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Abstract

Differential linear logic and the corresponding categorical structure, differential categories, introduced the
idea of differential structure associated to a (co)monad. Typically in settings such as algebraic geometry,
one expresses differential structure for an algebra by having a module with a derivation, i.e. a map satisfying
the Leibniz rule. In the monadic approach, we are able to continue to work with algebras and derivations,
but the additional structure allows us to define other rules of the differential calculus for such modules; in
particular one can define a monadic version of the chain rule as well as other basic identities.

In attempting to develop a similar theory of integral linear logic, we were led to consider the shuffle
multiplication. This was shown by Guo and Keigher to be fundamental in the construction of the free
Rota-Baxter algebra, the Rota-Baxter equation being the integral analogue of the Leibniz rule. This shuffle
multiplication induces a quasimonad on the category of vector spaces. The notion of quasimonad, called
r-unital monad by Wisbauer, is slightly weaker than that of monad, but is still sufficient to define a sensible
notion of module with differentiation and integration.

In this paper, we demonstrate this quasimonad structure, show that its free modules have both differential
and integral operators satisfying the Leibniz and Rota-Baxter rules and satisfy the fundamental theorems
of calculus.

Keywords: Linear Logic, Differential Categories, Rota-Baxter Algebras

1 Introduction

The theory of differential linear logic as introduced by Ehrhard and Regnier [9,10]

extended Girard’s linear logic to include an inference rule which captured differenti-

ation syntactically. The corresponding categorical structure, differential categories

[1], extended the traditional notion of Seely category [26] to include a differential
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combinator. The monads T that arise in models of linear logic 1 have the addi-

tional structure of a commutative, associative algebra associated to every object of

the form TV . Such monads are called algebra modalities. Given an algebra modal-

ity, we require a map d : TV → V ⊗TV satisfying naturality and as in the theory of

Kähler differentials [18,2], we require that the combinator satisfies the Leibniz rule

of differential calculus, viewing V ⊗ TV as a right TV -module. But the monadic

structure allows us to express other rules of calculus such as the chain rule. For

details see Section 2.

The research in this paper began with an attempt to carry out a similar program

for the integral calculus. The analogue of the Leibniz rule for integral calculus is the

Rota-Baxter equation. While not as well-known as the Leibniz rule and the theory

of derivations on an algebra, the equation has been an object of significant study

since the construction of the free Rota-Baxter algebra by Guo and Keigher [16] and

especially since this equation has been observed to be significant in renormalization

of perturbative quantum field theory. See [8] for an overview. For the history of

the subject, we refer the reader to the monograph by Guo [14]. An idea of the far-

reaching application of this equation can be found by considering [7,8,12,13,15,16,29]

as well as the webpage of Li Guo, which has a detailed bibliography.

The significance of the shuffle multiplication is clear from the Guo-Keigher con-

struction of the free commutative Rota-Baxter algebra. This operation is naturally

defined on the tensor algebra of a vector space, but surprisingly the algebraic struc-

ture so obtained does not yield a monad but only the slightly weaker notion of

quasimonad, which we denote by §. Quasimonads retain sufficient structure to de-

scribe the integral and differential structure we are interested in. In particular, one

can define the notion of algebra modality with respect to a quasimonad and we

show that the shuffle multiplication does give an algebra modality.

The notion for integral calculus corresponding to a module with differentiation

does not seem to have been explored as far as we have been able to find. Given a

commutative algebra A, we define a module with integration to be a right A-module

M with a map P : M → A satisfying a version of the Rota-Baxter equation. See

Section 6 for details. We show that for the shuffle quasimonad, there is a canonical

natural transformation P : V ⊗§V → §V , making V ⊗§V a module with integration,

and a map d : §V → V ⊗§V making V ⊗§V a module with differentiation. These two

maps together satisfy both the first and second fundamental theorems of calculus.

We call such modules FTC-modules.

Remark 1.1 The authors would like to thank NSERC for its generous support.

The first author also received funding from the Fields Institute.

2 Codifferential categories and algebra modalities

We now define the basic structures related to the theory of (co)differential categories.

Definition 2.1 An algebra modality on a symmetric monoidal category C consists

of a monad (T, µ, η) on C, and for each object C in C, a pair of morphisms (note we

1 Actually we are working in the dual setting to that of model of linear logic, where one has comonads and
associated coalgebras.
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are denoting the tensor unit by k)

m : T (C)⊗ T (C) // T (C), e : k // T (C)

making T (C) a commutative algebra such that this family of associative algebra

structures satisfies evident naturality conditions [1].

Definition 2.2 An additive symmetric monoidal category with an algebra modal-

ity is a codifferential category if it is also equipped with a deriving transform 2 , i.e.

a transformation, natural in C

dT (C) : T (C) // C ⊗ T (C)

satisfying the following four equations 3 :

(d1) e; d = 0 (Derivative of a constant is 0.)

(d2) m; d = (d⊗1); (1⊗m)+(1⊗d); c; (1⊗m) (where c is the appropriate symmetry)

(Leibniz Rule)

(d3) η; d = 1⊗ e (Derivative of a linear function is constant.)

(d4) µ; d = d; d⊗ µ; 1⊗m (Chain Rule)

Remark 2.3 For us, an additive category is simply one enriched over abelian

monoids. For the remainder of the paper, we will assume we are working over

an additive category, although some of the definitions do not require it.

The fundamental example of a codifferential category is the category of (discrete)

vector spaces and linear maps. The monad is given by the symmetric algebra

construction and the deriving transform is the usual differentiation of polynomials.

We refer to [1] for further details. A topological example is given by the category

of convenient vector spaces and continuous linear maps, which forms a differential

category [3].

3 Quasimonads

We give an exposition of the idea of weakening the definition of monad. We follow

the presentation of Wisbauer [28] which is based in part on the work of Böhm [5].

This weaker notion will be more relevant in the study of the shuffle multiplication.

Remark 3.1 We have chosen to use the term quasimonad for what Wisbauer calls

an r-unital monad. We note that this is different than what Wisbauer and Böhm

call a weak monad. It is also different than what Hoofman and Moerdijk call a

semimonad [21].

We begin with the following preliminary definitions.

Definition 3.2 • Let C be a category, a pair (F, µ) is a functor with multiplication

if F : C → C and µ : F 2 → F is a natural transformation with Fµ;µ = µF ;µ.

2 We use the terminology of a deriving transform in both differential and codifferential categories.
3 For simplicity, we write as if the monoidal structure is strict.
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• A triple (F, µ, η) is a q-unital monad if (F, µ) is a functor with multiplication

and η : idC → F is a natural transformation, called the quasi-unit. (No equations

required.)

• The quasi-unit is regular if η is equal to the composite:

idC
η

−−−−→ F
Fη

−−−−→ F 2
µ

−−−−→ F

• The multiplication µ is compatible if µ is equal to the composite

FF
FηF
−−−−→ FFF

µF
−−−−→ FF

µ
−−−−→ F

We can now define the notion of quasimonad as follows:

Definition 3.3 A triple (F, µ, η) is a quasimonad if it is a q-unital monad and:

• η is regular.

• µ is compatible.

Just as a monad is always induced by an adjunction, quasimonads are always

induced by a pairing of functors, defined as follows. Let C and D be categories and

suppose we have a pair of functors, as follows

L : C −→ D R : D −→ C
A pairing between L and R is a pair of maps, natural in both variables, of the form:

α : HomD(LA,B) −→ HomC(A,RB) β : HomC(A,RB) −→ HomD(LA,B)

Given such a pairing, as in the case of an adjunction, we get natural transformations:

ηA : A −→ LR(A) εB : RL(B) −→ B

We then define F : C → C by F = L;R, and µ =: F 2 → F by µ = εL;R.

Definition 3.4 A pairing is regular if

α;β;α = α and β;α;β = β

Given a q-unital monad (F, η, µ), one defines a category of F -algebras similarly

to the case of monads and we get a pairing (αF , βF ) just as one obtains an adjunction

in the case of a monad.

Theorem 3.5 (Wisbauer [28]) The following are equivalent:

• (F, µ, η) is a quasimonad.

• The pairing (αF , βF ) is regular.

Remark 3.6 In the case of a q-unital monad, the Kleisli construction yields an

associative composition, but no identity maps. In the shuffle structure defined

below, one in fact obtains a one-sided unit for the Kleisli construction.
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4 Shuffling

We describe a quasimonad structure which will be fundamental in our definition

and examples. We were led to consider this operation by the fundamental work of

Guo and Keigher [15,16]. We work in the category of vector spaces over an arbitrary

field k. So let

§(V ) = k ⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V · · ·
This has a well-known monad structure as it is the free tensor algebra. But it also

has a quasimonad structure which we describe now. We will work with homogeneous

elements. See [24], Chapter 16.7. Denote the length of a homogeneous element w

by |w|.
We have the evident free multiplication on §(V ), but we also have the shuffle

multiplication � : §(V ) ⊗ §(V ) → §(V ) described as follows. We first remind the

reader of the following preliminaries:

Definition 4.1 • The generalized binomial coefficients are defined by(
n1 + n2 · · ·+ nm
n1, n2 · · · , nm

)
=

(n1 + n2 · · ·+ nm)!

n1!n2! · · ·nm!

with each ni a non-negative integer. These coefficients satisfy evident equations

which will be of use in verifying associativity of multiplication, among other

things.

• If w1 and w2 are words in some alphabet, a shuffle of w1 and w2 is a permutation

of the concatenated word w1w2 such that the internal order of the two words is

maintained.

If w1, w2 are homogeneous elements of §V , then define

w1�w2 =
1(|w1|+|w2|

|w1|,|w2|
) ∑
w∈Sh(w1,w2)

w

Here the sum is over all w which are the shuffle of the two words. (We will find

it convenient to denote the shuffle multiplication without the leading coefficient by

w1 ∗ w2.)

So for example, the product of w1 = a1 ⊗ b1 and w2 = a2 ⊗ b2 is

w1�w2 =
1

6
[a1 ⊗ b1 ⊗ a2 ⊗ b2 + a1 ⊗ a2 ⊗ b1 ⊗ b2 + a1 ⊗ b1 ⊗ b2 ⊗ a2

+b1 ⊗ a1 ⊗ b2 ⊗ a2 + b1 ⊗ a1 ⊗ a2 ⊗ b2 + b1 ⊗ b2 ⊗ a1 ⊗ a2]

=
1

6
w1 ∗ w2

We also note that the multiplication ∗ can be defined recursively as follows [14].

If w1 = aw′1 and w2 = bw′2, then:

w1 ∗ w2 = a(w′1 ∗ w2) + b(w1 ∗ w′2)

5
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Due to basic combinatorial identities of the binomial coefficients, the �-operation is

a commutative, unital associative multiplication on §(V ) and so induces a series of

maps:

§(V )⊗n −→ §(V )

These maps can be defined directly via the formula:

w1�w2� · · · �wn =
1(|w1|+|w2|+···+|wn|

|w1|,|w2|,··· ,|wn|
) ∑
w∈Sh(w1,w2,...,wn)

w

The multiplication � induces a natural transformation µ : §§ → §. There is also an

evident natural transformation η : Id→ §, which is the usual inclusion of generators

function.

Theorem 4.2 This makes § a quasimonad.

Proof. We prove the result in steps.

• (§, µ) is a functor with multiplication.

We need to establish some notation for the homogeneous elements of the various

iterates §nV :

· We write the elements of V as {xi}i∈I .
· We write the (homogeneous) elements of §V as (x1x2 . . . xn). In particular

xi ∈ V and (xi) ∈ §V . So (xi) is the word of length one. We also have the

empty word ε in all §nV , and note for example that (ε) 6= ε in §2(V ).

· We write the elements of §2V as

[(x11x12 . . . x1n1)(x21x22 . . . x2n2) . . . (xm1xm2 . . . xmnm)].

We will also write an element of this form as [w1w2 . . . wm].

· We write the elements of §3V as [w11w12 . . . w1m1 ] . . . [wp1wp2 . . . wpmp ]

Now calculate as follows:

§µ([w11w12 . . . w1m1 ] . . . [wp1wp2 . . . wpmp ]) =

[w11�w12� . . . �w1m1 ] . . . [wp1�wp2� . . . �wpmp ] =

1(|w11|+|w12|+...+|w1m1 |
|w11|,|w12|,...,|w1m1 |

) . . . 1(|wp1|+|wp2|+...+|wpm1 |
|wp1|,|w12|,...,|wpmp |

) [w11 ∗ w12 ∗ . . .

∗w1m1 ] . . . [wp1 ∗ wp2 ∗ . . . ∗ wpmp ]

Applying µ to this element and using combinatorial identities, we get:
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1(|w11|+|w12|+...+|w1m1 |+...+|wp1|+|wp2|+...+|wpm1 |
|w11|,|w12|,...,|w1m1 |,...,|wp1|,|w12|,...,|wpmp |

)w11 ∗ w12 . . . ∗ w1m1 ∗ . . .

∗wp1 ∗ wp2 . . . ∗ wpmp =

w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp

On the other hand, we have

µ§([w11w12 . . . w1m1 ] . . . [wp1wp2 . . . wpmp ]) =

[w11w12 . . . w1m1 ]� . . . �[wp1wp2 . . . wpmp ] =

1(
m1+...+mp

m1,m2,...,mp

) [w11w12 . . . w1m1 ] ∗ . . . ∗ [wp1wp2 . . . wpmp ]

Note that in this multiplication we are viewing the w’s as letters. Now note

µ([w11w12 . . . w1m1 ] ∗ . . . ∗ [wp1wp2 . . . wpmp ]) is:(
m1 + . . .+mp

m1,m2, . . . ,mp

)
[w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp ]

since we have
(
m1+...+mp

m1,m2,...,mp

)
terms in the product [w11w12 . . . w1m1 ] ∗ . . . ∗

[wp1wp2 . . . wpmp ] each of which gives w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp

when we apply µ.

Thus we have a functor with multiplication.

• η is regular.

We note that §η is just id ⊕ η ⊕ (η ⊗ η) ⊕ . . .. So η; §η is just the map v 7→ (v),

viewing v as a word of length 1. Then µ((v)) = v.

• µ is compatible.

We consider a typical element of §2V given by:

[(x11x12 . . . x1n1)(x21x22 . . . x2n2) . . . (xm1xm2 . . . xmn2)]

We also denote this by [w1w2 . . . wm]. The action of the map FηF on this element

is to send it to [w1][w2] . . . [wm], where each (wi) is a word of length one in §2V
Applying µ§ to this element gives:

1

m!
[Σm([(w1)(w2) . . . (wm)])]

where Σm indicates the sum over the action of the permutation group Sm on the

list [(w1)(w2) . . . (wm)]. Applying µ to [Σm([(w1)(w2) . . . (wm)]), we get m! copies

of w1�w2� . . . �wm, and we are done.

This completes the proof that (§, µ, η) is a quasimonad.

2
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Definition 4.3 A q-unital monad or quasimonad § is an algebra modality if for each

object V , there is an associative algebra structure:

� : §V ⊗ §V → §V e : I → §V
which is natural in V and the following two additional equations hold:

§§V ⊗ §§V
�
��

µ⊗µ // §V ⊗ §V
�
��

§§V µ
// §V

I e //

e
  A

AA
AA

AA
A §§V

µ

��
§V

These equations say the µ is an algebra homomorphism.

Lemma 4.4 The shuffle multiplication makes § an algebra modality.

Proof. The second equation is straightforward. For the first equation, we proceed

very much as in the case of the proof that we have a functor with multiplication. So

we consider an expression of the form [w1w2 . . . wm]⊗ [u1u2 . . . un]. Applying µ⊗ µ
and then �, we get

[w1w2 . . . wm]⊗ [u1u2 . . . un] 7→ [w1�w2� . . . �wm]⊗ [u1�u2� . . . �un]

7→ w1�w2� . . . �wm�u1�u2� . . . �un

Applying � then µ gives

[w1w2 . . . wm]⊗ [u1u2 . . . un] 7→ 1(
m+n
m,n

)(w1w2 . . . wm) ∗ (u1u2 . . . un) 7→

1(
m+n
m,n

)(m+ n

m, n

)
w1�w2� . . . �wm�u1�u2� . . . �un

and the result follows.

2

5 The Rota-Baxter equation

We now introduce the Rota-Baxter equation and give examples. All of the material

of this section can be found in [14].
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Definition 5.1 Let A be a k-algebra, where k is the underlying field. A is a Rota-

Baxter algebra if equipped with a k-linear map P : A→ A such that for all x, y ∈ A

P (x)P (y) = P (xP (y)) + P (P (x)y)

The map P is called a Rota-Baxter operator or RB-operator 4 .

We just mention a few examples. A much more extensive list can be found for

example in [14].

• Let C(R) denote the ring of continuous functions from the reals to the reals under

pointwise operations. Define P (f)(x) =
∫ x

0 f(t)dt. Then P is an RB-operator.

The Rota-Baxter equation becomes the usual integration by parts formula.

• Consider R[x] with multiplication given by xm · xn =
(
m
n

)
xm+n. Then P (xn) =

xn+1 is an RB-operator.

• Let V be an arbitrary k-vector space. Let T (V ) = k⊕V ⊕V ⊗V . . ., but equipped

with the shuffle algebra multiplication. Then if v ∈ V , we have an operator

Pv : T (V )→ T (V ) defined by Pv(w) = v ⊗ w. Then Pv is an RB-operator.

6 Modules with differentiation and integration

The notion of derivation has long been fundamental in algebraic geometry and

commutative algebra [18,25] and more recently extending the idea to the noncom-

mutative setting has also been of importance [23]. We begin with the classical

notion:

Definition 6.1 Let A be a commutative k-algebra. Let M be a (left) A-module.

A derivation on M is a k-linear map ∂ : A→M such that for all x, y ∈ A

∂(xy) = x∂(y) + y∂(x)

We will also refer to (M,∂) as a module with differentiation.

We now introduce the corresponding integral structure. As far as we have been

able to see, this precise definition does not exist in the literature despite the intense

study of the Rota-Baxter equation. It is certainly implicit in that work though.

Definition 6.2 Let A be a commutative k-algebra. Let M be a right A-module.

An integration on M is a k-linear map π : M → A such that for all x, y ∈M

π(x)π(y) = π(xπ(y)) + π(yπ(x))

The pair (M,π) is called a module with integration.

Remark 6.3 Note that the multiplication on the lefthand side of the equation is

the multiplication of A, while on the right, the multiplication is the action of A on

M .

4 In this paper, we only consider the operators of weight 0.
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We note that every Rota-Baxter algebra is a module with integration over itself

with its evident right-module structure.The shuffle quasimonad will give us a much

broader class of examples. Indeed it is expected that when a complete theory of

integral linear logic is established, we will have an even greater source of examples.

Definition 6.4 Let A be a commutative algebra. An FTC-module over A is an

A-module M together with maps P : M → A and d : A→M such that

• (M,d) is a module with differentiation.

• (M,P ) is a module with integration.

and

• (First Fundamental Theorem of Calculus) P ; d = id

We write the FTC-module as (M,P, d).

6.1 Additional structure in the presence of a (quasi)monad

As already indicated, one can express additional differential structure in the presence

of a monad with an algebra modality. This is seen in the definition of codifferential

category above. We now introduce some additional structure for the integral case.

Definition 6.5 In what follows, let (T, µ, η) be a q-unital monad and a natural

transformation of the form s : id⊗ T → T

• The natural transformation s satisfies the U-substitution rule if for all f : X →
X ⊗ TX, the composite

X ⊗ TX
s

−−−−→ TX
Tf

−−−−→ T (X ⊗ TX)
Ts

−−−−→ TTX
µ

−−−−→ TX

is equal to the composite

X ⊗ TX
id⊗Tf
−−−−→ X ⊗ T (X ⊗ TX)

id⊗Ts
−−−−→ X ⊗ TTX

f⊗µ
−−−−→ X ⊗ TX ⊗ TX

id⊗�
−−−−→ X ⊗ TX

s
−−−−→ TX

• A natural transformation of the form s : id ⊗ T → T satisfies the integration of

constants rule if η : X → TX is equal to the composite

X ∼= X ⊗ I
id⊗e
−−−−→ X ⊗ TX

s
−−−−→ TX

We note that these equations are not necessarily satisfied in the case of the

shuffle quasimonad and it will be of interest to characterize those cases in which

these additional equations hold.

If we also have differential structure in the presence of a quasimonad, we can

also state the Second Fundamental Theorem of Calculus.

Definition 6.6 Suppose we have an algebra modality (T, µ, η,m, e) and an FTC-

module (M,P, d) over T (V ). Then we say that M satisfies the Second Fundamental

Theorem of Calculus if:

10
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d;P + T (0) = idT (V )

where 0: V → V .

If the algebra modality is equipped with natural transformations P : id⊗T → T

and d : T → id⊗ T making each TV an FTC-module, then we say that the algebra

modality satisfies the second fundamental theorem if these natural transformations

satisfy the same equation.

Remark 6.7 We note that unlike the first fundamental theorem of calculus, this

one can only be defined in the presence of additional quasimonadic structure.

7 Differential and integral structure in the shuffle
quasimonad

Lemma 7.1 The operator P : V ⊗ §V → §V defined by P (v ⊗ w) = 1
|w|+1vw (the

concatenated word) satisfies:

• The Rota-Baxter equation, where V ⊗ §V is the free right §V -module generated

by V .

• The integration of constants rule.

Proof. We note that the integration of constants rule is trivial.

We suppose v, v′ ∈ V and w,w′ ∈ X∗, with |w| = n and |w′| = m. We must

show

P (v ⊗ w)P (v′ ⊗ w′) = P ((v ⊗ w)P (v′ ⊗ w′)) + P ((v′ ⊗ w′)P (v ⊗ w))

The lefthand side of this equation is given by:

1

n+ 1

1

m+ 1
[vw�v′w′] =

1

n+ 1

1

m+ 1

1(
n+m+2
n+1,m+1

)(vw ∗ v′w′) =

1(
n+m+2
n,1,m,1

)(vw ∗ v′w′)

The righthand side is given by:

P (v ⊗ (
1

m+ 1
)w�v′w′) + P (v′ ⊗ (

1

n+ 1
)w′�vw) =

1

m+ 1

1(
n+m+1
n,m+1

) 1

n+m+ 2
v(w ∗ v′w′) +

1

n+ 1

1(
n+m+1
n+1,m

) 1

n+m+ 2
v′(w′ ∗ vw) =

1(
n+m+2
n,1,m,1

)v(w ∗ v′w′) +
1(

n+m+2
n,1,m,1

)v′(w′ ∗ vw)

The result now follows from the recursive definition of the ∗-operator.

2
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Lemma 7.2 In the category of vector spaces equipped with the quasishuffle algebra

modality, for each algebra §V , the differential operator given by:

d : §V → V ⊗ §V vw 7→ (|w|+ 1)v ⊗ w
satisfies the Leibniz rule.

Proof. We must show that

d(vw�v′w′) = d(vw)�v′w′ + d(v′w′)�vw
Note we are using the � operation to also signify the action of §V on V ⊗ §V . We

let |w| = n and |w′| = m.

For the lefthand side, we calculate:

d(vw�v′w′) = d[
1(

n+m+2
n+1,m+1

)(v(v′w′ ∗ w) + v′(vw ∗ w′))] =

1(
n+m+2
n+1,m+1

) [(n+m+ 2)(v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)] =

(n+ 1)!(m+ 1)!

(n+m+ 1)!
[v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)]

For the righthand side, we calculate:

d(vw)�v′w′ + d(v′w′)�vw = (n+ 1)v ⊗ (w�v′w′) + (m+ 1)v′ ⊗ (w′�vw) =

(n+ 1)
1(

n+m+1
n,m+1

)v ⊗ (w ∗ v′w′) + (m+ 1)
1(

n+m+1
n+1,m

)v′ ⊗ (w′ ∗ vw) =

(n+ 1)!(m+ 1)!

(n+m+ 1)!
[v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)]

2

Finally we conclude:

Theorem 7.3 For the algebra modality §, the free §V module on V given by V ⊗§V
is an FTC-module which furthermore satisfies the second fundamental theorem of

calculus.

Proof. It remains to verify the two fundamental theorems. The first is straightfor-

ward.

We must consider the two cases of monomials V ⊗
n
, when n = 0 and n ≥ 1.

When n = 0, k ∈ K, recall that d(1) = 0 and P is linear:

P (d(k)) + §(0)(k) = P (0) + k = k

When n ≥ 1, then for vw ∈ V ⊗n
(where v ∈ V and w ∈ §(V ) of length |w| = n−1):

P (d(vw)) + §(0)(vw) = P ((|w|+ 1)v ⊗ w) =
(|w|+ 1)

(|w|+ 1)
vw = vw

12
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This establishes the second FTC.

2

We now consider the possibility of other §V modules satisfying the second fun-

damental theorem. We will show that requiring the second fundamental theorem is

in fact a significant restriction.

Lemma 7.4 Let (M,P, d) be an FTC-module over §V which satisfies the Second

Fundamental Theorem of calculus. Then the following equality holds:

P ; §(0) = 0

Proof.

P ; §(0) = P + P ; §(0)− P
= P ; d;P + P ; §(0)− P
= P (d;P + §(0))− P
= P − P
= 0

2

Proposition 7.5 For the algebra §V , we consider the FTC-module (V ⊗§V, P, d) as

above. Suppose one has another FTC-module (M,R, d) over §V which also satisfies

the second fundamental theorem. Then there is a k-linear isomorphism between M

and V ⊗ §V given by

P ;D : V ⊗ §V −→M R; d : M −→ V ⊗ §V

Furthermore, if P ;D satisfies the following for all a⊗ w ∈ V ⊗ §V :

D(P (a⊗ w)) = wD(a)

then P ;D is a module map, implying V ⊗§V and M are isomorphic as §V -modules.

Proof.

By the above lemma, R; §(0) = 0 and P ; §(0) = 0, and so we get the following

equalities:

R = R(dP+§(0)) = RdP+R§(0) = RdP P = P (DR+§(0)) = PDR+P §(0) = PDR

So calculate as follows:

P ;D;R; d = P ; d = idV⊗§V

R; d;P ;D = R;D = idM

13
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So PD and Rd are K-linear isomorphisms.

Now suppose that for all a⊗ w ∈ V ⊗ §V : D(P (a⊗ w)) = wD(a). By a simple

calculation we have that for all v ∈ §(V ):

D(P (v(a⊗ w))) = D(P (a⊗ v � w))

= (v � w)D(a)

= v(wD(a))

= v(D(P (a⊗ w)))

Which proves that P ;D is a module map.

2

8 Conclusion

This work originated with the goal of developing a theory of integral linear logic and

integral categories to parallel the corresponding differential theories. This work is

ongoing but we believe the shuffle structure provides a key towards understanding

the integral theory. But furthermore it is of interest even in its own right. The idea

of weakening the notion of monad to quasimonad is new for linear logic and deserves

further exploration. (We do note that a different version of weaker structure was

introduced in [20,21].) Also, we find the combinatorics of shuffling and its variants

fascinating and wonder what other structure is to be found there and what it would

have to say about linear logic.

We also note that one can still consider T -algebras when T is just a quasimonad.

See [28]. An extension of the theory of universal derivations established in [2] for

general T -algebras was carried out by O’Neill in [27]. This theory was subsequently

subsumed in [4] where the general notion of a T -derivation with respect to an algebra

modality was introduced. It will be interesting to see the extent to which the work

there lifts to the quasimonad setting.

The notion of Rota-Baxter algebra as studied in [14] and the references therein

is in fact much more general than the definition presented here. In particular, they

have the notion of Rota-Baxter algebra of weight λ. The definition is as follows:

Definition 8.1 Let A be a k-algebra. A is a Rota-Baxter algebra of weight λ if

equipped with a k-linear map P : A→ A such that for all x, y ∈ A

P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy)

Our notion of module with integration only captures the weight 0 case. But there

is an evident notion of module with integration of weight λ. The logical significance

of this is likely quite interesting. At the same time, Guo and Keigher have also

developed a corresponding notion of differential algebra of weight λ, defined as

follows:

Definition 8.2 Let A be a k-algebra. A is a differential algebra of weight λ if

equipped with a k-linear map d : A→ A such that for all x, y ∈ A

14
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d(xy) = xd(y) + d(x)y + λd(x)d(y)

They combine the two structures in [16]. The paper [17] studies the corresponding

monadic and comonadic structures. Obviously there is a great deal of structure

here to be studied.

We also note that there is a corresponding theory of Rota-Baxter coalgebras

[22]. So many of the structures defined here could be redefined in the coalge-

braic/comonadic setting. Of course, it remains to find as compelling an example as

the shuffle structures considered here.

Two further ideas for future work are as follows. First it is important to develop

the above theories in the noncommutative case. This work for the differential setting

was begun in the preprint [6]. Free Rota-Baxter algebras in the noncommutative

case are constructed by Ebrahimi-Fard and Guo using operations on rooted trees in

[7]. It is this construction that arises in renormalization of perturbative quantum

field theory [8].

We would also like to construct free FTC-modules in both the weight 0 and

weight λ cases. Obviously these will be related to the structures found in [16,17].

This generalized notion of shuffle is also related to the quasishuffle of Hoffman [19].
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[5] G. Böhm. The weak theory of monads. Adv. Math. 225 pp. 1-32, (2010).

[6] R. Cockett. Lectures on noncommutative Kähler categories. Preprint (2014).

[7] K. Ebrahimi-Fard, L. Guo. Free Rota-Baxter algebras and rooted trees. J. Algebra and Its Applications
7, pp. 167-194 (2008).

[8] K. Ebrahimi-Fard, L. Guo. Rota-Baxter Algebras in Renormalization of Perturbative Quantum Field
Theory. in Universality and Renormalization, edited by I. Binder and D. Kreimer, (2007).

[9] T. Ehrhard, L. Regnier The differential λ-calculus. Theoretical Computer Science, 309(1-3) (2003) 1–41.

[10] T. Ehrhard, L. Regnier Differential interaction nets. Workshop on Logic, Language, Information and
Computation (WoLLIC), invited paper. Electronic Notes in Theoretical Computer Science, vol. 123,
March 2005, Elsevier.

[11] J.-Y. Girard Linear logic. Theoretical Computer Science 50 (1987) 1–102.

[12] L. Guo. Properties of free Baxter algebras, Adv. Math. 151, pp. 346– 374, (2000).

[13] L. Guo. Baxter algebra and differential algebra, in Differential Algebra and Related Topics, World
Scientific Publishing Company, 2002.

[14] L. Guo. An Introduction to Rota-Baxter algebra. Surveys of Modern Mathematics 4, (2012).

[15] L. Guo, W. Keigher. Baxter algebras and shuffle algebras. Advances in Mathematics 150, pp. 117-149,
(2000).

15



Bagnol et. al.

[16] L. Guo, W. Keigher. On differential Rota-Baxter algebras, J. Pure Appl. Algebra 212, pp. 522-540,
(2008).

[17] L. Guo, W. Keigher, S. Zhang. Monads and distributive laws for Rota-Baxter and differential algebras,
preprint, (2014).

[18] R. Hartshorne, Algebraic Geometry. Springer-Verlag, (1977).

[19] M.E. Hoffman. Quasi-shuffle products. J. Algebraic Combinatorics , pp. 49-68, (2000).

[20] R. Hoofman. Non-stable models of linear logic. Logical Foundations of Computer Science, Lecture Notes
in Computer Science 605, pp. 209-220, (2005).

[21] R. Hoofman, I. Moerdijk. A remark on the theory of semifunctors. Mathematical Structures in Computer
Science 5, pp. 1-8, (1995).

[22] R. Jian, J. Zhang. Rota-Baxter coalgebras, (preprint), (2014).

[23] G. Landi. An introduction to noncommutative spaces and their geometries. Lecture Notes in Physics,
Springer-Verlag, (1997).

[24] S. Lang. Algebra, Third Edition, Springer Graduate Texts in Mathematics, Springer-Verlag, (2005).

[25] H. Matsumura. Commutative Ring Theory, Cambridge University Press, (1986).

[26] P.-A. Mellies. Categorical semantics of linear logic. Panoramas et Syntheses 27, Societe Mathematique
de France, (2009).

[27] T. O’Neill. Differential Forms for T-Algebras in Kähler Categories. M.Sc. Thesis, (2013).

[28] R. Wisbauer. Regular pairings of functors and weak (co)monads. Algebra & Discrete Math 15, pp.
127-154, (2013).

[29] S. Zheng, L. Guo, M. Rosenkranz. Rota-Baxter operators on the polynomial algebra, integration and
averaging operators. Pacific Journal of Mathematics 275, pp. 481-506, (2015).

16


	Introduction
	Codifferential categories and algebra modalities
	Quasimonads
	Shuffling
	The Rota-Baxter equation
	Modules with differentiation and integration
	Additional structure in the presence of a (quasi)monad

	Differential and integral structure in the shuffle quasimonad
	Conclusion
	References

