THE GROUPOIDAL ANALOGUE ©
TO JOYAL’S CATEGORY 6 IS A TEST CATEGORY

DIMITRI ARA

ABsTRACT. We introduce the groupoidal analogue O to Joyal’s cell category © and
we prove that O is a strict test category in the sense of Grothendieck. This implies
that presheaves on © model homotopy types in a canonical way. We also prove that
the canonical functor from © to © is aspherical, again in the sense of Grothendieck.
This allows us to compare weak equivalences of presheaves on O to weak equivalences
of presheaves on ©. Our proofs apply to other categories analogous to ©.

1. INTRODUCTION

In Pursuing Stacks, Grothendieck defines a notion of weak co-groupoid (see [11], [16],
[2] and [17]) and conjectures that his weak oo-groupoids model homotopy types in a pre-
cise way. His definition of weak oo-groupoids is based on the notion of coherator. Roughly
speaking, a coherator is a category encoding the algebraic theory of weak oco-groupoids.
If C is a coherator, a weak oo-groupoid (of type C) is a presheaf on C satisfying some
left exactness condition. A first step toward Grothendieck’s conjecture would thus be to
prove that presheaves on a coherator (without the exactness condition) model homotopy
types.

This is where test categories enter the picture. Test categories were introduced by
Grothendieck in [11] (see also [15] and [9]). The main property of these categories is
that presheaves on a test category canonically model homotopy types. Therefore, to
prove Grothendieck’s conjecture, it is reasonable to start by trying to prove that every
coherator is a test category. In [16], Maltsiniotis gave a series of conjectures implying
Grothendieck’s conjecture based on this idea.

Conjecturally, every coherator is (non canonically) endowed with a “forgetful” functor
to ©. This is the reason why we are interested in understanding the homotopy theory
of ©. In this article, we prove that O is a test category. Our hope is that we will be able
to deduce that every coherator C'is a test category from this result, using properties of
the functor from C' to ©. _

As announced in the title, © is the groupoidal analogue to Joyal’s cell category ©.
The category © was introduced by Joyal in [13] as the opposite category of the category
of so-called finite disks. Batanin and Street conjectured in [6] that © could be seen as a
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full subcategory of the category of strict oo-categories. This was proved independently
by Makkai and Zawadowski in [14] and by Berger in [7]. In the latter article, Berger also
gave a nice combinatorial description of ©. In our paper, the category O is introduced
as the universal categorical globular extension. Roughly speaking, a categorical globular
extension is a category endowed with operations dual to those of strict oo-categories
and satisfying axioms dual to those of strict oo-categories. We show, starting from our
definition, that © can be seen as the full subcategory of the category of strict oo-categories
whose objects are free strict oco-categories on globular pasting schemes. This implies,
using the result of Berger, Makkai and Zawadowski, that our category © is canonically
isomorphic to Joyal’s cell category.

The category © is defined in the same way by replacing strict oo-categories by strict
oo-groupoids. In our terminology, © is the universal groupoidal globular extension. We
prove that © can be seen as the full subcategory of the category of strict oo-groupoids
whose objects are free strict co-groupoids on globular pasting schemes. To our knowledge,
there is no known combinatorial description of © analogous to Berger’s description of ©.

In [10], Cisinski and Maltsiniotis introduced the notion of décalage and used it to
prove that © is a test category. They actually proved that © is a strict test category:
a test category A is strict if the binary product of presheaves on A is compatible with
the product of homotopy types in a strong sense. They proved that a small category
satisfying some easy to check condition, plus the existence of a splittable décalage, is a
strict test category. They then constructed a splittable décalage Dg on © and applied
this result to ©. To construct this décalage, they used a beautiful description of © in
terms of wreath products due to Berger (see [8]). Another proof of the fact that © is a
test category is given in Section 7.2 of the PhD thesis [2] of the author.

Unfortunately, the category O cannot be obtained using wreath products and therefore
the construction of the décalage Do does not apply to ©. In this article, we construct
a splittable décalage Dg on © “by hand”. The formulas defining Dg are inspired by the
ones one can get by unfolding the definition of Dg. In particular, the construction of our
décalage Dg will also apply to © and, in this case, we will get the décalage Dg of [10].

We deduce from the existence of the splittable décalage Dg that © is a strict test
category. By a theorem of Cisinski, conjectured by Grothendieck, this implies that the
category of presheaves on O is endowed with a model category structure whose homotopy
category is the homotopy category of CW-complexes. There exists a canonical functor
from © to ©. Using the fact that this functor is compatible with the décalages Dg
and Dg, we deduce that it is aspherical in the sense of Grothendieck. This implies
that this functor induces a Quillen equivalence between the Grothendieck-Cisinski model
category structures on presheaves on © and on ©. Note that the Grothendieck-Cisinski
model structure on presheaves on © had already been obtained by Berger in [7]| using
topological techniques.

Moreover, our construction applies to other categories having similar universal prop-
erties. For instance, the category Oy, which has a universal property related to “strict
oo-categories not necessarily satisfying the axiom of functoriality of units”, is also a strict
test category and the canonical functor from Oy to © is aspherical.



© IS A TEST CATEGORY 3

Most of the content of this article is extracted from the last chapter of the PhD
thesis [2]| of the author. The calculations have been entirely rewritten “using elements”
(see paragraph 5.3 for details).

Our paper is organized as follows. In Section 2, we recall the definitions of strict
oo-categories and strict oo-groupoids. We introduce the globular language and in partic-
ular globular sums and globular extensions. We also define the notion of categorical and
groupoidal globular extensions, which are in a sense dual to those of strict co-categories
and strict co-groupoids. In Section 3, we introduce the categories O, © and ©. In
Section 4, we give a brief introduction to the theory of test categories and we gather the
definitions and results from [10] about décalages that we will need. We then enter the
heart of the article. In Section 5, we explain how to construct a new globular extension,
the twisted globular extension, from a globular extension endowed with some comultipli-
cations. In Section 6, we apply this construction to a groupoidal globular extension and
we show that the twisted globular extension is endowed with a structure of groupoidal
globular extension. In Section 7, we use the results of Section 6 to build our décalage Dg.
We show that Dg is splittable. In the final Section, we draw the consequences of the

previous Sections. We show that O is a strict test category and that the functor from ©
to © is aspherical. We explain how these results generalize to other analogous categories.
If C is a category, we will denote by C° the opposite category. If

X, X5 . X,

PNV Lo

! ] Yy - Y,
is a diagram in C, we will denote by
(X1, f1) Xvy (91, X2, f2) Xvy -+ Xy, (Gn-1, Xn)
its projective limit. Dually, we will denote by

(X1, f1) Oy, (91, X2, f2) Uy, -+ - Oy, (gn—1, Xn)

the inductive limit of the corresponding diagram in C°.

2. STRICT 0o-CATEGORIES AND STRICT 0o-GROUPOIDS

2.1. We will denote by G the globular category, that is the category generated by the
graph

51 Oy Oi—1 g; Tit1

1
Do D, Dy —=D,—=---
1 T2 Ti—1 Ti Tit1

and the coglobular relations
0i110; = Tip10; and 0,47 = T4, i > 1
For ¢ > 5 > 0, we will denote by 0‘; and 7‘; the morphisms from D; to D; defined by

i P DY Z P DY
0; =0, 049041 and T; =T, T 0T .
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A globular set or co-graph is a presheaf on G. The datum of a globular set X amounts
to the datum of a diagram of sets
Sit+1 S5 Si—1 59 51

X Xi1 X1 Xo

tit1 t; ti—1 to t1

satisfying the globular relations
5iSi41 = Siti+1  and  tisip1 = titiqa, 1> 1.
For i > j > 0, we will denote by sé- and t;- the maps from X; to X; defined by

i

J
A morphism of globular sets is a morphism of presheaves on G.

S Sj41 0 S5i—15; and t; = t]’+1 < 'ti—lti~
2.2. An oco-precategory is a globular set X endowed with maps
*; : (XZ,S;) XX; (t;,Xl) — X, 1>72>0,
ki Xi = Xip1, 120,

such that
(1) for every (u,v) in (Xi,s;-) X X; (t;-,Xi) with ¢ > j > 0, we have
, si(v), j=1i—1,
. *14 = .
SZ(U j U) {sl(u) *;—1 82‘(1)), j < 17
and

ti(u L v) = {ti(u)a j=1i-—1,

7 ti(u) 1 ti(v), j<i—1;
(2) for every w in X; with ¢ > 0, we have
si+1ki(u) =Uu = ti+1k‘i(u).
For ¢ > 7 > 0, we will denote by k‘i the map from X; — X; defined by
k= ki1 kjoik;.
A morphism of co-precategories is a morphism of globular sets between oo-precatego-
ries which is compatible with the %%’s and the £;’s in an obvious way.
An oco-precategory X is a strict co-category if it satisfies the following axioms:
o (Ass;j), i>j>0,
for every (u,v,w) in (Xi, sj) Xx; (¢}, Xi, sj) xx; (1}, Xi), we have

(u*?v)*;:w:u*;(v*éw);

(] (EXCL]"]C), 1>7>k>0,
for every (u,u’,v,v) in

(XZ S;) XX (téﬁXi’S;c) X Xy, (t%ch’i 5;) XX; (té‘aXi)a

we have
(u *3 u') *, (v *; V') = (u %), V) *; (v x5, v');
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° (LUnitm), 1>9 >0,
for every u in X;, we have
kfté(u) *3 u = u;
o (RUHitZ'J), 1>72>0,
for every w in X;, we have
wx; ks (u) = u;
° (FUl’litiJ), 1>7 >0,
for every (u,v) in (Xz,sj) xx; (tj, Xi), we have

k‘(u* v) = ki(u) ;H ki(v).

The category of strict co-categories is the full subcategory of the category of co-pre-
categories whose objects are strict co-categories. We will denote it by co-Cat.

2.3. An co-pregroupoid X is an oco-precategory endowed with maps
wh: Xy = X, i>5>0,
such that for every uw in X; for ¢ > 1 and j such that ¢ > j > 0, we have

w0t (1) = tz(“v J=1—1,
Sz( ]( )) { ] (52( ))’ j<i—1,

s

and

by i), j=i-1,
filwj (u)) {w;l(ti(u))v j<i-1

A morphism of co-pregroupoids is a morphism of co-precategories between oco-group-
oids which is compatible with the w;-’s in an obvious way.

An oco-pregroupoid X is a strict oo-groupoid if it is a strict co-category and if it satisfies
the following axioms:

e (LInv;;), i>372>0,
for every u in X;, we have

wh(u) 5 u = k! (s5(u));

° (RIHV@j), 1>7 >0,
for every u in X;, we have

The category of strict co-groupoids is the full subcategory of the category of co-pre-
groupoids whose objects are strict oo-groupoids. We will denote it by oo-Grpd. Note
that a morphism of strict co-categories between strict oo-groupoids is automatically a
morphism of strict co-groupoids.

Although it is not clear from our definition, being a strict oo-groupoid is a property
of a strict oo-category. More precisely, if X is a strict co-category such that for every
1> j > 0, every t-arrow v admits a *z-—inverse (i.e., an i-arrow wj- (u) satisfying the axioms
(LInv; ;) and (RInv; ;)), then X is endowed with a unique structure of co-groupoid. Note
also that our axioms for strict oco-groupoids are highly redundant. For instance, for a
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strict oo-category to be a strict oo-groupoids, it suffices to ask for xi-inverses or for
«!_,-inverses for every ¢ > 1 (see Proposition 2.3 of [3]).
One can easily check that a strict co-groupoid automatically satisfies the following

additional axiom:

o (FInvij;), i>j,j' =0,
for every (u,v) in (Xj, s7) X x; (5, X;), we have

<

iy = [P0 0, 5=,

wi (u) 5 wi(v), J# 7"
More precisely, if an oo-pregroupoid satisfies Axioms (Ass), (Exc), (LUnit), (RUnit)
and (RInv), then it satisfies Axiom (FInv) (where by the name of an axiom without
subscripts, we denote the conjunction on all meaningful subscripts of this axiom).

3. THE CATEGORIES Og, © AND )

3.1. Let n be a positive integer. A table of dimensions of width n is the datum of integers
i1y vnyin, ... 0,4 such that

ig >4, and  igpq > 0, 1<k<n-1

We will denote such a table of dimensions by

il Z'2 Zn
W )

Let (C,F) be a category under G, that is a category C endowed with a functor
F:G — C. We will denote in the same way the objects and morphisms of G and their
image by the functor F'. Let

be a table of dimensions. The globular sum in C associated to T' (if it exists) is the
iterated amalgamated sum

(D o) Mp, (77, Dz, o) W, - Alp, (77 D)

Lo g
2 n—1 n—

in C. We will denote it briefly by
Dy Op, Dy, p, ... Op, D
1 2

n—1

in

If the table of dimensions T is understood, for k such that 1 < k < n, we will denote
by ¢, the canonical morphism

€k‘ . Dik — Dil HDz/l DiQ ]_IDZ/2 e HDZ" DZ

n—1

n*

The pair (C, F) is said to be a globular estension if for every table of dimensions 7" (of
any width), the globular sum associated to T exists in C. We will often say, by abuse of
language, that C' is a globular extension.
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Let C and D be two globular extensions. A morphism of globular extensions from C
to D is a functor from C to D under G (that is such that the triangle

G
PN

C D

is commutative) which respects globular sums. We will also call such a functor a globular
functor.

If C'is a category under G and D is a category, we will denote by Hom ,(C, D) the
full subcategory of the category Hom(C, D) of functors from C' to D, whose objects are
functors C' — D such that (D,G — C — D) is a globular extension. In particular, when
C =G (and G — G is the identity functor), the objects of Hom ,(G, D) are the globular
extension structures on D. We will also denote this category by Extg (D).

Let C be a globular extension. A model of C' or globular presheaf on C' is a presheaf
G : C° — Set which respects globular products (i.e., limits dual to globular sums). We
will denote by Mod(C') the full subcategory of the category C of presheaves on C' whose
objects are globular presheaves.

Proposition 3.2 (Universal property of ©g). There exists a globular extension ©¢ such
that for every category C, the precomposition by the functor G — Og induces an equiva-
lence of categories

Hom gl(@o, C) — Ethl(C).

Moreover, for every such ©Oq, this equivalence of categories is surjective on objects.

Proof. Consider the Yoneda functor G — G. For each table of dimensions T', choose a

globular sum St in G. Let g be the full subcategory of G whose objects are the St’s.
Before proving that ©g has the desired universal property, let us introduce some nota-

tions. If A is a category, we will denote by A the category of copresheaves on A, that is

the category Hom(A, Set)°. If B is a second category, we will denote by Hom (A, B) the

full subcategory of Hom(A, B) whose objects are functors preserving inductive limits.
Let C be a category. We will construct a quasi-inverse to the canonical functor

U : Hom ,(©9, C) — Extg (C).
Let o _
U’ : Hom (G, C) — Hom(G, C)
be the functor induced by the Yoneda functor G — G. Since the category C is cocom-

plete, the universal property of G gives us a quasi-inverse L’ of U’. Consider now the
functor G defined by the composition

Extg(C) — Hom(G, ') 25 Hom (G, C') — Hom(0y, C),

where the first and the last functors are respectively induced by the (contravariant)
Yoneda functor C' — C and the inclusion ©y — G. Since the Yoneda functor C — C
preserves inductive limits, the functor G factors through Hom ,,(6, C') and gives rise to
a functor

L: Ethl(C) — Homgl(@o,C).

One easily checks that L is a quasi-inverse of U.
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Since the second assertion is invariant under equivalences of categories under G, it
suffices to prove it for the category ©¢ we have just built. The assertion then follows
from the fact that the functor U’ is surjective on objects. O

3.3. Two globular extensions satisfying the above universal property are uniquely equiv-
alent up to a unique natural isomorphism. One can show that the objects of such a
globular extension have no automorphisms. In particular, a skeletal version of such a
globular extension (i.e., such that isomorphic objects are equal) is unique up to a unique
isomorphism. We will denote by Qg this globular extension.

Note that the above universal property states in particular that ©g is the free globular
completion of G in the following sense: if (C, F : G — C) is a globular extension, there
exists a globular functor ©p — C' unique up to a unique natural isomorphism. More
precisely, the choice of such a functor ©g — C amounts to the choice of a globular sum
for every table of dimensions.

The category ©¢ defined above is canonically isomorphic to the category ¢ defined
in terms of finite planar rooted trees by Berger in [7]. Berger’s definition is explained
in detail in Section 2.3 of [2]. See also Section 4 of [18] or [14] for a description of the
bijection between tables of dimensions and finite planar rooted trees. Note that tables
of dimensions are called zig-zag sequences in [18] and ud-vectors (standing for up and
down vectors) in [14].

3.4. Let C be a globular extension. If X is a globular presheaf on C', then by restricting
it to G, we obtain a globular set. We thus have a canonical functor

Mod(C) = G.

Proposition 3.5. The functor R
Mod(@o) -G
1s an equivalence of categories.

Proof. This is exactly what the universal property of Oq claims when applied to Set®. [

3.6. If C is a globular extension, the Yoneda functor C' — C factors through Mod(C).
We thus have a functor C' — Mod(C).
By the previous proposition, the functor

©0 — Mod(0y) — G

is fully faithful. A globular set which is in the image of this functor will be called a
globular pasting scheme. We can thus view ©q as the full subcategory of G whose objects
are globular pasting schemes.

Note that in the bijection beitween tables of dimensions and finite planar rooted trees,
the above functor from ©¢ to G associates to a tree T" the globular set 7™ introduced by
Batanin in [5|. The globular pasting schemes can also be characterized as the cardinals
(in the sense of Definition 4.16 of [19]) of the free strict co-category functor G — oo-Cat
(see Section 9 of [18]).

3.7. A globular extension under O is a category C endowed with a functor ©y — C such
that (C,G — ©g — C) is a globular extension. If C' is a globular extension under Oy,
the globular sum associated to a table of dimensions is uniquely defined. A morphism of
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globular extensions under O is a functor under ©y between globular extensions under 0.
Note that such a functor automatically respects globular sums.

If C is a category under Qg and D is a category, we will denote by Mglo(C, D) the
full subcategory of the category Hom(C, D) whose objects are functors C' — D such that
(D,09 — C — D) is a globular extension under Gj.

Proposition 3.8. Let C be a category under ©g. There exists a globular extension C
under O, endowed with a functor C — C' under ©q such that the functor C — C induces
an 1isomorphism of categories

Mglo (67 D) - mglo (Ca D)

Proof. This is a special case of a standard categorical construction (see Proposition 3
of [4]). See also Section 2.6 of [2] and paragraph 3.10 of [17]. O

3.9. If C is a category under O, the globular extension C of the previous proposition
(which is unique up to a unique isomorphism) will be called the globular completion of C.
Note that the functor C' — C' is bijective on objects.

3.10. A precategorical globular extension is a globular extension C under ©g endowed
with morphisms

V%Df%Dﬂbﬂ% i>7>0,

ki : Dit1 — Dy, 1> 0,
such that
(1) for every 4, j such that i > j > 0, we have
4 €50, j=i—1,
Vig. = {4 271 .
and

. 4T j=1—1,
Vi =2 17 A o
I {(TZ Iy TL-)V;»_I Jj<i-—1,

where €1,e9 : D; = D; ;.| D; denote the canonical morphisms;
(2) for every i > 0, we have

KO = 1Di and K;T; = 1Di'

If C is a precategorical globular extension, for ¢ > j > 0, we will denote by /@g the
morphism from D; to D; defined by
and, for ¢ > 0, we set
V= Vﬁ,l.
A morphism of precategorical globular extensions is a morphism of globular extensions
under O between precategorical globular extensions preserving the V%’s and the &,’s.
A precategorical globular extension is categorical if it satisfies the following axioms:
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° (ASSZ‘,J’), 1>35 >0,
the following square commutes:

D; d D; Iy, D;
v3 1DiHDj V;
D; I, D; : D; Oy D; I D;
J Vil 1 J J
J Dj D;

° (EXCZ‘7J‘71€), 1>7>k>0,
the following diagram commutes:

D;
D; I, D; D; I, D;

Vilp, V5 v;@uvi vi

(D; Ly, D) Iy, (D; Iy Di) > (D; Hp, Dy) HDjHDij (Di O, Dy),
where the left amalgamated sum is
(D; Ip, Dy, 0% I, U;) HDjHDij (T; Iy, 7/,D; Iy, Dy)

(] (LUnitm), 1>32>0,
the following triangle commutes:

D;

v

D; Iy, D;

H‘ZHD 1p.

o (RUHiti7j), 1>75 >0,
the following triangle commutes:
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° (FUnitm), 1>75 >0,
the following square commutes:

Vir+1
J
D;i1 Dit1 1, Dita
s ”””z‘HDj Ky
D; : D; I, D;
vi J

J

The category of categorical globular extensions is the full subcategory of the category
of precategorical globular extensions whose objects are categorical globular extensions.

If C' is a category, we will denote by Extcat(C') the category whose objects are categor-
ical globular extension structures on C, i.e., functors from ©¢ to C endowed with V;’s
and ;s making C a categorical globular extension, and whose morphisms are natural
transformations.

Proposition 3.11 (Universal property of ©). There exists a categorical globular exten-
ston © such that for every category C, the precomposition by the functor ©g — © induces
an isomorphism of categories

mglo (@, C) — EXtcat(C).

Proof. Let ©pcar be the globular completion of the category obtained from ©q by for-
mally adjoining morphisms x, and Vé- satisfying the relations of precategorical globular
extensions.

Let now © be the globular completion of the category obtained from O, by formally
imposing the commutativity of the diagrams appearing in the definition of categorical
globular extensions.

It is clear that © has the desired universal property. ]

3.12. We will denote by © the categorical globular extension of the previous proposi-
tion (which is unique up to a unique isomorphism). We will see that this category is
canonically isomorphic to Joyal’s cell category introduced in [13]. Note that the functor
©p — O is bijective on objects.

3.13. Let C be a categorical globular extension. If X is a globular presheaf on C, the
globular set obtained by restricting X to G is canonically endowed with a structure of
strict co-category whose compositions are the

= X(Vh): Xy xx, Xi = Xi, i>j >0,

and whose units are the
k‘l:X(Hﬁ : X = X1, ©>0.
We thus have a canonical functor

Mod(C') — oo-Cat.
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Proposition 3.14. The functor
Mod(©) — oo-Cat
15 an equivalence of categories.

Proof. This is an immediate consequence of the universal property of © applied to Set®
and of Proposition 3.5. g

Proposition 3.15. The functor
© — Mod(©) — co-Cat

identifies © with the full subcategory of co-Cat whose objects are free strict co-categories
on globular pasting schemes.

Proof. By the previous proposition, this functor is fully faithful. It thus suffices to
describe its image.
If C is a globular extension, we will denote by

C 2% Mod(C) 2 €
the canonical decomposition of the Yoneda functor. By Propositions 1.27 and 1.51 of [1],
the functor i, admits a left adjoint 7.
Let now u : C' — D be a morphism of globular extensions. Denote by u* : D — C the
restriction functor and by uy : C' — D its left adjoint. The functor u* induces a functor

u® : Mod(D) — Mod(C). Moreover, this functor admits ue = rpuij- as a left adjoint
and the square

C D
Mod(C) —, = Mod(D)

is commutative up to isomorphism. In particular, if £k : ©y — © denotes the canonical
morphism, the square

Oo C)

eq l lz(%

Mod () e Mod(©)

is commutative up to isomorphism.
Let U be the forgetful functor co-Cat — G and let L : G — oo-Cat be its left adjoint,
i.e., the free strict oco-category functor. The square

Mod(6g) <— Mod(©)

| |

G oo-Cat

G
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where the vertical functors are the equivalences of categories of Propositions 3.5 and 3.14,
is obviously commutative. It follows that the square

Mod(0p) —* > Mod(O)

| |

~

G 7 oo-Cat

is commutative up to isomorphism.
We thus obtain that the diagram

©9 S)

Z(_)O \L \Lle

Mod(0p) —* > Mod(O)

L,

G oo-Cat

G

is commutative up to isomorphism, hence the result. ]
Proposition 3.16. The category © is canonically isomorphic to Joyal’s cell category.

Proof. By Theorem 5.10 of [14] (or Theorem 1.12 of [7]), Joyal’s cell category is canoni-
cally isomorphic to the full subcategory of co-Cat described in the previous proposition.
Hence the result by this proposition. ]

3.17. A pregroupoidal globular extension is a precategorical globular extension endowed
with morphisms

Q% :D; — Dy, i>7>0,

such that for all ¢, j satisfying ¢ > 5 > 0, we have
or = {JZQ” <iot,
] J )

and
Qir — 30 j=1i-1,
7 —1 . .

J T j<i—1

A morphism of pregroupoidal globular extensions is a morphism of precategorical glob-
ular extensions between pregroupoidal globular extensions preserving the Qé’s.

A pregroupoidal globular extension is groupoidal if it is categorical and if it satisfies
the following additional axioms:
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° (LIHVZ'J‘), 1>75 >0,
the following square commutes:

K
D; - D;
V; 0';.
D; I, D D;
t =Dy (Q;,IDI_) i
° (RIHVz‘J), 1>7 >0,
the following square commutes:
K
D; 7' D;
V; T]l:
D; I D; D:
t =Dy (1DZ_,Q;) i

The category of groupoidal globular extensions is the full subcategory of the category
of pregroupoidal globular extensions whose objects are groupoidal globular extensions.

If C is a category, we will denote by Extg,(C') the category whose objects are groupoidal
globular extension structures on C, i.e., functors from ©¢ to C' endowed with V;’s, K;'S
and Qé’s making C' a groupoidal globular extension, and whose morphisms are natural
transformations.

Proposition 3.18 (Universal property of (:)) There exists a groupoidal globular exten-
sion O such that for every category C, the precomposition by the functor ©g — © induces
an isomorphism of categories

Hom,, (6,C) — Extg (C).
Proof. The proof is similar to the one of the categorical case (Proposition 3.11). O

3.19. We will denote by O the groupoidal globular extension of the previous proposition
(which is unique up to a unique isomorphism). The category © is the groupoidal analogue
to Joyal’s category ©. Note that the functor ©g — © is bijective on objects.

3.20. Let C be a groupoidal globular extension. As in the categorical case, if X is a
globular presheaf on C, the globular set obtained by restricting X to G is canonically
endowed with a structure of strict co-category, and this co-category is a strict co-groupoid
whose inverses are given by the
wh=X(Q): X; = X;, i>j>0.
We thus have a canonical functor
Mod(C') — oo-Grpd.

The two following propositions are proved exactly as in the categorical case.
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Proposition 3.21. The functor

Mod(©) — oco-Grpd
1s an equivalence of categories.
Proposition 3.22. The functor
O — Mod(0) — co-Grpd

identifies © with the full subcategory of co-Grpd whose objects are free strict co-groupoids
on globular pasting schemes.

4. TEST CATEGORIES AND DECALAGES

4.1. We recall that if A is a small category, we denote by A the category of presheaves
on A. Let u: A — B be a functor and b an object of B. We will denote by A/b the
comma, category whose objects are pairs (a, f : u(a) — b) where a is an object of A and
f a morphism of B, and whose morphisms from an object (a, f) to an object (a’, ') are
morphisms g : a — @’ of A such that f'u(g) = f. In particular, if A is a small category
and F is a presheaf on A, the category A/F (where u: A — A is the Yoneda functor) is
the category of elements of F.

4.2. We will denote by Cat the category of small categories. We recall that a weak
equivalence of small categories is a functor which is sent by the nerve functor on a weak
equivalence of simplicial sets. We will denote by W the class of weak equivalences of small
categories and by Hot the Gabriel-Zisman localization Cat[WW~1] of Cat by W. A famous
theorem of Quillen states that Hot is canonically equivalent to the homotopy category
of simplicial sets (see Corollary 3.3.1 of [12]) and hence to the homotopy category of
CW-complexes.

4.3. Let A be a small category. We have a pair of adjoint functors
iy: A — Cat i*: Cat — A
F — AJ/F C — (a Homeay(A/a,C)).
A morphism of presheaves on A is a weak equivalence if it is sent by i, on a weak
equivalence of small categories. We will denote by W3 the class of weak equivalences
of presheaves on A and by Hots the Gabriel-Zisman localization of A by Wj3. The
functor i, induces a functor i, : Hoty4 — Hot. If % (W) C Wy, ie., if iyi(W) C W,
then the functor % induces a functor % : Hot — Hot4. Moreover, if this condition is
satisfied, the pair of adjoint functors (i 4,4%) induces a pair of adjoint functors (7 4,4%).

4.4. A small category A is a weak test category if the following conditions are satisfied:
e we have i (W) C Wy;
e for every presheaf F' on A, the unit morphism 7, : F' — i%i,(F') belongs to Wy;
e for every small category C, the counit morphism e, : i,4i%(C) — C belongs
to W.
The two last conditions are the obvious sufficient conditions for the adjunction (i 4,4%)
to be an equivalence adjunction. In particular, if A is a weak test category, the cate-
gory Hot, is canonically equivalent to Hot.
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4.5. A small category A is a local test category if for every object a of A, the category A/a
is a weak test category. A small category is a test category if it is a weak test category
and a local test category.

A test category A is a strict test category if the functor i, respects binary products
up to weak equivalence, i.e., if for all presheaves F' and G on A, the canonical functor

A/(FxG)— A/F x A/G
is a weak equivalence.

Theorem 4.6 (Grothendieck-Cisinski). Let A be a local test category. Then (A, Wj) is
endowed with a structure of model category whose cofibrations are the monomorphisms.
This model category structure is cofibrantly generated and proper.

Moreover, if A is a strict test category, weak equivalences are stable by binary products.

Proof. See Corollary 4.2.18 of [9] for the model category structure. The properness follows
by Theorem 4.3.24 of [9] and by the case of simplicial sets.
The last assertion is obvious. O

4.7. A small category A is aspherical if the unique functor from A to the terminal
category is a weak equivalence. It is easy to check that categories admitting a terminal
object are aspherical. One can prove (see Remark 1.5.4 of [15]) that a local test category
is test if and only if it is aspherical. We will only need the following obvious case: a local
test category with a terminal object is a test category.

Let u : A — B be a functor between small categories. The functor u is aspherical if
for every object b of B, the category A/b is aspherical.

Let A be a small category. A presheaf F' on a A is aspherical if the category A/F is
aspherical. Every representable presheaf is aspherical since for every object a of A, the
category A/a admits a terminal object.

If u: A— B is a functor between small categories, we will denote by u* : B — A the
restriction functor and by u, : A — Bits right adjoint.

Proposition 4.8. Let u: A — B be a functor between aspherical small categories. The
following properties are equivalent:
(1) the functor u is aspherical;
(2) for every morphism ¢ : F — G of presheaves on B, the morphism ¢ is a weak
equivalence of presheaves on B if and only if the morphism u*(p) is a weak
equivalence of presheaves on A.

Proof. See [11] or Proposition 1.2.9 of [15]. O

Proposition 4.9. Let u: A — B be an aspherical functor between test categories. Then
(u*,uy) is a Quillen equivalence (where A and B are endowed with the Grothendieck-
Cisinski model structure of Theorem 4.6).

Proof. See Proposition 4.2.24 of [9]. O

4.10. Let A be a small category. Denote by & ; the initial presheaf on A and by ez
the terminal one. An interval (I,0p,01) on A consists of a presheaf I on A and two
morphisms 0,01 : e; — I. Such an interval is separating if the equalizer of Jyp and 0y
is O 4.

A
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4.11. Let A be a small category. A décalage on A consists of an endofunctor D : A — A,
an object ag of A and two natural transformations

IAL>D%CL0

(where ag denotes the constant endofunctor whose value is ap). We will denote by
(A a0, D, a, ) such a décalage. A splitting of (A, ap, D,«, ) consists of a retraction
rqe : D(a) — a of a, for every object a of A. Note that the r,’s are not asked to be
functorial in a. A décalage is splittable if it admits a splitting.

Proposition 4.12. Let A be a small category. If A admits a splittable décalage and A
admits a separating interval (I,00,01) such that I is aspherical, then A is a strict test
category.

Proof. See Proposition 3.6 and Corollary 3.7 of [10]. O

4.13. Let Dy = (A, a9, D, a, B) and Dp = (B, by, E,~,0) be two décalages. A morphism
of décalages from D4 to Dp is a functor u : A — B such that

uD = Eu, wu(ap) =by, u*xa=vy*u, and ux*xf=479x*u.

Proposition 4.14. Let u: A — B be a functor between small categories. If there exists
a décalage Dy on A and a splittable décalage Dp on B such that u induces a morphism
of décalages from Dy to Dp, then u is aspherical.

Proof. See Proposition 3.9 of [10]. O

5. SHIFTED GLOBULAR EXTENSIONS
5.1. In this section, we fix a globular extension (C, F') endowed with morphisms
V;:D; —» D; I, Dy, i>1,
such that

Viai = €90,

4 and vl‘TZ‘ = &7y,

where €4,e5 : D; — D; HDF1 D; denote the canonical morphisms.
The purpose of the section is to define a new structure of globular extension on C|

i.e., a functor K : G — C such that (C, K) is a globular extension, using the V,’s. We
will call (C, K) the twisted globular extension of (C, F) (by the V,’s).

5.2. We set
DZ:Dl HDO D2 HDl “'HDi—l DZ+17 ZZ 1

Recall that we denote the canonical morphisms by
e,:Dp =Dy, 1<k<i+l.

We define morphisms
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by the formulas
0= (1,1 €i—1: (€ Eig1Tig1) Vi),
7~—i = (Ela'- : 752')'
(It is obvious that 7; is well-defined and we will prove that &, is well-defined in para-
graph 5.3.)
Let X be a globular presheaf on C'. We set
XVZ:X(f)Z):Xl XXOXQXXl"'XXi,lXH-M 7,21

For k such that 1 <k <14+ 1, we will denote by p, the canonical projection

pk:Xi — Xg.

We will often denote by T an element of X; and by z1,...,x;+1 the components of T.
We define maps

§i:)~(i—>)~(i,1, iZl,
t X = Xiq, i>1,
by the formulas dual to the ones defining o, and 7;:

:sz-(xl, Ce ,xi+1) = (.7}1, ey Lj—1,24 *2_1 ti+1(xi+1)),

E‘(HIL s Tig1) = (T1, ).
In particular, once we have proved that o, is well-defined, we will have

5 =X, and t;=X (7).
5.3. Let ¢ > 1. Let us prove that o, is well-defined. We need to show that
€i-10i1 = (€, €Ty ) ViTiTi -
But
(€ir Eir1Tig1) ViTiTimy = (€45 €41 Tig1 )E1TiTi
=&iTiTi-1

=&-10i-1-

This calculation was straightforward. However, in the sequel of this paper, we will need to
prove more and more complicated identities. For this reason, we will prove our identities
“using elements”. In [2]|, we gave proofs without using this technique. The result is barely
readable.

Let us explain what we mean by “using elements”. Let f,g : S — T be two parallel
morphisms of C. Suppose we want to prove that f is equal to g. By the (contravariant)
Yoneda lemma, it suffices to check that for every object U of C, the two maps

Home(T,U) — Home(S,U),

induced by f and g, are equal. Since every representable presheaf on C is globular, it
suffices to prove that for every globular presheaf X on C, the two maps

HOma(T,X) — HOma(S7 X),
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induced by f and g, are equal. But by the Yoneda lemma, these maps correspond to the
maps
X(f), X(g) : X(T) = X(9).
In conclusion, the morphisms f and g are equal if and only the maps X (f) and X (g) are
equal for every globular presheaf X.
Let us apply this to

f=¢ei_10i1 and g= (g€ 17i1)ViTiTi1
Let X be a globular presheaf on C. For T in )~Q, we have
X(N)@) = si-1(zic1) and  X(9)(T) = tiati(w; *i_y tip1(Tig1))-
But

tioati(zi %y tig1 (vi1)) = timati(vs) = sim1(ziz1).
We have thus given another proof of the well-definedness of o,.

From now on, we fix a globular presheaf X on C.
Proposition 5.4. The maps
D; = Di,  0ipy = Fiprs T Toprs 120,
define a functor G — C.
In the sequel of this section, we will denote this functor by K.

Proof. We need to prove that the ¢,’s and 7,’s s%tisfy the coglobular relations. By
paragraph 5.3, it suffices to show that the s;’s and ¢;’s satisfy the globular relations.
Let ¢ > 2 and 7 in X;. We have
5i15(T) = S (@, wis1, @ %y tiga (@)
= (@1, @2, i1 % (@ K L (2041)))
= (T1,..., @i, Ti—1 *;:% ti(z;))
=Si—1(x1,..., ;)
= 5i-1t:(T)
and
ti15i(T) = tica (w1, . i1, @ %y tiga (Tig))
= (z1,...,2i—1)
= ti1t;(T),
hence the result. ]

We collect in the following lemma two identities related to the structure of X, that we
will use several times.

Lemma 5.5. Let T in X;. We have
3§+2(3«"l+2) = 3§+1($i+1), 0<I<i—1,

sip1(mgn) =t (wipr), 0<I<i—1
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Proof. We have

siT2 (2142) = Sip15142(Tig2)

= Sip1tirotiva(zi43)

= 5§+3($l+3)

= s (@i41),
and
=t (2112)

= titipo(wigo)

Sl+1($l+1)

= tir18142(T142)
= tipat s (2ir)

= t§+3(3«°l+3)

=t (zi11). O
5.6. Let us introduce some more notations. We set
Dj;=D;1 1y, Djja Il ...y, Dipy, i>35>0.
In particular, we have
f)O,i =Dy, >0,
D; = Doy Lp, Dyt14 @ >k >0,
Dj; =Dj; Iy Dyy1i, i>k>j>0.
Dually, we set
Xji=X(Dj) = Xj Xx; Xjr2 Xx, 4, - Xx, oy Xig1, 12720,
and we have
)?0,7; =X;, i>0,
X; = Xox X x, Xisriy 0>k >0,
Xj,i = ~j,k X x, )ZkJrl,i, 1>k>72>0.
We will now prove that (C, K) is a globular extension.

Lemma 5.7. Let C be a category and let f : X - Y, gy : A= X, gy : A— X and
gy, A — Z be morphisms of C. Suppose that the amalgamated sums

XUpZ=(X,9x)Ua(92,2) and Y1UsZ=(Y,g9y)Ua (92,2)

exist in C, and that we have fgy = gy, so that the morphism

xi,z 4% v,z
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1s well-defined. Then the square

X— X1y 7

1

Y ——=Y1sZ
18 cocartesian.

Proof. The square of the statement is the coproduct in A\C of the squares

1
X > x Ay
f f and 1la J{ llz
Y —Y A——72
1y 9z
which are both cocartesian in A\C. O

Proposition 5.8. Let T = (’ kj) be a table of dimensions of width 2. The globular

sum D; H]5 D; associated to T in (C, K) ezists and is canonically isomorphic to
k

N N M i+1 k+2 .
D; Iy, Dyt1j = (Diy 410, ) Up, (6177 7%, Dy j)-

Proof. We prove that the square

D, — (ﬁi, 51’+101ig+1) Iy, (517—]?+2’ ﬁkﬂu‘)
is cocartesian by applying the previous lemma to
X=Dy, Y=D;, Z=Dpu1;, A=Dy,
and
f=0h, g9x= €k410k+10 9y = 51’—1—10?—17 9z = 5171§+2-

The two amalgamated sums appearing in the square exist since they are globular sums
in (C, F). Hence, to apply the lemma, it suffices to check that

~; _ i+1
Ok€kt10k+1 = €110y -

Let us prove this identity using elements. Let T in X;. We need to prove that

8k+1pk+1§2(f) = 8?1(%‘“)-
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But
Sk41Pk4155(T) = Sk1Dpp15k11 L1 (T)
= Sk41Pk+15k+1(T1, - -+, Thp2)
= Skt (Tt #4 T thro(Thi2))
= Skt1thr2(Thr2)

k
— Sk+2(

= S?rl(xi—f-l)a

where the last equality follows from Lemma 5.5. U

Tki2)
Proposition 5.9. Let

be a table of dimensions. The globular sum ]51-1 Hﬁ_ R I P D, associated to T in

./ in
1 ‘n—1
(C, K) exists and is canonically isomorphic to
Diy Hp,, Dy, Hpy Digerie o, - o, Dir 4,

n—1 n

In particular, (C, K) is a globular extension.

As announced at the beginning of this section, we will call (C, K) the twisted globular
extension of (C, F) (by the V,’s).

Proof. We prove the result by induction on the width n of the table of dimensions.
Suppose

D;, I~ ...1I~ D,

-/ n
) "n—1

=D, Up, Dy 113y Up, . p, Dy 41,
i 2 i3 1 n—1

7
n—

=Dy HDi,1 (Di'1+1,¢2 HDi,2 Dyt 1.4 HDié HD%_I Di;HJrl,in)-

As in the proof of the previous proposition, by using Lemma 5.7, we obtain that the
square

D; — Dy, HDZ-'I (Di’1+1ﬂ'2 HDig HDi’g Digiis---Hp, D14 “)

"n—1
l&;} I, 1
"1

~i1
g
il

1 1

B;, —= Diy Iy, (Diye1, lIp, Iy, Digss--- I,

"n—1

Di;71+1,in)

is cocartesian. Hence the result. O

5.10. Dually, if
i io . in
i fy e g
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is a table of dimensions, the globular product )A(;il Xg o Xg )A(iln exists and is canon-
ically isomorphic to gl i1

Xil XXz" X/+1 2 Xi/ Xi/2+1,i3 XXi’ . XX,/ Xi2171+17in.
2 3 n
Moreover, the canonical isomorphism

C:Xil X)’Z/X)’Z Xln_>X’Ll XXi/ X/+1,L2 Xi".'XX'/ X
7 2

-/
n—1

is given by the formula

1 1 2 2 n n
C(xl,...,xil+1’x17.. . ’xl‘2+17. ..,x17... ,xzn+1)
_ 1 1 2 2 n n
= (xl,...,mi1+1,mi,l+2,...,xi2+1,...,xi;71+2,...,xin+1).

Let us describe the inverse of ¢ starting by the case n = 2. Let (z k j) be a table of
dimensions of width 2 and let (Z,y) be an element of X, X o X ;. By definition, we have
k

5(z) =1 ( ). Since §} = Sj41t,, |, this means that

(a;l, ey Tk Tt *k tk+2(:ck+2)) = (yl, .. ,yk+1),
i.e., that
y=x 1 S [ <k,
Ykl = Thy1 % trya(Thia).

The inverse

-1. ¥ % ) Y. )
C 'X’L XXk: Xk-+17.] _>X’L X)'*('k X]
is thus given by the formula
-1 . 4
C (:Ulw"axl+1>yk+27"'7yj+1)
= ($17-'-7$i+173317-- y Lhes Thet1 *k tk+2($k+2) yk+27--'ayj+1)-

In the general case, the inverse

_1:)~Q1 XXi’ X’+112 X, XX, Xit 41, = Xiy Xg, oo X5, X;,
2 n-1 1 n—1
is given by the formula
c_l(az%,...,x}1+1,m?,1+2,...,x%ﬁl,...,m;‘;ilw,...,x;‘ﬁl)
= (az%,...,mz-lﬁl,x?,...,a:?ﬁl,...,x?,...,az?nﬂ),

where the

ah, 2<i<n, 1<j<ij+1,

are defined (by induction on ) by

+1 _ 1 . ./
] —%,1§y§%

41 _ ol !
I'+1_x’+1*' t’ 2(Ti1)-
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5.11. Since (C, K) is a globular extension, by the universal property of ©q (Proposi-
tion 3.2), we can lift K to a globular functor Ky : ©9 — C defined up to a unique
isomorphism. Suppose now that a globular lifting Fy : ©g — C to F is given. Proposi-
tion 5.9 allows us to express globular sums of (C, K) in terms of those of (C, F'). The
globular lifting Ky : ©9 — C' is hence uniquely determined by Fy. We will call (C, Kj)
the twisted globular extension under ©¢ of (C, Fyp).

6. SHIFTED GROUPOIDAL GLOBULAR EXTENSIONS

6.1. In this section, we fix a pregroupoidal globular extension (C, Fp). In particular, the
globular extension C' is endowed with morphisms

V,=Vi,, i>1,

and we can thus apply the previous section and in particular Proposition 5.9 and para-
graph 5.11 to get a twisted globular extension (C, K() under ©y.

The purpose of the section is to put (under some assumptions) a structure of pre-
groupoidal globular extension on (C, Ky) and to prove that if (C, Fp) is groupoidal, then
so is (C, Kp). In the latter case, we will call (C, Ky) (endowed with its additional struc-
ture) the twisted groupoidal globular extension of (C, Ky).

6.2. We define morphisms
V"‘ ]51*)]51 Hﬁﬁlzﬁl HDj ﬁj+1,ia 1>72>0,
J

:Dj11 = Dy, >0,

Ql:D; =Dy, i>j>0,
by the formulas

vl J+2 / i+1

V; = (517 s €54l (5j+27 ]+2) % ) (€i+175i+1) Vi ) )
where ¢}, denotes €, ;_ s

R = (e1r 80015 €101 Riki4)

O j+2 i+1

Q] -_— (81’ ey 8.77 (5‘7_'_1’ j+2 +2) vj+1’ €]+2Q] PECEE] 75Z+1Q] ) .

Note that gk D — D I, D]Hz is the canonical morphism corresponding to the
factor Dy, of D]_H i. In the sequel of this section, (C, Ky) will denote the globular exten-

sion (C, Ko) under Oy endowed with these V“s K;’s and Q”
Dually, we define maps

1;1:)Zixgjii:)?ixxj)?jﬂ,i—u@, i>j>0,
kit X; = Xipq, >0,
@ Xy Xy, 0> >0,

by the formulas

o~ j+2 i+l
T*;Y = (!L‘h s T+ T2 X5 Yi42, -0 Titl ¥y yz’+1),
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where (7,7) is in X, X o X;, and
J

Ei(T) = (21, -, wig1, ki1 kisiv1 (i41)),

@;(E) = (z1,..., 25,2541 *§+1 tita(zjt2), w§+2(xj+2), e ,w;+1(ﬂfi+1))7

where T is in )Z'Z

Proposition 6.3. The 62 s are well-defined. Moreover, if (C, Fy) satisfies Azioms (Ass)

and (Exc), then the %é ’s have the desired globular source and target, i.e., they satisfy
Condition (1) of the definition of a precategorical globular extension (see paragraph 3.10).

Proof. Recall that we have fixed a globular presheat X on C. Let ¢ > j > 0. By
paragraph 5.3, showing that Vj is well-defined is equivalent to showing that for every

(Z,7) in X, X o X;, the element 31;‘.@ belongs to X;.
J ~ ~
Let us show this. Let (Z,7) be in X; X 5 Xi. We need to check that
J

j+2
s+ (#j41) = Gt (@i 7 Yie2),

and
su(ay* ) = titia (T *§+1 yi+1), Jj+2<I1<i.
But
tiitipa(@ipe #) 2 yie) = tiv (tra(mre) # T 2 (yj42))
= tjt1tjr2(Tj42)
= sj+1(zj11),
and

si(zy+5 yi) = si() *é-_l si(yr)
= titi1 (zi1) 5 it (i)

— I+1
= titip1 (Tip1 5 Y1)

Again by paragraph 5.3, proving that V} has the desired source and target is equivalent
to proving the analogous result for Eiz 7.
Let us prove this. If j =¢ — 1, we have

S5 (f;%_l Y) = Si(z1,. .., 25, T i1 Yit1)
= (xl, X1, kg (T *zﬂ yi+1))
= (21, wic, mi kg (ti(wign) ¥g ti(Yign)))
= (w1, mimns (20 (@) %o ti(yirn))

by Axiom (Ass;;—1))

= (Y1, Yi1, Ui *iy ti(Yign))
(by equations (x) of paragraph 5.10)

=5(7),
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and
5(51571 ?) = %vi(xlv ey Tiy Tt *Zﬂ yH—l)
= (z1,...,2)
= 1,(T).
If j <i—1, we have
s; (f?; y) =3; (:L’l, ey L1, Tjg *§+2 Yjt2, -5 Titl *é“ ?/i+1)
= (ml, sy T4l g2 *§+2 Yjt+2y -y Ti—1 *;._1 Yi—1,
(i 5 yi) %11 tirr (i +5T yiga))
— (xl,...,xj+1,:vj+2 *?H Yjt2s - oo Tie 1* Ly,
(i *; i) iy (tig1(@i1) *‘ t¢+1(yi+1)))
= (21,..., @41, Tj4o *?H Yj42s - Tinl % Vi,

(901‘ ¥y tz’+1($i+1)) *; (yz iy ti+1(yi+1)))
(by Axiom (Exc“- 14))
= (xl,.. y i1, T Ky 1tz+1(xz+1)) 3
(Y1, -5 Yim1, ¥ %51 tis1 (Yit1))
5(T) % 5(9),

and
E(f?; y) = E-(a:l, ey X1, g *§+2 Yj+2, -5 Titl *2“ yiﬂ)
(961, . $j+1,37j+2 *j+2 Yj+2y -+, T4 *; yi)
= (w1, ) % (Y, i)
H@ D),
hence the result.
Proposition 6.4. If (C, Fy) satisfies Aziom (Ass), then so does (C, Ky).
Proof. Let i > j > 0 and let (Z,7,%) be in X, XX'J- X, ><)~(j X;. We have

(l‘ X y) *t z = (.1}1, e ,xj+1, 1‘j+2 *g+2 yj+2, ceey L4 *;+1 yi+1) Py z
== (Il, ceey Tjl,
(2542 *ZH Yj+2) *?H Zj2; - (Tig * yH—l) i Zz+1)
= (xl, sy Tjl,
Lj+2 *ﬁ“ (yj+2 *;H Zj42)s -5 Tigl *é“ (Yi+1 *;-H Zi+1))

(by Axiom (Ass;;) for j+2 <1 <i+1)
o 4
=Xk (yla s Yi1, Y42 *;Jr Zj+25 -5 Yitl *;-H Zi-i—l)

= ﬁ(y* z).
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Proposition 6.5. If (C, Fy) satisfies Aziom (Exc), then so does (C, Ky).

Proof. Let i > j >k >0 and let (Z,7,%,t) be in

We have

@*y) %, (z%51)

— J+2 i+1 ~i
=21 T+, T2 ¥ Yj+2, - Titl ¥ yi+1) *k
j+2 i+1
(215 2j41s 2j42 Ki0 T2, s Zigl X tit1)
_ k+2 j4+1
= (T1, 0 TR 1, Thg2 ¥p | Zhg2s - T4l ¥ Zj1s

(242 *;“ Yj+2) *Z;H (212 *i“ tig2)s .-

(wis #57 girn) 5 (i #57 tig))

_ k2 1
= (@15 g1, Thg2 Ff 2142, -+ -5 Tjr1 ¥y, 241,
2 2 j+2

(i *, " zje2) *77 (Yjr2 % tja2)s- oo

(i1 #T" 2i41) *;H (i1 it tiv1))

(by Axiom (Exc; 1) for [ such that j +2 <1 <i+1)

_ k42 i+1 ~
= (1, Tl 1y Thg2 *p kg2, Tigd ¥y Zig1) ¥
k42 i+1
(Yis oo Yt Y2 5 g2, -5 Yig1 ¥4 Li1)
i o\ i (i T
= (T%,2) ¥ (Y=} 1) O

Proposition 6.6. The K, ’s are well-defined. Moreover, if (C, Fy) satisfies Aziom (RUnit),
then the K;’s have the desired globular source and target, i.e., they satisfy Condition (2)
of the definition of a precategorical globular extension (see paragraph 3.10).

Proof. Let ¢ > 0 and let T be in )Z'Z Let us first prove that %Z(f) belongs to )A(;,-H. We
need to show that

Sit1(xiv1) = tit1tivokivikisiv1(xiyr),

but this identity holds since ¢;41k; =1 X for every [ > 0.

Let us now prove that ki () has the desired globular source and target. We have

Sip1ki (@) = 3ig1 (21, - Tigr, ki1 kisis (ig1))
= (21, @i i % tipokipikisiv (Tig))
= (@1, @ i # T Kisig1 (Tig))
= (21,...,Zis1)

(by Axiom (RUnitH_LZ'))

z,
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and
k(@) = tir (21, i1, Kiprkision (Tig1))
= (21, 2i01)
=7,
hence the result. O

Proposition 6.7. If (C, Fy) satisfies Azioms (LUnit) and (RUnit), then so does (C, K).

Proof. Let j > 0 and let 7 be in )?j. Let us first prove by induction on i > j that
kf @) = (yb < Ui+l k§+28j+1(yj+1)a e 7kf+13j+1(yj+1))-

For i = j+1, this identity holds by definition of %j. Assume the result holds for an i > j.
Then we have

k(@) = ikl (7)
= ki (yl, e Y1, k§+28j+1(yj+1)a e >kg+13j+1 (yj+1))
= (y1,-- -, Yj+1, k§+25j+1(yj+l)a ey kf+151+1(yj+1),
ki+1ki5i+1kg+15j+1<yj+1))7
but
kiv1kisiv1kl18j01(yj01) = kipikisivikik! s (yj1)

= kip1kiki sj1 (yj41),
= ko1 (yj4),

hence the formula. _
Let now ¢ > j and let T be in X;. We have

Kl55(@) = k551115 ()
= k51 (21, ... $j+2)
= EZJ (z1,. .- 25,250 * t]+2(1‘3+2))
= (@1, ), T4 *f tito(Tjt2),
k§+2sj+1 (xj+1 I t]+2(xj+2)), .
kz+131+1 ()41 %] 7 1o (442)))-
But for [ such that j +2 <1 <1+ 1, we have
K sj (20050 tpa(yp)) = K sjatjya(w)yo)
= ]cljs;JrQ(ijrz)

= k] sh(x),
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where the last equality comes from Lemma 5.5. Hence the identity

K5@) = (21, g, 0190 tpa(2)4), (k1)
*ks
k’J+25 (fﬁj+2)7 S k‘2+18 (fﬁiﬂ))-
Let us now compute k? J1%(z). We have
kifz(f) = ]{fi (.%'1, . ,J)j+1)
= (21, @1, kst (@), - kL sj (@)
But by Lemma 5.5, we have
siv1(zjpn) = th(x), j+2<1<i+1,
and so we obtain the formula
e s o
kfté(x) = (xlv sy L4, k§+2t§'+ (.’L’j+2), B kzj'+1t3‘+1(xi+1))' (*kt)
We can now prove the proposition. We have
T * 3 %gé;(f) =T * ; (acl, e TG, Tj *;:-H tj+2(:vj+2)
g2
ko8t 2 (@), Ky s (i)
= (xla sy T4,
Tjt2 *ﬁ k]+23]+2($j+2) y iy w5t kj+151+1(1’i+1))
= ( 5Ui+1)
(by Axioms (RUnit; ;) for [ such that j +2 <1 <i+1)
=7z,
and
e C o . o
Kt(T) %57 = (z1,..., 41, k§+2t§+ (zj42), k:f_H ; (Q:i+1)) ¥5 T
= (.1‘1, NN ,iCj+1,
L Y
k’J‘ 2t§-+ (xj+2) *§-+ Tjt42,y .-, k1+1tl+1('rz+1) A $z+1)
= (21, s 2in1)
(by Axioms (LUnit; ;) for [ such that j +2 <1 <i+1)
=T. O

Proposition 6.8. If (C, Fy) satisfies Aziom (FUnit), then so does (C, Ky).
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Proof. Let i > j > 0 and let (Z,7) be in X, X o X;. We have
J

T~ T j+2 i+1
ki(@¥5y) = ki(z1,. .. 21, 240 KT Y2y - Tigl K Yit1)

i
Jj+2 i+1
(xl, s T+ T2 K5 Yi42, - Titkl ¥ Yit s

kiasivn (zirn 45 yit))

_ Jj+2 i+1
= (1‘1, s T L2 X5 Yi42,5 -0 Titkl *¥5 0 Yit 1,
) %
kipo(siva(wirn) *5 siv1(yiv1)))
_ J+2 i+1
= (901, s T T2 X5 Yi42, -5 Tikl ¥ Yit s

(kis2si41 (i) 577 Kiasisa (vitn))

(by Axioms (FUnit; ;) and (FUnit;11 ;))
= (961, <oy it kf+28z‘+1(96i+1)) ;z (yh < Yit 1, kf+23i+1(yz‘+1))

Proposition 6.9. The §~2§ s are well-defined. Moreover, if (C, Fy) satisfies Azioms (Ass),

(Exc), (LUnit), (RUnit) and (RInv), then the ﬁ; 's have the desired globular source and
target, i.e., they satisfy the condition of the definition of a pregroupoidal globular extension
(see paragraph 3.17).

Proof. Note that by the remark at the end of paragraph 2.3, (C, Fp) also satisfies Ax-
iom (FlInv).

Let ¢« > 7 > 0 and let T be in X;. Let us first prove that @3(?) belongs to X;. We
need to show that

j+1
sj(;) = titjr1 (zjp #) T tiga(z)i2)),
j+1 +2
si+1(zia1 ) tipa(wj42)) = tatjow] (2542),
and
swh(z)) = bt (wy), jH2<1<i

The first identify has already been proved in paragraph 5.3. The two others follow from
the following calculations:

+1
sj+1 (i1 9 taa(2542)) = sjpatjra(zis2)

i+1

= tjw) tia(zjy0)

+2

= ity ow] (2542),

and
Loy — ,i—1
siw;(w) = w; si(z)
= wé-_ltztz+1($z+1)

= titiawi T (249).
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Let us now prove that @; (Z) has the desired globular source and target. For j =i —1,
we have

5i0;_1(T) = 5i (w1, w1, w4y tiga (i), wi (ziga))
= (21, mic1, (T ¥y i (i) % tipw( ] (2i41))
= (w1, mimts (@6 G (@) %o Wit (2i41))
= (21, @i, m %y (L (i) %) i tis (i41)))
(by Axiom (Ass;i—1))
= (21, o, i1, T %ty kimatition (vi1))
by Axiom (Rlnv;;_1))

(
= (z1,. .. wic1, wi %y kic1si(x))

= (1’17...,:Ei)
(by Axiom (RUnit;;_1))

and
T~ e T i i+1
twi_(T) =t (21, .., mim1, @i %y b1 (@ig), Wi (Tig1))
= (2z1,..., w1, 3 ) tiv1(zig1))
For j <1 —1, we have

g@;@) =5 (96‘1, co gy Lt *§+1 tiv2(Tjt2), w§:+2(fcj+2)> e 7w§+1($i+1))

= (z1,...,2j,Tj41 *?H tita(zjqa),
wi P (@jn), o wi T (i), (@) #yg b (i)
= (21, @, w1 4 (@),
w§+2(xj+2), .. ,w;_l(xi_l), w;(xz) * w§t¢+1(xz‘+1))
= (fL‘l, e T, T *?H tita(zjq2),
w§+2($j+2)a - aw;-fl(l”i—l)y wj (i %y tip1 (i)
(by Axiom (FInv;;_1;))
= ﬁé-_l (xl, e T, T *571 t,-+1(:1:i+1))
= w0y '5i(@),
and
twy(T) = ti(21, o wg, w0 (), wl P (@), wl (i)
= (21, xg i #) ra(ere), wl T (@), w) (@)
= @3_1 (1‘1, e xz)

_ @15 (a),
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hence the result. O
Proposition 6.10. If (C, Fy) satisfies Azioms (LInv) and (RInv), then so does (C, K).
Proof. Let i > 5 > 0 and let T be in X;. We have

@;(E) 1; T = (:):1, e T, Tl * t]+2(x]+2),

wf (zj42)s - - ﬂfz+1)) %

= (a:b...,xj,xjﬂ A a+2($a+2)a
w2 (wj42) #] *j+2 %+27 cosw (@) $5 @)

= (:):1, B PN TN * tj+2(xj+2)
kj+25 (j12), s kf+1 ; Hwiv))

(by Axioms (LInv; ;) for I such that j +2 <1 <i+1)
= K/5(z),

where the last equality is equation (#s) (see the proof of Proposition 6.7), and

~ j+1
TR WHT) = TF (w1, wg, i ¥ tya(wiha),

+2
w§+ (zj42),. .. ,wJH(:nHl))
= (xlu"'vxj-l-h

Jj+2

1
Tjpo ¥ wl P (@), iy #

w]+ (ml"rl))

= (21,..., 2541, k§+2t;+2($j+2), co kzj+1t]+1(mi+1))

(by Axioms (RInv; ;) for I such that j +2 <1 <i+1)

= k]t;(@),
where the last equality is equation () (see the proof of Proposition 6.7). O
Corollary 6.11. If (C, Fy) is groupoidal, then (C,Ky) (endowed with the 6; 's, K;’s
and ﬁ; ’s) is a groupoidal globular extension.

As announced at the beginning of this section, if (C, Fpy) is a groupoidal globular

extension, we will call (C, Ko) the twisted groupoidal globular extension of (C, Fp).

7. THE DECALAGE ON ©

7.1. We now introduce the morphisms that will give rise to our décalage on o.
Let (C, F) be a globular extension endowed with V,’s as in Section 5 and let (C, K)
be the twisted globular extension of (C, F'). We define morphisms

o;:D; = Dy, 0> 0,
B,:Dy— Dy, i>0,
by the formulas
& = Ei410i415
B =e1m-
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Dually, we define maps
ai:)Z'Z-—>Xi, 1 >0,
bi: X; — Xo, >0,
by the formulas
az’(JBh e ,$i+1) = 8i+1(3€z’+1),
bi(x1,...,xix1) = ti(x1).
Proposition 7.2. The maps
Di—a;,, 120,
D;—B;, ©>0,
define natural transformations
F—-K<""D,
(where Do denotes the constant functor G — C of value Dy).
Proof. Let us first prove that « is a natural transformation. We must show that
o,0,_1 = o;0; and T = oy, @ > 1.

Let i > 1 and let T be in )NQ We have

ai—15:(T) = ai—1 (21, o, Tim1, T iy tig1 (Tig1))

= si(@i ¥}y tip1(wig1))

= sitit1(Tiy1)

= 5i8i+1(Tit1)

= 5;0;(T),

and
ai,lﬂ(f) =a;(x1,...,2;)

= si(x;)
= titip1(Tit1)
= tisit1(Tit1)
= t;a;(T),

hence the naturality of a.
To prove the naturality of 8, we must check that

0fio1 =0 and T5_ =0, i>1
This follows from the following calculations:
bi—151(T) = b1 (T1, .. o, Tim1, T ¥iq tig1(Tig1))
= t1(x1)
= bi(7),
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and
bi_1t:(T) = bi_1(x1, ..., x;)
= t1(x1)
= b,(T). O

7.3. Let now C be equal to o. By the previous proposition, we have a diagram
F e K i Do

of functors from G to ©. The functor F is globular by definition, the functor K is
globular by Proposition 5.9 and the functor Dy is trivially globular. This diagram thus
lives in Extg(©). Let Fy : ©9 — © be the canonical functor. By the universal property
of ©g (Proposition 3.2), we obtain a diagram

B
FOAK()(LDO

in Hom (09, ©). Note that for the same reason as in paragraph 5.11, this lifting is
unique. But this diagram lives in Extgr((:)). Indeed, (O, Fp) is a groupoidal globular
extension by definition, ((:), Kj) is a groupoidal globular extension by Proposition 6.11
and ((:j, Dy) is trivially a groupoidal globular extension. Hence by the universal property
of © (Proposition 3.18), this diagram lifts to a unique diagram

1éL>I~(<—D0

in Hom, (©,©). This is our desired décalage on ©. We will denote it by D.
gly (C)
7.4. We will now construct a splitting to the décalage Dg. Let
pi:D; =Dy, >0,
be the morphism defined by the formula
Pi = (TSROa cee 77-z‘i—1"€i—17 ’ii)‘
This morphism is not natural in 7. For instance, the square

]50i>D0

Y

f)lT)Dl

is not commutative. Therefore, we cannot extend formally p to a general globular sum.
Denote by _

pjiDji = Di, 12>7>0,
the composition of the canonical morphism ]5” — D; followed by p;. If S is a globular
sum whose table of dimensions is
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we define o _
ps S =D HDZ_,1 Dy 114, HDZ_,2 g D,
by the formula
ps = Pix Up, pig 1, Ooy, -, oy
Dually, we define maps
ri:Xi—>)?i, 1 >0,
riic X = Xjg, 1> >0,
rg: X(S)— X(S), S globular sum,
by the formulas
ri(x;) = (k‘oté(zi), kit (), k‘l(xz)),
rii(zi) = (k:jt}(xi), . ,ki_ltﬁfl(:ci), k:z(:zl)),

To(Tiyy ey Xiy) = (ril(xil)?rill+1,i2($i2)7 ... 7Ti;_1+1,in<xin))'
Proposition 7.5. The pg’s are well-defined. Moreover, for every object S of é, we have
psag = 1g.

In other words, p 1s a splitting of Dg.

Proof. Let i > 0 and let z; be in X;. To prove that r;(z;) belongs to )~(i, we need to
check that 4 ,
slkl,ltﬁl(xi) = tltlJrlklt;(xi), 1 < l < 7.
But using the identities s;k;_1 = 1Xz—1 and ty 1k = 1Xz’ we get that both sides are equal
to ¢! (xi).
Let now S be a globular sum whose table of dimensions is

and let (xj,,...,2;,) be in X(S). To prove that r¢(x;,...,x;,) belongs to X(S), we
need to check that
41 i+2 i
sZ ki, (z,) = tié ki{+152111(xiz+1)’ 1<i<n-1
But this equality is equivalent to the equality
SZ (le) = tZJrl (:L'il+1)

which holds by definition of X (S5).
Let us now prove that rg is a section of ag. We easily check that r; is a section of a;:

airi(xi) = (k‘ot%(l’i), ey ki71t2_1(xi>, kz(zvl))
= sit1ki(w;)

More generally, if
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is defined by the formula

@i (Tj1s - Tig1) = Sip1(Tig1),

the same calculation shows that r;; is a section of a; ;.
Let ag = X (ag) and let @y be the morphism ag viewed as a morphism

X@'l Xx, - Xx, in—>X“ X)Z'./ "'X)N(,, X,Ln
1 "n—1 11 L1
By definition, we have
~/
g = Ty Xy, * Xp, Ty
"1 n—1
Let d be the canonical isomorphism
Xil XX,, Xill-‘r].,ig XX-/ P XX-/ X’i/ _1_;’_1’7;” — Xil X)~(. e X)Z'~ in
"1 "2 n—1 n Z/l Z%_l
We recall that
1 1 2 2 n n
d(wlw"7xi1+1vxi’1+2>'"75‘%—&—17"'vwi;71+2>“'71‘in+1)
1 1 2 2 n n
— (xl,...7$il+1,x1,...,$i2+17...,x1,...,xin+1),

where the

ah, 2<i<n, 1<j<i+1,

are defined by formulas given in paragraph 5.10.
We thus have

65(1"%7""$z11+1’$i2’1+2""7$122+1""’a7?;_1+2""7"3?71-1—1)
:fdlsd(x%a"‘7x111+17x12’1+27'”7x122+17‘"795?”71-5-27'”@:';“)
=g (¥], - s BT T g, T T )
= (ail(m%,...,x}ﬁl),...,ain(m?,...,x?n+1))

= (Si41(2i, 1) -5 Sip41(2F 1),

hence the equality
ag = Qjy ><Xi,1 @il +1ip XXi/2 s XXy A L
e

We can now compute agrg:

557“5(5131'17 .. ,a:in)
=ag (7%‘1 (i), T3 +1,i0 (Tis), - - - 2 Ti i (Hfzn))
= (az‘ﬁ“z‘l (35i1)7 A +1,ia 74, +1,i0 (3%)7 S 7ai;71+1,inri;71+1,in(xin))
= (ziy, .., Ti,),

where the last equality follows from the fact that r;; is a section of a;;. We thus have

shown that rg is a section of ag.

0
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Remark 7.6. The category O has been defined by a universal property related to the
notion of strict co-groupoid. For each n > 1, we can define a category (:)n enjoying a sim-
ilar universal property with respect to the notion of strict n-groupoid. The category O,
can be seen as the full subcategory of O whose objects are globular sums of dimension
at most n, i.e., globular sums

D;, HDi/ - 1p, Di,,

"n—1
with ix_< n for all k such that 1 < k < n. Let us denote by i, the inclusion functor
G) —+ ©. This functor admits a left adjoint p, : 6 — @n which truncates globular sums
in dimension n, i.e., which sends the globular sum

D;, I, ... 10, D;
1

Z‘, n

n—1

to the (possibly degenerated) globular sum
Djl HD]/ tt HD D]n?
1 1

3!

where
Jr =min(ig,n), 1<k<n

Jr = min(i,n), 1<k<n-—1.

Note that we have p,i, = 1(:).
The décalage

a > B
Dg = lg — K <—Dy
induces a décalage
a = Bn
Dg, = lg — > Kn<"—Dy

on én, defined by
Moreover, every splitting of Dg induces a splitting of D@n' Note that the inclusion

functor i, : én — ©is not a morphism of décalages.

For each n > 1, the category (:)n is canonically isomorphic to the full subcategory of
the category of strict n-groupoids whose objects are free strict n-groupoids on globular
pasting schemes of dimension at most n. In particular, él is canonically isomorphic to
the category A defined as follows: the ob jects of A are the sets

A, =10,...,n}, n>0,

and its morphisms are all the applications between these sets.
Let us now try to understand the induced décalage on A= @1 The functor K 1 sends
A, to Apyq and we thus set An = Ap11. The functor p; : O — A sends the morphisms

V¢ : Dy — Dy I, Dy,
kg : D1 — Do,
Q(l) : Dl — Dl,
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to the morphisms

VA = A a, Ay = Ay,
A — Ao,
Q: A1 = Aq,

=

defined by
V:i0—0, 1—2
k:0—0, 1—0,
Q:0—1, 1~0.
In the same way, the morphisms
Vi : D1 = Dy I, Dy — Dy Tl Dy = Dy Tl D I, I,
%o : D1 = Dy I, D2 — Dy = Dy,
Q} : Dy = Dy I, Dy — Dy = Dy 1T, Do,
are sent to the morphisms
%:&:Ayﬁ&ﬂ&zﬁﬂ%
F:iAl =AMy = Ag=Aq,
Q:AL =AMy = Ay = Ay,
defined by

V:i0—0, 1—2, 23,

kK:0—0, 1—0, 21,

Q:0-1, 10, 22
Let D be the endofunctor of A defined by

D(A,) =A, =Apia
for every n > 0, and by

DK = {W‘/’)’ shem

n+1l, k=m+41,

for every morphism ¢ : A,, = A, of A. We have
V=D(V), F=D(k) and Q=D(Q).

Thus the functors I?ljmd D agree on objects and on the morphisms V, x and 2. The
universal property of A = © then implies that K7 = D. One can show in a similar way
that the natural transformations oy : 18 — Kj and 51 : A9 — K are induced by the
applications

A, — An+1 Ag — An+1

ko k an 0 n+1.
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Note that this décalage restricts to the subcategory A of A whose objects are the A,’s
and whose morphisms are order-preserving maps. The induced décalage on A is precisely
the one defined in Example 3.14 of [10].

8. (:j IS A TEST CATEGORY
Proposition 8.1. The object Dg is terminal in o.

Proof. This is an immediate consequence of Proposition 3.22. O
Proposition 8.2. (Dy,0y,7,) is a separating interval on o.

Proof. We need to show that the equalizer of oy, 7, : Dg — Dy in O is the initial presheaf,
i.e., that there does not exist an object S in © such that the diagram

g
S —= Dy T:ZI Dy

1
is commutative. Suppose that such an S exists. By precomposing with a morphism from
Do, we can assume that S is Dg. Since by the previous proposition, Do is a terminal
object, that would imply that o; and 7, are equal. By the universal property of ©
(Proposition 3.21), that would mean that s; and t; are equal for every strict oco-groupoid.
This is obviously false. O

Theorem 8.3. The category O is a strict test category.

Proof. By the previous proposition, (Dy, oy, 7) is a separating interval on ©. Moreover,
since Dy is a representable presheaf, it is aspherical. Furthermore, by paragraph 7.3 and
Proposition 7.5, © admits a splittable décalage. Hence the result by Proposition 4.12. [

Corollary 8.4. The pair (é,W(:)) is endowed with a structure of model category whose
cofibrations are the monomorphisms. This model category structure is cofibrantly gener-
ated, proper and the weak equivalences are stable by binary products.

Moreover, the homotopy category Hotg ofé 15 canonically equivalent to the homotopy
category Hot.

Proof. This follows from the previous theorem by Theorem 4.6. 0

8.5. A similar proof (using the very same calculations) shows analogous results for the
category O. Indeed, let (C, Fy) be a categorical globular extension. The definitions of
the V;’s and k,;’s of paragraph 6.2 still make sense. Moreover, by Propositions 6.3, 6.4,
6.5, 6.6, 6.7 and 6.8, the twisted globular extension (C, Ky) under 6, endowed with these
morphisms, is a categorical globular extension. By this result and the universal property
of ©, we can construct a décalage Dg on © as we did in paragraph 7.3 for ©. The
definition of the pg’s of paragraph 7.4 still makes sense and the proof of Proposition 7.5
applies and shows that p is a splitting of Dg. Moreover, the proof of Proposition 8.2
shows that (Dy,0,,7,) is a separating interval on ©. We hence obtain by Theorem 4.12
that © is a strict test category. In particular, © is endowed with a model category
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structure as in Corollary 8.4. One can show that the décalage Dg and its splitting are
the same as those constructed in [10].
Moreover, since the décalages Do and Dg are defined in a uniform way, the canonical

functor i : © — © (obtained by the universal property of ©) induces a morphism of
décalages. Proposition 4.14 thus implies the following theorem.

Theorem 8.6. The canonical functori: © — O is aspherical.

Corollary 8.7. Let i* : © — © be the restriction functor and let iy be its right adjoint.
Then (i*,14) is a Quillen equivalence.

Proof. This follows from the previous theorem by Proposition 4.9. O

8.8. If I is a subset of {l,r, f}, let us denote by © the universal precategorical globular
extension satisfying Axioms (Ass) and (Exc), plus Axiom (LUnit) (respectively (RUnit),
respectively (FUnit)) if [ (respectively r, respectively f) belongs to I. In particular, we
have © = Oy, ;.

In the same way, if J is a subset of {l,r, f, l, 7}, let us denote by O, the universal
pregroupoidal globular extension satisfying the same axioms as © jng . sy plus Axiom

(LInv) (respectively (RInv)) if [ (respectively 7) belongs to J. In particular, we have

= él,r,f,l”,f'
A closer look at the calculations of the previous sections reveals that

Our7 @lrif

NN TN

r\\\\\* ////f?”’ Oy O i 0= Ejlrfff
O,f

is a diagram of strict test categories and aspherical functors.
By duality, the diagram obtained by exchanging [ and r, and [ and 7, is also a diagram
of strict test categories and aspherical functors.
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