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Abstract. — We prove a generalization of Quillen’s Theorem B to strict ∞-cate-
gories. More generally, we show that under similar hypothesis as for Theorem B, the
comma construction for strict ∞-categories, that we introduced with Maltsiniotis in
a previous paper, is the homotopy pullback with respect to Thomason equivalences.
We give several applications of these results, including the construction of new models
for certain Eilenberg–Mac Lane spaces.

Introduction

This paper is a part of an ongoing research project with Maltsiniotis and Gagna
about the homotopy theory of ∞-Cat, the category of strict ∞-categories and strict
∞-functors, including for the moment the papers and preprints [3, 4, 5, 6, 7, 16].
By “homotopy theory of ∞-Cat”, we mean the study of strict ∞-categories through
their classifying spaces, defined by means of the so-called Street nerve [25], associat-
ing a simplicial set to every strict ∞-category. In other words, the homotopy theory
of ∞-Cat is the homotopy theory of the pair (∞-Cat,W∞), where W∞ denotes the
class of Thomason equivalences of ∞-Cat, that is, of strict ∞-functors sent to sim-
plicial weak homotopy equivalences by Street’s nerve. Gagna proved in [16] that
the localization of ∞-Cat by W∞ is equivalent to the homotopy category of spaces.
Therefore, the study of the homotopy theory of ∞-Cat is the study of the homotopy
theory of spaces from an alternative point of view. We refer to the introduction of [6]
for a detailed exposition of this project.
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But let us step back. This homotopy theory of strict∞-categories is inspired by the
homotopy theory of Cat, the category of small categories, as developed by Quillen [22],
Thomason [27] and Grothendieck [18] (see also [20, 15]). The starting point of this
theory is the idea of Quillen to define his higher algebraic K-theory groups in terms of
homotopy types of categories. To study the resulting theory, he introduced his famous
Theorems A and B, establishing the main properties of Thomason equivalences of Cat,
that is, functors sent to simplicial weak homotopy equivalences by the usual nerve
functor.

Before recalling the statement of Theorem B, let us introduce some notation and
terminology. If u : A→ B is a functor and b is an object of B, we will denote by b\A
the category of objects of A under b, that is, of pairs (a, f : b→ u(a)), where a is an
object of A and f is a morphism of B. In other words, the category b\A is the comma
category b ↓u, where b is identified with the functor from the terminal category to B
of value b. We will say that a functor u : A → B is colocally homotopically constant
if, for every morphism f : b→ b′ of B, the functor f\A : b′\A→ b\A induced by f is
a Thomason equivalence.

Theorem B (Quillen). — If u : A→ B is a colocally homotopically constant func-
tor, then, for every object b of B, the category b\A is canonically the homotopy fiber
of u at b.

The homotopy fiber of the statement has to be understood in the sense of the
Thomason model category structure [27] but can also be interpreted by simply saying
that N(b\A) is the simplicial homotopy fiber of Nu at b, where N denotes the nerve
functor. This theorem was generalized by Barwick and Kan [10] to the following
statement about homotopy pullbacks:

Theorem (Barwick–Kan). — Consider a diagram

A
u // C B

voo

of Cat, where v is colocally homotopically constant. Then the comma construction u ↓ v
is canonically the homotopy pullback A×h

C B.

This result is also a consequence of a version of Quillen’s Theorem B due to Cisinski
[15, Theorem 6.4.15] (1). Barwick and Kan actually proved a similar result for (weak)
(∞, n)-categories. Note that this generalization, for n > 0, is orthogonal to our
project as the weak equivalences used by Barwick and Kan are the equivalences of
(∞, n)-categories and not the Thomason equivalences. When n = 0, these two classes
of weak equivalences coincide and the above theorem is essentially the case n = 0.

1. More precisely, this follows from condition (vi) of the “dual” of Cisinski’s theorem applied
to the canonical functor u ↓ C → C, which is a Grothendieck cofibration, so that any functor is
transverse to it in the sense of Cisinski (and from the fact that the canonical functor A → u ↓ C is a
deformation retract and hence a Thomason equivalence).
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The theorems of Quillen and Barwick–Kan for categories were generalized to
2-categories endowed with Thomason equivalences, and even bicategories, by Cegarra
et al. [13, 12, 14].

The purpose of this paper is to generalize these two theorems to strict∞-categories.
We introduced, with Maltsiniotis, in our study of the ∞-categorical Theorem A [7],
a comma construction for strict ∞-categories. As for categories, a special case of this
construction allows to define a slice construction and one can thus define the notion of
a colocally homotopically constant strict ∞-functor. Therefore, using Street’s nerve
to define homotopy pullbacks, the statements of these two theorems still make sense
for strict ∞-categories and our main result can be stated as:

Theorem. — Consider a diagram

A
u // C B

voo

of ∞-Cat, where v is colocally homotopically constant. Then the comma construc-
tion u ↓ v is canonically the homotopy pullback A×h

C B.

This implies the Theorem B for strict ∞-categories:

Theorem. — If u : A → B is a colocally homotopically constant strict ∞-functor,
then, for every object b of B, the ∞-category b\A is canonically the homotopy fiber
of u at b.

The proof is inspired by Cisinski’s proof of the original Quillen Theorem B
[15, Theorem 6.4.15] and is in particular based on a simplicial result due to Rezk
that can be thought of as a simplicial version of Quillen’s Theorem B. Besides Rezk’s
result, our proof rely mainly on two tools. First, we use the sesquifunctoriality of the
comma construction that we proved with Maltsiniotis [7, Appendix B]. Second, we
use Steiner’s theory of augmented directed complexes [24] to produce “contractions”
of Street’s orientals [25].

As an application of our Theorem B, we prove the following statement about loop
spaces of strict ∞-categories:

Theorem. — Let A be a strict ∞-category endowed with an object a. Suppose that
for every 1-cell f : a′ → a′′ the induced ∞-functor HomA(a′′, a) → HomA(a′, a) is a
Thomason equivalence. Then HomA(a, a) is a model for the loop space of (A, a).

Using this theorem and a particular case of the Theorem A for strict ∞-cate-
gories [6, 7], that we deduce from Theorem B, we obtain new models for some
Eilenberg–Mac Lane spaces:

Theorem. — Let π be a commutative ordered group whose underlying poset is di-
rected. Denote by π+ its monoid of positive elements. Then, for any n > 1, the
∞-category Bnπ+ is a K(π, n).
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In this statement, Bnπ+ denotes the obvious strict n-category having only one
i-cell for 0 6 i < n and whose set of n-cells is π+. In particular, we get that BnN
is a K(Z, n).

Our paper is organized as follows. The first section contains simplicial preliminar-
ies and in particular Rezk’s simplicial Theorem B. In the second section, we introduce
the ∞-categorical notions that we need. We recall the main properties of the Gray
tensor product and of oplax transformations. We give a brief overview of the theory
of comma ∞-categories that we introduced with Maltsiniotis in [7]. We use this the-
ory to define slice ∞-categories and a kind of mapping space factorization for strict
∞-functors. The third section contains the main results of the paper. We introduce
the notion of Thomason equivalences, homotopy pullback squares in ∞-Cat and colo-
cally homotopically constant strict ∞-functors. We study the homotopical behavior
of these ∞-functors under base change, from which we deduce our main theorems,
including the Theorem B for strict ∞-categories. The fourth section contains several
applications of our Theorem B. We prove the non-relative case of the Theorem A for
strict ∞-categories. We then apply Theorem B to study loop spaces of strict ∞-cat-
egories. Using our results, we produce new models for certain Eilenberg–Mac Lane
spaces. We end the section with an application to loop spaces of strict ∞-groupoids.
Finally, in an appendix, we produce, using Steiner’s theory [24], the “contractions”
of Street’s orientals [25] needed in the proof of the main result.

1. Simplicial preliminaries

1.1. — We will denote by ∆ the simplex category. Recall that it is the full subcate-
gory of the category of ordered sets whose objects are the

∆n = {0 < · · · < n}

for n > 0. The category of simplicial sets, that is, of presheaves over ∆, will be
denoted by ∆̂. The Yoneda embedding ∆ ↪→ ∆̂ will always be considered as an
inclusion.

1.2. — By a weak equivalence of simplicial sets, we will always mean a weak ho-
motopy equivalence, that is, a weak equivalence of the Kan–Quillen model category
structure. Similarly, by a homotopy pullback square of simplicial sets, we will always
mean a homotopy pullback square for the Kan–Quillen model category structure.

The following proposition can be considered as a kind of simplicial Theorem B and
will be crucial to our proof of the ∞-categorical Theorem B:

Proposition 1.3 (Rezk). — Let p : X → Y be a morphism of simplicial sets. The
following conditions are equivalent:
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(a) every pullback square
X ′ //

��

X

p

��

Y ′ // Y

is a homotopy pullback square,
(b) for every diagram of pullback squares

X ′′

��

u′ // X ′ //

��

X

p

��

Y ′′
u
// Y ′ // Y ,

if u is a weak equivalence, then so is u′,
(c) for every diagram of pullback squares

X ′′

��

u′ // X ′ //

��

X

p

��

∆n
// ∆m

// Y ,

the morphism u′ is a weak equivalence,
(d) for every diagram of pullback squares

X ′′

��

u′ // X ′ //

��

X

p

��

∆0 // ∆m
// Y ,

the morphism u′ is a weak equivalence.

Proof. — The equivalence between conditions (a) and (b) follows from [23, Proposi-
tion 2.7]. The equivalence between these two conditions and condition (c) is a con-
sequence of [23, Theorem 4.1] (see [23, Remark 4.2]). Clearly, condition (c) implies
condition (d) and it suffices to prove the converse. Consider a diagram of pullback
squares as in condition (c) and form the diagram of pullback squares

X ′′′
u′′ //

��

X ′′

��

u′ // X ′ //

��

X

p

��

∆0 0
// ∆n

// ∆m
// Y .

By condition (d), the morphisms u′′ and u′u′′ are weak equivalences. This implies
that u′ is a weak equivalence, thereby proving the result.
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We end the section with a probably well-known fact about fiber products of strong
deformation retracts.

1.4. — By a strong left deformation retract, we will mean a triple

(i : A→ B, r : B → A, h : ∆1 ×B → B)

of simplicial maps such that
(a) r is a retraction of i (so that ri = 1A),
(b) h is a homotopy from ir to 1B ,
(c) we have h(∆1× i) = ip2, where p2 : ∆1×A→ A denotes the second projection.

If the homotopy h goes from 1B to ir, instead of going from ir to 1B , we will talk of
a strong right deformation retract.

Proposition 1.5. — Let

(ik : Ak → Bk, rk : Bk → Ak, hk : ∆1 ×Bk → Bk),

for k = 0, 1, 2, be three left (resp. right) strong deformation retracts. If f0, f1, g0, g1
are morphisms such that the diagrams

A0
f0 //

i0

��

A2

i2

��

A1
f1oo

i1

��

B0 g0
// B2 B1g1
oo

and

∆1 ×B0

h0

��

∆1×g0 // ∆1 ×B2

h2

��

∆1 ×B1

h1

��

∆1×g1oo

B0 g0
// B2 B1g1
oo

commute, then (
i0 ×i2 i1 : A0 ×A2 A1 → B0 ×B2 B1,

r0 ×r2 r1 : B0 ×B2 B1 → A0 ×A2 A1,

h0 ×h2 h1 : ∆1 × (B0 ×B2 B1)→ B0 ×B2 B1
)

is a strong left (resp. right) deformation retract.

Proof. — We only need to check that r0×r2 r1 is well-defined; the fact that the triple
of the statement is a strong left (resp. right) deformation retract will then follow by
functoriality of the fiber product. Evaluating the second diagram of the statement
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at 0 (resp. at 1) in ∆1, we get that the diagram

B0

i0r0

��

g0 // B2

i2r2

��

B1

i1r1

��

g1oo

B0 g0
// B2 B1g1
oo

commutes. The fact that i2 is a monomorphism and that the first diagram of the
statement commutes implies then that the diagram

B0
g0 //

r0

��

B2

r2

��

B1
g1oo

r1

��

A0
f0

// A2 A1
f1

oo

commutes as well, thereby ending the proof.

2. Preliminaries on oplax transformations and comma ∞-categories

2.1. — We will denote by ∞-Cat the category of strict ∞-categories and strict
∞-functors. All the ∞-categories and ∞-functors considered in this paper will be
strict, and we will drop the adjective “strict” from now on.

If C is an ∞-category, we will denote by C◦ the ∞-category obtained from C by
reversing all the i-cells for i > 0.

We will denote by D0 the terminal ∞-category and by D1 the ∞-category as-
sociated to the category defined by the ordered set ∆1 = {0 < 1}. We have two
∞-functors σ, τ : D0 → D1 corresponding respectively to the objects 0 and 1 of D1
and a unique ∞-functor κ : D1 → D0.

We begin the section with some preliminaries on the Gray tensor product and oplax
transformations.

2.2. — The category ∞-Cat is endowed with a biclosed monoidal category structure
given by the so-called Gray tensor product, first introduced in [1]. This tensor product
is a generalization of the tensor product of 2-categories introduced by Gray in [17].
We will not need its precise definition and we will only recall the properties we will
need. We refer the reader to [5, Appendix A] for a comprehensive presentation in the
spirit of our paper. If A and B are two ∞-categories, their (Gray) tensor product
will be denoted by A⊗B. For instance, one has

D1 ⊗D1 '

(0,0)

��

// (0,1)

��
(1,0) // (1,1)

x�
.
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The unit of this tensor product is the terminal ∞-category D0. The right and left
internal Hom will be denoted by Homoplax and Homlax respectively, so that we have
bijections

Hom∞-Cat(A⊗B,C) ' Hom∞-Cat(A,Homoplax(B,C))

and
Hom∞-Cat(A⊗B,C) ' Hom∞-Cat(B,Homlax(A,C)),

natural in A, B and C in ∞-Cat.

Remark 2.3. — The orientation of the non-trivial 2-cell of D1⊗D1 in the diagram of
the previous paragraph reveals that the Gray tensor product we work with is what we
would call the oplax Gray tensor product, as opposed to the lax Gray tensor product
in which this 2-cell would be reversed.

2.4. — Let A and B be two ∞-categories. The objects of the ∞-categories

Homoplax(A,B) and Homlax(A,B)

are in canonical bijection with the ∞-functors from A to B. If u, v : A → B are
two such ∞-functors, a 1-cell α of Homoplax(A,B) from u to v is called an oplax
transformation from u to v. We will then write α : u ⇒ v. By definition, an oplax
transformation α corresponds to an ∞-functor D1 → Homoplax(A,B) and so, by
adjunction, to an ∞-functor D1 ⊗ A→ B. The fact that α has u as source and v as
target translates as the commutativity of the diagram

A

u

%%

σ⊗A
��

D1 ⊗A
α // B

A

v

99

τ⊗A

OO

,

where we identify A and D0⊗A. Alternatively, again by adjunction, an oplax transfor-
mation corresponds to an ∞-functor A→ Homlax(D1, B). The source and the target
of an oplax transformation given by such an∞-functor are obtained by postcomposing
by

Homlax(σ,B) : Homlax(D1, B)→ Homlax(D0, B) ' B,
Homlax(τ,B) : Homlax(D1, B)→ Homlax(D0, B) ' B,

respectively.
Similarly, 1-cells of Homlax(A,B) are called lax transformations.
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2.5. — Let u : A→ B be an∞-functor. We define the identity oplax transformation
1u : u⇒ u to be the oplax transformation corresponding to the composite

D1 ⊗A
κ⊗A

// D0 ⊗A
∼ // A

u // B ,

where the middle arrow is the canonical isomorphism.
Let v : A→ B be a second∞-functor and let α : u⇒ v be an oplax transformation,

seen as an ∞-functor D1 ⊗ A → B. If w : B → C is an ∞-functor, we get an oplax
transformation w ∗ α : wu⇒ wv by composing

D1 ⊗A
α // B

w // C .

Similarly, if w : C → A is an ∞-functor, we get an oplax transformation
α ∗ w : uw ⇒ vw by composing

D1 ⊗ C
D1⊗w // D1 ⊗A

α // B .

Finally, let w : A → B be a third ∞-functor and let β : v ⇒ w be a second oplax
transformation. The composition of 1-cells in the ∞-category Homoplax(A,B) gives
an oplax transformation that we will denote by βα. We have βα : u⇒ w.

2.6. — The ∞-categories, ∞-functors and oplax transformations, with the opera-
tions defined in the previous paragraph, form a sesquicategory (see [26, Section 2] for
a definition) that we will denote by ∞-Catoplax (but they do not form a 2-category!).
Similarly, the ∞-categories, ∞-functors and lax transformations form a sesquicate-
gory that we will denote by ∞-Catlax.

2.7. — Let i : A → B be an ∞-functor. The structure of a left (resp. right) oplax
transformation retract on i consists of
(a) a retraction r : B → A of i (so that we have ri = 1A),
(b) an oplax transformation α from ir to 1B (resp. from 1B to ir).

We will say that the structure is strong if α ∗ i = 1i and that it is above its source
if r ∗ α = 1r.

We will say that (i, r, α), or simply i, is a left (resp. right) oplax transformation
retract if (r, α) is a structure of left (resp. right) oplax transformation retract on i.
Such a retract will be said to be strong or above its source according to the properties
of the structure (r, α).

All the notions introduced in this paragraph admit lax variants obtained by re-
placing the oplax transformation α by a lax transformation.

Proposition 2.8. — Let i : A→ B be a strong left (resp. right) oplax transformation
retract above its source with retraction r : B → A. Then for every diagram of pullback
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squares

A′

i′

��

u // A

i

��

B′ //

r′

��

B

r

��

A′
u
// A ,

the ∞-functor i′ is a strong left (resp. right) oplax transformation retract above its
source with retraction r′.

Proof. — This is a particular case of [7, Proposition 5.6].

We now recall the basic definitions and some properties of the comma construction
for ∞-categories that we introduced with Maltsiniotis in [7].

2.9. — Let
A

u // C B
voo

be two ∞-functors. We define the comma ∞-category u ↓C v, also simply denoted
by u ↓ v, to be the iterated fiber product

u ↓ v = A×C Homlax(D1, C)×C B,

projective limit of the diagram

A
u // C Homlax(D1, C)π0oo

π1 // C B ,voo

where π0 = Homlax(σ,C) and π1 = Homlax(τ, C).
In the case where A = C and u = 1C , we will denote u ↓ v by C ↓ v. Similarly, if

B = C and v = 1C , we will denote u ↓ v by u ↓C.
The canonical projections induce ∞-functors

A u ↓ v
p1oo

p2 // B

and, using the description of oplax transformations in terms of Homlax(D1, C) given
in paragraph 2.4, an oplax transformation

u ↓ v
p1

}}

p2

!!
A

u
""

κ +3 B

v
||

C .
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Moreover, the data of an ∞-functor T → u ↓ v corresponds to the data of a diagram

T
a

��

b

  

A

u ��

λ +3 B

v��

C ,
where a and b are ∞-functors and λ : ua⇒ vb is an oplax transformation.

2.10. — Fix v : B → C an ∞-functor and consider a diagram

A
w //

u
��

A′

u′

��

C

α
s{

in ∞-Cat, where α : u′w ⇒ u is an oplax transformation. We define an ∞-functor

(w,α) ↓ v : u ↓ v → u′ ↓ v

in the following way. Let
T

a

��

b

  

A

u ��

λ +3 B

v~~

C

be a diagram corresponding to an ∞-functor T → u ↓ v. By composing the diagram

T
a

ww

b

''
A

w

��

u

''

B
v

ww

λ +3

C

A′
u′

77

,

α
@H

we get a diagram
T

wa

~~

b

��

A′

u′   

λ(α∗a)+3 B

v��

C

corresponding to an ∞-functor T → u′ ↓ v. This correspondence is natural in T and
defines, by the Yoneda lemma, our ∞-functor (w,α) ↓ v : u ↓ v → u′ ↓ v.
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One checks (see [7, Proposition 6.9]) that the square and the triangle

u ↓ v
(w,α) ↓ v

//

p1

��

u′ ↓ v

p1

��

A
w

// A′

u ↓ v
(w,α) ↓ v

//

p2
��

u′ ↓ v

p2
��

B

are commutative.
Note that in the case where α is the identity, so that the original triangle is com-

mutative, the diagram corresponding to the ∞-functor T → u′ ↓ v becomes

T
wa

~~

b

��

A′

u′   

λ +3 B

v��

C ,

showing that
(w, 1u) ↓ v : u ↓ v → u′ ↓ v

is nothing but the ∞-functor

w×C Homlax(D1, C)×C B : A×C Homlax(D1, C)×C B → A′×C Homlax(D1, C)×C B.

If now u : A→ C is an ∞-functor and

B
w //

v
��

B′

v′

��

C

3;β

is a diagram in ∞-Cat, where β : v ⇒ v′w is an oplax transformation, we define
similarly an ∞-functor

u ↓(β,w) : u ↓ v → u ↓ v′

enjoying analogous properties.

Remark 2.11. — We proved with Maltsiniotis in [7, Appendix B] that, if C is an
∞-category, the comma construction actually defines a functor and even a sesqui-
functor

−↓C − :∞-Catoplax/C ×∞-Catoplax
to
/C →∞-Catoplax,

where ∞-Catoplax/C and ∞-Catoplax
to
/C are some appropriate sesquicategories. We

will only need some consequences of this result which we will recall in this section.

Proposition 2.12. — Let
A

u // C B
voo
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be two ∞-functors. We have pullback squares

u ↓ v

p1

��

(u,1u) ↓ v
// C ↓ v

p1

��

A
u

// C

u ↓ v

u ↓(1v,v)
��

p2 // B

v

��

u ↓C
p2

// C .

Proof. — We will only treat the first pullback square, the proof for the second one
being similar. We have

u ↓ v = A×C Homlax(D1, C)×C B
' A×C

(
C ×C Homlax(D1, C)×C B

)
= A×C (C ↓ v),

where the isomorphism is induced by the∞-functors p1 and u×CHomlax(D1, C)×CB.
But by paragraph 2.10, the latter∞-functor is nothing but (u, 1u) ↓ v, thereby proving
the result.

Proposition 2.13. — Let
A

u // C B
voo

be two ∞-functors.
(a) If i : A′ → A is a strong left oplax transformation retract, then so is

(i, 1ui) ↓ v : (ui) ↓ v → u ↓ v.

More precisely, if (r, α) is a structure of strong left oplax transformation retract
on i, then there exists a structure of strong left oplax transformation retract
on (i, 1ui) ↓ v of the form (r′, γ) with γ compatible with α in the sense that
p1 ∗ γ = α ∗ p1, where p1 : u ↓ v → A.

(b) If j : B′ → B is a strong right oplax transformation retract, then so is

u ↓(1vj , j) : u ↓(vj)→ u ↓ v.

More precisely, if (r, β) is a structure of strong right oplax transformation retract
on j, then there exists a structure of strong right oplax transformation retract
on u ↓(1vj , j) of the form (r′, γ) with γ compatible with β in the sense that
p2 ∗ γ = β ∗ p2, where p2 : u ↓ v → B.

Proof. — The first assertion of (a) is exactly [7, Corollary B.2.8.(a)]. The proof of this
corollary actually produces a structure (r′, γ) and the fact that this γ is compatible
with α follows from [7, Proposition B.2.9]. The situation is similar for (b).

We now introduce slice ∞-categories in terms of comma ∞-categories. For a more
concrete description, we refer the reader to [6, paragraph 4.1] (see [7, Proposition 7.1]
for the comparison of the two definitions).
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2.14. — If A is an ∞-category and a is an object of A, we will denote by a\A the
∞-category

a\A = a ↓A,

where a is seen as an∞-functor D0 → A. The∞-functor p2 : a\A→ A will be called
the forgetful ∞-functor.

More generally, if u : A→ B is an ∞-functor and b is an object of B, we set

b\A = b ↓u,

where b is also seen as an ∞-functor D0 → B. It follows from Proposition 2.12 that
we have

b\A = b\B ×B A,

where the fiber product involves the forgetful ∞-functor b\B → B and u. In this
setting, we also have a forgetful ∞-functor b\A→ A.

If f : b→ b′ is a 1-cell of B, we define the ∞-functor

f\A : b′\A→ b\A

to be

(1D0 , f) ↓u : b′ ↓u→ b ↓u,

where f is seen as an oplax transformation

D0
1D0 //

b′

��

D0

b
��

C

f
s{

.

Proposition 2.15. — Let

A
u // C B

voo

be two ∞-functors and let f : a → a′ be a 1-cell of A. Then there exists an oplax
transformation

u(a′)\B
u(f)\B

//

(a′,1u(a′)) ↓ v
""

u(a)\B

(a,1u(a)) ↓ v
||

u ↓ v

px

.

Proof. — We will use the fact that the comma construction −↓ v extends to a sesqui-
functor from a certain sesquicategory∞-Catoplax/C to the sesquicategory∞-Catoplax
(see [7, Theorem B.2.6]). All we need to know about the source sesquicategory of this
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extension (see [7, paragraph B.1.18] for a complete description) is that the diagram

D0

a

%%

a′

66

u(a′)

��

f�� A

u

��

C

=
= *4

D0 a
##

u(a)

��

D0

u(a′)

��

A

u

��

C

u(f)
t| =

,
where the 2-arrows denote oplax transformations and the 3-arrow is formally an
identity “oplax 2-transformation” but can be interpreted simply as an equality of
oplax transformations, defines a 2-cell from the composite of 1-cells associated to the
2-triangles

D0

u(a)

��

D0

u(a′)

��

C

u(f)
t|

D0 a
##

u(a)

��

A

u

��

C

=

to a 1-cell associated to the 2-triangle

D0 a′ 66

u(a′)

��

A

u

��

C

=

.
(In the notation of [7, paragraph B.1.18], this 2-cell is denoted by (f, 1u(f)) and we
have

(f, 1u(f)) : (a, 1u(a)) ∗0 (1D0 , u(f))⇒ (a′, 1u(a′))
in ∞-Catoplax/C .) By applying the sesquifunctoriality of −↓ v to this 2-cell, we get
a 2-cell in ∞-Catoplax, that is, an oplax transformation, from the composite of the
∞-functors (a, 1u(a)) ↓ v and (1D0 , u(f)) ↓ v = u(f)\B to the∞-functor (a′, 1u(a′)) ↓ v,
thereby proving the result.

We end the section with a kind of mapping space factorization for ∞-functors,
involving comma ∞-categories, that will be needed in our proof of the ∞-categorical
Theorem B.

2.16. — Let u : A→ B be an ∞-functor. We will see that u factors as

A
j
// B ↓u

p1 // B ,

for some ∞-functor j. As the composition

D0
τ // D1

κ // D0



16 DIMITRI ARA

is the identity, by applying the functor Homlax(−, B), we get a factorization

B
ι // Homlax(D1, B) π1 // B

of the identity of B. By pulling back this factorization along u, we get a diagram of
pullback squares

A

j

��

u // B

ι

��

B ↓u //

p2

��

Homlax(D1, B)

π1

��

A
u

// B ,

defining our ∞-functor j. The equality π0ι = 1B easily implies that we have u = p1j,
as announced.

Proposition 2.17. — The ∞-functor j : A → B ↓u defined in the previous para-
graph is a strong right oplax transformation retract above its source with retrac-
tion p2 : B ↓u→ A.

Proof. — Consider the diagram of pullback squares of the previous paragraph.
As 1 is a terminal object of the 1-category D1, the ∞-functor τ is a strong
right lax transformation retract above its source with retraction κ. For formal
reasons (see [5, Example C.23.(f)]), the functor Homlax(−, B) extends to a sesqui-
functor (∞-Catlax)op → ∞-Catoplax, where Cop, for C a sesquicategory, denotes
the sesquicategory obtained from C by reversing the 1-cells. This implies that
ι = Homlax(κ,B) is a strong right oplax transformation retract above its source with
retraction π1 = Homlax(τ,B). The result then follows from Proposition 2.8.

2.18. — Similarly, any ∞-functor u : A→ B factors as

A
j′
// u ↓B

p2 // B ,

where j′ is a strong left oplax transformation retract above its source with retrac-
tion p1 : u ↓B → A. This can be proven either by adapting the previous proof or by a
duality argument involving the automorphism C 7→ C◦ of∞-Cat (see paragraph 2.1).

3. A Quillen Theorem B for ∞-categories

3.1. — We will denote by N :∞-Cat → ∆̂ the so-called Street nerve, introduced by
Street in [25]. We will briefly recall in Appendix A (see paragraph A.3) one of its
definition using Steiner’s theory [24]. This definition is not needed in this section and
we will recall all the properties we will use.
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This nerve functor is induced by a cosimplicial object O : ∆→∞-Cat sending ∆n

to the so-called n-th oriental On. Here are pictures of orientals in low dimension:

O0 = D0 = {0} , O1 = D1 = 0 // 1 , O2 =

2

0 //

@@

1

OO

�"
,

O3 =

0 //

�� ��

3 0 //

��

3

1 // 2

OO

1 //

@@

2

OO

*4
�"|�

���� .

By definition, if C is an∞-category, we have (NC)p = Hom∞-Cat(Op, C). When C is
a 1-category, then NC coincides with the classical nerve functor. As Street’s nerve is
induced by a cosimplicial object, it admits as a left adjoint the Kan extension of this
cosimplicial object along the Yoneda embedding. In particular, it preserves limits.

3.2. — We will say that an ∞-functor u : A → B is a Thomason equivalence if its
Street’s nerve Nu : NA→ NB is a simplicial weak equivalence.

3.3. — Let u, v : A → B be two ∞-functors and let α : u ⇒ v be an oplax trans-
formation. We constructed in [7, Appendix A], with Maltsiniotis, a simplicial homo-
topy Nα from Nu to Nv. We will briefly recall the definition of Nα in Appendix A
(see paragraph A.11) but all we will need about Nα in this section is the following
proposition.

Proposition 3.4. — Let u, v : A → B be two ∞-functors and let α : u ⇒ v be an
oplax transformation.
(a) If w : B → C is an ∞-functor, then we have

N(w ∗ α) = N(w)N(α).

(b) If w : C → A is an ∞-functor, then we have

N(α ∗ w) = N(α)(∆1 ×N(w)).

Proof. — This is [7, Proposition A.14].

Proposition 3.5. — If (i : A→ B, r, α) is a strong left (resp. right) oplax transfor-
mation retract, then (Ni : NA→ NB,Nr,Nα) is a strong left (resp. right) deforma-
tion retract and in particular i and r are Thomason equivalences.

Proof. — This follows from paragraph 3.3 and the previous proposition.
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3.6. — We will say that a commutative square

A

u

��

v // A′

u′

��

B
w
// B′

in ∞-Cat is a homotopy pullback square if the commutative square

NA

Nu

��

Nv // NA′

Nu′

��

NB
Nw
// NB′

of simplicial sets is a homotopy pullback square (as in paragraph 1.2). Homotopy
pullback squares in ∞-Cat inherit many properties of homotopy pullback squares in
simplicial sets: for instance they compose, and a square as above in which u and u′
are both Thomason equivalences is a homotopy pullback square.

Remark 3.7. — One can show that a commutative square in ∞-Cat is a ho-
motopy pullback square in the sense of the previous paragraph if and only if it
induces a pullback square in the weak (∞, 1)-category obtained from ∞-Cat by
weakly inverting Thomason equivalences. This follows from (a mild generalization)
of [16, Theorem 5.6].

We now introduce the notion corresponding to the hypothesis of Theorem B.

3.8. — Let u : A→ B be an∞-functor. We will say that u is colocally homotopically
constant if, for every 1-cell f : b → b′ of B, the ∞-functor f\A : b′\A → b\A is a
Thomason equivalence.

The following proposition is the crucial step in our proof of the ∞-categorical
Theorem B.

Proposition 3.9. — If u : A→ B is a colocally homotopically constant ∞-functor,
then any pullback square

C

��

// B ↓u

p1

��

D // B

is a homotopy pullback square.

Proof. — Since the nerve functor preserves fiber products, by Proposition 1.3, it
suffices to show that N(p1) satisfies condition (d) of this proposition. So consider a
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diagram of pullback squares of the form

Qi
fi //

��

P

��

// N(B ↓u)

N(p1)
��

∆0
i
// ∆m x

// NB .

By Proposition 2.12, we also have a diagram of pullback squares

x(i) ↓u i∗ //

p1

��

x ↓u

p1

��

// B ↓u

p1

��

O0
i
// Om x

// B ,

where i∗ = (i, 1x(i)) ↓u. Using again the fact that the nerve functor preserves fiber
products, we get a canonical isomorphism between Qi and N(x(i) ↓u). We thus have
to show that

fi : N(x(i) ↓u)→ P

is a weak equivalence.
Denote by η : ∆m → N(Om) the adjunction morphism. By one of the triangular

identities, the composite

∆m
η
// N(Om) Nx // NB

is x : ∆m → NB and we get a diagram of pullback squares

N(x(i) ↓u) fi //

N(p1)
��

P
g
//

��

N(x ↓u)

N(p1)
��

// N(B ↓u)

N(p1)
��

∆0
i

// ∆m η
// N(Om)

Nx
// NB .

Note that we have gfi = N(i∗).
To prove that fi is a weak equivalence, we proceed in three steps:
(1) We show that f0 is a weak equivalence. To do so, we will use Proposition 1.5

to prove that
f0 : N(x(0) ↓u)→ P

is a strong left deformation retract. To begin with, note that f0 can be identified with
the fiber product of the vertical maps of the commutative diagram

N(x(0) ↓u)
N(p1)

//

N(0∗)
��

N(O0)

N(0)
��

∆0
η

oo

0
��

N(x ↓u)
N(p1)

// N(Om) ∆m ,
η

oo
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the left square being commutative by paragraph 2.10 and N(O0) being isomorphic
to∆0. The morphism 0 : ∆0 → ∆m is of course a strong left deformation retract, with
a unique retraction and a unique simplicial homotopy k. We will prove in Appendix A
(see in particular Propositions A.8 and A.12) that there exists a structure of strong
left oplax transformation retract (r, α) on 0 : O0 → Om making the square

∆1 ×N(Om)

Nα

��

∆1 ×∆m
∆1×ηoo

k

��

N(Om) ∆mη
oo

commute. In particular, by Proposition 3.5, the morphism N(0) : N(O0) → N(Om)
is a strong left deformation retract with retraction Nr and homotopy Nα. Proposi-
tion 2.13 then implies that there exists a structure of strong left oplax transformation
retract (r′, γ) on 0∗ : x(0) ↓u → x ↓u satisfying p1 ∗ γ = α ∗ p1. In particular,
again by Proposition 3.5, the morphism N(0∗) : N(x(0) ↓u) → N(x ↓u) is a strong
left deformation retract with retraction Nr′ and homotopy Nγ. By Proposition 3.4,
applying N to the equality p1 ∗ γ = α ∗ p1 gives the commutativity of the diagram

∆1 ×N(x ↓u)

Nγ

��

∆1×N(p1)
// ∆1 ×N(Om)

Nα

��

N(x ↓u)
N(p1)

// N(Om) .

We are thus in position to apply Proposition 1.5 and we get that f0 is a strong left
deformation retract and hence a weak equivalence.

(2) We show that g is a weak equivalence. We proved in the previous step that
0∗ is a strong left oplax transformation retract and N(0∗) is thus a weak equivalence.
As N(0∗) = gf0, this implies that g is a weak equivalence.

(3) We show that fi is a weak equivalence. Let l be any 1-cell from 0 to i in Om.
Using Proposition 2.15, we get an oplax transformation

x(i)\A
x(l)\A

//

i∗
""

x(0)\A

0∗
||

x ↓u

qy

.

We already proved that 0∗ is a Thomason equivalence and x(l)\A is a Thomason
equivalence by hypothesis. Using paragraph 3.3, we get that N(i∗) is homotopic to
a weak equivalence and is thus a weak equivalence. The equality N(i∗) = gfi and
the fact proven above that g is a weak equivalence then implies that fi is a weak
equivalence, thereby ending the proof.
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Theorem 3.10. — Let
A

u // C B
voo

be two ∞-functors. If v is colocally homotopically constant, then the pullback square

u ↓ v

��

// B

v

��

u ↓C
p2
// C

is a homotopy pullback square.

Proof. — Consider the factorization

B
j
// C ↓ v

p1 // C

of v introduced in paragraph 2.16. The pullback square of the statement factors as a
composite of two pullback squares

u ↓ v

j′

��

// B

j

��

·

��

// C ↓ v

p1

��

u ↓C
p2

// C

and it suffices to show that these two squares are homotopy pullback squares. By
Proposition 2.17, the ∞-functor j is a strong right oplax transformation retract. On
the other hand, by Proposition 2.12, the ∞-functor j′ can be identified with the
∞-functor

u ↓(1v, j) : u ↓ v → u ↓ p1,

which, by Proposition 2.13, is a strong right oplax transformation retract as well. It
follows from Proposition 3.5 that both j and j′ are Thomason equivalences, showing
that the top square is a homotopy pullback square. As for the bottom square, this
follows from the previous proposition.

Corollary 3.11 (Theorem B). — If u : A → B is a colocally homotopically con-
stant ∞-functor and b is an object of B, then the pullback square

b\A

b\u

��

// A

u

��

b\B // B ,

where the horizontal arrows are the forgetful ∞-functors, is a homotopy pullback
square.
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Proof. — This is a particular case of the previous theorem.

Corollary 3.12. — Let
A

u // C B
voo

be two∞-functors. If v is colocally homotopically constant, then the comma construc-
tion u ↓ v is canonically the homotopy pullback A×hC B.

Proof. — By paragraph 2.18, the ∞-functor u factors as

A
j′
// u ↓C

p2 // C ,

where j′ is a strong left oplax transformation retract and hence a Thomason equiva-
lence by Proposition 3.5. We thus get a commutative diagram

A
u //

j′

��

C B
voo

u ↓C
p2
// C B ,

v
oo

where the vertical arrows are Thomason equivalences, and the result follows from the
previous theorem.

Remark 3.13. — More precisely, one can show that, under the same hypothesis as
in the previous corollary, the “2-square”

u ↓ v

p1

��

p2 // B

v

��

A
u
// C

9Aκ

introduced in paragraph 2.9 is a “homotopy pullback 2-square” in some appropriate
sense (for instance, its topological realization is a homotopy pullback in the sense of
Mather [21]).

Corollary 3.14. — If u : A → B is a colocally homotopically constant ∞-functor
and b is an object of B, then the ∞-category b\A is canonically the homotopy fiber
of u at b.

Proof. — This is a particular case of the previous corollary.

Remark 3.15. — As the comma construction of two n-functors is an n-category, the
four previous statements all restrict to n-categories. In particular, we recover the orig-
inal Quillen Theorem B and its generalization to 2-categories proven by Cegarra [13].
To get direct proofs of these results for n-categories, all one has to do is to change in
our proofs all the “∞” to “n” and to replace the m-th oriental Om appearing in the
proof of Proposition 3.9 by its n-th truncation O6n

m , obtained from Om by keeping
only i-cells for i 6 n and modding out by (n+ 1)-cells. Of course, some parts of these
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proofs get simpler for small n. Most notably, for n = 1, the map fi of the proof of
Proposition 3.9 can be identified with the nerve of the functor i∗, so that all one has
to prove is that 0∗ : x(0) ↓u→ x ↓u is a Thomason equivalence, which can be done by
describing an explicit structure of transformation retract on this functor (note that
an oplax transformation between 1-functors is nothing but a natural transformation).
More generally, for n = 1 and n = 2, all the intermediate constructions and oplax
transformations involved in these proofs can be defined by using explicit formulas.

Remark 3.16. — The four previous results were proven for “under-∞-categories”.
They remain valid for “over-∞-categories” defined as A/b = u ↓ b, for u : A → B an
∞-functor and b an object of B. This will follow from the equality A/b = (b\A◦)◦ (see
paragraph 2.1 for the notation C◦) and the fact, that we will prove with Maltsiniotis
in [8], that the duality C 7→ C◦ sends Thomason equivalences to Thomason equiva-
lences.

If one tries to adapt our proofs to “over-∞-categories”, one has to replace
the ∞-functor 0 : O0 → Om appearing in the proof of Proposition 3.9 by the
∞-functor m : O0 → Om. This ∞-functor is both a right oplax transforma-
tion retract and a right lax transformation retract, but only the lax structure is
compatible with the structure of right deformation retract of the simplicial map
m : ∆0 → ∆m. Therefore, one has to replace the use of our “oplax” comma
construction u ↓ v = A ×C Homlax(D1, C) ×C B, for u : A → C and v : B → C

two ∞-functors, by its “lax” variant u ↓′ v = A ×C Homoplax(D1, C) ×C B, which
has sesquifunctoriality properties with respect to lax transformations instead of
oplax transformations. This leads to a proof of our results for “over-∞-categories”
defined as A

co
/ b = u ↓′ b (see [5, Remark 6.37] for an explanation of this notation).

As A
co
/ b = (b\Aop)op, where C 7→ Cop denotes the duality of ∞-Cat consisting in

reversing cells in odd dimension, the results for these “over-∞-categories” also follow
formally from our results and the fact that the duality C 7→ Cop sends Thomason
equivalences to Thomason equivalences, which is a consequence of the existence of a
natural isomorphism between N(Cop) and N(C)op (see [7, Proposition 5.2]), where
X 7→ Xop denotes the usual duality of simplicial sets.

Finally, the results for “under-∞-categories” defined as b
co
\A = b ↓′ u will also follow

from the fact that C 7→ C◦ sends Thomason equivalences to Thomason equivalences,
as b

co
\A = (A◦

co
/ b)◦.

4. A few applications

A first consequence of the ∞-categorical Theorem B is the (non-relative) ∞-cate-
gorical Theorem A, which is a special case of the main result of [6] and [7].
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4.1. — We will say that an ∞-category A is aspherical if the unique ∞-functor
from A to the terminal ∞-category is a Thomason equivalence or, in other words, if
its nerve NA is weakly contractible.

Theorem 4.2. — Let u : A → B be an ∞-functor. If for every object b of B, the
∞-category b\A is aspherical, then u is a Thomason equivalence.

Proof. — The hypothesis implies that u is colocally homotopically constant. We
can thus apply Theorem B and more precisely Corollary 3.14. We get that, for
every object b of B, the ∞-category b\A is the homotopy fiber of u at b. As by
hypothesis b\A is aspherical, this implies that all the homotopy fibers of Nu are
weakly contractible, showing that Nu is a weak equivalence.

We will now use the∞-categorical Theorem B to produce models of Eilenberg–Mac
Lane spaces. We will need the following lemma:

Lemma 4.3. — Let A be an ∞-category and let a and a′ be two objects of A. There
exists a canonical isomorphism

a ↓ a′ ' HomA(a, a′)◦,

natural in a and a′, where a and a′ are seen as ∞-functors D0 → A and C 7→ C◦

denotes the duality introduced in paragraph 2.1.

Proof. — See [5, Proposition B.6.2].

Theorem 4.4. — Let A be an ∞-category endowed with an object a. Suppose that
for every 1-cell f : a′ → a′′ of A the induced∞-functor HomA(a′′, a)◦ → HomA(a′, a)◦
is a Thomason equivalence. Then HomA(a, a)◦ is a model for the loop space of (A, a)
in the sense that N(HomA(a, a)◦) has the homotopy type of the loop space of (NA, a).

Proof. — By the previous lemma, the hypothesis precisely means that the∞-functor
a : D0 → A is colocally homotopically constant. By Proposition 3.12, we thus get
that a ↓ a is the homotopy pullback of

D0
a // A D0 ,aoo

that is, that N(a ↓ a) is the homotopy pullback of

∆0
a // NA ∆0 ,aoo

thereby proving the result.

Remark 4.5. — As mentioned before, we will prove with Maltsiniotis in [8] that the
duality C 7→ C◦ sends Thomason equivalences to Thomason equivalences. Therefore
the previous theorem remains valid if all the dualities appearing in its statement are
removed.
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4.6. — Let (M,+, e) be a commutative monoid. For any n > 1, we define an
n-category BnM in the following way. Its cells are

(BnM)k =
{
{∗} if 0 6 k < n,
M if k = n;

the unit of the unique (n − 1)-cell is the unit e of the monoid; and if x and y are
n-cells, then for any 0 6 j < n, we set x ∗j y = x+ y.

Theorem 4.7. — For any abelian group π and any n > 1, the ∞-category Bnπ is
a K(π, n) in the sense that N(Bnπ) is a K(π, n).

Proof. — The result is well known for n = 1. If n > 2, then all the 1-cells of Bnπ
are identities so that the hypothesis of Theorem 4.4 is satisfied. We thus get that the
loop space of Bnπ is HomBnπ(∗, ∗)◦, which is isomorphic to Bn−1π. The result thus
follows by induction using the fact that (the nerve of) Bnπ is connected.

Remark 4.8. — In [11], Berger proves that the topological realization of the so-
called cellular nerve of Bnπ is a K(π, n), showing that Bnπ is a K(π, n) in a, a priori,
different sense from the previous theorem (see his Corollary 4.3 and his Section 4.10).
It will follow from the comparison of Street’s nerve and the cellular nerve, that we will
study with Maltsiniotis in [8], that these two meanings of “being a K(π, n)” coincide.

Theorem 4.9. — Let π be a commutative ordered group whose underlying poset is
aspherical (as a category). Denote by π+ its monoid of positive elements. Then, for
any n > 1, the ∞-category Bnπ+ is a K(π, n).

Proof. — The inclusion π+ ⊂ π induces an∞-functor Bnπ+ → Bnπ. By the previous
theorem, it suffices to prove that this ∞-functor is a Thomason equivalence. We will
apply Theorem A (Theorem 4.2). We have to prove that the ∞-category ∗\(Bnπ+)
is aspherical. The concrete description of the slice ∞-categories given in [6, para-
graph 4.1] shows that this ∞-category can be described in the following way: it is an
n-category whose underlying (n − 1)-category is Bn−1π (where B0π means π, as a
set) and whose n-cells are given by the order on π. In particular, for n = 1, we get
the poset π seen as a 1-category. This poset being aspherical by hypothesis, this ends
the proof of the case n = 1. If n > 1, then we have isomorphisms

Hom∗\(Bnπ+)(∗, ∗)◦ '
(
∗\(Bn−1π+)

)◦ ' ∗\(Bn−1((π◦)+)),

where π◦ denotes the group π equipped with the opposite order. As π◦ is as-
pherical as a poset (since π is), we can assume by induction that the ∞-category
Hom∗\(Bnπ+)(∗, ∗)◦ is aspherical. We can thus apply Theorem 4.4 and we get that
the loop space of ∗\(Bnπ+) is aspherical. This shows that ∗\(Bnπ+) is aspherical, as
it is obviously connected, thereby ending the proof.
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Example 4.10. — The previous theorem applies to commutative ordered groups
whose underlying poset is directed. In particular, the ∞-category BnN is a K(Z, n).

We end the section with an application to loop spaces of ∞-groupoids.

4.11. — Recall that a (strict) ∞-groupoid is an ∞-category in which every i-cell
for i > 0 is strictly invertible (for the composition in codimension 1), and that an
∞-functor f : G→ H between ∞-groupoids is an equivalence of ∞-groupoids if
— for every object y of H, there exists an object x of G and a 1-cell f(x) → y

in H,
— for every i > 0, every pair of parallel i-cells u, v in G (two 0-cells being always

considered as parallel) and every (i+ 1)-cell β : f(u)→ f(v) in H, there exists
an (i+ 1)-cell α : u→ v in G and an (i+ 2)-cell f(α)→ β in H.

Proposition 4.12. — An equivalence of ∞-groupoids is a Thomason equivalence.

Proof. — The equivalences of ∞-groupoids are precisely the weak equivalences be-
tween ∞-groupoids of the so-called folk model category structure on ∞-Cat [19] (see
also [9]). To prove the result, it thus suffices, using Ken Brown’s lemma, to show that
the trivial fibrations of the folk model category structure are Thomason equivalences.
We will see that the nerve of such a trivial fibration is actually a trivial Kan fibration.
By adjunction, to prove this, it suffices to show that the left adjoint c : ∆̂→∞-Cat of
the nerve functor sends the inclusions ∂∆n ↪→ ∆n, where n > 0 and ∂∆n denotes the
boundary of ∆n, to a cofibration of the folk model category structure. The explicit
description of c(K), where K is a simplicial complex, given in [4, Section 9], shows
that c(∂∆n) is the underlying (n − 1)-category of the n-category c(∆n) = On. In
other words, the ∞-functor c(∂∆n) → c(∆n) corresponds to the free addition of the
unique non-trivial n-cell of On, and is hence, by definition, a folk cofibration, thereby
proving the result.

Remark 4.13. — One can actually show that an ∞-functor between ∞-groupoids
is an equivalence of ∞-groupoids if and only if it is a Thomason equivalence.

Theorem 4.14. — Let G be a strict∞-groupoid endowed with an object x. Then the
loop space of (G, x) is a product of Eilenberg–Mac Lane spaces (including the discrete
space K(E, 0), for E a set, as an Eilenberg–Mac Lane space).

Proof. — As every 1-cell of G is invertible, the hypothesis of Theorem 4.4 is sat-
isfied and we get that HomG(x, x)◦, which is isomorphic to HomG(x, x) as G is an
∞-groupoid, is the loop space of (G, x). As all the connected components of a loop
space are weakly equivalent, to prove the result, it suffices to show that the connected
component of any object of HomG(x, x) is a product of Eilenberg–Mac Lane spaces.
Consider the object 1x : x → x. Its connected component is equivalent to the full
sub-∞-groupoid of HomG(x, x) whose only object is 1x. This∞-groupoid is obtained
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by “shifting down” a sub-∞-groupoid G′ of G having only one object (namely x)
and one 1-cell (namely 1x). Such an ∞-groupoid G′ is known to be equivalent to a
product of the form

∏
n>2 B

nπn (see for instance [2, Theorem 4.17]) and the con-
nected component of 1x is thus equivalent to

∏
n>1 B

nπn+1. The result thus follows
from Theorem 4.7.

Appendix A
A contraction of the oriental

The purpose of this appendix is to construct the oplax transformation retract
needed in the proof of Proposition 3.9.

A.1. — The appendix relies on Steiner’s theory of augmented directed complexes
as developed in [24]. We will recall the minimal amount of information needed to
follow our arguments and we refer the reader to [5, Section 2] for a comprehensive
introduction to this theory in the spirit of our paper.

We will denote by Cad the category of augmented directed complexes. Recall that
an augmented directed complex is an augmented complex K (of abelian groups in
nonnegative degrees) endowed, for every p > 0, with a submonoid K∗p of Kp of
positive p-chains, and that amorphism of augmented directed complexes is a morphism
of augmented complexes sending positive p-chains to positive p-chains. Similarly, a
homotopy between two such morphisms is a homotopy, in the classical sense, sending
positive p-chains to positive (p+ 1)-chains.

To any augmented directed complex, Steiner associates an∞-category thus defining
a functor ν : Cad → ∞-Cat. We will not need the precise definition of this functor
and we will recall all the properties of ν we will use.

A.2. — We will denote by c : ∆̂ → Cad the normalized complex functor. If X is
a simplicial set, the underlying augmented complex of cX is the classical normal-
ized complex (its p-chains are freely generated by nondegenerate p-simplices of X)
and (cX)∗p, for p > 0, consists of p-chains with nonnegative coefficients. In particular,
if m > 0 and p > 0, we have (c∆m)p ' Z(Bm,p) where

Bm,p = {(i0, . . . , ip) | 0 6 i0 < · · · < ip 6 m}.

We will call the graded set
∐
pBm,p the base of c∆m. (It is the unique base in some

precise sense that we will not need.)

A.3. — By composing the functors

∆
y
// ∆̂ c // Cad

ν // ∞-Cat ,

where y denotes the Yoneda embedding, we get a cosimplicial object

O : ∆→∞-Cat.
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This is Steiner’s definition of Street’s cosimplicial object of orientals. For n > 0, the
∞-category On is the n-th oriental. The cosimplicial object O induces the so-called
Street nerve

N :∞-Cat → ∆̂,

sending an ∞-category C to the simplicial set NC : ∆p 7→ Hom∞-Cat(Op, C). This
nerve functor admits as a left adjoint the left Kan extension of O : ∆→∞-Cat along
the Yoneda embedding.

From now on, we fix m > 0.

We will start by showing that c∆m retracts by deformation on c∆0 in some appro-
priate sense.

A.4. — Consider the morphism c(0) : c∆0 → c∆m induced by the simplicial mor-
phism 0 : ∆0 → ∆m corresponding to the 0-simplex 0 of ∆m, and the morphism
c(r) : c∆m → c∆0 induced by the unique morphism r : ∆m → ∆0. By functoriality,
we have c(r)c(0) = 1c∆0 . We will see that c(0)c(r) is homotopic to 1c∆m

. For p > 0,
we define

hp : (c∆m)p → (c∆m)p+1

by

hp(i0, . . . , ip) =
{

(0, i0, . . . , ip) if i0 > 0,
0 if i0 = 0.

Adopting the convention that, for 0 6 j0 6 · · · 6 jq 6 m, if the sequence of the jk is
not strictly increasing then (j0, . . . , jq) = 0 in (c∆m)q, we can simply write

hp(i0, . . . , ip) = (0, i0, . . . , ip).

Proposition A.5. — The morphisms hp introduced in the previous paragraph define
a homotopy h from c(0)c(r) to 1c∆m .

Proof. — Let (i0, . . . , ip) be an element of the base of c∆m. Note first that we have

c(0)c(r)(i0, . . . , ip) =
{

(0) if p = 0,
0 otherwise.

To prove that h is a homotopy, we distinguish two cases:
— If p = 0, then we have

dh(i0) = d(0, i0) = (i0)− (0) = (i0)− c(0)c(r)(i0).
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— If p > 1, then we have

dh(i0, . . . , ip) + hd(i0, . . . , ip)

= d(0, i0, . . . , ip) +
p∑
k=0

(−1)kh(i0, . . . , îk, . . . , ip)

= (i0, . . . , ip) +
p∑
k=0

(−1)k+1(0, i0, . . . , îk, . . . , ip)

+
p∑
k=0

(−1)k(0, i0, . . . , îk, . . . , ip)

= (i0, . . . , ip)− 0
= (i0, . . . , ip)− c(0)c(r)(i0, . . . , ip).

We now recall how such a homotopy induces an oplax transformation.

A.6. — If K and L are two augmented directed complexes, we define their tensor
productK⊗L in the following way: the underlying augmented complex is the classical
tensor product of the underlying augmented complexes, and the positive chains are
generated by tensor products of positive chains. By [5, Proposition A.19], there exists
a canonical ∞-functor

ν(K)⊗ ν(L)→ ν(K ⊗ L),

where the tensor product on the left is the Gray tensor product.
In particular, ifK is an augmented directed complex, we get an augmented directed

complex c∆1⊗K. Moreover, the ∞-category ν(c∆1) is canonically isomorphic to D1
and we thus get an ∞-functor D1 ⊗ ν(K) → ν(c∆1 ⊗ L). One checks that if L is a
second augmented directed complex, then morphisms c∆1 ⊗ K → L correspond to
homotopies between morphisms from K to L. This implies that if h is a homotopy
between morphisms from K to L, we get an oplax transformation ν(h) by composing

D1 ⊗ ν(K) // ν(c∆1 ⊗K)
ν(h)
// νL .

Moreover, if h is a homotopy from f to g, then ν(h) is an oplax transformation
from ν(f) to ν(g).

In our case of interest, that is, the case where K = c∆m, the canonical morphism
D1 ⊗ Om → ν(c∆1 ⊗ c∆m) is an isomorphism (see for instance [5, Proposition 7.5
and Theorem A.15]), which we will consider as an equality.

We finally produce the announced structure of oplax transformation retract.

A.7. — We will denote by

0 : O0 → Om and r : Om → O0



30 DIMITRI ARA

the ∞-functors induced by the simplicial maps 0 : ∆0 → ∆m and r : ∆m → ∆0.
Recall that O0 is the terminal ∞-category D0 and that the ∞-functor 0 corresponds
to the object 0 of Om. The ∞-functor r is obviously a retraction of 0.

By applying the considerations of the previous paragraph to the homotopy h

of Proposition A.5, we obtain an oplax transformation α from the composite
Om

r−→ O0
0−→ Om to the identity of Om. By definition, this oplax transformation is

obtained by applying the functor ν to the morphism c∆1 ⊗ c∆m → c∆m, that we
will still denote by h, given by

h((0)⊗ (i0, . . . , ip)) =
{

(0) if p = 0,
0 if p > 0,

h((1)⊗ (i0, . . . , ip)) = (i0, . . . , ip),
h((0, 1)⊗ (i0, . . . , ip)) = (0, i0, . . . , ip),

where (i0, . . . , ip) is in the base of c∆m.

Proposition A.8. — The ∞-functor 0 : O0 → Om is a strong left oplax transfor-
mation retract. More precisely, the pair (r, α), introduced in the previous paragraph,
is a strong left oplax transformation retract structure on 0 : O0 → Om.

Proof. — This follows from the previous paragraph. (The condition of strongness is
automatic as the identity of 0 is the only 1-cell from 0 to 0 in Om.)

We end the appendix with a compatibility result, needed in the proof of Proposi-
tion 3.9, between the oplax transformation α and a classical simplicial homotopy.

A.9. — We will denote by
k : ∆1 ×∆m → ∆m

the unique simplicial homotopy from the constant endofunctor of ∆m of value 0 to the
identity of ∆m. Recall that k sends a p-simplex (ϕ,ψ) : ∆p → ∆1 ×∆m of ∆1 ×∆m

to the p-simplex (0, . . . , 0, ψ(r), . . . , ψ(p)) of ∆m, where r denotes the number of 0 in
the sequence ϕ(0), . . . , ϕ(p).

A.10. — We will denote by η : ∆m → N(Om) the adjunction morphism. This
morphism sends a p-simplex ψ : ∆p → ∆m of ∆m to the p-simplex O(ψ) : Op → Om
of N(Om). By definition of O, we have O(ψ) = νc(ψ), with c(ψ) : c∆p → c∆m

defined on the base of c∆p by

c(ψ)(i0, . . . , iq) = (ψ(i0), . . . , ψ(iq)),

where, following the convention introduced in paragraph A.4, the right member is
zero if the sequence ψ(i0), . . . , ψ(iq) is not strictly increasing.
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A.11. — Let u, v : A → B be two ∞-functors and let β : u ⇒ v be an oplax
transformation. Following [7, Appendix A], we define a simplicial homotopy

Nβ : ∆1 ×NA→ NB

from Nu to Nv in the following way. Let (ϕ, x) : ∆p → ∆1 × NA be a p-simplex
of ∆1 ×NA. By definition, the homotopy Nβ sends (ϕ, x) to the p-simplex

Op
ν(gϕ)

// D1 ⊗Op
D1⊗x // D1 ⊗A

β
// B

of NB, where
gϕ : c∆p → c∆1 ⊗ c∆p

is the morphism defined as follows. Let (i0, . . . , iq) be an element of the base of c∆p

and denote by r the number of 0 in the sequence ϕ(i0), . . . , ϕ(iq). The morphism gϕ
is defined by

gϕ(i0, . . . , iq) =


(1)⊗ (i0, . . . , iq) if r = 0,
(0)⊗ (i0, . . . , iq) + (0, 1)⊗ (i1, . . . , iq) if r = 1,
(0)⊗ (i0, . . . , iq) if r > 2,

where (i1, . . . , iq) = 0 for q = 0.

Proposition A.12. — The square

∆1 ×∆m
∆1×η //

k

��

∆1 ×N(Om)

Nα

��

∆m η
// N(Om)

commutes.

Proof. — Let p > 0 and fix (ϕ,ψ) : ∆p → ∆1 × ∆m a p-simplex of ∆1 × ∆m. We
want to compare the two p-simplices Op → Om of N(Om) associated to (ϕ,ψ) by the
square of the statement. Each of these p-simplices will be induced by a morphism
c∆p → c∆m and we will prove that these two morphisms are equal. We thus fix
(i0, . . . , iq) an element of the base of c∆p and we denote by r the number of 0 in the
sequence ϕ(i0), . . . , ϕ(iq).

By paragraphs A.9 and A.10, the morphism ηk sends the p-simplex (ϕ,ψ) to the
p-simplex ν(f) : Op → Om of N(Om), where the morphism f : c∆p → c∆m satisfies

f(i0, . . . , iq) = (0, . . . , 0, ψ(ir), . . . , ψ(iq)).

In other words, we have

f(i0, . . . , iq) =


(ψ(i0), . . . , ψ(iq)) if r = 0,
(0, ψ(i1), . . . , ψ(iq)) if r = 1,
0 if r > 2.
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Similarly, by paragraphs A.10 and A.11, the morphism (Nα)(∆1× η) sends (ϕ,ψ)
to the p-simplex ν(g) : Op → Om of N(Om), where the morphism g : c∆p → c∆m is
the composite

c∆p

gϕ
// c∆1 ⊗ c∆p

c∆1⊗c(ψ)
// c∆1 ⊗ c∆m

h // c∆m .

To compute this composite, we distinguish three cases:
— If r = 0, then we have

h(c∆1 ⊗ c(ψ))gϕ(i0, . . . , iq) = h(c∆1 ⊗ c(ψ))((1)⊗ (i0, . . . , iq))
= h((1)⊗ (ψ(i0), . . . , ψ(iq)))
= (ψ(i0), . . . , ψ(iq)).

— If r = 1, then we have
h(c∆1 ⊗ c(ψ))gϕ(i0, . . . , iq)

= h(c∆1 ⊗ c(ψ))((0)⊗ (i0, . . . , iq) + (0, 1)⊗ (i1, . . . , iq))
= h((0)⊗ (ψ(i0), . . . , ψ(iq)) + (0, 1)⊗ (ψ(i1), . . . , ψ(iq)))
= (0, ψ(i1), . . . , ψ(iq)),

where the last equality has to be checked separately in the cases q = 0 and q 6= 0.
— Finally, if r > 2, then we have

h(c∆1 ⊗ c(ψ))gϕ(i0, . . . , iq) = h(c∆1 ⊗ c(ψ))((0)⊗ (i0, . . . , iq))
= h((0)⊗ (ψ(i0), . . . , ψ(iq)))
= 0.

This shows that f = g, thereby ending the proof.
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