulas, similar
to binary decision trees (BDT).

Definition

A BDT is a binary tree with nodes labeled by Boolean
variables and leaves labelled by 1 and 0 .
(notation a B · 8 ·)

Two BDT are equivalent (φ∼ ψ) if they represent the same boolean function.
(e.g. a B 1 8 1 is equivalent to 1).

13 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision Slicing

Intermediate notion between monomial and slice nets:

To a proof π of Γ ` A we associate a function Bπ that maps each pair of
atoms [u,v] of Γ ` A to a BDT Bπ [u,v] .

Main idea: label each ⊕ connectives in Γ with a boolean variable. The BDT
associated to the pair [u,v] tells the presence of an [u,v] axiom link
depending on which left/right (0/1) branch of the ⊕? rule we are sitting.

Example:

π =

α ` α

α ` α⊕ β

β ` β

β ` α⊕ β
⊕?

x
α⊕x β ` α⊕ β

α⊕x β ` α⊕ β

x B 1 8 0

x B 0 8 1

7→

Definition (equivalence)

Define B ∼ B′ as pointwise equivalence.
(for each pair of atoms [α, β] , B[α, β]∼B′[α, β])

14 / 20

Binary Decision slicing and proof equivalence

The usefulness of this notion comes from:

Theorem

Equivalence of slicing captures proof equivalence: π ∼ µ iff Bπ ∼Bµ .

An idea of the proof: for any valuation v of the variables define a slice

v(B) = { [α, β] | v(B[α, β]) = 1 }

then show that the set of v(B) slices is the same as the set of slices in the
Hughes-van Glabbeek proofnets.

↪→ multiplicative-additive proof equivalence reduces to BDT equivalence.

15 / 20

Binary Decision slicing and proof equivalence

The usefulness of this notion comes from:

Theorem

Equivalence of slicing captures proof equivalence: π ∼ µ iff Bπ ∼Bµ .

An idea of the proof: for any valuation v of the variables define a slice

v(B) = { [α, β] | v(B[α, β]) = 1 }

then show that the set of v(B) slices is the same as the set of slices in the
Hughes-van Glabbeek proofnets.

↪→ multiplicative-additive proof equivalence reduces to BDT equivalence.

15 / 20

Binary Decision slicing and proof equivalence

The usefulness of this notion comes from:

Theorem

Equivalence of slicing captures proof equivalence: π ∼ µ iff Bπ ∼Bµ .

An idea of the proof: for any valuation v of the variables define a slice

v(B) = { [α, β] | v(B[α, β]) = 1 }

then show that the set of v(B) slices is the same as the set of slices in the
Hughes-van Glabbeek proofnets.

↪→ multiplicative-additive proof equivalence reduces to BDT equivalence.

15 / 20

Complexity

16 / 20

Equivalence of BDT

Theorem

The equivalence problem of BDT is in Logspace.
(simpler than full Boolean formulas)

Idea of the proof:

Define compatible leafs of two BDT: they do not need opposite valuation of a
variable to be reached. Example: compatible and incompatible leaves.

x

t

z

0 1

0

y

0 0

t

x

1 z

1 0

y

0 1

Two BDT are not equivalent iff they have compatible leafs holding opposite
0/1 values. Easily checked in Logspace.

17 / 20

Equivalence of BDT

Theorem

The equivalence problem of BDT is in Logspace.
(simpler than full Boolean formulas)

Idea of the proof:

Define compatible leafs of two BDT: they do not need opposite valuation of a
variable to be reached.

Example: compatible and incompatible leaves.

x

t

z

0 1

0

y

0 0

t

x

1 z

1 0

y

0 1

Two BDT are not equivalent iff they have compatible leafs holding opposite
0/1 values. Easily checked in Logspace.

17 / 20

Equivalence of BDT

Theorem

The equivalence problem of BDT is in Logspace.
(simpler than full Boolean formulas)

Idea of the proof:

Define compatible leafs of two BDT: they do not need opposite valuation of a
variable to be reached. Example: compatible and incompatible leaves.

x

t

z

0 1

0

y

0 0

t

x

1 z

1 0

y

0 1

Two BDT are not equivalent iff they have compatible leafs holding opposite
0/1 values. Easily checked in Logspace.

17 / 20

Equivalence of BDT

Theorem

The equivalence problem of BDT is in Logspace.
(simpler than full Boolean formulas)

Idea of the proof:

Define compatible leafs of two BDT: they do not need opposite valuation of a
variable to be reached. Example: compatible and incompatible leaves.

x

t

z

0 1

0

y

0 0

t

x

1 z

1 0

y

0 1

Two BDT are not equivalent iff they have compatible leafs holding opposite
0/1 values. Easily checked in Logspace.

17 / 20

Multiplicative-additive equivalence is in Logspace

Theorem

The equivalence problem of BDT is in Logspace.

The BDT slicing of a multiplicative-additive proof can be computed in
logarithmic space, therefore we get

Theorem

Multiplicative-additive equivalence is in Logspace.

The equivalence problem is low-complexity (in contrast with MLL) and does not yield
an impossibility result for proofnets. (B does not solve the problem positively either,
proofnets for this fragment could be impossible for other reasons)

18 / 20

Multiplicative-additive equivalence is in Logspace

Theorem

The equivalence problem of BDT is in Logspace.

The BDT slicing of a multiplicative-additive proof can be computed in
logarithmic space, therefore we get

Theorem

Multiplicative-additive equivalence is in Logspace.

The equivalence problem is low-complexity (in contrast with MLL) and does not yield
an impossibility result for proofnets. (B does not solve the problem positively either,
proofnets for this fragment could be impossible for other reasons)

18 / 20

Multiplicative-additive equivalence is in Logspace

Theorem

The equivalence problem of BDT is in Logspace.

The BDT slicing of a multiplicative-additive proof can be computed in
logarithmic space, therefore we get

Theorem

Multiplicative-additive equivalence is in Logspace.

The equivalence problem is low-complexity (in contrast with MLL) and does not yield
an impossibility result for proofnets.

(B does not solve the problem positively either,
proofnets for this fragment could be impossible for other reasons)

18 / 20

Multiplicative-additive equivalence is in Logspace

Theorem

The equivalence problem of BDT is in Logspace.

The BDT slicing of a multiplicative-additive proof can be computed in
logarithmic space, therefore we get

Theorem

Multiplicative-additive equivalence is in Logspace.

The equivalence problem is low-complexity (in contrast with MLL) and does not yield
an impossibility result for proofnets. (B does not solve the problem positively either,
proofnets for this fragment could be impossible for other reasons)

18 / 20

Hardness

Equivalence for multiplicative-additive linear logic is in Logspace. But is this
result the best possible?

In other words: is the problem Logspace-hard?

It turns out that exchange and ⊗ (or left () are enough to encode
permutation problems, order problems etc. and these are Logspace-hard.

MLL- proof equivalence is Logspace-hard.

Because MLL- is a subsystem of multiplicative-additive linear logic, we get

Theorem

Proof equivalence of multiplicative-additive linear logic is Logspace-complete.

19 / 20

Hardness

Equivalence for multiplicative-additive linear logic is in Logspace. But is this
result the best possible?

In other words: is the problem Logspace-hard?

It turns out that exchange and ⊗ (or left () are enough to encode
permutation problems, order problems etc. and these are Logspace-hard.

MLL- proof equivalence is Logspace-hard.

Because MLL- is a subsystem of multiplicative-additive linear logic, we get

Theorem

Proof equivalence of multiplicative-additive linear logic is Logspace-complete.

19 / 20

Hardness

Equivalence for multiplicative-additive linear logic is in Logspace. But is this
result the best possible?

In other words: is the problem Logspace-hard?

It turns out that exchange and ⊗ (or left () are enough to encode
permutation problems, order problems etc. and these are Logspace-hard.

MLL- proof equivalence is Logspace-hard.

Because MLL- is a subsystem of multiplicative-additive linear logic, we get

Theorem

Proof equivalence of multiplicative-additive linear logic is Logspace-complete.

19 / 20

Conclusion:

◦ Multiplicative-additive equivalence problem is Logspace-complete

◦ Limitation result?

◦ Proofnets with a logspace equivalence, but non canonical?

. . . Thank you for your attention !

20 / 20

Conclusion:

◦ Multiplicative-additive equivalence problem is Logspace-complete

◦ Limitation result?

◦ Proofnets with a logspace equivalence, but non canonical?

. . . Thank you for your attention !

20 / 20

Conclusion:

◦ Multiplicative-additive equivalence problem is Logspace-complete

◦ Limitation result?

◦ Proofnets with a logspace equivalence, but non canonical?

. . . Thank you for your attention !

20 / 20

Conclusion:

◦ Multiplicative-additive equivalence problem is Logspace-complete

◦ Limitation result?

◦ Proofnets with a logspace equivalence, but non canonical?

. . . Thank you for your attention !

20 / 20

