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Abstract

Polygraphs are a higher-dimensional generalization of the notion of directed
graph. Based on those as unifying concept, this monograph on polygraphs re-
visits the theory of rewriting in the context of strict higher categories, adopting
the abstract point of view offered by homotopical algebra. The first half explores
the theory of polygraphs in low dimensions and its applications to the computa-
tion of the coherence of algebraic structures. It is meant to be progressive, with
little requirements on the background of the reader, apart from basic category
theory, and is illustrated with algorithmic computations on algebraic structures.
The second half introduces and studies the general notion of 𝑛-polygraph, deal-
ing with the homotopy theory of those. It constructs the folk model structure
on the category of strict higher categories and exhibits polygraphs as cofibrant
objects. This allows extending to higher dimensional structures the coherence
results developed in the first half.
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0
Introduction

Presentations of higher categories. A group is generally defined by character-
istic properties of its elements, as for instance the group Σ𝑛 of all permutations
of the set {1, ..., 𝑛}, or the group of all isometries of a cube. However, to perform
actual computations in a group, we usually pick a subset of generators among
its elements and write down certain relations satisfied by these generators, in
such a way that each element of the group is a product of some generators or
their inverses, and each equality between two elements is derivable from the re-
lations. This leads to a purely syntactic way of defining a group, called a group
presentation by generators and relations, which describes the group as a free
group over a set of generators quotiented by some relations. Presentations are
not limited to groups, and have been adapted to many other algebraic structures:
monoids, categories, Lawvere theories (this is the subject of universal algebra),
commutative (or not) algebras (where the relations are usually specified by an
ideal), or higher algebras such as operads, product categories, linear monoidal
categories, to name a few.

The subject of this monograph is the concept of polygraph, which is the notion
of presentation adapted to higher categories, and encompasses the previously
mentioned settings as particular cases. Polygraphs were first introduced by
Street [333] under the name of computads in their 2-dimensional version, in
order to study 2-categorical limits, and then generalized in arbitrary dimension:
this was first published in [304], but the generalization was already known
and implicitly used in [334]. The terminology we adopt here comes from
Burroni [72, 73] who independently developed the concept in order to study
generalizations of the word problem and provide an equational presentation
of cartesian categories. The name polygraph is meant to suggest an higher-
dimensional analogue of oriented graph. It should be mentioned that these
ideas were developed on both sides, and informally circulated long before
publication.

11



12 Introduction

The word problem. Given a presentation of a group, the completeness of a
set of relations means that for any two sequences 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑚 of
generators, also called words, their respective products 𝑎1...𝑎𝑛 and 𝑏1...𝑏𝑚 are
equal in the presented group if and only if one can transform the first into the
second by using the relations. This very naturally led, early on, to the following
algorithmic question, known as the word problem: given a finite (or recursive)
presentation and two words as above, can we decide whether they are equal or
not in the presented group? From a computational theory point of view: can we
implement a computer program which automatically determines the equality
of words in a presented group? However, this question predates by many years
the invention of computers. It was first raised as an important one by Dehn in
1911 [106], who subsequently managed to provide an algorithm for a certain
class of groups (the fundamental groups of closed orientable surfaces of genus
greater than or equal to 2) [107]. For some time it was hoped that the problem
could be solved for all groups, but it was in fact shown to be undecidable around
1955 by Novikov [293] and Boone [51].

The word problem has also been considered in other settings where presen-
tations exist. For monoids, it was first studied by Thue in 1914 [344], leading to
the emergence of the notion of string rewriting system, also called semi-Thue
systems. It was much later, in 1947, that the word problem was shown to be un-
decidable by Post [301] and Markov [271]. In the case of universal algebra, the
undecidability of the word problem follows from the undecidability of conver-
sion in combinatory logic [103] which is closely related to the undecidability
of 𝛽-conversion in 𝜆-calculus [87].

Rewriting theory. In most cases where the general word problem is undecid-
able, we can nevertheless find many specific presentations with algorithmically
decidable equality. For instance, if we ask a small child whether 2 + 3 + 4 is
equal to 2 + 2 + 5, he will progressively compute both sums and observe that
the results are the same:

2 + 3 + 4
��

? 2 + 2 + 5
��

5 + 4

$$

4 + 5

zz9

The starting point of rewriting theory is to provide each relation of a given
presentation with an orientation taking one side of the equality to a simpler
expression on the other side. The resulting structure is called a rewriting system
and the oriented rules are called rewriting rules. Fundamental examples of
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rewriting systems are string rewriting systems for presentations of monoids [50]
and term rewriting systems for presentations of Lawvere theories [342, 20].

Each rewriting system now comes with a notion of normal form, that is,
an expression which cannot be further simplified by applying rewriting rules.
This immediately suggests the normal form algorithm, consisting, given two
expressions, in applying the two following steps:

1. simplify the two expressions in order to obtain normal forms,
2. compare the normal forms.

The normal form algorithm only decides the word problem if the rewriting
system satisfies the two following properties.

1. Each sequence of rewriting rules eventually reaches a normal form after a
finite number of steps, in which case we call the system terminating;

2. If an expression can be reduced in two different ways, we can further reduce
two expressions into a common one, in which case we call the system
confluent.

A rewriting system is convergent when it is both terminating and confluent.
Proofs of termination often rely on embedding the reduction order into a

partial well-founded order over the set of expressions. As for confluence, in
case the system is already known to be terminating, it suffices to check a
simpler condition called local confluence: this is the content of Newman’s
lemma [290]. This lemma holds in abstract rewriting systems and therefore
does not depend on the particular formalism under consideration (rewriting
on strings, terms, etc.). We should also mention that convergent rewriting
systems have independently be discovered in the setting of presentations of
(commutative) algebras in the 60s by Shirshov [325] and Buchberger [65],
where they are known as Gröbner bases. In this context, Newman’s lemma is
known as the diamond lemma [39].

Tietze transformations and completion. A presentation of a group – or any
other type of algebraic structure – may be thought of as a particular imple-
mentation of it, thus allowing for computations. As two presentations of the
same object may have very different computational properties, it is worth con-
sidering the family of all presentations of a given object. This has first been
done in the case of groups by Tietze in 1908 [345] (and later on generalized
to other settings): he introduced a family of operations on group presentations,
now called Tietze transformations, such that any two presentations of the same
group can be transformed into each other by means of those operations. Pre-
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cisely, Tietze transformations are sequences built from two elementary steps
and their converse, namely

1. to add a new generator which is equal to a product of preexisting generators,
and

2. to add a relation which is derivable from the already present relations.

Tietze transformations will be used to turn a given rewriting system into
a new one presenting the same structure, possibly with better computational
properties. In particular, the idea behind completion algorithms is to add rules
(or generators) to a rewriting system in order to turn it into a confluent one. These
ideas were already present at the beginning of string rewriting systems [344]
and gained much popularity when they were developed by Buchberger for
Gröbner bases [65] (which eventually lead to very efficient algorithms [125]),
by Knuth and Bendix for string rewriting systems [218], and by Nivat for string
rewriting systems [292]. The new rules to be added to the rewriting system are
determined by computing critical branchings (also called S-polynomials in the
linear settings), which are minimal obstructions to confluence.

The universality problem. We have seen that, even though the word prob-
lem is undecidable in general, there are many cases where the presentations
are convergent and the word problem can be decided with the normal form
algorithm. This leads to the following question, first formulated by Jantzen in
the context of string rewriting systems [202, 203], and sometimes referred to
as the universality problem for convergent rewriting: given a finitely presented
monoid with a decidable word problem, does it always admit a presentation by
a finite convergent string rewriting system?

A first answer to this question was brought by Kapur and Narendran [213]
by considering the Artin presentation of the positive braid group 𝐵+3 (with two
generators 𝑎 and 𝑏 and one relation 𝑎𝑏𝑎 = 𝑏𝑎𝑏), which has a decidable word
problem: they showed that one cannot obtain a convergent presentation from
it, by adding or removing relations. However, this does not settle the general
question, because we are only using Tietze transformations of type (ii) here,
and in fact the same authors also observed that, by using a transformation of
type (i), one can indeed obtain a convergent presentation.

Homotopy and homology. A complete solution to the universality problem
was eventually found by using ideas coming from algebraic topology, which, in
a nutshell, consists in assigning discrete invariants to continuous shapes. Such
ideas already appear in the works of Euler, but their systematic development
starts with Poincaré [299]. Among the first invariants to be considered are the
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fundamental group of a space, that consists of classes of loops up to continuous
deformations (or homotopies) and the sequence of homology groups, providing
information about the “holes” of various dimensions in a given space.

The fact that homological invariants are not just numbers, but bear a structure
of abelian group was first recognized by Emmy Noether (see [349, p. 478]
or [181]), and independently by Vietoris, whose paper [351] contains the first
definition of homology groups ever published. Homology groups are amenable
to effective computations by using classical tools from linear algebra. On the
other hand, one may consider a group or a monoid as a geometric object, by
defining the corresponding classifying space. Thus, invariants of spaces may
be applied to groups and monoids. These notions have been vastly generalized
over the years, and now apply to algebraic structures whose geometrical content
is much less obvious, such as rings or algebras [186, 258].

Squier’s homological and homotopical conditions. The universality problem
was answered negatively by Squier in 1987 [326, 327]. Squier’s argument is
based on the homology of monoids and relies on two fundamental observations.
First, any presentation of a monoid determines a sequence of homology groups,
but these groups are independent of the particular presentation we use: they
are invariants of the monoid itself. Second, a finite convergent presentation
of a monoid 𝑀 always yields a third homology group 𝐻3 (𝑀) of finite rank.
Now, Squier was able to produce an explicit example of a finitely presented
monoid 𝑀 with decidable word problem, whose third homology group is not
of finite rank, and therefore does not admit a finite convergent presentation.

In more precise terms, the homology of a monoid 𝑀 is computed by building
a resolution of the trivial Z𝑀-module Z, that is, an exact sequence

· · · 𝑑4 // 𝐶3
𝑑3 // 𝐶2

𝑑2 // 𝐶1
𝑑1 // 𝐶0

𝜀 // Z // 0

of projective Z𝑀-modules. Tensoring the above sequence by Z over Z𝑀 gives a
chain complex of abelian groups, which is not exact anymore in the general case;
its homology groups only depend on 𝑀 and not on the particular resolution we
chose. Now, if we start with a convergent presentation of 𝑀 , we obtain a partial
resolution of the form

· · · 𝑑4 // Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0

where 𝑃0 is the set with one element, 𝑃1 is the set of generators of the presen-
tation, 𝑃2 the set of relations, and 𝑃3 the set of critical branchings. For a finite
rewriting system, the set 𝑃3 of critical branchings is always finite. Hence the
abelian group Z𝑀 [𝑃3] ⊗Z𝑀 Z obtained by tensoring by Z over Z𝑀 has finite
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rank, and so has the third homology group 𝐻3 (𝑀). Note that the finiteness
condition for 𝐻3 comes here from the strictly stronger statement that 𝑀 is of
type left-FP3, which means that it admits a partial resolution of length 3 by
finitely generated projective left Z𝑀-modules.

The above algebraic constructions can be interpreted in geometric terms [238],
at least in the case where the monoid 𝑀 is a group. The free resolution (𝐶𝑖 , 𝑑𝑖)
comes from a cellular decomposition of a contractible space 𝑋 on which𝑀 acts
freely and transitively. Tensoring by Z over Z𝑀 amounts to quotient 𝑋 by the
action of 𝑀 , thus obtaining a cellular decomposition of the classifying space
of 𝑀 itself. Starting with a presentation of 𝑀 , the cellular complex we get is
built dimensionwise: in dimension 0 there is a unique point, corresponding to
the element of ⋆ ∈ 𝑃0. In dimension 1, each generator of 𝑃1 gives a loop on ⋆.
In dimension 2, each relation in 𝑃2 gives a disk attached to the 1-dimensional
paths determined by the products of the generators involved. For instance, with
the Artin presentation of 𝐵+3 recalled above, we would obtain the space on the
left, together with a disk attached between the paths corresponding to the words
𝑎𝑏𝑎 and 𝑏𝑎𝑏, as pictured on the right:

⋆𝑎 𝑏 ⋆

⋆⋆

⋆

⋆ ⋆

𝑎
𝑏

𝑎

𝑏
𝑎

𝑏

There may be different ways to fill the gap between two expressions representing
the same element of𝑀 by using disks as above. Geometrically, this corresponds
to 3-dimensional holes in the corresponding 2-dimensional complex. These
holes have to be filled by appropriate 3-dimensional cells, and it turns out that,
in the case of a convergent presentation, a set of 3-cells coming from the critical
branchings is sufficient for that. Of course the construction has to be pursued
in higher dimensions in order to obtain the correct topology.

About the same time as when Squier studied monoid resolutions, other
authors developed similar ideas: Anick constructed a resolution of algebras in
order to study Koszulness properties [8], Brown managed to use discrete Morse
theory in order to “reduce” the standard resolution to a small one [59, 60], and
Kobayashi extended Squier’s partial resolution into a full one [219]. Finally, we
should mention that Squier subsequently provided a “homotopical” variant of
his condition, which was published after his death [328], see also [233]. A finite
presentation is said to be of finite derivation type when the full congruence,
which identifies any two witnesses of equality between two given words, is
finitely generated. It can be shown that this property is an invariant of the
monoid, and is implied by having a finite convergent presentation. Moreover,
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one can construct an explicit example of a monoid which has a finite presentation
with decidable word problem, but does not have finite derivation type.

Polygraphs as higher-dimensional presentations. A monoid is a category
with only one object, and it is thus natural to extend the notion of presentation,
and associated theorems and techniques, from monoids to small categories.
Precisely, a small category 𝐶 will be presented by a set 𝑃0 = 𝐶0 of objects, a
set 𝑃1 of 1-generators, that is, a subset 𝑃1 ⊆ 𝐶1 of morphisms generating all
morphisms in 𝐶 by composition, together with a set 𝑃2 of relations between
certain pairs of composites of 1-generators. This pattern generalizes to higher
categories, resulting in the notion of 𝑛-polygraph [333, 73], which consists of
the following data:

– for each 𝑖 ∈ {0, ..., 𝑛}, a set 𝑃𝑖 , freely generating a set 𝑃∗𝑖 of 𝑖-dimensional
cells,

– for each 𝑖 ∈ {1, ..., 𝑛}, a pair of maps associating to each 𝑖-generator its
source and target in 𝑃∗𝑖−1.

Given an (𝑛+1)-polygraph 𝑃, the source and target maps defined on 𝑃𝑛+1
generate an equivalence relation on 𝑃∗𝑛, whose quotient set 𝐶𝑛 is the set of
𝑛-morphisms of the 𝑛-category 𝐶 presented by 𝑃.

Right from the beginning, a polygraph was thought of as a “higher-dimen-
sional rewriting system” [73, 121, 337, 338] and the associated theory of
rewriting was subsequently developed, in particular by some of the authors of
this book [235, 158, 161, 164, 283, 165]. It turns out that many of the classical
theorems go through but, starting at dimension 𝑛 = 3, there is a major difference
with the classical setting: a finite rewriting system might give rise to an infinite
number of critical pairs, thus preventing easy generalizations of Squier-type
theorems.

The fact that polygraphs are higher-dimensional rewriting systems should
be taken in a very strong sense here: they are about rewriting rewriting
paths. Namely, an (𝑛 + 1)-polygraph consists of an 𝑛-polygraph together with
(𝑛 + 1)-dimensional rewriting rules, which specify how to rewrite rewriting
paths in the underlying 𝑛-polygraph. For instance, consider the abstract rewrit-
ing system on the left, which is a 1-polygraph:

⋆𝑎 :: 𝑏dd

⋆
𝑏 // ⋆

𝑎

��
⋆

𝑎 //

𝑏
//

=⇒

⋆

⋆ 𝑎
// ⋆ 𝑏

FF

Here, we have one object ⋆ and two rewriting rules 𝑎 and 𝑏 rewriting ⋆ to
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itself. We can obtain a 2-polygraph by adjoining a 2-dimensional rewriting rule
which rewrites the path 𝑎𝑏𝑎 into the path 𝑏𝑎𝑏, as pictured on the right, thus
providing a polygraphic presentation of the monoid 𝐵+3 : in this way, we can see
that string rewriting is secretly rewriting rewriting paths in abstract rewriting
systems! Similarly, in the next dimension, we can see that term rewriting, and
more generally rewriting of diagrams, is an instance of rewriting rewriting paths
for string rewriting systems.

Several particular generalizations of the notion of polygraph have also been
investigated (for (𝑛, 𝑝)-categories, linear higher-categories [160], cartesian
higher-categories, etc.). Most of them are particular instances of the notion of
𝑇-polygraph introduced by Batanin [28] in order to define polygraphs adapted
to weak higher categories: he defines a notion of polygraph parametrized by a
globular monad𝑇 , whose various instantiations allow recovering the previously
mentioned variants of polygraphs.

Coherence. Given a presentation of an 𝑛-category𝐶 by an (𝑛+1)-polygraph 𝑃,
the elements of 𝑃∗𝑛+1 witness the equalities between 𝑛-morphisms of 𝐶. Now,
different (𝑛+1)-cells may witness the same equality: this defines a congruence
on 𝑃∗𝑛+1. If we extend 𝑃 by a set 𝑃𝑛+2 generating this congruence, we get a coher-
ent presentation of 𝑀 by an (𝑛+2)-polygraph. For instance, from a convergent
presentation of a monoid, we build a coherent presentation by a 3-polygraph 𝑃
in which the generators in 𝑃3 correspond to the critical branchings.

Coherent presentations provide the “right” generalization (in a homotopical
sense detailed below) of a structure in higher dimensions. For instance, the the-
ory of monoids can be described by a 3-polygraph. If we extend this polygraph
into a coherent one, we obtain a theory corresponding to pseudo-monoids,
which is the expected notion of monoid in a monoidal 2-category.

Resolutions with polygraphs. The construction of a coherent presentation of
an 𝑛-category may be infinitely pursued in higher dimensions by introducing,
for each 𝑚 ⩾ 𝑛, a set of (𝑚+1)-cells generating all desired congruences be-
tween 𝑚-cells. More generally, starting with any 𝜔-category 𝐶, we may build
a polygraph 𝑃 together with an 𝜔-functor 𝑝 : 𝑃∗ → 𝐶 satisfying the following
properties.

1. For each dimension 𝑛 ⩾ 0, 𝑃𝑛 generates𝐶𝑛, in the sense that 𝑝𝑛 : 𝑃∗𝑛 → 𝐶𝑛
is surjective.

2. For any two parallel cells 𝑥, 𝑦 in 𝑃∗𝑛 such that 𝑝𝑛𝑥 = 𝑝𝑛𝑦 = 𝑢 ∈ 𝐶𝑛, there is
an (𝑛+1)-cell 𝑧 ∈ 𝑃∗𝑛+1 with source 𝑥 and target 𝑦 such that 𝑝𝑛+1𝑧 = 1𝑢.

We call such a map 𝑝 : 𝑃∗ → 𝐶 a polygraphic resolution of 𝐶 by the
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polygraph 𝑃 [278]. It turns out that two polygraphic resolutions of the same
𝜔-category are equivalent up to a suitable notion of homotopy. Polygraphic
resolutions are cofibrant replacements in the “canonical” model structure on
the category of small 𝜔-categories, as introduced in [237]. As a consequence,
there is a well-defined notion of homology for 𝜔-categories: to each poly-
graphic resolution of 𝐶 by 𝑃 corresponds a chain complex (Z𝑃𝑛, 𝜕𝑛)𝑛⩾0 of
abelian groups, whose homology only depends on 𝐶. This illustrates the gen-
eral principle according to which many constructions are better behaved when
performed on free objects. In the particular case where 𝐶 is a monoid 𝑀 seen
as an 𝜔-category, this homology coincides with the one computed via free
resolutions of Z by Z𝑀-modules [236, 155]. These constructions transfer to
strict 𝜔-groupoids, or more generally (𝜔, 𝑛)-categories [16], where all cells
of dimension strictly above 𝑛 are invertible, yielding appropriate notions of
polygraphic resolutions.

Structure of the book(s). This book informally splits in two books, which,
however strongly connected, can be read separately, according to one’s taste
and objectives.

Low-dimensional book. The first book explores the theory of polygraphs in low
dimensions and its applications. It is meant to be very progressive, with little
requirements on the background of the reader, apart from basic category theory,
and is illustrated with algorithmic computations on algebraic structures. We
namely study polygraphs in dimension 1 (Chapter 1), in dimension 2 (Chapters 2
to 9), and in dimension 3 (Chapters 10 to 13).

In all the cases, we introduce the notion of polygraph as well as the associ-
ated notions of generated and presented categories (Sections 1.1, 1.2 and 10.1
and Chapter 2), develop the theory of rewriting (Sections 1.3 and 10.2 and Chap-
ter 4), Tietze transformations and completion procedures (Section 1.2 and Chap-
ter 5), termination techniques (Sections 1.3 and 4.4 and Chapter 11) and coher-
ent presentations (Chapters 7 and 12), this last notion requiring the introduction
of higher-dimensional notions of polygraphs. We also present the homotopical
and homological invariants (Chapters 8 and 9) they allow to compute, and
introduce variants of the notion of polygraph, namely linear (Chapter 6) and
cartesian polygraphs (Chapter 13).

Higher-dimensional book. The second book goes at a faster pace, and supposes
that the reader is familiar with category theory. Moreover, acquaintance with
strict higher categories, as well as the notion of model category, can be helpful,
even though these notions are recalled. The beginning of this book introduces
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and studies the general notion of 𝑛-polygraph (Chapters 14 to 18). The re-
mainder of the book deals with the homotopy theory of these polygraphs. We
construct the “folk” model structure on the category of 𝜔-categories (Chap-
ters 19 to 21), in which polygraphs are precisely the cofibrant objects. This
model structure is used to define a homology theory for 𝜔-categories as a de-
rived functor (Chapter 22). Finally, we study the variant of (𝜔, 1)-polygraphs
(Chapter 23), which allows to formulate a higher-dimensional generalization
of the coherence results developed in the “low-dimensional book”.

Appendix. The book is followed by a number of chapters containing additional
material. Some of them perform a review of classical – or not – examples of
polygraphs, in order to illustrate their diversity and applications: 2-polygraphs
(Appendix A), coherent 2-polygraphs (Appendix B) and 3-polygraphs (Ap-
pendix C). Some other chapters recall elements of classical topics used through-
out the second part of the book: free 𝑛-categories (Appendix D), homology (Ap-
pendix E), locally presentable categories (Appendix G) and model categories
(Appendix H).
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vana Obradovic, Viktorya Ozornova, Jacques Penon, and all participants of the
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FUNDAMENTALS OF REWRITING





1
Abstract rewriting and one-dimensional

polygraphs

We begin by discussing 1-polygraphs, which are simply directed graphs, thought
of here as abstract rewriting systems: they consist of vertices, which represent
the objects of interest, and arrows, which indicate that we can rewrite one object
into another. After formally introducing those in Section 1.1, we will see in
Section 1.2 that they provide a notion of presentation for sets, by generators
and relations. Of course presentations of sets are of little interest in themselves,
but merely used here as a gentle introduction to some of the main concepts
discussed in this work: in particular, we introduce the notion of Tietze trans-
formations which generate the equivalence between two presentations of the
same set. In this context, an important question consists in deciding when two
objects are equivalent, i.e., represent the same element of the presented set.
In order to address it, we develop the theory of abstract rewriting systems in
Section 1.3. Most notably, we show that when the rewriting system satisfies the
two properties of termination and confluence, equivalence classes of objects
admit a unique canonical representative, the normal form and equivalence of
objects can thus be decided by comparing the associated normal forms. Finally,
in Section 1.4, we detail the more advanced method of decreasing diagrams,
which can be used to show confluence in absence of termination.

1.1 The category of 1-polygraphs

A 0-polygraph is simply another name for a set. Since there is not much to do
with those, we move on to 1-polygraphs.

1.1.1 Definition. A 1-polygraph 𝑃 consists of a 0-polygraph 𝑃0, whose ele-
ments are called 0-generators, together with a set 𝑃1 of 1-generators and two
functions 𝑠𝑃0 , 𝑡

𝑃
0 : 𝑃1 → 𝑃0 respectively associating to each 1-generator its

23
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source and target 0-cell. We often write ⟨ 𝑃0 | 𝑃1 ⟩ for such a polygraph and
𝑎 : 𝑥 → 𝑦 for a 1-generator 𝑎 in 𝑃1 such that 𝑠𝑃0 (𝑎) = 𝑥 and 𝑡𝑃0 (𝑎) = 𝑦. A
1-polygraph 𝑃 is finite when both 𝑃0 and 𝑃1 are.

The notion of 1-polygraph is simply another name for the notion of graph,
by which we always mean a directed multigraph, which we sometimes also call
a 1-graph. Indeed, a polygraph 𝑃 as above is a graph with 𝑃0 as set of vertices
𝑃1 as set of edges, an edge 𝑎 ∈ 𝑃1 having 𝑠𝑃0 (𝑎) as source and 𝑡𝑃0 (𝑎) as target.
Thus, any terminology pertaining to oriented graphs, such as the notion of path,
immediately applies to 1-polygraphs.

1.1.2 Example. The directed graph

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(1.1)

can be encoded as the 1-polygraph 𝑃 with 𝑃0 = {𝑥, 𝑦, 𝑧}, 𝑃1 = {𝑎, 𝑏, 𝑐} and

𝑠0 (𝑎) = 𝑠0 (𝑏) = 𝑥, 𝑡0 (𝑎) = 𝑡0 (𝑏) = 𝑦, 𝑠0 (𝑐) = 𝑡0 (𝑐) = 𝑦,
which can be more concisely denoted as

𝑃 = ⟨ 𝑥, 𝑦, 𝑧 | 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑥 → 𝑦, 𝑐 : 𝑦 → 𝑦 ⟩ .

1.1.3 The category of 1-polygraphs. A morphism 𝑓 : 𝑃 → 𝑄 between
1-polygraphs 𝑃 and 𝑄 consists of a pair of functions 𝑓0 : 𝑃0 → 𝑄0 and
𝑓1 : 𝑃1 → 𝑄1 respectively sending the 0- and 1-cells of 𝑃 to those of 𝑄 and
preserving sources and targets:

𝑠𝑄0 ◦ 𝑓1 = 𝑓0 ◦ 𝑠𝑃0 , 𝑡𝑄0 ◦ 𝑓1 = 𝑓0 ◦ 𝑡𝑃0 .

We write Pol1 for the category of 1-polygraphs and their morphisms. Again,
this is simply another name for the usual category of directed graphs and their
morphisms.

1.2 Presenting sets

A 1-polygraph 𝑃 can be seen as a presentation of a set 𝑋 , in the following
sense. Each element 𝑥 of 𝑃0 denotes an element 𝑥 of 𝑋 , in such a way that
each element of 𝑋 has at least one “name” in 𝑃0, and each element 𝑎 : 𝑥 → 𝑦

in 𝑃1 represents the renaming of 𝑥 by 𝑦. The elements of 𝑃0 and 𝑃1 are often
respectively called generators and relations.
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1.2.1 𝑃-congruence. The 𝑃-congruence ≈𝑃 associated to a 1-polygraph 𝑃 is
the smallest equivalence relation on 𝑃0 such that 𝑥 ≈𝑃 𝑦 for every 1-generator
𝑎 : 𝑥 → 𝑦 in 𝑃1.

1.2.2 The presented set. The set 𝑃 presented by a 1-polygraph 𝑃 is the set
𝑃0/≈𝑃 obtained by quotienting 𝑃0 by the 𝑃-congruence ≈𝑃 , what we usually
simply write 𝑃0/𝑃1. More generally, a set 𝑋 is presented by a 1-polygraph 𝑃
when 𝑋 is isomorphic to 𝑃, and in this case 𝑃 is called a presentation of 𝑋 .
Geometrically speaking, 𝑋 amounts to the set of connected components of the
graph 𝑃.

1.2.3 Example. In Example 1.1.2, the relation ≈𝑃 identifies 𝑥 and 𝑦, and the
presented set is the set with two elements, corresponding to the equivalence
classes {𝑥, 𝑦} and {𝑧}.
More abstractly, the set presented by a 1-polygraph 𝑃 can be characterized by
the following universal property:

1.2.4 Lemma. For any set 𝑋 and function 𝑓 : 𝑃0 → 𝑋 such that 𝑓 (𝑥) = 𝑓 (𝑦)
for every 1-generator 𝑎 : 𝑥 → 𝑦 in 𝑃1, there exists a unique function 𝑓 : 𝑃→ 𝑋

such that 𝑓 ◦ 𝑞 = 𝑓

𝑃0

𝑞

��

𝑓
// 𝑋

𝑃
𝑓

??

where 𝑞 : 𝑃0 → 𝑃 is the function sending an element to its equivalence class.

1.2.5 Tietze transformations. At this point, a natural question to ask is: when
do two polygraphs present the same set? For instance, the set with two elements
can also be presented by the polygraph

𝑥
𝑑 // 𝑥′ 𝑒 // 𝑦 𝑧 (1.2)

which looks quite different from (1.1), and it is not obvious how the two are re-
lated. This question was first studied by Tietze for presentations of groups [345],
as we shall see in Chapter 5, but similar results already hold for plain sets as
we now explain.

We call elementary Tietze transformations the following operations trans-
forming a 1-polygraph 𝑃 into a 1-polygraph 𝑄:

(T1) adding a definable generator: given 𝑥 ∈ 𝑃0, 𝑦 ∉ 𝑃0 and 𝑎 ∉ 𝑃1, we define

𝑄 = ⟨ 𝑃0, 𝑦 | 𝑃1, 𝑎 : 𝑥 → 𝑦 ⟩ ,
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(T2) adding a derivable relation: given 𝑥, 𝑦 ∈ 𝑃0 and 𝑎 ∉ 𝑃1 such that 𝑥 ≈𝑃 𝑦,
we define

𝑄 = ⟨ 𝑃0 | 𝑃1, 𝑎 : 𝑥 → 𝑦 ⟩ .
A Tietze transformation from 𝑃 to 𝑄 is a zigzag of elementary Tietze transfor-
mations, i.e., a finite sequence of polygraphs (𝑃𝑖)0⩽𝑖⩽𝑛 with𝑃0 = 𝑃 and𝑃𝑛 = 𝑄,
together with, for each index 0 ⩽ 𝑖 < 𝑛, an elementary Tietze transformation
either from 𝑃𝑖 to 𝑃𝑖+1 or from 𝑃𝑖+1 to 𝑃𝑖 . The Tietze equivalence is the smallest
equivalence relation on 1-polygraphs, identifying any two polygraphs related by
an elementary Tietze transformation and closed by isomophism; otherwise said,
two polygraphs are Tietze equivalent when there exists a Tietze transformation
between them, up to isomorphism.

1.2.6 Lemma. Two Tietze equivalent 1-polygraphs present isomorphic sets.

Proof. By induction on the length of Tietze transformations, it is enough to
show that two polygraphs 𝑃 and𝑄 related by an elementary Tietze transforma-
tion present the same set. Using the same notations as above, in the case of the
transformation (T1), we have

𝑄 = (𝑃0 ⊔ {𝑦})/≈𝑄 = ((𝑃0 ⊔ {𝑦})/(𝑥 ≈ 𝑦))/≈𝑃 = 𝑃0/≈𝑃 = 𝑃,

where 𝑥 ≈ 𝑦 denotes the smallest equivalence relation identifying 𝑥 and 𝑦. In
the case of the transformation (T2), the relations generated by 𝑃1 and 𝑄1 are
the same and we have

𝑄 = 𝑄0/≈𝑄 = 𝑃0/≈𝑃 = 𝑃. □

We will see in Theorem 1.2.12 that the converse also holds: these operations
exactly axiomatize when two finite 1-polygraphs are presenting the same set.

1.2.7 Example. Using the above lemma, one can deduce that the two poly-
graphs (1.1) and (1.2) present the same set, by building a series of Tietze
transformations relating them:

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(T2)
f 𝑥

𝑎 //

𝑏
// 𝑦 𝑧

(T2)
f 𝑥

𝑎 // 𝑦 𝑧

(T1)
⇝ 𝑥′ 𝑥

𝑑oo 𝑎 // 𝑦 𝑧
(T2)
⇝ 𝑥′

𝑒

66𝑥
𝑑oo 𝑎 // 𝑦 𝑧

(T2)
f 𝑥′

𝑒

66𝑥
𝑑oo 𝑦 𝑧.

In the first step, 𝑦 ≈ 𝑦 can be shown without resorting to the relation 𝑐 : 𝑦 → 𝑦
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(this is because, by definition, ≈ is an equivalence relation), and therefore the
relation ℎ can be removed using the Tietze transformation (T2) backward. Other
steps can be justified similarly. Of course, in this case, it is very easy to compute
the sets presented by the two polygraphs (1.1) and (1.2) and to see that they
are isomorphic (both have two elements), but it will not be the case anymore,
when generalizing to higher dimensions.

1.2.8 Backward Tietze transformations. A Tietze transformation is a zigzag
of elementary Tietze transformations. It can alternatively be seen as a sequence
of elementary Tietze transformations or the following transformations, that we
call backward elementary Tietze transformations, corresponding to using an
elementary Tietze transformation in the “backward direction”:

(T1) removing a definable generator: given a polygraph 𝑃 of the form

𝑃 =
〈
𝑃′0, 𝑥

�� 𝑃′1, 𝑎 : 𝑥 → 𝑦
〉
,

where 𝑥 does not occur in any relation of 𝑃′1, we define

𝑄 =
〈
𝑃′0

�� 𝑃′1 〉
,

(T2) removing a derivable relation: given a polygraph 𝑃 of the form

𝑃 =
〈
𝑃0

�� 𝑃′1, 𝑎 : 𝑥 → 𝑦
〉
,

we define

𝑄 =
〈
𝑃0

�� 𝑃′1 〉
whenever 𝑥 ≈𝑄 𝑦.

1.2.9 Remark. Given an elementary Tietze transformation from 𝑃 to 𝑄, there
is an obvious inclusion of 𝑃 into 𝑄 which induces a morphism of 1-poly-
graphs 𝑃 → 𝑄. However, for a backward elementary Tietze transformation
from 𝑃 to 𝑄 there is no canonical morphism 𝑃 → 𝑄. For instance, consider
the transformation

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(T2)
⇝ 𝑥

𝑎 //

𝑏
// 𝑦 𝑧.

The only reasonable choice would be to send the 1-generator 𝑐 : 𝑦 → 𝑦 to
an identity on 𝑦, which is not possible with a morphism of 1-polygraph (those
send 1-generators to 1-generators). This is one of the reasons why we take the
elementary Tietze transformations (as opposed to the backward ones) as more
primitive.
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1.2.10 Minimal presentations. It can be noted that Tietze transformations
consisting only of elementary transformations (T1) and (T2) make the presen-
tations larger (in terms of number of generators and relations), whereas those
consisting only of (T1) and (T2) make them smaller. We thus sometimes re-
spectively call Tietze expansions and Tietze reductions these two families of
Tietze transformations and say that a polygraph 𝑃 Tietze expands (resp. Tietze
reduces) to a polygraph 𝑄 if 𝑄 can be obtained from 𝑃 by applying a series of
Tietze expansions (resp. Tietze reductions). One may wonder if, by applying
only the second kind of transformations, we eventually always reach a minimal
presentation with respect to both generators and relations, and whether two
such minimal presentations are necessarily isomorphic. We will see that it is
indeed the case for finite polygraphs. First, note that a 1-polygraph 𝑃 without
relations (i.e., 𝑃1 = ∅) is always minimal.

1.2.11 Lemma. Any finite 1-polygraph 𝑃 Tietze reduces to a polygraph iso-
morphic to ⟨ 𝑃 | ⟩.
Proof. By induction on the cardinal of 𝑃1, we show that we can remove a
1-generator using Tietze transformations, unless 𝑃1 is empty. Suppose that 𝑃
contains a non-directed cycle, i.e., a non-empty non-directed path from a
0-generator 𝑥 to itself. We can assume that this path does not use the same
edge twice, otherwise we can choose a smaller cycle. Given a 1-generator
𝑎 : 𝑥 → 𝑦 occurring in this cycle, there exists a non directed path from 𝑥 to 𝑦
which is not using 𝑎. Therefore, we can apply a Tietze transformation (T2) to
remove 𝑎. Otherwise, there is no cycle, and consider a maximal non-directed
path in 𝑃. Since 𝑃 is finite and acyclic, this path will end by a 1-generator
𝑎 : 𝑥 → 𝑦 such that either 𝑥 or 𝑦 is incident to no other edge. Therefore, we can
use a Tietze transformation (T1) to remove 𝑥 or 𝑦, along with 𝑎. □

In the case of finite 1-polygraphs, the above lemma implies the converse of
Lemma 1.2.6:

1.2.12 Theorem. Two finite 1-polygraphs present isomorphic sets if and only
if they are Tietze equivalent.

Proof. Suppose given two polygraphs 𝑃 and𝑄 such that 𝑃 ≃ 𝑄. By the previous
lemma, 𝑃 is Tietze equivalent to ⟨ 𝑃 | ⟩, and similarly 𝑄 is Tietze equivalent
to ⟨ 𝑃 | ⟩. Finally, the presentations ⟨ 𝑃 | ⟩ and ⟨ 𝑄 | ⟩ are easily seen to be
Tietze equivalent because 𝑃 and 𝑄 are isomorphic. □

1.2.13 Remark. Note that, given the above definition of Tietze transformations,
the previous theorem does not generalize to infinite presentations. For instance,
the 1-polygraphs ⟨ 𝑥 | ⟩ and ⟨ 𝑥𝑖 | 𝑎𝑖 : 𝑥𝑖 → 𝑥0 ⟩𝑖∈N both present the set with
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one element but are not Tietze equivalent since we can only add or remove a
finite number of relations using Tietze equivalences (the notation on the right
means that 𝑖 ranges over N both in generators 𝑥𝑖 and relations 𝑎𝑖). In order to
overcome this counter-example, one might be naively tempted to allow infinite
sequences of Tietze transformations between 1-polygraphs, but this does not
preserve presented sets. For instance, consider the 1-polygraph

⟨ 𝑥𝑖 , 𝑦 | 𝑎𝑖 : 𝑥𝑖+1 → 𝑥𝑖 , 𝑏𝑖 : 𝑥𝑖 → 𝑦 ⟩𝑖∈N ,

i.e., the graph

𝑥0

𝑏0
��

𝑥1
𝑎0oo

𝑏1
~~

𝑥2
𝑎1oo

𝑏2

vv

· · ·𝑎2oo

𝑏3

tt𝑦

presenting the set with one element. Using Tietze transformations, any finite
number of relations 𝑏𝑖 can be removed from the polygraph, since they are
derivable. However, if we remove all of them the resulting polygraph presents
the set with two elements.

In order to account for infinite presentations, the notion of Tietze equiva-
lence has to be generalized as follows. Firstly, we say that a 1-polygraph 𝑃
Tietze expands to 𝑄 if there is a transfinite sequence of elementary Tietze ex-
pansions from 𝑃 to 𝑄; secondly, we define Tietze equivalence as the smallest
equivalence relation containing Tietze expansions. Two (non-necessarily finite)
1-polygraphs are Tietze equivalent in this sense if and only if they present iso-
morphic sets. We do not dwell further on infinite polygraphs, because we are
mostly interested in finite polygraphs in this book; details can be found in [178].

We will see that Lemma 1.2.11 does not generalize in dimensions higher
than 1, where arbitrary finite sequences of Tietze transformations, interleaving
Tietze reductions and expansions, might be required in order to show that two
polygraphs present the same object. However, an analogous of Theorem 1.2.12
will still hold, but its proof has to be carried over differently, as explained in
Chapter 5.

1.3 Abstract rewriting systems

The orientations of the relations do not really matter in a 1-polygraph, with
respect to the presented set: if we reverse an edge, the presented set is the same.
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This is easily shown using the following series of Tietze transformations

〈
𝑃0

�� 𝑃′1, 𝑥 → 𝑦
〉 (T2)
⇝

〈
𝑃0

�� 𝑃′1, 𝑥 → 𝑦, 𝑦 → 𝑥
〉 (T2)
⇝

〈
𝑃0

�� 𝑃′1, 𝑦 → 𝑥
〉

which are based on the fact that≈ is an equivalence relation, and thus symmetric.
However, the orientations can still be useful to decide equality between

generators, i.e., answer the following question:

Given two generators, do they represent the same element of the presented
set? Or, equivalently, are they related by ≈?

We will see that in good cases, one can come up with canonical representatives
of equivalence classes under ≈, in such a way that the representative of an
arbitrary generator can easily be computed. In those situations, the equivalence
of two generators can be tested by checking whether their representatives are
equal or not. In order to come up with representatives, we use the orientation of
the 1-generators. Given two 0-generators 𝑥 and 𝑦 such that there is a 1-generator
𝑎 : 𝑥 → 𝑦, we have 𝑥 ≈ 𝑦, and the orientation of the 1-generator will be
interpreted as indicating that 𝑦 is a “more canonical” representative than 𝑥 in the
equivalence class under ≈. With respect to this, the “most canonical” elements,
which are called normal forms, are good candidates for being representatives of
equivalence classes with good properties: under reasonable assumptions, it can
be shown that every class admits exactly one such representative. This point of
view is the starting point of rewriting theory [20, 342].

1.3.1 Terminology and notations. We have seen that a 1-polygraph 𝑃 is
simply another name for a graph. Since people in rewriting theory like to think
about it from a different point of view, they give it yet another name and call it an
abstract rewriting system. In this context, the elements of 𝑃0 are called objects
and those of 𝑃1 are called rewriting rules (or rewriting steps). A rewriting path
is simply a path, i.e., a sequence

𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // . . .

𝑎𝑛 // 𝑥𝑛

of composable rewriting steps. The 0-cells 𝑥0 and 𝑥𝑛 are respectively called the
source and target of the path, and we write 𝑓 : 𝑥 ∗→ 𝑦 for a path 𝑓 from 𝑥 to 𝑦.
One also writes 𝑥 → 𝑦 (resp. 𝑥 ∗→ 𝑦) when there exists a rewriting step (resp.
a rewriting path) from 𝑥 to 𝑦, and the notation 𝑥 ∗↔ 𝑦 is often used instead
of 𝑥 ≈ 𝑦.

1.3.2 Normal forms. A 0-cell 𝑥 ∈ 𝑃0 is a normal form when there is no rule
𝑎 : 𝑥 → 𝑦 in 𝑃1 with 𝑥 as source.
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We can distinguish the following situations concerning normal forms in
equivalence classes under ≈ of 0-cells in a polygraph 𝑃: we say that 𝑃 has

– the existing normal form property when every equivalence class contains
at least one normal form, i.e., for every 𝑥 ∈ 𝑃0 there exists a normal form
𝑦 ∈ 𝑃0 such that 𝑥 ∗↔ 𝑦,

– the unique normal form property when every equivalence class contains
at most one normal form, i.e., for every normal forms 𝑥, 𝑦 ∈ 𝑃0, 𝑥 ∗↔ 𝑦

implies 𝑥 = 𝑦,
– the canonical form property when every equivalence class contains exactly

one normal form, called the canonical representative of the class, i.e., it
satisfies both the existing and the unique normal form property.

1.3.3 Example. Consider the following 1-polygraphs:

𝑥 // 𝑦 dd 𝑥 𝑦oo // 𝑧 𝑥 𝑦oo // 𝑧hh

(1) (2) (3)
(1) and (3) have the unique normal form property, (2) and (3) have the existing
normal form property, (3) has the canonical form property.

We are interested here in providing practical conditions on 𝑃 which ensure
that the canonical form property holds, and that we are able to efficiently
compute the canonical form associated to the class of a 0-cell. We will see
that termination of a 1-polygraph implies the existing normal form, confluence
implies the unique normal form property, and moreover that confluence can be
checked locally for terminating 1-polygraphs.

1.3.4 Normalizability. A polygraph is normalizing when every 0-cell 𝑥 re-
writes to a normal form. We sometimes write �̂� for an arbitrary choice of such
a normal form. From the definition, we deduce the following result.

1.3.5 Lemma. A normalizing 1-polygraph has the existing normal form prop-
erty.

The converse does not hold, as illustrated in Example 1.3.20.

1.3.6 Termination. In practice, in order to show that a 1-polygraph is normal-
izing, one often uses the following property. A 1-polygraph 𝑃 is terminating (or
well-founded or noetherian or strongly normalizing) when there is no infinite
sequence of rewriting steps

𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // · · · .
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For instance, in Example 1.3.3, (2) and (3) are terminating but not (1).
Starting from a 0-cell 𝑥 in a terminating 1-polygraph, we can define a se-

quence of 0-cells by induction by 𝑥0 = 𝑥 and 𝑥𝑖+1 is the target of a an arbitrary
rewriting rule 𝑥𝑖 → 𝑥𝑖+1 with 𝑥𝑖 as source; we stop if there is no such rewriting
rule. Termination ensures that this process will end after a finite number of
steps and the last 0-cell 𝑥𝑛 is necessarily a normal form. We have just shown
the following.

1.3.7 Lemma. A terminating 1-polygraph is normalizing.

The converse does not hold, as illustrated in Example 1.3.20.
In practice, the termination of a 1-polygraph 𝑃 can be shown using the

following lemma. We recall that a poset (𝑁, ≼) is well-founded when every
decreasing sequence 𝑛1 ≽ 𝑛2 ≽ . . . is eventually stationary: there exists 𝑘 ∈ N
such that for every 𝑖, 𝑗 ∈ N with 𝑖 ⩾ 𝑗 ⩾ 𝑘 one has 𝑛𝑖 = 𝑛 𝑗 . Equivalently, the
poset is well-founded when there exists no infinite strictly decreasing sequence
𝑛1 ≻ 𝑛2 ≻ . . . of elements of 𝑁 . The typical example of such an order is (N, ⩽),
or any ordinal.

1.3.8 Lemma. Given a rewriting system 𝑃 the following statements are equiv-
alent.

1. The rewriting system 𝑃 is terminating.
2. There exists a well-founded order on 𝑃0 such that 𝑥 ≻ 𝑦 for every 1-generator
𝑎 : 𝑥 → 𝑦 in 𝑃1.

3. There exists a function 𝑓 : 𝑃0 → 𝑁 , where 𝑁 is a well-founded poset, such
that 𝑓 (𝑥) > 𝑓 (𝑦) for every 1-generator 𝑎 : 𝑥 → 𝑦 in 𝑃1.

Proof. Suppose that 𝑃 is terminating. Then the preorder relation on 𝑃0 defined
by 𝑥 ≽ 𝑦 whenever 𝑥 ∗→ 𝑦 is a well-founded partial order which shows that 1
implies 2, and taking 𝑓 : 𝑃0 → 𝑃0 to be the identity shows that 2 implies 3.
Finally, 3 implies 1 for if there was an infinite reduction sequence in 𝑃, the
image of the objects under 𝑓 would be an infinite strictly decreasing sequence
of elements of 𝑁 . □

1.3.9 Well-founded induction. Suppose given a predicate P on the 0-cells of
a terminating polygraph 𝑃. In order to show that P for all the elements of 𝑃0,
it is often useful to use the following well-founded induction principle: if

∀𝑥 ∈ 𝑃0,
( (∀𝑦 ∈ 𝑃0, 𝑥 → 𝑦 implies P (𝑦)) implies P(𝑥)) (1.3)

then ∀𝑥 ∈ 𝑃0, P(𝑥) holds.
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1.3.10 Proposition. If 𝑃 is a terminating 1-polygraph then the well-founded
induction principle holds.

Proof. By contradiction, suppose that the well-founded induction principle
does not hold: there is a predicate P, such that the hypothesis (1.3) holds but
not the conclusion, i.e., P(𝑥0) does not hold for some 𝑥0 ∈ 𝑃0. By repeated use
of (1.3), we can construct a family (𝑥𝑖)𝑖∈N of elements of 𝑃0 such that P(𝑥𝑖)
does not hold for any 𝑖 ∈ N, and 𝑥0 → 𝑥1 → · · · . This contradicts the fact
that 𝑃 is terminating. □

1.3.11 Quasi-termination. Following [112], we introduce the following vari-
ant of the termination condition. We say that a 1-polygraph 𝑃 is quasi-termi-
nating if every sequence (𝑥𝑖)𝑖∈N of 0-cells, with 𝑥𝑖 → 𝑥𝑖+1 for every index 𝑖 ∈ N,
contains an infinite number of occurrences of the same 0-cell: there exists a
0-cell 𝑥 such that for every 𝑖 ∈ N, there exists 𝑗 > 𝑖 such that 𝑥 𝑗 = 𝑥.

Let 𝑃 be a 1-polygraph. A 0-cell 𝑥 is called a quasi-normal form if for
any rewriting step 𝑥 → 𝑦, there exists a rewriting path from 𝑦 to 𝑥. If 𝑃 is
quasi-terminating, any 0-cell 𝑥 rewrites to a quasi-normal form. Note that, this
quasi-normal form is neither irreducible nor unique in general. We say that 𝑃
is quasi-convergent if it is confluent and it quasi-terminates.

1.3.12 Example. The following 1-polygraph

𝑥 // 𝑦
''
𝑧hh

is quasi-terminating and quasi-convergent. Both 𝑦 and 𝑧 are quasi-normal forms.

The above termination and normalizability conditions ensure the existing
normal form property. We now investigate conditions implying the unique
normal form property.

1.3.13 Joinability. Two 0-cells 𝑥, 𝑦 ∈ 𝑃0 of a polygraph 𝑃 are joinable when
there exists 0-cell 𝑧 such that there are rewriting paths 𝑓 : 𝑥 ∗→ 𝑧 and 𝑔 : 𝑦 ∗→ 𝑧:

𝑥

∗ ��

𝑦.
∗��

𝑧

1.3.14 The Church-Rosser property. A 1-polygraph𝑃 has the Church-Rosser
property when any two 0-cells 𝑥, 𝑦 ∈ 𝑃0 which are equivalent are joinable:

𝑥

∗ ��

oo ∗ // 𝑦.
∗��

𝑧
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1.3.15 Proposition. A 1-polygraph with the Church-Rosser property has the
unique normal form property.

Proof. Suppose given two normal forms 𝑥 and 𝑦 such that 𝑥 ≈ 𝑦. By the
Church-Rosser property, there exists a 0-cell 𝑧 and rewriting paths 𝑥 ∗→ 𝑧 and
𝑦
∗→ 𝑧. Since 𝑥 and 𝑦 are normal forms, these two paths are necessarily empty,

and thus 𝑥 = 𝑦. □

The converse property is not true, as illustrated by the 1-polygraph

𝑥 𝑦oo // 𝑧 dd

where 𝑥 and 𝑧 are equivalent, but cannot be rewritten to a common 0-cell, even
though there is a unique normal form 𝑥.

In the following, we present more “local” properties which imply the Church-
Rosser property, and thus the unique normal form property.

1.3.16 Branchings. In a 1-polygraph 𝑃, a pair (𝑎, 𝑎′) of coinitial 1-generators
𝑎 : 𝑥 → 𝑦 and 𝑎′ : 𝑥 → 𝑦′ in 𝑃 is called a local branching; a pair ( 𝑓 , 𝑓 ′) of
coinitial rewriting paths 𝑓 : 𝑥 ∗→ 𝑦 and 𝑓 ′ : 𝑥 ∗→ 𝑦′ is called a branching. The
0-cell 𝑥 is called the source of the branching.

1.3.17 Confluence. A branching ( 𝑓 , 𝑓 ′) as above is confluent when 𝑦 and 𝑦′
are joinable:

𝑥
∗
��

∗
  

𝑦

∗ ��

𝑦′.

∗��
𝑧

In this situation, we say that the branching is confluent. A 1-polygraph is
confluent (resp. locally confluent) when every branching (resp. local branching)
is confluent. Note that a confluent 1-polygraph is necessarily locally confluent.

The above confluence conditions can be summarized graphically as follows:

𝑦

∗ ��

oo ∗ // 𝑦′

∗��
𝑧

𝑥
∗
��

∗
��

𝑦

∗ ��

𝑦′

∗��
𝑧

𝑥

��   

𝑦

∗ ��

𝑦′.

∗��
𝑧

Church-Rosser confluence local confluence

1.3.18 Proposition. A 1-polygraph has the Church-Rosser property if and only
if it is confluent.
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Proof. The left-to-right direction is immediate. For the right-to-left direction,
suppose that 𝑥 and 𝑦 are two equivalent 0-cells: this means that there exists
rewriting paths 𝑓𝑖 : 𝑦𝑖

∗→ 𝑥𝑖 and 𝑔𝑖 : 𝑦𝑖
∗→ 𝑥𝑖+1 in 𝑃, with 0 ⩽ 𝑖 < 𝑛, where

𝑥0 = 𝑥 and 𝑥𝑛 = 𝑦 forming a diagram as below (ignoring the dotted arrows, 𝑧
and 𝑧′):

𝑦0
𝑓0

∗��
𝑔0

∗ ��

𝑦1
𝑓1

∗��
𝑔1

∗ ��

𝑦2
𝑓2

∗��

· · · 𝑦𝑛−2
𝑔𝑛−2

∗ ��

𝑦𝑛−1
𝑓𝑛−1

∗��
𝑔𝑛−1

∗ ��
𝑥0

∗ ..

𝑥1 𝑥2 · · · 𝑥𝑛−1

∗ ��

𝑥𝑛.

∗��
𝑧′
ih

𝑧∗
oo

c

By induction on 𝑛 ∈ N, we show that 𝑥0 and 𝑥𝑛 can be joined. The result is
immediate when 𝑛 = 0, and otherwise the diagram can be completed as above
using the confluence hypothesis for c and the induction hypothesis for ih. □

As a direct corollary, we deduce:

1.3.19 Lemma. A confluent 1-polygraph has the unique normal form property.

Confluence is difficult to show in practice, whereas local confluence is much
more tractable. Clearly confluence of a rewriting system implies its local con-
fluence, and one could hope that both properties are equivalent. This is however
not the case: local confluence does not imply confluence in general, as illustrated
by the following example due to Huet [188].

1.3.20 Example. Consider the following 1-polygraph:

𝑥′ 𝑥oo ((
𝑦gg // 𝑦′.

It is locally confluent (it is easy to check all the possible cases), but not confluent:
we have 𝑥 ∗→ 𝑥′ and 𝑥 ∗→ 𝑦′, but there is no 0-cell to which both 𝑥′ and 𝑦′
rewrite.

In the previous example, it can be noted that the rewriting system is not termi-
nating since there is a directed cycle between the vertices 𝑥 and 𝑦. It was shown
in a famous lemma by Newman [290], also known as the diamond lemma, that
local confluence and confluence are equivalent when restricting to terminating
rewriting systems, thus providing us with simple ways of checking for their
confluence.

1.3.21 Lemma. A terminating 1-polygraph is confluent if and only if it is
locally confluent.
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Proof. We show the right-to-left direction, the other one being immediate.
We say that a 1-polygraph is confluent (resp. locally confluent) at a 0-cell 𝑥
when every branching (resp. local branching) with 𝑥 as source is joinable.
By well-founded induction, whose use is justified by Proposition 1.3.10 based
on the hypothesis that the 1-polygraph is terminating, we show that the local
confluence property at a vertex 𝑥 implies the confluence property at 𝑥. The base
cases are immediate. Otherwise, we have a diagram of the form

𝑥

�� ��

𝑦1
∗
�� ∗ ��

lc 𝑦′1
∗��

∗
��

𝑦

∗ ��

ih 𝑦′′

∗��

ih 𝑦′

∗

��

𝑧

∗ ��
𝑧′

which can be closed using the local confluence hypothesis for lc and the
induction hypothesis for ih which provides confluence at 𝑦1 and 𝑦′1 respectively.

□

1.3.22 Remark. Showing termination and local confluence is the most usual
way of proving that an abstract rewriting system is confluent, but it is not the
only one. We refer to standard rewriting textbooks for other properties which
imply confluence [20, 342]. For instance, an abstract rewriting system has the
diamond property when for every pair of coinitial rewriting steps 𝑎 : 𝑥 → 𝑦

and 𝑏 : 𝑥 → 𝑦′ there exists a pair of cofinal rewriting steps (i.e., rewriting paths
of length one) 𝑎′ : 𝑦 → 𝑥 and 𝑏′ : 𝑦′ → 𝑥. Graphically,

𝑥

��   

𝑦

��

𝑦′.

��
𝑧

In this case, the abstract rewriting system is always confluent (this can be shown
using a variant of the proof of Lemma 1.3.21) even if it is not terminating.

1.3.23 Convergence. A 1-polygraph is convergent when it is both terminating
and confluent.

1.3.24 Proposition. A convergent 1-polygraph has the canonical form property.
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Proof. Suppose given a convergent 1-polygraph. Since it is terminating, it is
normalizing by Lemma 1.3.7 and thus has the existing normal form property
by Lemma 1.3.5. Since it is confluent, Lemma 1.3.19 ensures that it also has
the unique normal form property. □

1.3.25 Remark. A polygraph can have the canonical form property without
being convergent:

𝑥
((
𝑦gg // 𝑧.

Here, all the 0-cells are equivalent and 𝑧 is the only normal form, which shows
the canonical form property. The polygraph is not terminating (there is a cycle
between 𝑥 and 𝑦) and thus not convergent.

1.3.26 Deciding equality. Give a finite 1-polygraph 𝑃, the equality decision
problem, or the word problem, for 𝑃 consists in answering the following ques-
tion:

Given two 0-cells 𝑥, 𝑦 ∈ 𝑃0, do we have 𝑥 ≈ 𝑦?
Since we only consider only finite 1-polygraphs, this problem is decidable,
meaning that there is a program which takes 𝑃, 𝑥 and 𝑦 as input and outputs
whether 𝑥 ≈ 𝑦 holds or not. Namely, we can implement a program which will
construct all acyclic paths starting from 𝑥, which are in finite number, and check
whether one of those paths ends at 𝑦. We will see that if we assume additional
properties on 𝑃, this can be performed much more efficiently.

When the 1-polygraph 𝑃 has the canonical form property, the equivalence
class of 𝑥 (resp. 𝑦) contains a unique normal form denoted �̂� (resp. �̂�), and we
have 𝑥 ≈ 𝑦 if and only if we have �̂� = �̂�. In this case, the equality decision
problem can be decided by comparing normal forms. In particular, in the case
where the 1-polygraph is convergent, we have seen in Proposition 1.3.24 that it
has the canonical form property, and moreover the normal form �̂� associated to
a 0-cell 𝑥 can be computed easily. A maximal path starting from 𝑥

𝑥 = 𝑥0
𝑎0 // 𝑥1

𝑎1 // 𝑥2
𝑎2 // · · · 𝑎𝑛−1 // 𝑥𝑛

exists because 𝑃 is terminating, and the fact that it is maximal means that its
target is a normal form, i.e., 𝑥𝑛 = �̂�. In order to decide whether 𝑥 and 𝑦 are
equivalent, we can thus use the normal form algorithm which consists in

1. rewrite 𝑥 as much as possible in order to obtain a normal form �̂�, and
similarly compute a normal form �̂� for 𝑦,

2. check whether �̂� = �̂� holds or not.

Formally, this is justified as follows:
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1.3.27 Proposition. In a convergent 1-polygraph, two 0-cells 𝑥 and 𝑦 are
equivalent if and only if they have the same normal form: 𝑥 ≈ 𝑦 if and only
if �̂� = �̂�.

Proof. Since the polygraph is terminating, it is normalizing by Lemma 1.3.7:
𝑥 rewrites to a normal form �̂�, and similarly 𝑦 rewrites to a normal form �̂�. If
�̂� = �̂�, then clearly 𝑥 and 𝑦 are equivalent:

𝑥
∗ // �̂� �̂� 𝑦.∗oo

Conversely, suppose that 𝑥 and 𝑦 are equivalent, and thus that �̂� and �̂� are also
equivalent:

�̂� 𝑥
∗oo oo ∗ // 𝑦 ∗ // �̂�.

The confluence of the polygraph implies that it has the Church-Rosser property
by Proposition 1.3.18, and thus the unique normal form property by Proposi-
tion 1.3.15. Since �̂� and �̂� are equivalent normal forms, we deduce that they are
equal. □

1.3.28 Deciding confluence. As a direct corollary of the above proposition,
we also have a practical method for checking whether a terminating 1-polygraph
is confluent (and thus convergent):

1.3.29 Proposition. A terminating 1-polygraph is confluent if and only if for
every local branching 𝑥 → 𝑦 and 𝑥 → 𝑧, we have �̂� = 𝑧.

1.4 Decreasing diagrams

The main method we have seen so far in order to show the confluence of a
1-polygraph is provided by Newman’s lemma (Lemma 1.3.21), which requires
supposing termination of the polygraph. As a more advanced topic, we explain
here the method of decreasing diagrams, introduced by van Oostrom [350], see
also [342, Section 14.2], which can be used in order to show the confluence of
a 1-polygraph which is non-terminating.

1.4.1 Multisets. Given a set 𝐴, a multiset on 𝐴 is a function 𝜇 : 𝐴 → N
which is null almost everywhere, i.e., the set {𝑎 ∈ 𝐴 | 𝜇(𝑎) ≠ 0} is finite. The
set 𝐴 is called the domain of the multiset. Given an element 𝑎 ∈ 𝐴, the natural
number 𝜇(𝑎) is called its multiplicity in the multiset: 𝜇 should be thought of
as a collection of elements of 𝐴 where each element 𝑎 occurs 𝜇(𝑎) times. We
denote by 𝐴♯ the set of all multisets on 𝐴.
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We write ∅ for the empty multiset on 𝐴, i.e., the constant function ∅ : 𝐴→ N
equal to 0. Given two multisets 𝜇 and 𝜈 on 𝐴, their union or sum is the
multiset 𝜇⊔𝜈 on 𝐴 such that (𝜇⊔𝜈) (𝑎) = 𝜇(𝑎) +𝜈(𝑎) for every element 𝑎 ∈ 𝐴.
The operation ⊔ equips 𝐴♯ with a structure of commutative monoid, with ∅ as
neutral element, which characterizes multisets over 𝐴. Given an element 𝑎 ∈ 𝐴,
we often write {𝑎} for the multiset with 𝑎 as only element. Given two multisets
𝜇 and 𝜈, we say that 𝜇 is included in 𝜈, what we write 𝜇 ⊑ 𝜈 when 𝜇(𝑎) ⩽ 𝜈(𝑎)
for every 𝑎 ∈ 𝐴. This is the case precisely when there is a multiset 𝜇′ such that
𝜇 ⊔ 𝜇′ = 𝜈. This relation makes 𝐴♯ into a poset which is well-founded.

A partial order ⩽ on a set 𝐴 induces an order ⩽♯ on 𝐴♯, called its multiset
extension, defined by 𝜇 ⩽♯ 𝜈 if and only if

∀𝑏 ∈ 𝐴, 𝜇(𝑏) > 𝜈(𝑏) implies ∃𝑎 ∈ 𝐴, 𝑎 > 𝑏 and 𝜇(𝑎) < 𝜈(𝑎).
Let us spell it out: for 𝜇 to be smaller than 𝜈, it is fine to have more 𝑏’s as
long as 𝜈 has more of something greater than 𝑏. The following result is due to
Dershowitz and Manna [113]:

1.4.2 Proposition. Given a well-founded poset (𝐴, ⩽), its multiset extension
(𝐴♯, ⩽♯) is also well-founded.

1.4.3 Labeled 1-polygraphs. A labeled 1-polygraph (𝑃,L, ⩽, ℓ) consists of

– a 1-polygraph 𝑃,
– a set L of labels equipped with a well-founded ordering ⩽,
– a function ℓ : 𝑃1 → L associating a label to each rewriting step.

1.4.4 Lexicographic maximum measure. Let (𝑃,L, ⩽, ℓ) be a fixed labeled
1-polygraph. We write L∗ for the sets of words over L, i.e., finite sequences of
elements ofL. The empty word is noted 1, and the concatenation of two words𝑤
and 𝑤 is noted 𝑤𝑤′: these operations equip the sets of words with a structure of
monoid. Following [350, Definition 3.1], we define the lexicographic maximum
measure ∥𝑤∥ of a word 𝑤 ∈ L∗ as the multiset defined inductively by

∥1∥ = ∅, ∥𝑙𝑤∥ = {𝑙} ⊔ ∥𝑤≮𝑙 ∥.
Above, 𝑤≮𝑙 is the subword of 𝑤 whose letters are not strictly below 𝑙, which is
formally defined by induction by

1≮𝑙 = 1, (𝑎𝑤)≮𝑙 =
{
𝑤≮𝑙 if 𝑎 < 𝑙,
𝑎𝑤≮𝑙 otherwise.

Informally, the multiset ∥𝑤∥ thus consists of the letters of 𝑤 which are not
dominated by some letter on their left.
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The measure ∥ · ∥ is extended to the set of finite rewriting paths of 𝑃 by
setting, for every rewriting path 𝑎1 . . . 𝑎𝑛,

∥𝑎1 . . . 𝑎𝑛∥ = ∥ℓ(𝑎1) . . . ℓ(𝑎𝑛)∥,
where ℓ(𝑎1) . . . ℓ(𝑎𝑛) is the product in the monoid L∗. Finally, the measure
∥ · ∥ is extended to the set of finite branchings (𝑎, 𝑏) of 𝑃, by setting

∥(𝑎, 𝑏)∥ = ∥𝑎∥ ⊔ ∥𝑏∥.

1.4.5 Decreasing diagrams. A diagram of rewriting paths of the form

𝑓

��

𝑔
//

𝑔′

��

𝑓 ′
//

is decreasing if

∥ 𝑓 𝑓 ′∥ ⩽♯ ∥ 𝑓 ∥ ⊔ ∥𝑔∥ and ∥𝑔𝑔′∥ ⩽♯ ∥ 𝑓 ∥ ⊔ ∥𝑔∥.
In the case where 𝑓 = 𝑎 and 𝑔 = 𝑏 are both 1-generators, it can be shown that
the diagram is decreasing if and only if it is of the form

𝑎

��

𝑏 //

𝑔′

��

𝑎′

��

ℎ1

��

𝑓 ′
//

𝑏′
//

ℎ2
//

(1.4)

where

– 𝑙 < ℓ(𝑎) for every label 𝑙 of a rewriting step in 𝑓 ′,
– 𝑙 < ℓ(𝑏) for every label 𝑙 of a rewriting step in 𝑔′,
– 𝑎′ is either an identity or a rewriting step labeled by ℓ(𝑎),
– 𝑏′ is either an identity or a rewriting step labeled by ℓ(𝑏),
– 𝑙 < ℓ(𝑎) or 𝑙 < ℓ(𝑏) for every label 𝑙 of a transition in ℎ1 (resp. in ℎ2).

A labeled 1-polygraph is locally decreasing when every local branching (𝑎, 𝑏)
can be completed as a locally decreasing diagram (1.4). We can now recall
van Oostrom’s theorem [350, Theorem 3.7], whose proof follows the one of
Newman’s Lemma 1.3.21:
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1.4.6 Theorem. A locally decreasing 1-polygraph is confluent.

This method is complete, in the sense that given a 1-polygraph with countably
many 0-cells which is confluent, there is always a way to chose a well-founded
poset L of labels so that the polygraph is locally decreasing [342, Theo-
rem 14.2.32]. Moreover, we can always choose the set L = {0, 1} with 0 < 1
as set of labels, see [123].



2
Two-dimensional polygraphs

This chapter is dedicated to the definition of 2-polygraphs, which are a 2-dimen-
sional generalization of the 1-polygraphs presented in the previous chapter.
Before introducing this notion of 2-polygraph, we first give in Section 2.1 a
refined viewpoint over 1-polygraphs. Instead of merely focusing on the set
presented by a 1-polygraph 𝑃 as a set of equivalence classes of 𝑃0 modulo the
relations in 𝑃1, we now consider the free category generated by 𝑃, whose set
of objects is 𝑃0 and whose morphisms are all the rewriting paths obtained by
composing the elements of 𝑃1. A variant of this construction is the notion of free
groupoid generated by a 1-polygraph 𝑃, where all 1-generators are supposed to
be invertible.

The notion of 2-polygraph, introduced in Section 2.2, naturally appears as
soon as arbitrary, non necessarily free, small categories are considered. In order
to present such a category𝐶, one starts as above with a polygraph 𝑃 such that the
elements of 𝑃1 generate the morphisms of 𝐶, but now we must take account of
the relations induced by𝐶 among the morphisms of the free category generated
by ⟨ 𝑃0 | 𝑃1 ⟩. These relations will be generated by a set 𝑃2 of 2-generators,
consisting in certain pairs of morphisms we want to equalize in 𝐶, as explained
in Section 2.3.

Following the same pattern, we finally explain in Section 2.4 that a 2-poly-
graph can also be seen as a system of generators for a free 2-category, thus
preparing the study of 3-polygraphs. We also examine, in Section 2.5, the
variant where we freely generate a (2, 1)-category, that is, a 2-category in which
every 2-cell is invertible. This framework allows to invoke explicit witnesses
for the confluence of rewriting paths, which are used in the proofs of coherence
results on abstract rewriting systems.

42
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2.1 Generating categories and groupoids

We now define the free category and the free groupoid generated by a 1-poly-
graph.

2.1.1 Underlying polygraph of a category. Any small category 𝐶 has an
underlying 1-polygraph 𝑃 with 𝑃0 being the set of objects of 𝐶, 𝑃1 being the
set of morphisms of 𝐶, the source and target of a morphism 𝑓 : 𝑥 → 𝑦 of 𝐶
being respectively 𝑥 and 𝑦. This construction extends in the expected way into
a functor 𝑉 : Cat→ Pol1 which to every category 𝐶 associates its underlying
polygraph 𝑉𝐶.

2.1.2 Freely generated category. A 1-polygraph 𝑃 induces a category 𝑃∗,
called the category freely generated by 𝑃, or the free category on 𝑃, defined as
follows:

– its objects are the 0-cells of 𝑃,
– its morphisms from 𝑥 to 𝑦 are composable sequences of 1-generators

𝑥 = 𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // . . .

𝑎𝑛 // 𝑥𝑛 = 𝑦

which, more precisely, consist of a sequence (𝑥𝑖)0⩽𝑖⩽𝑛 of elements of 𝑃0,
with 𝑥0 = 𝑥 and 𝑥𝑛 = 𝑦, together with a sequence (𝑎𝑖)0<𝑖⩽𝑛 of elements of 𝑃1,
for some 𝑛 ⩾ 0, such that 𝑠0 (𝑎𝑖+1) = 𝑥𝑖 and 𝑡0 (𝑎𝑖+1) = 𝑥𝑖+1 for 0 ⩽ 𝑖 < 𝑛,

– identities are morphisms as above with 𝑛 = 0,
– the composition of two morphisms

𝑥 = 𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // . . .

𝑎𝑛 // 𝑥𝑛 = 𝑦

and

𝑦 = 𝑦0
𝑏1 // 𝑦1

𝑏2 // 𝑦2
𝑏3 // . . .

𝑏𝑚 // 𝑦𝑚 = 𝑧

is

𝑥 = 𝑥0
𝑎1 // 𝑥1

𝑎2 // . . .
𝑎𝑛 // 𝑥𝑛 = 𝑦0

𝑏1 // 𝑦1 . . .
𝑏𝑚 // 𝑦𝑚 = 𝑧.

In the terminology of directed graphs, the morphisms of the category 𝑃∗ are
the directed paths in 𝑃, the natural number 𝑛 for a path above being its length,
identities are empty paths and composition is given by concatenation of paths.
Following the terminology of rewriting systems, we will also call a morphism
in 𝑃∗ a rewriting path.

The category 𝑃∗ can be characterized, up to isomorphism, as the category
satisfying the following universal property:
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2.1.3 Lemma. For any category𝐶 and morphism of 1-polygraphs 𝑓 : 𝑃→ 𝑉𝐶,
there exists a unique functor 𝑓 ∗ : 𝑃∗ → 𝐶 such that the following diagram
commutes

𝑃

𝑖

��

𝑓
// 𝑉𝐶

𝑉𝑃∗
𝑉 𝑓 ∗

<<

where 𝑖 : 𝑃 → 𝑉𝑃∗ is the morphism of 1-polygraphs sending a 0-generator to
itself and a 1-generator 𝑎 : 𝑥 → 𝑦 to the corresponding path of length 1.

By classical theorems [261, Section IV.1], this is equivalent to the fact that
the operation which to every polygraph 𝑃 associates the freely generated cat-
egory 𝑃∗ extends to a functor −∗ : Pol1 → Cat which is left adjoint to the
functor 𝑉 .

2.1.4 Freely generated groupoid. The previous construction can be modified
in order to describe the groupoid freely generated by a polygraph. We recall
that a groupoid 𝐶 is a category in which every morphism is invertible, i.e., for
every morphism 𝑓 : 𝑥 → 𝑦 of 𝐶 there exists a morphism 𝑓 − : 𝑦 → 𝑥 such that
𝑓 − ◦ 𝑓 = 1𝑥 and 𝑓 ◦ 𝑓 − = 1𝑦 . We write Gpd for the category of groupoids and
functors between them.

There is an obvious forgetful functor Gpd → Cat, which admits a left
adjoint [52, Proposition 5.2.2]. Given a 1-polygraph 𝑃, we write 𝑃⊤ for the free
groupoid on the category 𝑃∗. It can be described as the category whose objects
are the elements of 𝑃0, and morphisms from 𝑥 to 𝑦 are composable sequences

𝑥 = 𝑥0 oo
𝑓1 // 𝑥1 oo

𝑓2 // 𝑥2 oo
𝑓3 // . . . oo

𝑓𝑛
// 𝑥𝑛 = 𝑦,

where 𝑓𝑖+1 is a 1-generator which is either of the form 𝑎𝑖+1 : 𝑥𝑖 → 𝑥𝑖+1 or
𝑎𝑖+1 : 𝑥𝑖+1 → 𝑥𝑖 , quotiented by the equivalence relation identifying

· · · oo 𝑓𝑖−1 // 𝑥
𝑎 // 𝑦 𝑥

𝑎oo · · ·//𝑓𝑖+1oo with · · · oo 𝑓𝑖−1 // 𝑥 · · ·//𝑓𝑖+1oo

and

· · · oo 𝑓𝑖−1 // 𝑦 oo
𝑎

𝑥 𝑦//
𝑎 · · ·//𝑓𝑖+1oo with · · · oo 𝑓𝑖−1 // 𝑦 · · · .//

𝑓𝑖+1oo

which means that we can remove two adjacent occurrences of a 1-generator 𝑎
in different directions. Identities are empty sequences and composition behaves
as in §2.1.2. This explicit construction will be presented in more details in
§3.2.1. Note that, in the terminology of graphs, a morphism as above is called
a non-directed path in 𝑃.
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The interest of this construction lies in the fact that the morphisms of 𝑃⊤ are
“witnesses” for the 𝑃-congruence of 0-cells, as defined in §1.2.1:

2.1.5 Lemma. Two 0-cells 𝑥, 𝑦 ∈ 𝑃0 are 𝑃-congruent if and only if there exists
a morphism 𝑓 : 𝑥 → 𝑦 in 𝑃⊤.

2.1.6 Three functors. To sum up, we have defined the following sequence of
functors:

Pol1 → Cat→ Gpd→ Set,

where

– Pol1 → Cat associates to a 1-polygraph the category it freely generates,
– Cat→ Gpd associates to a category the groupoid it freely generates,
– Gpd → Set associates to a groupoid 𝐶 the corresponding quotient set

(obtained from the set of objects of𝐶 by identifying any two objects between
which there is a morphism).

The composite functor Pol1 → Set was explicitly described in Section 1.2.

2.2 The category of 2-polygraphs

We are now ready to introduce 2-polygraphs, which consist in a 1-polygraph
together with a set of globular 2-generators between parallel 1-cells, that is,
1-cells having same source and target. Those were introduced by Street [333].
They are sometimes also called linear sketches [27, Section 4.6] when seen as
a particular class of sketches, see §G.1.

2.2.1 Notations on 1-cells. Given a 1-polygraph 𝑃, we write 𝑃∗1 for the set
of 1-cells of the category 𝑃∗, i.e., the set of paths in 𝑃. The composite of two
1-cells 𝑢 : 𝑥 → 𝑦 and 𝑣 : 𝑦 → 𝑧 is written 𝑢𝑣 : 𝑥 → 𝑧, or 𝑢 ∗0 𝑣 : 𝑥 → 𝑧, and
the empty path on a 0-generator 𝑥 is written 1𝑥 . We also write 𝑖1 : 𝑃1 → 𝑃∗1
for the canonical inclusion sending a 1-generator to the corresponding path
of length 1. Given a 1-generator 𝑎 ∈ 𝑃1, we generally simply write 𝑎 instead
of 𝑖1 (𝑎). The source and target functions 𝑠0, 𝑡0 : 𝑃1 → 𝑃0 canonically extend
to functions 𝑠∗0, 𝑡

∗
0 : 𝑃∗1 → 𝑃0 such that

𝑠∗0 ◦ 𝑖1 = 𝑠0 and 𝑡∗0 ◦ 𝑖1 = 𝑡0 (2.1)



46 Two-dimensional polygraphs

respectively sending a path 𝑓 : 𝑥 → 𝑦 to its source 𝑥 and its target 𝑦, what we
often picture as a “commuting” diagram of form

𝑃1
𝑠0

~~ 𝑡0
~~

𝑖1

��

𝑃0 𝑃∗1.
𝑠∗0oo

𝑡∗0
oo

2.2.2 Definition. A 2-polygraph consists of

– a 1-polygraph 𝑃, i.e.,

𝑃0 𝑃1,
𝑠0oo

𝑡0
oo

– a set 𝑃2 of 2-generators together with two functions

𝑠1, 𝑡1 : 𝑃2 → 𝑃∗1,

associating to each relation its source and target, which is such that

𝑠∗0 ◦ 𝑠1 = 𝑠∗0 ◦ 𝑡1 and 𝑡∗0 ◦ 𝑠1 = 𝑡∗0 ◦ 𝑡1. (2.2)

A 2-polygraph thus consists of a diagram of sets and functions

𝑃1
𝑠0

~~ 𝑡0
~~

𝑖1

��

𝑃2
𝑠1

~~ 𝑡1
~~

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo

together with compositions and identities on 𝑃∗1, which “commutes” in the
sense that the relations (2.1) and (2.2) hold. We often write 𝛼 : 𝑢 ⇒ 𝑣 for a
2-generator 𝛼 in 𝑃2 such that 𝑠1 (𝛼) = 𝑢 and 𝑡1 (𝛼) = 𝑣, and picture it as a 2-cell

𝑥

𝑢

��

𝑣

==

=⇒

𝛼 𝑦.

Moreover, we sometimes write ⟨ 𝑃0 | 𝑃1 | 𝑃2 ⟩ to indicate the generators of a
2-polygraph 𝑃. A 2-polygraph is finite when the sets 𝑃0, 𝑃1 and 𝑃2 are. The
underlying 1-polygraph of a 2-polygraph 𝑃 is denoted 𝑃⩽1.
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2.2.3 The category of 2-polygraphs. A morphism 𝑓 : 𝑃 → 𝑄 between two
2-polygraphs 𝑃 and 𝑄 consists of a morphism 𝑓 : 𝑃⩽1 → 𝑄⩽1 between the
underlying 1-polygraphs together with a function 𝑓2 : 𝑃2 → 𝑄2 such that
𝑠𝑄1 ◦ 𝑓2 = 𝑓1 ◦ 𝑠𝑃1 and 𝑡𝑄1 ◦ 𝑓2 = 𝑓1 ◦ 𝑡𝑃1 . These compose in the expected way,
and we write Pol2 for the category of 2-polygraphs and their morphisms.

2.3 Presenting categories

2.3.1 Quotient categories. Given a category 𝐶, a congruence ≈ on 𝐶 is an
equivalence relation on the morphisms of 𝐶 such that

– given 𝑢 : 𝑥 → 𝑦 and 𝑢′ : 𝑥′ → 𝑦′, 𝑢 ≈ 𝑢′ implies 𝑥 = 𝑥′ and 𝑦 = 𝑦′,
– given morphisms 𝑢 : 𝑥′ → 𝑥, 𝑣, 𝑣′ : 𝑥 → 𝑦 and 𝑤 : 𝑦 → 𝑦′, if 𝑣 ≈ 𝑣′ then
𝑢𝑣𝑤 ≈ 𝑢𝑣′𝑤:

𝑥
𝑣
((

𝑣′
66≈ 𝑦 implies 𝑥′ 𝑢 // 𝑥

𝑣
((

𝑣′
66≈ 𝑦

𝑤 // 𝑦′.

In such a situation, one defines the quotient category 𝐶/≈ as the category
with the same objects as 𝐶, and equivalence classes of morphisms of 𝐶 as
morphisms, composition and identities being induced by those of 𝐶.

2.3.2 𝑃-congruence. Given a 2-polygraph 𝑃, the 𝑃-congruence ≈𝑃 , also
sometimes noted

∗⇔, is the smallest congruence on 𝑃∗ such that 𝑢 ≈𝑃 𝑣 for
every 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2.

2.3.3 Presented category. The category 𝑃 presented by a 2-polygraph 𝑃 is the
category 𝑃 = 𝑃∗⩽1/≈𝑃 obtained by quotienting the category freely generated by
the underlying polygraph by the 𝑃-congruence, what we usually write 𝑃∗⩽1/𝑃2.
It can be characterized by the following universal property:

2.3.4 Lemma. Given any category 𝐶 and functor 𝑓 : 𝑃∗⩽1 → 𝐶 such that
𝑓 (𝑢) = 𝑓 (𝑣) for any 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, there exists a unique functor
𝑓 : 𝑃→ 𝐶 such that 𝑓 ◦ 𝑞 = 𝑓

𝑃∗⩽1

𝑞

��

𝑓
// 𝐶

𝑃,

𝑓

??
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where 𝑞 is the quotient functor which is the identity on objects and sends a
morphism to its equivalence class under ≈𝑃 .

Note that, with the notations of the above lemma, two morphisms 𝑢 and 𝑣 in 𝑃∗1
are such that 𝑢 ≈𝑃 𝑣 if and only if 𝑞(𝑢) = 𝑞(𝑣).

We say that a category 𝐶 is presented by a 2-polygraph 𝑃, or that 𝑃 is a
presentation of 𝐶, when 𝐶 is isomorphic to 𝑃.

2.3.5 Presenting monoids. Any monoid 𝑀 can canonically be seen as a cate-
gory with only one object ⋆, the morphisms of the category being the elements
of 𝑀 , compositions and identities being given by multiplication and unit of the
monoid. This construction extends as a functor Mon→ Cat from the category
of monoids to the category of small categories, which is full and faithful. In
the following, by a presentation of a monoid, we will always implicitly mean a
presentation of the associated category. Those provide a most abundant source
of examples of presentations, see Appendix A.

2.3.6 Example. There are exactly two monoids with two elements. They are
presented by the following two 2-polygraphs:

𝑃 = ⟨ ⋆ | 𝑎 : ⋆→ ⋆ | 𝛼 : 𝑎𝑎 ⇒ 1 ⟩ ,
𝑄 = ⟨ ⋆ | 𝑎 : ⋆→ ⋆ | 𝛼 : 𝑎𝑎 ⇒ 𝑎 ⟩ .

The monoid presented by 𝑃 is N/2N, see Example 4.5.2 for details.

2.3.7 Example. The symmetric group 𝑆𝑛 is the monoid whose elements are
bĳections on a set with 𝑛 elements, sometimes also called permutations, with
composition as multiplication and identities as neutral elements. It admits a
presentation by a 2-polygraph 𝑃 with 𝑃0 = {⋆}, 𝑃1 = {𝑎0, . . . , 𝑎𝑛−1} each
1-generator having ⋆ as source and target, and the relations in 𝑃2 are

– 𝑎𝑖𝑎𝑖 ⇒ 1, for 0 ⩽ 𝑖 < 𝑛,
– 𝑎𝑖𝑎𝑖+1𝑎𝑖 ⇒ 𝑎𝑖+1𝑎𝑖𝑎𝑖+1, for 0 ⩽ 𝑖 < 𝑛 − 1,
– 𝑎𝑖𝑎 𝑗 ⇒ 𝑎 𝑗𝑎𝑖 , for 0 ⩽ 𝑖 < 𝑗 < 𝑛 with 𝑖 + 1 < 𝑗 .

A generator 𝑎𝑖 corresponds here to the transposition exchanging the 𝑖-th and
the (𝑖+1)-th element of the set with 𝑛 elements, and the reader is encouraged to
check for himself that these relations make sense, see §A.1.19 and §C.1.3 for
details.

2.3.8 A characterization of presentations. The following lemma character-
izes when a 2-polygraph is a presentation of a category 𝐶. In practice, it is
quite cumbersome to use and more practical tools will be introduced in Chap-
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ter 4, based on rewriting. We recall that the underlying 1-polygraph 𝑉𝐶 of a
category 𝐶 was defined in §2.1.1.

2.3.9 Lemma. A 2-polygraph 𝑃 is a presentation of a category 𝐶 if and only
if there is a morphism of 1-polygraphs 𝑓 : 𝑃⩽1 → 𝑉𝐶 such that the following
three conditions hold.

1. The map 𝑓0 : 𝑃0 → 𝐶0 is a bĳection between 0-generators and objects of𝐶.
2. For any generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, 𝑓 (𝑢) = 𝑓 (𝑣).
3. The function 𝑓 ∗1 : 𝑃∗1 → 𝐶1 induces a bĳection between 𝑃∗1/𝑃2 and 𝐶1.

Proof. By post-composition with the counit (𝑉𝐶)∗ → 𝐶 of the adjunction
described in §2.1.2, the functor 𝑓 ∗ : 𝑃∗⩽1 → (𝑉𝐶)∗ induces a functor 𝑃∗⩽1 → 𝐶

that we still write 𝑓 ∗. The second condition amounts to require that it induces, by
Lemma 2.3.4, a well-defined quotient functor 𝑓 ∗ : 𝑃 → 𝐶. The first condition
amounts to require that this functor is bĳective on objects, and the third that it
is full and faithful. □

2.3.10 Models. Given categories 𝐶 and 𝑆, the category of models of 𝐶 in 𝑆 is
the category

Mod𝑆 (𝐶) = Cat(𝐶, 𝑆)

of functors from 𝐶 to 𝑆 and natural transformations between those. We simply
write Mod(𝐶) in the case 𝑆 = Set.

2.3.11 Lemma. If 𝑃 is a 2-polygraph and 𝐶 category, the category Mod𝐶 (𝑃)
is isomorphic to the category whose objects consists of

– a family ( 𝑓𝑥)𝑥∈𝑃0 of objects of 𝐶 indexed by 0-generators in 𝑃0,
– a family ( 𝑓𝑎 : 𝑓𝑥 → 𝑓𝑦)𝑎:𝑥→𝑦∈𝑃1 of morphisms in𝐶 indexed by 1-generators

in 𝑃1,

such that for every 2-generator 𝛼 : 𝑎1 . . . 𝑎𝑚 ⇒ 𝑏1 . . . 𝑏𝑛 in 𝑃2, we have

𝑓𝑎1 . . . 𝑓𝑎𝑚 = 𝑓𝑏1 . . . 𝑓𝑏𝑛

and a morphism 𝜙 between two objects 𝑓 and 𝑔 consists of a family

(𝜙𝑥 : 𝑓𝑥 → 𝑔𝑥)𝑥∈𝑃0

of morphisms of 𝐶 indexed by the 0-generators of 𝑃 such that, for every
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1-generator 𝑎 : 𝑥 → 𝑦 ∈ 𝑃1, the following diagram commutes

𝑓𝑥
𝑓𝑎
��

𝜙𝑥
// 𝑔𝑥

𝑔𝑎
��

𝑓𝑦 𝜙𝑦

// 𝑔𝑦 .

2.3.12 Example. Consider the category 𝐶 with two objects 𝑋 and 𝑌 , and a
single morphism in each hom-set:

𝑋1𝑋
%%

𝐹
((
𝑌

𝐺

hh 1𝐺 .
yy

This category admits a presentation by the 2-polygraph

𝑃 =
〈
𝑥, 𝑦

�� 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑥
�� 𝛼 : 𝑎𝑏 ⇒ 1𝑥 , 𝛽 : 𝑏𝑎 ⇒ 1𝑦

〉
,

which can be shown by using Lemma 2.3.9. We define a morphism of 1-poly-
graphs 𝑓 : 𝑃⩽1 → 𝑉𝐶 by

𝑓 (𝑥) = 𝑋, 𝑓 (𝑦) = 𝑌, 𝑓 (𝑎) = 𝐹, 𝑓 (𝑏) = 𝐺
and check the conditions of Lemma 2.3.9.

1. The map 𝑓0 : {𝑥, 𝑦} → {𝑋,𝑌 } is a bĳection.
2. The map 𝑓 ∗ preserves the 2-generator 𝛼 : 𝑎𝑏 ⇒ 1𝑥 :

𝑓 ∗ (𝑎𝑏) = 𝑓 ∗ (𝑎) 𝑓 ∗ (𝑏) = 𝐹𝐺 = 1𝑋 = 1 𝑓 ∗ (𝑥 ) = 𝑓 ∗ (1𝑥)
and similarly for 𝛽,

3. The morphisms of 𝑃∗1 are of the form

(𝑎𝑏)𝑛 : 𝑥 → 𝑥, (𝑎𝑏)𝑛𝑎 : 𝑥 → 𝑦, (𝑏𝑎)𝑛𝑏 : 𝑦 → 𝑥, (𝑏𝑎)𝑛 : 𝑦 → 𝑦,

for some 𝑛 ∈ N, and those are respectively equivalent to

1𝑥 : 𝑥 → 𝑥, 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑥, 1𝑦 : 𝑦 → 𝑦,

by induction on 𝑛 ∈ N, because the presence of 𝛼 and 𝛽 respectively imply
that we have 𝑎𝑏 ≈ 1𝑥 and 𝑏𝑎 ≈ 1𝑦 . These are distinct (they have different
types) and are in bĳection with the morphisms of 𝐶 (there is one in each
hom-set), in a way compatible with source and target.

By Lemma 2.3.11, a model of 𝐶 in a category 𝑆 consists of

– two objects 𝑓𝑥 and 𝑓𝑦 of 𝑆,
– two morphisms 𝑓𝑎 : 𝑓𝑥 → 𝑓𝑦 and 𝑓𝑏 : 𝑓𝑦 → 𝑓𝑥 of 𝑆,
– such that 𝑓𝑏 ◦ 𝑓𝑎 = 1 𝑓𝑥 and 𝑓𝑎 ◦ 𝑓𝑏 = 1 𝑓𝑦 .
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The algebras of 𝐶 in 𝑆 are thus precisely the isomorphisms in 𝑆. Otherwise
said, the category 𝐶 represents the functor Cat → Set sending a category to
its set of isomorphisms. For this reason, 𝐶 is sometimes called the walking
isomorphism.

2.3.13 Free categories. A category 𝐶 is free when it admits a presentation
by a 2-polygraph 𝑃 which has no relations (i.e., 𝑃2 = ∅): in this case, the
category 𝐶 can be obtained as the category freely generated by the underlying
1-polygraph of 𝑃. Contrary to the case of sets, see Lemma 1.2.11, not every
category is free: the relations are really needed in order to have a presentation
for every category.

Consider Z as the category with one object ⋆, the morphisms being the
integers with composition given by addition and identity by zero. Suppose given
a presentation without relations of this category. This presentation necessarily
has exactly one 0-generator ⋆, and at least two generators 𝑎, 𝑏: if there was zero
(resp. one) generator, the presented category would be the terminal one (resp.
the one corresponding to the additive monoid N). Writing 𝑃 for the underlying
polygraph of the presentation, there is an isomorphism 𝑓 : 𝑃∗ → 𝐶. Since Z
is abelian, we have 𝑓 (𝑎) 𝑓 (𝑏) = 𝑓 (𝑏) 𝑓 (𝑎) and therefore 𝑎𝑏 = 𝑏𝑎 in 𝑃∗, which
does not actually hold in 𝑃∗. By contradiction, every presentation of Z has at
least one relation, i.e., Z is not free. An actual presentation of Z is given in
§A.1.14. For similar reasons, the category corresponding to the monoid N ×N
(or in fact any abelian monoid, excepting N and the trivial monoid) is not free.

2.3.14 Canonical and standard presentations. Any category admits a pre-
sentation, in the following way. Suppose given a category 𝐶 and write 𝑃 = 𝑉𝐶
for its underlying 1-polygraph, whose 0-generators are the objects of 𝐶 and
1-generators are the morphisms of 𝐶, see §2.1.1. The identity morphism
1𝑃 : 𝑃 → 𝑉𝐶 extends, by Lemma 2.1.3, as a functor 1∗𝑃 : 𝑃∗ → 𝐶, which
sends a 1-cell in 𝑃∗, i.e., a formal composite of morphisms in𝐶, to the result of
its composition. The 2-polygraph with 𝑃 as underlying 1-polygraph and whose
set of 2-generators is

𝑃2 =
{(𝑢, 𝑣) ∈ 𝑃∗1 × 𝑃∗1 �� 1∗𝑃 (𝑢) = 1∗𝑃 (𝑣)

}
,

with 𝑠1 (𝑢, 𝑣) = 𝑢 and 𝑡1 (𝑢, 𝑣) = 𝑣, is a presentation of 𝐶 called its canonical
presentation.

If, in the previous presentation, we restrict the set 𝑃2 to the 2-generators
which are either of the form (𝑎𝑏, 𝑐) or of the form (1𝑥 , 𝑎), with 𝑎, 𝑏, 𝑐 ∈ 𝑃1,
we obtain another presentation of 𝐶, which is smaller, called its standard
presentation, detailed in §4.5.5.
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2.4 Generating 2-categories

In the same way a 1-polygraph generates a category which is a “graph with
compositions”, a 2-polygraph also generates a 2-category which is a “2-graph
with compositions”. Here, a 2-graph consists of a graph together with “2-cells”
which have edges as source and target.

2.4.1 2-graphs. A 2-graph 𝐶, or 2-globular set,

𝐶0 𝐶1
𝑠0oo

𝑡0
oo 𝐶2

𝑠1oo

𝑡1
oo

consists in sets

– 𝐶0 of 0-cells,
– 𝐶1 of 1-cells together with functions 𝑠0, 𝑡0 : 𝐶1 → 𝐶0 respectively associat-

ing to each 1-cell its source and target 0-cell,
– 𝐶2 of 2-cells together with functions 𝑠1, 𝑡1 : 𝐶2 → 𝐶1 respectively associat-

ing to each 2-cell its source and target 1-cell,

such that

𝑠0 ◦ 𝑠1 = 𝑠0 ◦ 𝑡1, 𝑡0 ◦ 𝑠1 = 𝑡0 ◦ 𝑡1.

We often write 𝑎 : 𝑥 → 𝑦 for a 1-cell 𝑎 with 𝑠0 (𝑎) = 𝑥 and 𝑡0 (𝑎) = 𝑦, and

𝛼 : 𝑎 ⇒ 𝑏 : 𝑥 → 𝑦,

for a 2-cell 𝛼 with

𝑠1 (𝛼) = 𝑎, 𝑡1 (𝛼) = 𝑏, 𝑠0 (𝑎) = 𝑠0 (𝑏) = 𝑥 and 𝑡0 (𝑎) = 𝑡0 (𝑏) = 𝑦.
Any 2-graph has an underlying 1-graph with 𝐶0 as vertices and 𝐶1 as edges.

2.4.2 Example. The 2-graph 𝐶 with

𝐶0 = {𝑥, 𝑦, 𝑧} ,
𝐶1 = {𝑎 : 𝑥 → 𝑦, 𝑏1 : 𝑦 → 𝑧, 𝑏2 : 𝑦 → 𝑧, 𝑏3 : 𝑦 → 𝑧} ,
𝐶2 = {𝛼 : 𝑏1 ⇒ 𝑏2, 𝛽 : 𝑏2 ⇒ 𝑏3} ,

can be depicted as

𝑥
𝑎 // 𝑦

𝑏1

��⇓𝛼
𝑏2 //⇓𝛽
𝑏3

AA
𝑧.
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2.4.3 2-categories. A 2-category consists in a 2-graph 𝐶 together with

– for each 0-cell 𝑥 an identity 1-cell

1𝑥 : 𝑥 → 𝑥,

– for each 1-cells 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧, a horizontal composite 1-cell

𝑓 ∗0 𝑔 : 𝑥 → 𝑧,

– for each 2-cells 𝛼 : 𝑓 ⇒ 𝑓 ′ : 𝑥 → 𝑦 and 𝛽 : 𝑔 ⇒ 𝑔′ : 𝑦 → 𝑧, a horizontal
composite 2-cell

𝛼 ∗0 𝛽 : ( 𝑓 ∗0 𝑔) ⇒ ( 𝑓 ′ ∗0 𝑔′) : 𝑥 → 𝑧,

– for each 1-cell 𝑓 : 𝑥 → 𝑦, an identity 2-cell

1 𝑓 : 𝑓 ⇒ 𝑓 ,

– for each 2-cells 𝛼 : 𝑓 ⇒ 𝑔 : 𝑥 → 𝑦 and 𝛽 : 𝑔 ⇒ ℎ : 𝑥 → 𝑦, a vertical
composite 2-cell

𝛼 ∗1 𝛽 : 𝑓 ⇒ ℎ : 𝑥 → 𝑦,

such that

– the compositions ∗0 and ∗1 are associative and admit identities as neutral
elements,

– the exchange law holds: given 1-cells 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧, one has

1 𝑓 ∗0 1𝑔 = 1 𝑓 ∗0𝑔, (2.3)

and given 2-cells

𝛼 : 𝑓 ⇒ 𝑓 ′ : 𝑥 → 𝑦, 𝛼′ : 𝑓 ′ ⇒ 𝑓 ′′ : 𝑥 → 𝑦,

𝛽 : 𝑔 ⇒ 𝑔′ : 𝑦 → 𝑧, 𝛽′ : 𝑔′ ⇒ 𝑔′′ : 𝑦 → 𝑧,

we have
(𝛼 ∗1 𝛼′) ∗0 (𝛽 ∗1 𝛽′) = (𝛼 ∗0 𝛽) ∗1 (𝛼′ ∗1 𝛽′). (2.4)

Graphically, the equations (2.3) and (2.4) can be pictured as the “commuta-
tion” of the diagrams

𝑥
𝑓 // 𝑦

𝑔 // 𝑧 //

��

𝑥
𝑓 ∗0𝑔 // 𝑧

��

𝑥

𝑓
((⇓1 𝑓

𝑓

66 𝑦
𝑔
''⇓1𝑔

𝑔
77 𝑧 // 𝑥

𝑓 ∗0𝑔
**⇓1 𝑓 ∗0𝑔

𝑓 ∗0𝑔

44 𝑧
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and

𝑥

𝑓

��⇓𝛼
𝑓 ′ //

⇓𝛼′

𝑓 ′′

?? 𝑦

𝑔

��⇓𝛽
𝑔′ //
⇓𝛽′

𝑔′′

AA 𝑧
//

��

𝑥

𝑓 ∗0𝑔

$$⇓𝛼∗0𝛽
𝑓 ′∗0𝑔

′ //
⇓𝛼′∗0𝛽

′

𝑓 ′′∗0𝑔
′′

:: 𝑧

��

𝑥

𝑓

��=⇒

𝛼∗1𝛼
′

𝑓 ′′

?? 𝑦

𝑔

��=⇒

𝛽∗1𝛽
′

𝑔′′

AA 𝑧
// 𝑥

𝑓 ∗0𝑔

$$=⇒ 𝛼∗0𝛽
∗1

𝛼′∗0𝛽
′

𝑓 ′′∗0𝑔
′′

:: 𝑧

Note that every 2-category𝐶 has an underlying category, sometimes denoted
by 𝐶⩽1, with 𝐶0 as set of objects and 𝐶1 as set of morphisms.

2.4.4 Notation. In the following, when considering morphisms in 2-categories,
we often omit writing identities and horizontal compositions ∗0, and write ∗
for vertical composition ∗1: for instance, we write

𝑢𝛼𝑤 ∗ 𝛽 instead of (1𝑢 ∗0 𝛼 ∗0 1𝑤) ∗1 𝛽.

2.4.5 2-functors. A 2-functor 𝑓 : 𝐶 → 𝐷 between 2-categories 𝐶 and 𝐷

consists of functions

𝑓0 : 𝐶0 → 𝐷0, 𝑓1 : 𝐶1 → 𝐷1, 𝑓2 : 𝐶2 → 𝐷2,

which are

– compatible with sources and targets:

𝑠0 ◦ 𝑓1 = 𝑓0 ◦ 𝑠0, 𝑡0 ◦ 𝑓1 = 𝑓0 ◦ 𝑡0,
𝑠1 ◦ 𝑓2 = 𝑓1 ◦ 𝑠1, 𝑡1 ◦ 𝑓2 = 𝑓1 ◦ 𝑡1,

– compatible with compositions: for every composable pair of 1-cells (𝑢, 𝑣)
(resp. 2-cells (𝛼, 𝛽)),

𝑓1 (𝑢 ∗0 𝑣) = 𝑓1 (𝑢) ∗0 𝑓1 (𝑣), 𝑓2 (𝛼 ∗0 𝛽) = 𝑓2 (𝛼) ∗0 𝑓2 (𝛽),
𝑓2 (𝛼 ∗1 𝛽) = 𝑓2 (𝛼) ∗1 𝑓2 (𝛽),

– compatible with identities: for every 0-cell 𝑥 and 1-cell 𝑢,

𝑓1 (1𝑥) = 1 𝑓0 (𝑥 ) , 𝑓2 (1𝑢) = 1 𝑓1 (𝑢) .

In the following, we generally omit writing the subscript 𝑖 from the compo-
nents 𝑓𝑖 of a 2-functor 𝑓 .
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2.4.6 Freely generated 2-categories. The free 2-category 𝑃∗ generated by a
2-polygraph 𝑃 is the 2-category 𝐶 with 𝑃∗⩽1 as underlying category, i.e.,

– 𝐶0 = 𝑃0,
– 𝐶1 = 𝑃∗1 with source and target given by 𝑠𝐶0 = 𝑠∗0 and 𝑡𝐶0 = 𝑡∗0,

whose 2-cells are freely generated by 𝑃2, i.e., 𝐶2 is the smallest set contain-
ing 𝑃2, together with source and target given by the functions 𝑠1 and 𝑡1 of 𝑃,
such that

– for every 𝛼, 𝛽 ∈ 𝐶2 such that 𝑡0 ◦ 𝑡1 (𝛼) = 𝑠0 ◦ 𝑠1 (𝛽), there is an element
𝛼 ∗0 𝛽 ∈ 𝐶2,

– for every 𝛼, 𝛽 ∈ 𝐶2 such that 𝑡1 (𝛼) = 𝑠1 (𝛽), there is an element 𝛼 ∗1 𝛽 ∈ 𝐶2,

quotiented by the axioms required to form a 2-category, see §2.4.3. We write 𝑃∗2
for the set 𝐶2 of 2-cells of 𝑃∗.

Another construction for this 2-category will be presented in §4.1.8. It can
be characterized by the following universal property:

2.4.7 Lemma. Suppose given a 2-polygraph 𝑃, a 2-category 𝐶, and functions

𝑓0 : 𝑃0 → 𝐶0, 𝑓1 : 𝑃1 → 𝐶1, 𝑓2 : 𝑃2 → 𝐶2,

such that

– for every 1-generator 𝑎 : 𝑥 → 𝑦, we have 𝑓1 (𝑎) : 𝑓0 (𝑥) → 𝑓0 (𝑢),
– for every 2-generator 𝛼 : 𝑢 ⇒ 𝑣, we have 𝑓2 (𝛼) : 𝑓 ∗1 (𝑢) ⇒ 𝑓 ∗1 (𝑣),
where 𝑓 ∗1 (𝑎1 . . . 𝑎𝑛) = 𝑓1 (𝑎1) . . . 𝑓1 (𝑎𝑛). Then there exists a 2-functor

𝑓 ∗ : 𝑃∗ → 𝐶,

which is unique up to isomorphism, such that

– for every 0-generator 𝑥 ∈ 𝑃0, 𝑓 ∗ (𝑥) = 𝑓0 (𝑥),
– for every 1-generator 𝑎 ∈ 𝑃1, 𝑓 ∗ (𝑎) = 𝑓1 (𝑎),
– for every 2-generator 𝛼 ∈ 𝑃2, 𝑓 ∗ (𝛼) = 𝑓2 (𝛼).

2.4.8 String diagrams. A convenient and intuitive notation for morphisms
in free 2-categories is provided by string diagrams. Those were originally
introduced by Feynman [127] and Penrose [297] in physics, and formally studied
by Joyal and Street [208], see [24] for a detailed historical account and [324]
for a panorama of the possible variations.

Suppose fixed a 2-polygraph 𝑃. A 2-generator

𝛼 : 𝑎1 . . . 𝑎𝑚 ⇒ 𝑏1 . . . 𝑏𝑛,
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where the 𝑎𝑖 : 𝑥𝑖−1 → 𝑥𝑖 and 𝑏𝑖 : 𝑦𝑖−1 → 𝑦𝑖 are 1-generators, can be thought
of as some kind of device with 𝑚 inputs, with 𝑎𝑖 as types, and 𝑛 outputs, with
𝑏𝑖 as types. This suggests that, instead of using the usual depiction

𝑥1
𝑎2 // 𝑥2 𝑥𝑚−1 𝑎𝑚

��
𝑥0

𝑎1
55

𝑏1 ))

⇓ 𝛼 𝑦𝑛

𝑦1 // 𝑦2
𝑏2

𝑦𝑛−1
𝑎𝑛

EE

we can use the alternative graphical notation
𝑎1 𝑎2 𝑎𝑚

...

𝛼

...

𝑏1 𝑏2 𝑏𝑛

𝑥0

𝑥1

𝑦1

𝑦𝑛.

This notation, called a string diagram because the 1-cells become some kind of
strings, is inspired of electric circuits where electronic components are linked
with conductive wires. Namely, a 2-cell will more generally be depicted as
various gates linked together, for instance:

𝛼

𝛽 𝜂

𝛾

.

This notation is “dual” (in the sense of Poincaré duality) to the traditional one:
0-cells are pictured as 2-dimensional region of the plane, 1-cells are pictured
as wires and 2-cells are pictured as points (the above rectangles, which are here
in order to be able to put labels inside them, should be pictured as points if we
were drawing string diagrams by the book).

String diagrams can be composed in the various ways expected in a 2-cate-
gory, as we now describe. Horizontal composition of 2-cells of 𝑃∗

𝜙 : 𝑎1 . . . 𝑎𝑚 ⇒ 𝑎′1 . . . 𝑎
′
𝑚′ and 𝜓 : 𝑏1 . . . 𝑏𝑛 ⇒ 𝑏′1 . . . 𝑏

′
𝑛′

amounts to horizontal juxtaposition of the corresponding diagrams, as shown
on the left

𝑎1 𝑎2 𝑎𝑚 𝑏1 𝑏2 𝑏𝑛... ...
𝜙 𝜓
... ...

𝑎′1 𝑎′2 𝑎′
𝑚′ 𝑏

′
1 𝑏′2 𝑏′

𝑛′

𝑎1 𝑎2 𝑎𝑚...
𝜙

𝜓
...

𝑐1 𝑐2 𝑐𝑛
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and vertical composition of

𝜙 : 𝑎1 . . . 𝑎𝑚 ⇒ 𝑏1 . . . 𝑏𝑘 and 𝜓 : 𝑏1 . . . 𝑏𝑘 ⇒ 𝑐1 . . . 𝑐𝑛

is obtained by vertically juxtaposing the corresponding diagrams and linking
the wires, as shown on the right above, identities simply being wires. These
diagrams are to be considered up to “planar isotopy”, by which we mean con-
tinuous deformations, fixing boundaries, preserving direction, and forbidding
wires to cross. For instance, the three diagrams below are considered to be
equal:

... ...
𝜙

𝜓
... ...

=

... ...

𝜙 𝜓

... ...

=

... ...
𝜓

𝜙
... ...

This is detailed in [208], where it is proved that the axioms of 2-categories are
satisfied and the following universal property is satisfied:

2.4.9 Theorem. String diagrams (up to planar isotopy) are the 2-cells of a
2-category which is the free 2-category 𝑃∗ on the 2-polygraph 𝑃.

Given a 0-cell 𝑥, the string diagram corresponding to the 2-cell 11𝑥 (the
identity on the identity on 𝑥) is the empty one. Since this can be confusing, we
generally use the diagram

in order to represent it.

2.4.10 Strict monoidal categories. We introduce here useful categorical struc-
tures, which can be seen as particular cases of 2-categories.

A strict monoidal category (𝐶, ⊗, 𝑖) consists of a category 𝐶 together with
a tensor product functor ⊗ : 𝐶 × 𝐶 → 𝐶 and a unit object 𝑖 ∈ 𝐶, such that the
product is associative and admits 𝑖 as unit, which means that for any objects
𝑥, 𝑦, 𝑧 ∈ 𝐶, we should have

(𝑥 ⊗ 𝑦) ⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧) and 𝑖 ⊗ 𝑥 = 𝑥 = 𝑥 ⊗ 𝑖.
Any 2-category with only one 0-cell induces a strict monoidal category with𝐶1
as set of objects, 𝐶2 as set of morphisms, composition being given by ∗1 and
tensor product by ∗0, and this extends to an isomorphism between 2-categories
with one fixed 0-cell and strict monoidal categories: in this way strict monoidal
categories can be seen as particular cases of 2-categories (and we will often
implicitly make use of this identification in the following).

Among strict monoidal categories, the following class is a source of partic-
ularly useful examples (see Chapter 10 and Appendix C). A PRO is a strict
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monoidal category whose set of objects is N and such that the tensor product
of two objects 𝑚 and 𝑛 is given by addition 𝑚 ⊗ 𝑛 = 𝑚 + 𝑛. The terminology is
an abbreviation of “PROduct category” [262].

2.4.11 Bicategories. The axioms for 2-categories are sometimes too strong for
situations encountered in practice: it happens in many situations that composi-
tion of 1-cells is not strictly associative, but only associative up to a coherent
invertible 2-cell, and similarly identity 1-cells are not strictly neutral elements
for composition. This motivates the introduction of the following generalization
of the notion of 2-category.

A bicategory 𝐶 consists in a 2-graph 𝐶 together with identity 1-cells and
2-cells, horizontal composition of 1- and 2-cells, vertical composition of 2-cells,
as in §2.4.3, and moreover natural families of invertible 2-cells

𝛼 𝑓 ,𝑔,ℎ : ( 𝑓 ∗0 𝑔) ∗0 ℎ⇒ 𝑓 ∗0 (𝑔 ∗0 ℎ), 𝜆 𝑓 : 1𝑥 ∗0 𝑓 ⇒ 𝑓 ,

𝜌𝑔 : 𝑓 ∗0 1𝑦 ⇒ 𝑓 ,

indexed by 1-cells 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑧 and ℎ : 𝑧 → 𝑤, respectively called
associator and left and right unitor, such that

– vertical composition ∗1 is associative on 2-cells and admit identities as neutral
elements,

– the exchange law between horizontal and vertical composition holds,
– the two following coherence axioms hold for every composable 1-cells 𝑓 , 𝑔,
ℎ and 𝑖:

( 𝑓 ∗0 𝑔) ∗0 (ℎ ∗0 𝑖)
𝛼 𝑓 ,𝑔,ℎ∗0𝑖

'/
(( 𝑓 ∗0 𝑔) ∗0 ℎ) ∗0 𝑖

𝛼 𝑓 ∗0𝑔,ℎ,𝑖 /7

𝛼 𝑓 ,𝑔,ℎ∗0𝑖 #+

𝑓 ∗0 (𝑔 ∗0 (ℎ ∗0 𝑖))

( 𝑓 ∗0 (𝑔 ∗0 ℎ)) ∗0 𝑖 𝛼 𝑓 ,𝑔∗0ℎ,𝑖
+3 𝑓 ∗0 ((𝑔 ∗0 ℎ) ∗0 𝑖)

𝑓 ∗0𝛼𝑔,ℎ,𝑖

3;

( 𝑓 ∗0 1𝑦) ∗0 𝑔
𝜌 𝑓 ∗0𝑔 #+

𝛼 𝑓 ,1𝑦 ,𝑔 +3 𝑓 ∗0 (1𝑦 ∗0 𝑔).
𝑓 ∗0𝜆𝑔s{

𝑓 ∗0 𝑔
Obviously, any 2-category can be seen as a bicategory where 𝛼 𝑓 ,𝑔,ℎ, 𝜆 𝑓

and 𝜌 𝑓 are all identity 2-cells. A typical non-trivial example of bicategory, is
the bicategory Span(𝐶) of spans in a category 𝐶 with pullbacks, see §3.3.11.

An important particular case of the previous construction is the following
one. We have seen in §2.4.10 that a 2-category with one 0-cell corresponds to a
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strict monoidal category. Similarly, a bicategory with one 2-cell corresponds to
the notion of monoidal category, which generalizes the one of strict monoidal
category. The definition is recalled in §12.4.1, and more details can be found
in [261, Chapter VII].

A fundamental theorem for bicategories is the coherence theorem which
ensures that it can always be “replaced” by a 2-category:

2.4.12 Theorem. Every bicategory is biequivalent to a 2-category.

This result is shown for instance in [303] and a proof of coherence for monoidal
categories, which are equivalent to bicategories with only one 0-cell, is given
in Section 12.4.

2.5 Coherent confluence of 1-polygraphs

In §2.1.4, we have seen that the morphisms in the free groupoid generated by
a 1-polygraph could be seen as representatives of the congruence associated
to the polygraph. A similar construction can be performed for 2-polygraphs as
follows, from which we will be able to define a notion of coherent presentation.
Here, rather than presenting a category (as in Section 2.3) or generating a
2-category (as in Section 2.4), we think of a 2-polygraph as a presentation of
a set by the underlying 1-polygraph (see Section 1.2) together with additional
2-dimensional coherence data provided by the 2-generators.

2.5.1 Freely generated (2,1)-category. A (2,1)-category 𝐶 is a 2-category in
which every 2-cell is invertible, that is, for every 2-cell 𝛼 : 𝑢 ⇒ 𝑣 in 𝐶 there
exists a 2-cell 𝛼− : 𝑣⇒ 𝑢 in 𝐶 such that 𝛼− ∗1 𝛼 = 1𝑢, and 𝛼 ∗1 𝛼− = 1𝑣.

Given a 2-polygraph 𝑃, with underlying 1-polygraph 𝑃⩽1, one can generate
the free (2,1)-category 𝑃⊤ with 𝑃∗⩽1 as underlying category and containing the
2-generators in 𝑃2 as 2-cells. This construction can be performed in a similar
way as in §2.4.6.

– The set of 0-cells is the set 𝑃0.
– The set of 1-cells is 𝑃∗1.
– The set of 2-cells 𝑃⊤2 is the set of formal horizontal and vertical composites of

elements of 𝑃2 and identities of elements of 𝑃∗1, and their inverses, quotiented
by the axioms of (2,1)-categories.

The following lemma motivates why one can think of 2-cells in this 2-cate-
gory as witnesses of equivalence of rewriting paths:
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2.5.2 Lemma. Given a 2-polygraph𝑃, two 1-cells 𝑓 , 𝑔 : 𝑥 → 𝑦 are𝑃-congruent
if and only if there exists a 2-cell 𝜙 : 𝑓 ⇒ 𝑔 in 𝑃⊤.

For any 2-polygraph 𝑃, there is thus a canonical 2-functor 𝑞𝑃 : 𝑃⊤ → 𝑃 from
the generated (2, 1)-category to the presented category, which is the identity
on 0-cells, sends every 1-cell to its equivalence class under the 𝑃-congruence
and sends every 2-cell to the identity.

Any two presentations of a given category generate equivalent (2, 1)-cate-
gories in the following sense:

2.5.3 Lemma. Suppose given two 2-polygraphs 𝑃 and 𝑄 both presenting a
same category 𝐶. There exist two 2-functors

𝑓 : 𝑃⊤ → 𝑄⊤, 𝑔 : 𝑄⊤ → 𝑃⊤,

between the free (2, 1)-categories generated by 𝑃 and 𝑄 and, for every 1-cells
𝑢 of 𝑃⊤ and 𝑣 of 𝑄⊤, there exist 2-cells

𝜙𝑢 : 𝑔 𝑓 (𝑢) ⇒ 𝑢, 𝜓𝑣 : 𝑓 𝑔(𝑣) ⇒ 𝑣,

in 𝑃⊤ and 𝑄⊤, such that the two following conditions are satisfied.

1. The 2-functors 𝑓 and 𝑔 induce the identity through the canonical projec-
tions 𝑞𝑃 and 𝑞𝑄 onto 𝐶:

𝑃⊤
𝑓
//

𝑞𝑃
��

𝑄⊤

𝑞𝑄
��

𝐶
1𝐶
// 𝐶,

𝑄⊤
𝑔
//

𝑞𝑄
��

𝑃⊤

𝑞𝑃
��

𝐶
1𝐶
// 𝐶.

2. The 2-cells 𝜙𝑢 and 𝜓𝑣 are functorial in 𝑢 and 𝑣, that is

𝜙𝑢𝑢′ = 𝜙𝑢 ∗0 𝜙𝑢′ , 𝜙1𝑥 = 11𝑥 ,

for any 0-composable 1-cells 𝑢 and 𝑢′ and 0-cell 𝑥 and

𝜓𝑣𝑣′ = 𝜓𝑣 ∗0 𝜓𝑣′ , 𝜓1𝑦 = 11𝑦 ,

for any 0-composable 1-cells 𝑣 and 𝑣′ and 0-cell 𝑦.

Proof. We construct the 2-functor 𝑓 , the case of the 2-functor 𝑔 being similar.
For a 0-cell 𝑥, we set 𝑓 (𝑥) = 𝑞−1

𝑄 𝑞𝑃 (𝑥). If 𝑎 : 𝑥 → 𝑦 is a 1-generator of 𝑃,
we choose, in an arbitrary way, a 1-cell 𝑓 (𝑎) : 𝑓 (𝑥) → 𝑓 (𝑦) in 𝑄⊤ such that
𝑞𝑄 𝑓 (𝑎) = 𝑞𝑃 (𝑎). Then, we extend 𝑓 to every 1-cell of 𝑃⊤ by functoriality.
Let 𝛼 : 𝑢 ⇒ 𝑢′ be a 2-generator of 𝑃. Since 𝑃 is a presentation of 𝐶, we have
𝑞𝑃 (𝑢) = 𝑞𝑃 (𝑢′), so that 𝑞𝑄 𝑓 (𝑢) = 𝑞𝑄 𝑓 (𝑢′) holds. Using the fact that 𝑄 is a
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presentation of 𝐶, we arbitrarily choose a 2-cell 𝑓 (𝛼) : 𝑓 (𝑢) ⇒ 𝑓 (𝑢′) in 𝑄⊤.
Then, we extend 𝑓 to every 2-cell of 𝑃⊤ by functoriality.

Now, let us define the 2-cells 𝜙𝑢, the case of 2-cells 𝜓𝑣 being similar. Let 𝑎
be a 1-generator of 𝑃. By construction of the 2-functors 𝑓 and 𝑔, we have:

𝑞𝑃𝑔 𝑓 (𝑎) = 𝑞𝑄 𝑓 (𝑎) = 𝑞𝑃 (𝑎).
Since 𝑃 is a presentation of 𝐶, there exists a 2-cell 𝜙𝑎 : 𝑔 𝑓 (𝑎) ⇒ 𝑎 in 𝑃⊤. We
extend 𝜙 to every 1-cell 𝑢 of 𝑃⊤ by functoriality. □

2.5.4 Remark. Condition 2 of the lemma exactly expresses that 𝜙 and 𝜓 are
icons (which is the acronym for “identity component oplax natural transfor-
mations”, i.e., oplax natural transformations with whose 1-cell components are
identities) in the sense of [228].

2.5.5 Freely generated 2-groupoid. A 2-groupoid, also called (2, 0)-cate-
gory, is a 2-category where both 1-cells and 2-cells are invertible. As a variant
of the previous construction, a 2-polygraph 𝑃 freely generates a 2-groupoid,
whose set of 0-cells is 𝑃0, whose set of 1-cells is 𝑃⊤1 (the morphisms of the free
1-groupoid generated by the underlying 1-polygraph, as described in §2.1.4),
and whose set of 2-cells is the set of formal horizontal and vertical composites
of elements of 𝑃2 and identities of elements of 𝑃⊤1 , and their inverses, quotiented
by the axioms of 2-groupoids.

2.5.6 Coherent 2-polygraphs. Given a 2-polygraph 𝑃, the 1-cells 𝑃⊤1 of the
freely generated 2-groupoid may be thought of as witnesses for equivalence of
0-cells (see §2.1.4) and the 2-cells 𝑃⊤2 as witnesses of “equivalences between
equivalences” (as a variant of Lemma 2.5.2). A 2-polygraph is said to be
coherent when equivalences do not bring essential information, in the sense that
there is at most one equivalence between two given 0-cells, up to equivalence
between equivalences. Formally, a 2-polygraph 𝑃 is coherent when for every
pair of 0-cells 𝑥, 𝑦 ∈ 𝑃0 and pair of 1-cells 𝑓 , 𝑔 : 𝑥 → 𝑦 in 𝑃⊤1 there is a 2-cell
𝛼 : 𝑓 ⇒ 𝑔 in 𝑃⊤2 in the free 2-groupoid generated by 𝑃.

The notion of coherence can be generalized in the expected way to variants
of 2-polygraphs where the source and target of 2-generators are cells in 𝑃⊤2
(as opposed to 𝑃∗2): those are called (2, 0)-polygraphs and formally defined
in Section 15.3. In this context, following the terminology introduced in Sec-
tion 7.1, we can also say that 𝑃2 is a cellular extension of the category 𝑃⊤1 : the
2-polygraph 𝑃 is then coherent precisely when this extension is acyclic.

2.5.7 Coherent confluence. Our aim here is to provide techniques to show
the coherence of a 2-polygraph by adapting the rewriting concepts presented
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in Chapter 1 in order to take 2-dimensional information into account, as an
explicit witness of the commutation of diagrams. This approach first appeared
under the terminology of commuting diagrams [190, Section 4.3].

A 2-polygraph 𝑃 is coherently confluent when for every pair of coinitial
1-cells 𝑓 : 𝑥 → 𝑦 and 𝑓 ′ : 𝑥 → 𝑦′ in 𝑃∗1 there is a pair of cofinal 1-cells
𝑔 : 𝑦 → 𝑧 and 𝑔′ : 𝑦′ → 𝑧 in 𝑃∗1 and a 2-cell 𝛼 : 𝑓 𝑔 ⇒ 𝑓 ′𝑔′ in 𝑃⊤2 (in the free
(2, 1)-category it generates):

𝑥
𝑓

��

𝑓 ′

  

𝑦

𝑔
��

𝛼⇒ 𝑦′.

𝑔′~~
𝑧

(2.5)

In such a situation, we also say that the branching ( 𝑓 , 𝑓 ′) is coherently joinable.
Similarly, 𝑃 is locally coherently confluent when for every pair of coinitial
1-generators 𝑎 : 𝑥 → 𝑦 and 𝑏 : 𝑥 → 𝑦′ in 𝑃1 there is a pair of cofinal 1-cells
𝑔 : 𝑦 → 𝑧 and 𝑔′ : 𝑦′ → 𝑧 in 𝑃∗1 and a 2-cell 𝛼 : 𝑎𝑔 ⇒ 𝑏𝑔′ in 𝑃⊤2 :

𝑥
𝑎

��

𝑏

  

𝑦

𝑔
��

𝛼⇒ 𝑦′.

𝑔′~~
𝑧

We say that a 2-polygraph is terminating when the underlying 1-polygraph is,
in the sense of §1.3.6. We can now adapt Newman’s lemma (see Lemma 1.3.21)
to this extended notion of confluence as follows:

2.5.8 Lemma. A terminating 2-polygraph is coherently confluent if and only
if it is locally coherently confluent.

Proof. The left-to-right implication is immediate, let us show the right-to-left
implication. Supposing that the terminating polygraph 𝑃 is locally coherently
confluent, we show that it is coherently confluent at 𝑥 (i.e., that every branching
at 𝑥 is coherently joinable) by well-founded induction on 𝑥. Suppose given two
coinitial 1-cells 𝑓 : 𝑥 → 𝑦 and 𝑓 ′ : 𝑥 → 𝑦. If one of them is the identity,
say 𝑓 ′, we can close the diagram as in (2.5) with 𝑔 = 1𝑦 , 𝑔′ = 𝑓 and 𝛼 = 1 𝑓 .
Otherwise, we have 𝑓 = 𝑎 𝑓1 and 𝑓 ′ = 𝑎′ 𝑓 ′1 for some 1-generators 𝑎 and 𝑎′ and
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1-cells 𝑓 and 𝑓 ′:

𝑥
𝑎

��

𝑎′

��

𝑦1
𝑓1

��
𝑓2
��

𝛼⇒ 𝑦′1
𝑓 ′2��

𝑓 ′1
��

𝑦

𝑔1 ��

𝛽⇒ 𝑦′′

𝑓 ′′2
��

𝛾⇒ 𝑦′.

𝑔′

��

𝑧′

𝑔2 ��
𝑧

By local confluence we deduce the existence of 1-cells 𝑓2 and 𝑓2 and a 2-cell
𝛼 : 𝑎 𝑓2 ⇒ 𝑎 𝑓 ′2 as above. By induction hypothesis, we obtain the existence
of 1-cells 𝑔1 and 𝑓 ′′2 together with a 2-cell 𝛽 : 𝑓1𝑔1 ⇒ 𝑓2 𝑓

′′
2 . By induc-

tion hypothesis again, we deduce the existence of 1-cells 𝑔2 and 𝑔′ and a
2-cell 𝛾 : 𝑓 ′2 𝑓

′′
2 𝑔2 ⇒ 𝑓 ′1𝑔

′. We have shown the existence of cofinal 1-cells
𝑔1𝑔2 : 𝑦 → 𝑧 and 𝑔′ : 𝑦′ → 𝑧, and of a 2-cell

𝑎𝛽𝑔2 ∗ 𝛼 𝑓 ′′2 𝑔2 ∗ 𝑎′𝛾 : 𝑎 𝑓1𝑔1𝑔2 ⇒ 𝑎′ 𝑓 ′1𝑔
′

and the branching (𝑎 𝑓1, 𝑎′ 𝑓 ′1 ) is thus coherently joinable. □

2.5.9 Proposition. A terminating and coherently confluent 2-polygraph 𝑃 is
coherent.

Proof. Since the polygraph is terminating, for every 0-cell 𝑥 there is a normal
form �̂� and a rewriting path 𝑛𝑥 : 𝑥 → �̂� in 𝑃∗1. Given a 1-cell 𝑓 : 𝑥 → 𝑦

in 𝑃∗1, since the polygraph is convergent we have �̂� = �̂� and, since the branching
(𝑛𝑥 , 𝑓 𝑛𝑦) is coherently joinable there is a 2-cell 𝛼 𝑓 : 𝑓 𝑛𝑦 ⇒ 𝑛𝑥 , as on the left:

𝑥

𝑛𝑥 ��

𝑓
//

𝛼𝑓⇐

𝑦

𝑛𝑦��
�̂�

𝑦

𝑛𝑥 ��

𝑓 −
//

𝛼𝑓 −⇐

𝑥.
𝑛𝑥��

�̂�

In the free 2-groupoid generated by 𝑃, we also define the 2-cell 𝛼 𝑓 − = 𝑓 − ∗0𝛼−𝑓 ,
which can be pictured as on the right above. Now consider a 1-cell 𝑓 : 𝑥 → 𝑦

in 𝑃⊤1 . It factors as

𝑓 = 𝑓 −1 𝑔1 𝑓
−

2 𝑔2 . . . 𝑓
−
𝑘 𝑔𝑘 ,

for some suitably composable morphisms 𝑓𝑖 and 𝑔𝑖 in 𝑃∗1. We then define
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𝛼 𝑓 : 𝑓 𝑛𝑦 ⇒ 𝑛𝑥 as the composite

𝑥

𝑛𝑥
��

𝑓 −1 //

𝛼𝑓 −1⇐

𝑦1

𝛼𝑔1⇐𝑛𝑦1
��

𝑔1 // 𝑥2

𝑛𝑥2
��

// · · · // 𝑥𝑘
𝛼𝑓 −

𝑘⇐𝑛𝑥𝑘
��

𝑓 −𝑘 // 𝑦𝑘
𝛼𝑔𝑘⇐𝑛𝑦𝑘

��

𝑔𝑘 // 𝑦

𝑛𝑦
��

�̂� �̂� �̂� · · · �̂� �̂� �̂�.

Finally, for any pair of parallel 1-cells 𝑓 , 𝑔 : 𝑥 → 𝑦 in 𝑃⊤1 , the composite 2-cell

𝑥
𝑓

��
𝑛𝑥

��

𝑔

��
𝑦

1 𝑓

''

𝑛𝑦 ��

𝛼−
𝑓⇐

𝛼𝑔⇐ 𝑦

𝑛𝑦��

1𝑦

ww

�̂�
𝑛−𝑦
��
𝑦

has type 𝑓 ⇒ 𝑔. We thus conclude that the 2-polygraph 𝑃 is coherent. □

Composing Lemma 2.5.8 and Proposition 2.5.9, we obtain the coherent Squier
theorem for 1-polygraphs [328, Theorem 5.2]:

2.5.10 Theorem. Let 𝑃 be a terminating 2-polygraph. If, for every pair of
coinitial 1-generators 𝑎 : 𝑥 → 𝑦1 and 𝑏 : 𝑥 → 𝑦2 in 𝑃1, there is a pair of
cofinal 2-cells 𝑓 : 𝑦1 → 𝑧 and 𝑔 : 𝑦2 → 𝑧 in 𝑃∗1 and a 2-cell 𝜙 : 𝑎 𝑓 ⇒ 𝑏𝑔

in 𝑃⊤2 ,
𝑥

𝑎

~~

𝑏

  
𝑦1

𝑓 ��

𝛼⇒ 𝑦2

𝑔��
𝑧

then 𝑃 is coherent.

This theorem is extended to 2-polygraphs in Chapter 7 and to higher-dimensional
polygraphs in Chapter 23: we will see that it provides us with a canonical way of
extending a convergent presentation into a coherent one using the homotopical
completion procedure, see Section 7.5.



3
Operations on presentations

The usefulness and richness of 2-polygraphs is confirmed by the large number
and variety of categories they present. Some examples of presentations were
given in Section 2.3 and many more are described in Appendix A. In order to
show that a given polygraph is a presentation of a given category, one can either
tackle the issue directly, by using the rewriting tools of Chapter 4, or take a
modular approach, by combining already known presentations: this is the route
taken in the present chapter.

Three significant applications are given. We first address, in Section 3.1, the
presentation of limits and colimits by means of given presentations of the base
categories, and precisely show how to systematically build presentations of
products, coproducts and pushouts. Next, in Section 3.2, we show how to add
formal inverses to some morphisms of a category at the level of presentations.
Finally, Section 3.3 is about distributive laws, in relation with factorization
systems on categories. We introduce a notion of composition along a distributive
law between two small categories sharing the same set of objects, and show how
to derive a presentation of this composite from presentations of the components.

3.1 Limits and colimits of presented categories

3.1.1 Initial category. The initial category (with no object nor morphism)
admits the presentation ⟨ | | ⟩.

3.1.2 Coproducts of categories. Given two categories 𝐶 and 𝐷 respectively
presented by 2-polygraphs 𝑃 and 𝑄, their coproduct 𝐶 ⊔ 𝐷 is presented by the
2-polygraph with 𝑃0⊔𝑄0 as 0-generators, 𝑃1⊔𝑄1 as 1-generators and 𝑃2⊔𝑄2
as 2-generators, with expected source and target maps (this is the coproduct
of 𝑃 and 𝑄 in the category of 2-polygraphs).

65
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3.1.3 Coproducts with fixed objects. Given a fixed set 𝑂, consider the sub-
category Cat𝑂 of Cat whose objects are categories with 𝑂 as objects, and
whose morphisms are functors which are identities on objects. Given two cat-
egories 𝐶 and 𝐷 in Cat𝑂, respectively presented by 2-polygraphs 𝑃 and 𝑄,
their coproduct in Cat𝑂 is presented by the 2-polygraph with 𝑃0 = 𝑄0 = 𝑂 as
0-generators, 𝑃1 ⊔ 𝑄1 as 1-generators and 𝑃2 ⊔ 𝑄2 as 2-generators, with ex-
pected source and target maps. In particular, when𝑂 = {⋆}, the category Cat𝑂
is isomorphic to the category of monoids and their coproduct is the free product.

3.1.4 Coequalizers. Suppose given two categories 𝐶 and 𝐷 respectively pre-
sented by 2-polygraphs 𝑃 and 𝑄 and two functors

𝑓 , 𝑔 : 𝐶 → 𝐷.

Reformulating the results of [37], the category obtained as their coequalizer
is presented by the following 2-polygraph 𝑅. We write ∼ for the smallest
equivalence relation on𝑄0 such that 𝑓 (𝑥) ∼ 𝑔(𝑥) for every 0-generator 𝑥 ∈ 𝑃0,
and [𝑦] for the equivalence class of a 1-cell 𝑦 ∈ 𝑄0. The coequalizer of 𝑓 and 𝑔
is the category presented by the polygraph 𝑅 such that

– the 0-generators are the equivalence classes [𝑥] of 0-generators in 𝑄0,
– the 1-generators are of the form 𝑎 : [𝑥] → [𝑦] for 1-generators 𝑎 : 𝑥 → 𝑦

in 𝑄1,
– the 2-generators are either of the form

– 𝛼 : 𝑢 ⇒ 𝑣 for 2-generators 𝛼 : 𝑢 ⇒ 𝑣 in 𝑄2, or
– 𝛼𝑎 : 𝑢 ⇒ 𝑣 for 1-generators 𝑎 : 𝑥 → 𝑦 in 𝑃1 such that 𝑓 (𝑎) = 𝑢 and
𝑔(𝑎) = 𝑣.

This construction allows to quotient a presented category both on objects
and morphisms. Note that the relations in 𝑃2 are not used in this construction,
we only need a generating graph for 𝐶.

3.1.5 Pushouts. All finite colimits of presented categories can be constructed
from coproducts and coequalizers [261, Section V.2]. For instance, the pushout
of the diagram of categories on the left

𝐶 𝐵
𝑓

oo
𝑔
// 𝐷, 𝐵

𝑖𝐶◦ 𝑓 //
𝑖𝐷◦𝑔

// 𝐶 + 𝐷,

can be computed as the coequalizer of the diagram on the right, where the
morphisms 𝑖𝐶 : 𝐶 → 𝐶 +𝐷 and 𝑖𝐷 : 𝐷 → 𝐶 +𝐷 are the canonical inclusions.
In particular, when both 𝑓 and 𝑔 are inclusions of polygraphs, the pushout is
simply given by (non-disjoint) union on sets of 𝑛-generators for 𝑛 = 0, 1, 2.
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3.1.6 Terminal category. We now turn to limits. The most simple example is
the terminal category which admits the presentation ⟨ ⋆ | | ⟩.

3.1.7 Products. Suppose given two categories 𝐶 and 𝐷 along with respec-
tive presentations by 2-polygraphs 𝑃 and 𝑄. A presentation 𝑅 of the product
category 𝐶 × 𝐷 is given by the 2-polygraph 𝑅 with

– 𝑅0 = 𝑃0 ×𝑄0 as set of 0-generators,
– 𝑅1 = 𝑃1 ×𝑄0 ⊔ 𝑃0 ×𝑄1 as set of 1-generators with

(𝑎, 𝑦) : (𝑥, 𝑦) → (𝑥′, 𝑦), (𝑥, 𝑏) : (𝑥, 𝑦) → (𝑥, 𝑦′),

with 𝑎 : 𝑥 → 𝑥′ in 𝑃1 and 𝑦 in 𝑄0 (resp. 𝑥 in 𝑃0 and 𝑏 : 𝑦 → 𝑦′ in 𝑄1),
– 𝑅2 = 𝑃2 × 𝑄0 + 𝑃1 × 𝑄1 + 𝑃0 × 𝑄2 as set of 2-generators: a 2-generator is

either

(𝛼, 𝑦) : (𝑢, 𝑦) ⇒ (𝑢′, 𝑦) : (𝑥, 𝑦) → (𝑥′, 𝑦),

with 𝛼 : 𝑢 ⇒ 𝑢′ : 𝑥 → 𝑥′ in 𝑃2 and 𝑦 ∈ 𝑄0, or

(𝑎, 𝑏) : (𝑥, 𝑏) (𝑎, 𝑦′) ⇒ (𝑎, 𝑦) (𝑥′, 𝑏) : (𝑥, 𝑦) → (𝑥′, 𝑦′),

with 𝑎 : 𝑥 → 𝑥′ in 𝑃1 and 𝑏 : 𝑦 → 𝑦′ in 𝑄1, or

(𝑥, 𝛽) : (𝑥, 𝑣) ⇒ (𝑥, 𝑣′) : (𝑥, 𝑦) → (𝑥, 𝑦′),

with 𝑥 ∈ 𝑃0 and 𝛽 : 𝑣⇒ 𝑣′ : 𝑦 → 𝑦′ in 𝑄2.

Above, given 𝑢 = 𝑎1𝑎2 . . . 𝑎𝑛 in 𝑃∗1 (with the 𝑎𝑖 being generators in 𝑃1) and
𝑦 ∈ 𝑄0, the 1-cell (𝑢, 𝑦) is a notation for (𝑢, 𝑦) = (𝑎1, 𝑦) (𝑎2, 𝑦) . . . (𝑎𝑛, 𝑦) and
the notation (𝑥, 𝑣), for 𝑥 ∈ 𝑃0 and 𝑣 ∈ 𝑃∗1, is similar.

In particular, when 𝐶 and 𝐷 are both monoids (or groups), their product in
the above sense is often called their direct product.

3.2 Localizations of presented categories

3.2.1 Free groupoid. The forgetful functor Gpd → Cat witnessing for the
fact that a groupoid is a particular category (with invertible morphisms) admits
a left adjoint, constructing the free groupoid 𝐶⊤ (also called the envelop-
ing groupoid) over a category 𝐶. Given a 2-polygraph 𝑃 presenting 𝐶, the
groupoid 𝐶⊤ admits a presentation (as a category) by the 2-polygraph 𝑄 with

– 𝑄0 = 𝑃0 as set of 0-generators,
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– 𝑄1 = 𝑃1 ⊔ 𝑃−1 as set of 1-generators, with

𝑃−1 = {𝑎− : 𝑦 → 𝑥 | 𝑎 : 𝑥 → 𝑦 ∈ 𝑊} ,

– 𝑄2 = 𝑃2 ⊔ 𝐼2 as set of 2-generators with

𝐼2 =
{
𝑎𝑎− ⇒ 1𝑥 , 𝑎−𝑎 ⇒ 1𝑦

�� 𝑎 : 𝑥 → 𝑦 ∈ 𝑊}
,

where𝑊 = 𝑃1.
A morphism in 𝑄∗1 is reduced when it is not of the form 𝑢𝑎𝑎−𝑣 or 𝑢𝑎−𝑎𝑣 for

some 𝑢, 𝑣 ∈ 𝑄∗1 and 𝑎 ∈ 𝑃1. The equivalence classes of elements of𝑄∗1 modulo
the congruence generated by 𝐼2 contain exactly one reduced morphism, which
is often convenient to choose as canonical representative; this is detailed in
Example 4.3.13.

3.2.2 Localization. As a generalization of the previous construction, given
a category 𝐶 and a class 𝑊 of morphisms of 𝐶, we can consider the cate-
gory𝐶 [𝑊−1], called the localization of𝐶 by𝑊 , obtained by formally inverting
the morphisms of 𝑊 , see §H.2.1 for a proper definition. Given a category 𝐶
presented by a 2-polygraph 𝑃 and a set 𝑊 ⊆ 𝑃1 of 1-generators, the localiza-
tion 𝐶 [𝑊−1] of 𝐶 by equivalence classes of elements of𝑊 is presented by the
polygraph 𝑄 defined exactly as in previous section. In particular, we recover
the free groupoid on 𝐶 as 𝐶⊤ = 𝐶 [𝑃−1

1 ].

3.3 Distributive laws

In this section, we present a very useful tool in order to build presentations in
a modular fashion. The typical situation we want to address here is when the
category 𝐸 we want to present is “built” from two subcategories𝐶 and 𝐷, in the
sense that every morphism of 𝐸 factors a composite of morphisms in the two
subcategories: in this case, we can expect to be able to construct a presentation
of 𝐸 from presentations of𝐶 and 𝐷. The way the category 𝐸 can be obtained as
a composite of 𝐶 and 𝐷, can be encoded in a distributive law. This notion was
introduced by Beck [36], related to categories and strict factorization systems
by Rosebrugh and Wood [316], and applied to presentations of categories
by Lack [230]. We begin by recalling this setting, and then presenting the
generalizations necessary to handle situations arising in practice.

3.3.1 Strict factorization system. A strict factorization system on a cate-
gory 𝐸 , consists of two subcategories 𝐶 and 𝐷 of 𝐸 , with the same objects
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as 𝐸 , such that every morphism ℎ of 𝐸 factorizes uniquely as ℎ = 𝑔 ◦ 𝑓 with 𝑓

in 𝐶 and 𝑔 in 𝐷:
ℎ //

𝐶∋ 𝑓 && 𝑔∈𝐷

88 .

This structure can equivalently be encoded through operations which help
expressing every morphism 𝐸 as one of 𝐶 composed with one of 𝐷, as we now
explain.

3.3.2 Distributive law. A distributive law ℓ between two categories 𝐶 and 𝐷
having the same objects is a function, often noted

ℓ : 𝐷 ⊗ 𝐶 → 𝐶 ⊗ 𝐷

(the notation as a tensor will be formally justified in §3.3.13), which to every
“composable” pair of morphisms

𝑔 : 𝑥 → 𝑦 ∈ 𝐷, 𝑓 : 𝑦 → 𝑧 ∈ 𝐶,

associates an object 𝑔𝑦 𝑓 of 𝐶 and 𝐷, and morphisms

𝑓 𝑔 : 𝑥 → 𝑔𝑦 𝑓 ∈ 𝐶, 𝑓𝑔 : 𝑔𝑦 𝑓 → 𝑧 ∈ 𝐷,

which can be pictured as

𝑦
𝑓 ∈𝐶
!!

𝑥

𝐷∋𝑔 ==

𝐶∋ 𝑓 𝑔   

𝑧

𝑔𝑦 𝑓
𝑓𝑔∈𝐷

>>

in a way compatible with compositions

𝑦

𝑓2◦ 𝑓1

��

𝑥

( 𝑓2◦ 𝑓1 )𝑔
��

𝑔 ??

𝑧

𝑓2◦ 𝑓1𝑔

??

=

𝑦
𝑓1

��𝑥

𝑓1
𝑔
��

𝑔 ??

𝑓2

��

𝑓2
𝑓1𝑔 ��

𝑓1𝑔

??

𝑧

𝑓2( 𝑓1𝑔)

??

( 𝑓2 ◦ 𝑓1)𝑔 = 𝑓2
𝑓1𝑔 ◦ 𝑓1𝑔

𝑓2◦ 𝑓1𝑔 = 𝑓2( 𝑓1𝑔)
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𝑦
𝑓

��
𝑧

𝑥

𝑔2◦𝑔1

??

𝑓 𝑔2◦𝑔1 ��

𝑓𝑔2◦𝑔1

??

=

𝑦
𝑓

��

𝑔2 ??

𝑓 𝑔2

��

𝑧

𝑥

𝑔1
??

( 𝑓 𝑔2 )𝑔1 ��

𝑓𝑔2

??

𝑓 𝑔2𝑔1

??

𝑓 𝑔2◦𝑔1 = ( 𝑓 𝑔2 )𝑔1

𝑓(𝑔2 ◦ 𝑔1) = 𝑓𝑔2 ◦ 𝑓 𝑔2
𝑔1

and identities
𝑦

1
��

𝑥

𝑔 @@

1𝑔 ��

𝑦

𝑥
1𝑔

?? =

𝑦
1
��

𝑥

𝑔 @@

1 ��

𝑦

𝑥
𝑔

??

𝑥
𝑓

��
𝑥

1 ??

𝑓 1 ��

𝑦

𝑦
𝑓1

@@ =

𝑥
𝑓

  
𝑥

1 ??

𝑓 ��

𝑦.

𝑦
1

??

1𝑔 = 1 𝑓 1 = 𝑓
1𝑔 = 𝑔 𝑓1 = 1

3.3.3 Composite category. Given a distributive law ℓ : 𝐷 ⊗ 𝐶 → 𝐶 ⊗ 𝐷, we
can compose the categories 𝐶 and 𝐷 along ℓ and obtain a new category, noted
𝐶 ⊗ℓ 𝐷: it has the same objects as𝐶 and 𝐷, a morphism from 𝑥 → 𝑧 is a pair of
morphisms ( 𝑓 , 𝑔) with 𝑓 : 𝑥 → 𝑦 in 𝐶 and 𝑔 : 𝑦 → 𝑧 in 𝐷 for some object 𝑦,
identities are pairs of identities and compositions are induced in the expected
way by the distributive law:

( 𝑓 ′, 𝑔′) ◦ ( 𝑓 , 𝑔) = ( 𝑓 ′𝑔 ◦ 𝑓 , 𝑔′ ◦ 𝑓 ′𝑔)
𝑓

$$

𝑓 ′

$$

𝑔 ::

𝑓 ′𝑔 $$

𝑔′ ::

𝑓 ′𝑔

::

The fact that the axioms of categories are satisfied follows from the axioms of
distributive laws.

3.3.4 Proposition. Given categories𝐶, 𝐷, 𝐸 with the same objects, the follow-
ing statements are equivalent.

1. The categories 𝐶 and 𝐷 form a strict factorization system on 𝐸 .
2. There is a distributive law ℓ : 𝐷 ⊗ 𝐶 → 𝐶 ⊗ 𝐷 such that 𝐶 ⊗ℓ 𝐷 = 𝐸 .

Proof. In the case where 𝐶 and 𝐷 form a strict factorization system on 𝐸 ,
we define the distributive law ℓ which maps a composable pair of morphisms
(𝑔, 𝑓 ) ∈ 𝐷 ×𝐶 to the pair of morphisms obtained by factorizing 𝑓 ◦ 𝑔 ∈ 𝐸 : the
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axioms of distributive laws follows from the unique factorization of morphisms
in 𝐸 , and the functor 𝐶 ⊗ℓ 𝐷 → 𝐸 which is the identity on objects and sends a
composable pair ( 𝑓 , 𝑔) to 𝑔◦ 𝑓 is easily seen to be an isomorphism. Conversely,
given the distributive law ℓ : 𝐷 ⊗𝐶 → 𝐶 ⊗ 𝐷, the functor 𝐶 → 𝐶 ⊗ℓ 𝐷 which
is the identity on objects and sends a morphism 𝑓 : 𝑥 → 𝑦 to ( 𝑓 , 1𝑦) is faithful:
the category 𝐶 can be seen as a subcategory of 𝐶 ⊗ℓ 𝐷, and similarly for 𝐷.
Moreover, 𝐶 and 𝐷 form a strict factorization system for 𝐶 ⊗ℓ 𝐷: for every
morphism ( 𝑓 , 𝑔) of 𝐶 ⊗ℓ 𝐷, we have ( 𝑓 , 𝑔) = (1, 𝑔) ◦ ( 𝑓 , 1), and this is the
unique such factorization. □

3.3.5 Presenting composite categories. Because of compatibility with com-
position, we expect that a distributive law is uniquely determined by the image
of pairs of generators for morphisms of the two subcategories. In the case of
presented categories, the composite category can thus be presented as follows.

3.3.6 Theorem. Suppose given two 2-polygraphs 𝑃,𝑄 and a distributive law
ℓ : 𝑄⊗𝑃→ 𝑃⊗𝑄 between the presented categories. Then the category 𝑃⊗ℓ𝑄
is presented by the polygraph 𝑅 with

𝑅0 = 𝑃0 = 𝑄0, 𝑅1 = 𝑃1 ⊔𝑄1, 𝑅2 = 𝑃2 ⊔𝑄2 ⊔ 𝑅ℓ2 ,

where 𝑅ℓ2 contains a 2-generator

𝛼𝑢′ ,𝑣′ : 𝑣′𝑢′ ⇒ 𝑢𝑣, (3.1)

for every pair of composable 1-cells 𝑣′ ∈ 𝑄∗1 and 𝑢′ ∈ 𝑃∗1 such that we have
ℓ(𝑣′, 𝑢′) = (𝑢, 𝑣), for some 𝑢 ∈ 𝑃∗1 and 𝑣 ∈ 𝑄∗1.

Moreover, if the rewriting relation on 1-cells induced by 𝑅ℓ2 is terminating
then one can restrict 𝑅ℓ2 to 2-generators of the form

𝛼𝑎,𝑏 : 𝑏𝑎 ⇒ 𝑢𝑣, (3.2)

indexed by pairs of 1-generators 𝑎 ∈ 𝑃1 and 𝑏 ∈ 𝑄1.

Proof. We have a functor 𝑓 : 𝑅 → 𝑃 ⊗ℓ 𝑄 which is the identity on objects
and sends the class of a 1-generator 𝑎 ∈ 𝑃1 (resp. 𝑏 ∈ 𝑄1) to the morphism
(𝑎, 1) (resp. (1, 𝑏)). This functor is full since every morphism of 𝑃 ⊗ℓ 𝑄 is of
the form (𝑢, 𝑣), with 𝑢 ∈ 𝑃∗1 and 𝑣 ∈ 𝑄∗1, which is the image of 𝑢𝑣. Moreover,
by the rules 𝛼𝑢′ ,𝑣′ every morphism 𝑤 ∈ 𝑅∗1 is equivalent to one of the form 𝑢𝑣

with 𝑢 ∈ 𝑃∗1 and 𝑣 ∈ 𝑄∗1, from which the faithfulness of the functor follows
easily.

When the rewriting relation generated by 𝑅′2 is terminating, a normal form
of a morphism 𝑣′𝑢′, with 𝑣′ ∈ 𝑄∗1 and 𝑢′ ∈ 𝑃∗1 is necessarily of the form 𝑢𝑣
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with 𝑢 ∈ 𝑃∗1 and 𝑣 ∈ 𝑄∗1 and therefore a relation of the form (3.1) is derivable
for every 𝑢′ ∈ 𝑃∗1 and 𝑣′ ∈ 𝑄∗1, and we conclude as above. □

Note that the first part of the theorem usually gives rise to infinite presenta-
tions (because 𝑅ℓ2 is infinite), whereas the reduction provided by the second
part produces finite presentations from finite presentations (provided that the
termination condition is satisfied).

3.3.7 Example. The additive monoids 𝐶 = N/2N and 𝐷 = N/3N respectively
admit the following presentations, see also §A.1.5:

⟨ ⋆ | 𝑎 | 𝑎𝑎 = 1 ⟩ , ⟨ ⋆ | 𝑏 | 𝑏𝑏𝑏 = 1 ⟩ .
The product monoid𝐶×𝐷 contains𝐶 and 𝐷 as submonoids: an element 𝑛 ∈ 𝐶
can be seen as (𝑚, 0) ∈ 𝐶 × 𝐷, and similarly for 𝐷. Moreover, every element
(𝑚, 𝑛) ∈ 𝐶 × 𝐷 can be seen, in a unique way, as a product of an element of 𝐶
and one of 𝐷, namely (𝑚, 𝑛) = (𝑚, 0) + (0, 𝑛), and therefore 𝐶 and 𝐷 form a
factorization system for 𝐶 × 𝐷. We deduce that 𝐶 × 𝐷 admits the presentation

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑎 = 1, 𝑏𝑏𝑏 = 1, 𝑏𝑎 = 𝑎𝑏 ⟩ .
The presented monoid is N/6N (the generators 𝑎 and 𝑏 respectively get inter-
preted as 3 and 2) and we have embeddings

N/2N→ N/6N N/3N→ N/6N
𝑝 ↦→ 3𝑝 𝑞 ↦→ 2𝑞

which induce the strict factorization system corresponding to the distributive
law: one readily verifies that every element 𝑛 ∈ N/6N can be written in a unique
way as 𝑛 = 3𝑝 + 2𝑞 with 𝑝 ∈ N/2N and 𝑞 ∈ N/3N.

We can more generally recover in this way the presentation for products of
monoids given in §A.1.12. Note that the distributive law induced between 𝐶
and 𝐷 is not the only possible one. For instance, the presentation

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑎 = 1, 𝑏𝑏𝑏 = 1, 𝑏𝑎 = 𝑎𝑏𝑏 ⟩
induces another one, which is not isomorphic (an argument for this is that it is
not commutative since 𝑎𝑏 ≠ 𝑏𝑎 can easily be shown, based on the fact that the
presentation is convergent, see Section 4.2).

3.3.8 Example. Starting from two 2-polygraphs 𝑃 and 𝑄, we can take their
union and add relations of the form (3.2) and hope that the resulting 2-poly-
graph 𝑅 will present a composite category. This is not the case in general. For
instance, consider the situation with

𝑃 = ⟨ ⋆ | 𝑎 | ⟩ , 𝑄 = ⟨ ⋆ | 𝑏 | 𝑏𝑏 = 1 ⟩ , 𝑅 = ⟨ ⋆ | 𝑎, 𝑏 | 𝑏𝑏 = 1, 𝑏𝑎 = 1 ⟩ .
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The 2-polygraphs 𝑃 and 𝑄 respectively present the monoids N and N/2N.
In the 2-polygraph 𝑅, the relation 𝑎 = 𝑏𝑏𝑎 = 𝑏 is derivable and thus 𝑅
presentsN/2N: the functor 𝑃→ 𝑅 is not faithful and 𝑃 and𝑄 thus do not form
a strict factorization system for 𝑅.

3.3.9 Example. The following (counter-)example illustrates the need for the
termination hypothesis in the second part of Theorem 3.3.6. Consider the
polygraph 𝑅 whose underlying graph is shown on the left, together with the
relations on the right:

𝑥
𝑎 //

𝑑

>>𝑥′
𝑏
((

𝑏′
66 𝑦
′ 𝑐 // 𝑦

𝑎𝑏⇒ 𝑎𝑏′, 𝑎𝑏𝑐⇒ 𝑑,

𝑏′𝑐⇒ 𝑏𝑐, 𝑎𝑏′𝑐⇒ 𝑑.

We write 𝑃 and 𝑄 for the polygraphs, with no relations, whose respective
underlying graphs are

𝑥 𝑥′
𝑏
((
𝑦′ 𝑐 // 𝑦 and 𝑥

𝑎 //

𝑑

>>
𝑥′

𝑏′
66 𝑦
′ 𝑦.

One easily checks that the canonical inclusions 𝑃→ 𝑅 and𝑄 → 𝑅 are faithful
and that every morphism of 𝑅 factorizes uniquely as one from 𝑃 followed by
one from 𝑄. However, if one restricts to relations of the form (3.2), the only
relations left are 𝑎𝑏 ⇒ 𝑎𝑏′ and 𝑏′𝑐 ⇒ 𝑏𝑐, from which the two relations
𝑎𝑏𝑐 ⇒ 𝑑 and 𝑎𝑏′𝑐 ⇒ 𝑑 are not derivable. Here, the termination hypothesis
of Theorem 3.3.6 is clearly not satisfied since we have the infinite sequence of
reductions

𝑎𝑏𝑐 ⇒ 𝑎𝑏′𝑐 ⇒ 𝑎𝑏𝑐 ⇒ 𝑎𝑏′𝑐 ⇒ . . .

3.3.10 Example. There is a strict factorization on the augmented simplicial
category Δ+, presented in details in §4.5.6: every morphism factorizes as an
epimorphism followed by a monomorphism. Writing Δ𝜇 (resp. Δ𝜂) for the
subcategory of Δ+, with the same objects, whose morphisms are surjective
(resp. injective) functions, we thus have Δ+ = Δ𝜇 ⊗ℓ Δ𝜂 for some distributive
law ℓ. The categories Δ𝜇 and Δ𝜂 respectively admit the presentations〈

⋆
��� 𝑠𝑛𝑖 : 𝑛 + 1→ 𝑛

��� 𝑠𝑛+1𝑖 𝑠𝑛𝑗 = 𝑠
𝑛+1
𝑗+1 𝑠

𝑛
𝑖

〉
𝑛∈N,0⩽𝑖⩽ 𝑗<𝑛〈

⋆
��� 𝑑𝑛𝑖 : 𝑛→ 𝑛 + 1

��� 𝑑𝑛𝑗 𝑑𝑛+1𝑖 = 𝑑𝑛𝑖 𝑑
𝑛+1
𝑗+1

〉
𝑛∈N,0⩽𝑖⩽ 𝑗⩽𝑛
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and by applying Theorem 3.3.6, we recover the presentation of Δ+ given in
§4.5.6, see also §C.2 for a 2-dimensional analysis of the situation.

3.3.11 Spans. We now briefly recall the construction of span bicategories,
which will turn out to be useful in order to explain the axioms for distributive
laws, as well as provide a rich source of examples for distributive laws between
a category and its opposite. We refer the reader to [316, 230] for details.

Suppose given a category 𝐶 with pullbacks. A span ( 𝑓 , 𝑔) from 𝑥 to 𝑦 is a
pair of coinitial morphisms

𝑣
𝑓

��

𝑔

��
𝑥 𝑦

in 𝐶. Given a span ( 𝑓 , 𝑔) from 𝑥 to 𝑦 and (ℎ, 𝑖) from 𝑦 to 𝑧, one can define
a composite span from 𝑥 to 𝑧 by taking the pullback of the two arrows in the
middle

𝑢

��   
𝑣

𝑓

��

𝑔

��

𝑤
ℎ

��

𝑖

��
𝑥 𝑦 𝑧

and given an object 𝑥 one defines the identity span on 𝑥 as

𝑥
1𝑥

��

1𝑥

  
𝑥 𝑥.

A morphism ℎ between two spans ( 𝑓 , 𝑔) and ( 𝑓 ′, 𝑔′) from 𝑥 to 𝑦 is a morphism
of 𝐶 making the following diagram commute:

𝑣
𝑓

��
ℎ

��

𝑔

  
𝑥 𝑦.

𝑣′
𝑓 ′

__

𝑔′

??

Because of the way composition was defined, it is generally not strictly as-
sociative, but rather associative up to isomorphism: we can form a bicate-
gory Span(𝐶) whose 0-cells are the objects of 𝐶, 1-cells are spans and 2-cells
are morphisms of spans.
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Of course, when the category𝐶 has pushouts, one can dually define a bicate-
gory Cospan(𝐶) of cospans in 𝐶, i.e., diagrams of the form

𝑣@@𝑓 __ 𝑔

𝑥 𝑦

in the category 𝐶.

3.3.12 Distributive laws between monads. Given a bicategory B, one can
consider a monad (𝑡, 𝜇, 𝜂) in B (also called a monoid in B), which consists of
an endomorphism 𝑡 : 𝑥 → 𝑥 together two 2-cells 𝜇 : 𝑡𝑡 ⇒ 𝑡 and 𝜂 : 1𝑥 ⇒ 𝑡,
respectively called multiplication and unit, which are associative and unital:

(𝑡𝑡)𝑡
𝜇𝑡

��

∼ +3 𝑡 (𝑡𝑡) 𝑡 𝜇 +3 𝑡𝑡

𝜇

��
𝑡𝑡 𝜇

+3 𝑡

1𝑡

∼
�#

𝜂𝑡 +3 𝑡𝑡

𝜇

��

𝑡1.

∼
z�

𝑡 𝜂ks

𝑡

In particular, a monad in the 2-category Cat is a monad in the usual sense. We
write Mon(B) for the category of monads in B, with the expected notion of
morphism.

Given two monads 𝑠 : 𝑥 → 𝑥 and 𝑡 : 𝑥 → 𝑥 the composite 𝑡𝑢 is not in general
a monad. The missing piece of data in order to properly compose those was
introduced by Beck [36]: a distributive law between two monads 𝑡 and 𝑢 is a
2-cell 𝜆 : 𝑢𝑡 ⇒ 𝑡𝑢 making the diagrams

𝑢(𝑡𝑡)
𝑢𝜇
��

∼ +3 (𝑢𝑡)𝑡 𝜆𝑡 +3 (𝑡𝑢)𝑡 ∼ +3 𝑡 (𝑢𝑡) 𝑡𝜆 +3 𝑡 (𝑡𝑢) ∼ +3 (𝑡𝑡)𝑢
𝜇𝑢
��

𝑢𝑡
𝜆

+3 𝑡𝑢

(𝑢𝑢)𝑡
𝜇𝑡
��

∼ +3 𝑢(𝑢𝑡) 𝑢𝜆 +3 𝑢(𝑡𝑢) ∼ +3 (𝑢𝑡)𝑢 𝜆𝑢 +3 (𝑡𝑢)𝑢 ∼ +3 𝑡 (𝑢𝑢)
𝑡 𝜇
��

𝑢𝑡
𝜆

+3 𝑡𝑢

𝑢

∼
��

∼ +3 𝑢1
𝑢𝜂 +3 𝑢𝑡

𝜆
��

1𝑢 𝜂𝑢
+3 𝑡𝑢

𝑡

∼
��

+3 1𝑡
𝜂𝑡 +3 𝑢𝑡

𝜆
��

𝑡1
𝑡 𝜂

+3 𝑡𝑢

commute. When equipped with a distributive law, one can define a monad
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structure on 𝑡𝑢, called the composite monad of 𝑡 and 𝑢, with multiplication and
unit being respectively

𝑡𝑢𝑡𝑢
𝑡𝜆𝑢 +3 𝑡𝑡𝑢𝑢

𝜇𝜇 +3 𝑡𝑢 and 1
𝜂𝜂 +3 𝑡𝑢

(omitting coherence isomorphisms). A more detailed description is given in
§C.3.

3.3.13 Monads in spans. Interestingly, a monad in Span(Set) precisely cor-
responds to a small category: 𝑥 is the set of objects of the category, the endo-
morphism 𝑡 : 𝑥 → 𝑥 is a span of the form

𝑥 𝑢
𝑓

oo
𝑔
// 𝑥

providing the underlying graph of the category (where 𝑥 and 𝑢 are respectively
the sets of objects and morphisms of the category and 𝑓 and 𝑔 are respectively
the source and target functions), and 𝜇 and 𝜂 respectively describe compositions
and identities of the category.

A distributive law between two categories seen as spans in this way corre-
sponds precisely to the notion of distributive law defined in §3.3.2, and the
notation 𝐶 ⊗ 𝐷 corresponds to the composite of the underlying 1-cells (i.e.,
graphs) of the monads corresponding to categories𝐶 and 𝐷: concretely,𝐶 ⊗𝐷
is the graph with the objects of 𝐶 (or equivalently 𝐷) as vertices, and pairs
( 𝑓 , 𝑔) with 𝑓 : 𝑥 → 𝑦 in 𝐶 and 𝑔 : 𝑦 → 𝑧 in 𝐷 as edges 𝑥 → 𝑧.

3.3.14 Categories of spans. Given a category 𝐶 with pullbacks, a cate-
gory Span(𝐶) can be defined from the bicategory Span(𝐶) by quotienting
1-cells under isomorphisms and discarding 2-cells. This provides a rich source
of examples of distributive laws between a category and its opposite, as we now
illustrate. A category Cospan(𝐶) of cospans can be defined similarly, and of
course satisfies dual results.

There are canonical functors

𝐶op → Span(𝐶) and 𝐶 → Span(𝐶)
respectively sending a morphism 𝑓 : 𝑥 → 𝑦 to the class of the span ( 𝑓 , 1𝑥)
and (1𝑥 , 𝑓 ), which are both faithful: the categories𝐶op and𝐶 can be considered
as subcategories of Span(𝐶). Moreover, in the category of spans, we have
( 𝑓 , 𝑔) = (1, 𝑔) ◦ ( 𝑓 , 1) so that every morphism is the composite of a morphism
in 𝐶op followed by one in 𝐶. When this factorization is unique, we have a strict
factorization system; in particular, this is always the case when the category 𝐶
has no non-trivial isomorphism, because in this case the quotient constructing
Span(𝐶) from Span(𝐶) will be trivial. In such a situation, when we have a
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presentation for 𝐶, we clearly also have one for 𝐶op, and thus also for Span(𝐶)
by Theorem 3.3.6. The general case corresponds to a generalized notion of
distributive law, presented in §3.3.17.

3.3.15 Example. As a simple example, consider the monoid N. The pullback
of two morphisms 𝑚 and 𝑛

⋆
𝑚′

��

𝑛′

��
⋆

𝑚 ��

⋆

𝑛��
⋆

is given by 𝑚′ = max(𝑚, 𝑛) − 𝑚 and 𝑛′ = max(𝑚, 𝑛) − 𝑛, and the only
isomorphism is the identity 0. From the presentation of N as the free monoid
on one generator, see §A.1.4, we deduce that a presentation of Span(N) is
⟨ 𝑎, 𝑏 | 𝑏𝑎 = 1 ⟩, i.e., this is the bicyclic monoid, see §A.1.13, where the relation
is deduced from the fact that the pullback of 1 with 1 is given by 0 and 0.

Other examples are presented in Section 4.6, in the slightly different language
of residuals (which provide techniques in order to show on the presentation
that the presented category actually has pushouts) and in Section 10.5 using
3-polygraphs.

3.3.16 Iterated distributive laws. Composing more than two monads in a
bicategory can be achieved if one assumes that there are distributive laws
between any pair of monads and every triple of distributive laws is compatible
in the following sense, see [83] for details.

Suppose given three monads 𝑡, 𝑢, 𝑣 : 𝑥 → 𝑥 in a bicategory and distributive
laws

ℓ𝑡𝑢 : 𝑢𝑡 ⇒ 𝑡𝑢, ℓ𝑡𝑣 : 𝑣𝑡 ⇒ 𝑡𝑣, ℓ𝑢𝑣 : 𝑣𝑢 ⇒ 𝑢𝑣,

which are compatible in the sense that the following diagram commutes:

𝑢𝑣𝑡
𝑢𝜆𝑡𝑣 +3 𝑢𝑡𝑣

𝜆𝑡𝑢𝑣

#+
𝑣𝑢𝑡

𝜆𝑢𝑣𝑡
4<

𝑣𝜆𝑡𝑢 "*

𝑡𝑢𝑣.

𝑣𝑡𝑢
𝜆𝑡𝑣𝑢

+3 𝑡𝑣𝑢
𝑡𝜆𝑢𝑣

4<

In this situation, there are distributive laws

𝑣𝑡𝑢
𝜆𝑡𝑣𝑢 +3 𝑡𝑣𝑢

𝑡𝜆𝑢𝑣 +3 𝑡𝑢𝑣 and 𝑢𝑣𝑡
𝑢𝜆𝑡𝑣 +3 𝑢𝑡𝑣

𝜆𝑡𝑢𝑣 +3 𝑡𝑢𝑣
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respectively between 𝑡𝑢 and 𝑣, and 𝑡 and 𝑢𝑣, which both induce the same
structure of monad on (𝑡𝑢)𝑣 = 𝑡 (𝑢𝑣).

3.3.17 More general compositions. The notion of strict factorization system
(or equivalently of distributive law) is sometimes too restrictive: in many sit-
uations, the desirable factorization is not strictly unique, but only unique up
to an isomorphism (or even up to some subclass of morphisms). For instance,
consider the category 𝐸 which is the full subcategory of sets, with finite sets
{0, . . . , 𝑛 − 1} as objects for 𝑛 ∈ N (this category will be denoted F in §C.2).
Generalizing the situation of Example 3.3.10, consider the categories 𝐶 and 𝐷
which are the subcategories of 𝐸 whose morphisms are respectively surjective
and injective functions: the categories 𝐶 and 𝐷 “almost” form a factorization
system for 𝐸 . Namely, every function ℎ factorizes as ℎ = 𝑔 ◦ 𝑓 where 𝑓 is sur-
jective and 𝑔 is injective, and this factorization is “almost” unique in the sense
that for every other factorization ℎ = 𝑔′ ◦ 𝑓 ′ there exists an isomorphism 𝑤

making the following diagram commute:

𝑔

  
𝑤

��

𝑓 ??

𝑓 ′ ��

.
𝑔′
>>

Writing 𝑊 for subcategory 𝑊 of isomorphisms of 𝐸 , we notice that both the
categories 𝐶 and 𝐷 contain𝑊 as subcategory. Thus, if we know presentations
for both 𝐶 and 𝐷, we can expect to deduce a presentation for 𝐸 by taking the
union of the presentations of 𝐶 and 𝐷 and adding distributivity relations as
before (Theorem 3.3.6), but we should moreover identify the presentation of
bĳections (i.e., the subcategories 𝑊) in 𝐶 and in 𝐷. In the above situation,
note that the category 𝑊 “acts” on the left (resp. on the right) on 𝐶: for any
morphism 𝑤 : 𝑥′ → 𝑥 (resp. 𝑤 : 𝑦 → 𝑦′) of 𝑊 and 𝑓 : 𝑥 → 𝑦 of 𝐶 one can
obtain a new morphism 𝑤 𝑓 (resp. 𝑓 𝑤) of 𝐶 and the situation is the same for 𝐷.
The distributive law corresponding to the above situation should now have the
form

ℓ : 𝐷 ⊗𝑊 𝐶 → 𝐶 ⊗𝑊 𝐷

where 𝐶 ⊗𝑊 𝐷 is defined as the quotient of 𝐶 ⊗𝐷 above where the right action
of𝑊 on 𝐶 is identified with the left action of𝑊 on 𝐷.

Other typical situations where we would like to identify subcategories 𝑊
of 𝐶 and 𝐷 is when those are symmetric monoidal categories (in which 𝑊 is
the actions of symmetric groups) or Lawvere theories (in which case𝑊 = Fop,
see Chapter 13). Proper generalizations of distributive laws techniques in or-
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der to encompass such situations were given by Lack [230] and detailed and
generalized by Cheng [85]; we briefly present those below.

3.3.18 A (non-strict) factorization system on a category 𝐸 consists of subcate-
gories𝑊 , 𝐶 and 𝐷 with the same objects as 𝐸 such that

– 𝑊 is a subcategory of both 𝐶 and 𝐷,
– every morphism of 𝐸 factorizes as 𝑔 ◦ 𝑓 with 𝑓 ∈ 𝐶 and 𝑔 ∈ 𝐷,
– any two factorizations 𝑔 ◦ 𝑓 and 𝑔′ ◦ 𝑓 ′ of a given morphism in 𝐸 are
𝑊-equivalent: there is a morphism 𝑤 ∈ 𝑊 making the diagram

𝑔

��𝑤

��

𝑓 ??

𝑓 ′ �� 𝑔′

??

commute.

Above, the 𝑊-equivalence is the smallest equivalence relation on composable
pairs of morphisms in 𝐶 ⊗ 𝐷 such that for every morphisms 𝑓 : 𝑥 → 𝑦 in 𝐶,
𝑤 : 𝑦 → 𝑦′ in 𝑊 and 𝑔 : 𝑦′ → 𝑧 in 𝐷 the pairs ( 𝑓 𝑤, 𝑔) and ( 𝑓 , 𝑤𝑔) are
𝑊-equivalent.

3.3.19 Given a bicategory B with coequalizers, we write Mod(B) for the
bicategory of bimodules in B where

– a 0-cell is a monad in B,
– given monads 𝑡 : 𝑥 → 𝑥 and 𝑢 : 𝑦 → 𝑦, a 1-cell 𝑓 : 𝑡 → 𝑢 is a bimodule

in B, i.e., a 1-cell 𝑓 : 𝑥 → 𝑦 of B together with two 2-cells of B

𝜆 : 𝑡 𝑓 ⇒ 𝑓 and 𝜌 : 𝑓 𝑢 ⇒ 𝑢

respectively called left and right action making the following diagrams com-
mute:

𝑡𝑡 𝑓

𝑡𝜆

��

𝜇 𝑓 +3 𝑡 𝑓

𝜆

��

𝑓
𝜂 𝑓ks

1{�
𝑡 𝑓

𝜆
+3 𝑓

𝑡 𝑓 𝑢

𝑡𝜌

��

𝜆𝑢 +3 𝑓 𝑢

𝜌

��
𝑡 𝑓

𝜆
+3 𝑓

𝑓

1 �#

𝑓 𝜂 +3 𝑓 𝑢

𝜌

��

𝑓 𝑢𝑢
𝑓 𝜇ks

𝜌𝑢

��
𝑓 𝑓 𝑢𝜌
ks

– a 2-cell 𝜙 : 𝑓 ⇒ 𝑔 : 𝑡 → 𝑢 is a 2-cell 𝜙 : 𝑓 ⇒ 𝑔 in B making the following
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diagram commute:

𝑡 𝑓

𝑡 𝜙

��

𝜆 +3 𝑓

𝜙

��

𝑓 𝑢
𝜌ks

𝜙𝑢

��
𝑡𝑔 𝜌

+3 𝑔 𝑔𝑢𝜌
ks

– the composite 𝑓 ⊗𝑢 𝑔 of 1-cells 𝑓 : 𝑡 → 𝑢 and 𝑔 : 𝑢 → 𝑣 is given by the
following coequalizer in B:

𝑓 𝑢𝑔
𝜌𝑔 +3

𝑓 𝜆
+3 𝑓 𝑔 +3 𝑓 ⊗𝑢 𝑔

other compositions and identities are the expected ones.

In particular, Mod(Set) is biequivalent to the usual bicategory of profunc-
tors, where a 0-cell is a category and a 1-cell 𝑓 : 𝐶 → 𝐷 is a functor
𝑓 : 𝐶op × 𝐷 → Set (called a profunctor from 𝐶 and 𝐷). More interestingly for
our matters, consider the bicategory Mod(Span(Set)). By the correspondence
given in §3.3.13, the 0-cells are categories (𝑉 ,𝑊 , . . . ), and a 1-cell𝐶 : 𝑉 → 𝑊

is a span

𝑉0 𝐶
𝑠oo 𝑡 // 𝑊0

can be seen as a set𝐶 of “arrows” with source (resp. target) being an object of𝑉
(resp.𝑊) on which𝑉 (resp. 𝑊) act by precomposition (resp. postcomposition).
The horizontal composite 𝐶 ⊗𝑊 𝐷 thus consists of the set of pairs ( 𝑓 , 𝑔) of
composable arrows in𝐶 ×𝐷 quotiented by the equivalence relation identifying
( 𝑓 𝑤, 𝑔) and ( 𝑓 , 𝑤𝑔) for composable 𝑓 ∈ 𝐶, 𝑤 ∈ 𝑊 and 𝑔 ∈ 𝐷.

3.3.20 Fix a category 𝑊 . A category under 𝑊 consists of a category 𝐶, with
the same objects as𝑊 , together with a functor 𝑓 : 𝑊 → 𝐶 which is the identity
on objects. We can think of 𝐶 as having 𝑊 as distinguished subcategory, at
least when the functor 𝑓 is faithful.

Given a monad 𝑡 : 𝑥 → 𝑥 in a bicategory B with colimits, there is always an
equivalence of categories

Mon(Mod(B)(𝑡, 𝑡)) � 𝑡/Mon(B(𝑥, 𝑥)).

Instantiated to the case where B = Span(Set) and 𝑡 is a category 𝑊 , this says
that we have a correspondence between monads in𝑊-bimodules and categories
under𝑊 .

Given two categories 𝐶 and 𝐷 under 𝑊 , we can now define a distributive
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law

ℓ : 𝐷 ⊗𝑊 𝐶 → 𝐶 ⊗𝑊 𝐷 (3.3)

as being a distributive law between 𝐶 and 𝐷, seen as monads in𝑊-bimodules.
Explicitly, it consists of a function which maps a 𝑊-equivalence class of a
composable pair (𝑔, 𝑓 ) of morphisms 𝑔 ∈ 𝐷 and 𝑓 ∈ 𝐶 to a 𝑊-equivalence
class of a composable pair ( 𝑓 𝑔, 𝑓𝑔)with 𝑓 𝑔 ∈ 𝐶 and 𝑓𝑔 ∈ 𝐷 in a way compatible
with compositions and identities, in a similar fashion as for distributive laws,
see §3.3.12 and §C.3. As before, we write 𝐶 ⊗ℓ 𝐷 for the resulting composite
category.

Every factorization system (in the sense of §3.3.18) induces a distributive
law in the above sense, and conversely a distributive law induces a factorization
system when the functors𝑊 → 𝐶 and𝑊 → 𝐷 are faithful.

3.3.21 A generalization of Theorem 3.3.6 can be also be given as follows.
Suppose given two 2-polygraph 𝑃 and 𝑄 with the same 0-cells, and write
𝑊 = 𝑃 ∩𝑄 for the 2-polygraph such that

𝑊0 = 𝑃0 = 𝑄0, 𝑊1 = 𝑃1 ∩𝑄1, 𝑊2 = 𝑃2 ∩𝑄2.

Above, we suppose that source and target maps agree in 𝑃 and 𝑄 for elements
of 𝑊1 and of 𝑊2, and that they induce those of 𝑊 . The inclusion 𝑊 → 𝑃

induces a functor 𝑊 → 𝑃 making 𝑃 a category under 𝑊 , and similarly for 𝑄.
Suppose given a distributive law

ℓ : 𝑄 ⊗𝑊 𝑃→ 𝑃 ⊗𝑊 𝑄

between the presented categories. Then the category 𝑃 ⊗ℓ 𝑄 is presented by
the polygraph 𝑅 with

𝑅0 = 𝑃0 = 𝑄0, 𝑅1 = 𝑃1 ∪𝑄1, 𝑅2 = (𝑃2 ∪𝑄2) ⊔ 𝑅ℓ2 ,
(note that some unions are not disjoint) where 𝑅ℓ2 contains a 2-generator

𝛼𝑢′ ,𝑣′ : 𝑣′𝑢′ ⇒ 𝑢𝑣,

for every composable 1-cells 𝑣′ ∈ 𝑄∗1 and 𝑢′ ∈ 𝑃∗1 such that ℓ(𝑏, 𝑎) = (𝑢, 𝑣),
for some 𝑢 ∈ 𝑃∗1 and 𝑣 ∈ 𝑄∗1. When the rewriting relation induced by 𝑅ℓ2 is
moreover terminating, this set can be further reduced as in Theorem 3.3.6.

3.3.22 Example. Suppose given a category 𝐶 and write𝑊 for the subcategory
of𝐶, with the same objects and the isomorphisms of𝐶 as morphisms. When𝐶
has pullbacks, there is a distributive law

ℓ : 𝐶 ⊗𝑊 𝐶op → 𝐶op ⊗𝑊 𝐶,
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which to a pair of morphism (𝑔′, 𝑓 ′op) associates the pullback ( 𝑓 op, 𝑔):
𝑦

𝑓

~~

𝑔

��
𝑥

𝑔′ ��

𝑧

𝑓 ′��
𝑦′

and the composite category is 𝐶op ⊗ℓ 𝐶 = Span(𝐶), the category of isomor-
phism classes spans described in §3.3.14, see [316, 230, 357]. Dually, when 𝐶
has pushouts, the category Cospan(𝐶) can be obtained as 𝐶 ⊗ℓ 𝐶op where ℓ is
given by pushout.

Other examples and applications are given in Section 10.5.



4
String rewriting and 2-polygraphs

We recast the notion of string rewriting system into the language of polygraphs.
This notion, which consists of a set of pairs of words called relations or re-
writing rules over a fixed alphabet, can be traced back to Thue. In his 1914
paper [344], he introduces the notion of word problem: this is the question of
deciding whenever two words are equivalent with respect to the congruence
generated by the relations. He also shows that the word problem is decidable
when the associated rewriting system is terminating and confluent, and even
introduces a completion algorithm in order to make a system confluent (an
accessible presentation of the paper, along with an English translation can be
found in [302]). For this reason, string rewriting systems are also sometimes
called semi-Thue systems (the “semi” here is to distinguish with Thue systems
which are defined in the same way, but where the relations are not oriented).
Unexpectedly at the time, the word problem was shown to be undecidable for
those systems in 1947 by Post [301] and Markov [271]. Of course, this does
not preclude us from deciding the word problem for subclasses of monoids,
and this is precisely what rewriting is about. The notion of string rewriting
system is a variant of the notion of presentation for groups, which is adapted to
monoids and where the relations are oriented. Group presentations have been
introduced by Dehn [106] in 1911 along with the corresponding word problem
for finitely presented groups and Dehn’s algorithm for solving the word prob-
lem in favorable cases. However, the general word problem for groups has been
shown undecidable by Novikov [293] and Boone [51]. We do not intend to give
a complete presentation of those early works, nor of the recent developments,
and we refer the reader to the standard textbooks [204, 50, 20, 342] for an
in-depth treatment. We rather explain here how string rewriting systems can be
seen as a particular case of 2-polygraphs, and how the polygraphic rewriting
techniques generalize traditional ones.

The notion of string rewriting system – and the more general variant adapted

83
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to categories – is introduced in Section 4.1, where we show that the rewriting
paths form the morphisms of a sesquicategory, in which we can instantiate the
concepts for abstract rewriting systems developed in Chapter 1. In Section 4.2,
we introduce the word problem and show that it can be efficiently solved
for convergent, i.e., confluent and terminating rewriting systems. In practice,
confluence can be checked by inspecting the critical branchings of the rewriting
system, presented in §4.3.6, and termination by introducing a suitable reduction
order, as defined in Section 4.4. The convergence of a rewriting system is also
useful to show that it forms a presentation of a given category, as illustrated in
Section 4.5. Finally, in Section 4.6, we introduce residuation techniques which
allow proving useful properties of categories (such as the existence of pushouts)
by performing computations on their presentations.

4.1 String rewriting systems

We have seen in Section 2.3 that a 2-polygraph 𝑃 can be considered as a
notion of presentation for the category 𝑃, obtained from the category freely
generated by the underlying 1-polygraph 𝑃⩽1, by quotienting the 1-cells under
the congruence ≈ generated by 𝑃2. By Lemma 2.5.2, this congruence is the
smallest equivalence relation identifying two 1-cells 𝑢 and 𝑣whenever there is a
2-cell 𝜙 : 𝑢 ⇒ 𝑣 in 𝑃∗2. In such a situation, 𝑢 and 𝑣 are thus two representatives of
the same 1-cell in 𝑃, and if we adopt the point of view developed in Chapter 1, we
can think of 𝜙 : 𝑢 ⇒ 𝑣 as indicating that 𝑣 is a “more canonical representative”
of the equivalence class than 𝑢. All this suggests that a 2-polygraph can be
considered as a form of rewriting system, where the objects of interest are the
1-cells in 𝑃∗1, and where the generators 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2 are rewriting rules
indicating that 𝑢 can be rewritten to 𝑣.

If we consider the particular case of a 2-polygraph 𝑃 with only one 0-gene-
rator, say 𝑃0 = {⋆}, the presented category 𝑃 has only 0-cell and can thus be
considered as a monoid, as explained in §2.3.5. We will see that, if we restrict
to such polygraphs, the associated notion of rewriting system corresponds
precisely to string rewriting systems, thus establishing 2-polygraphs as a mild
generalization of those, in which letters are “typed” and only well-typed words
are considered: in practice, this extra generality does not bring any major
complication and we develop here the traditional theory of rewriting in full
generality.

4.1.1 Terminology. A 2-polygraph 𝑃, when considered as a rewriting system,
is sometimes called a categorical string rewriting system, or a 1-dimensional
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rewriting system. The terminology string rewriting system is reserved to the
particular case where 𝑃0 = {⋆}. The underlying 1-polygraph 𝑃⩽1 is called
the signature and is composed of sorts (the elements of 𝑃0) and letters (the
elements of 𝑃1). The 1-cells in 𝑃∗1 freely generated by this signature are called
words or strings, and an identity is sometimes referred to as an empty word.
The 2-generators are the rewriting rules of the rewriting system.

4.1.2 Rewriting step. Suppose fixed a 2-polygraph 𝑃. A rewriting step of 𝑃

𝑥
𝑢 // 𝑥′

𝑣

  

𝑣′
>>

=⇒
𝛼 𝑦′ 𝑤 // 𝑦

consists in a 2-generator 𝛼 : 𝑣 ⇒ 𝑣′ : 𝑥′ → 𝑦′ in 𝑃2, together with two 1-cells
𝑢 : 𝑥 → 𝑥′ and 𝑤 : 𝑦′ → 𝑦 in 𝑃∗1. Such a rewriting step will be denoted

𝑢𝛼𝑤 : 𝑢𝑣𝑤⇒ 𝑢𝑣′𝑤 : 𝑥 → 𝑦 (4.1)

and pictured as

𝑥

𝑢𝑣𝑤

''

𝑢𝑣′𝑤

77

=⇒

𝑢𝛼𝑤 𝑦. (4.2)

The 1-cell 𝑢𝑣𝑤 (resp. 𝑢𝑣′𝑤) in 𝑃∗1 is called its source (resp. target). In this
situation, we say that 𝑢𝑣𝑤 is reducible by 𝛼. The pair (𝑢, 𝑤) of 1-cells in 𝑃∗1
is sometimes called the context or whisker in which the rule 𝛼 applies to the
1-cell 𝑢𝑣𝑤. We sometimes write 𝑢 ⇒ 𝑣 to indicate that there exists a rewriting
step of 𝑃 from 𝑢 to 𝑣.

4.1.3 Rewriting path. A rewriting path of 𝑃 is a sequence 𝜙

𝑢1𝛼1𝑤1, 𝑢2𝛼2𝑤2, . . . , 𝑢𝑛𝛼𝑛𝑤𝑛 (4.3)

of rewriting steps of 𝑃

𝑢𝑖𝛼𝑖𝑤𝑖 : 𝑢𝑖𝑣𝑖𝑤𝑖 ⇒ 𝑢𝑖𝑣
′
𝑖𝑤𝑖 : 𝑥 → 𝑦

which is composable, in the sense that 𝑢𝑖𝑣′𝑖𝑤𝑖 = 𝑢𝑖+1𝑣𝑖+1𝑤𝑖 for 1 ⩽ 𝑖 < 𝑛. The
natural number 𝑛 is called the length of the rewriting path 𝜙 and is denoted
by |𝜙 | . The 1-cells 𝑢1𝑣1𝑤1 (resp. 𝑢𝑛𝑣′𝑛𝑤𝑛) are called the source (resp. target) of
the rewriting path, what we write

𝜙 : 𝑢1𝑣1𝑤1 ⇒ 𝑢𝑛𝑣
′
𝑛𝑤𝑛 : 𝑥 → 𝑦.
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By convention, an empty path has a determined source (which is the same
as its target). We sometimes write 𝑢

∗⇒ 𝑣 when there exists a rewriting path
from 𝑢 to 𝑣, in which case we say that 𝑢 rewrites to 𝑣. Given two rewriting paths
𝜙 : 𝑢 ⇒ 𝑣 and 𝜓 : 𝑣⇒ 𝑤, we write 𝜙 ∗ 𝜓 for their concatenation. The rewriting
path (4.3) can therefore be written as a composition of rewriting steps:

𝜙 = (𝑢1𝛼1𝑤1) ∗ (𝑢2𝛼2𝑤2) ∗ . . . ∗ (𝑢𝑛𝛼𝑛𝑤𝑛). (4.4)

Given two 1-cells 𝑢 : 𝑥′ → 𝑥 and 𝑤 : 𝑦 → 𝑦′ in 𝑃∗1, we extend the notation (4.1)
and write 𝑢𝜙𝑤 for the rewriting path

𝑢𝜙𝑤 = ((𝑢𝑢1)𝛼1 (𝑤1𝑤)) ∗ ((𝑢𝑢2)𝛼2 (𝑤2𝑤)) ∗ . . . ∗ ((𝑢𝑢𝑛)𝛼𝑛 (𝑤𝑛𝑤)). (4.5)

These operations equip the 0-cells, 1-cells and rewriting paths in a polygraph
with the structure of a sesquicategory, see §4.1.5.

4.1.4 Support. Any 2-cell 𝜙 in 𝑃∗2 can be written as a 1-composite of finitely
many rewriting steps, of the form (4.4). We define the support of the 2-cell 𝜙 as
the multiset, denoted by supp♯2 ( 𝑓 ), consisting of the 2-cells 𝛼𝑖 occurring in this
decomposition. The support is well-defined because any two decompositions
of 𝜙 in 𝑃∗2 into a 1-composite of rewriting steps involve the same rewriting
steps. We have seen in §1.4.1 that multiset inclusion is a well-founded order on
supports, allowing us to prove some properties by induction on the support of
2-cells.

4.1.5 Sesquicategory. A sesquicategory 𝐶 consists of

– a 2-graph 𝐶 (see §2.4.1),
– a structure of category 𝐶′ on the underlying 1-graph of 𝐶,
– a functor 𝐶 (−,−) : 𝐶′op × 𝐶′ → Cat,

such that the composite of the functor 𝐶 (−,−) with the forgetful functor
Cat→ Set, which to a category associates its set of objects, coincides with the
hom functor 𝐶′ (−,−) : 𝐶′op × 𝐶′ → Set.

The notion of sesquicategory was introduced by Street [338]. Let us detail
the operations available in such a structure. Given 0-cells 𝑥, 𝑦 (i.e., objects
of𝐶′), we have a category𝐶 (𝑥, 𝑦) whose objects are the morphisms 𝑓 : 𝑥 → 𝑦

of 𝐶′, called 1-cells, morphisms 𝛼 : 𝑓 ⇒ 𝑔 : 𝑥 → 𝑦 are called the 2-cells,
and composition is denoted ∗ and called (vertical) composition. Given a 2-cell
𝛼 : 𝑔 ⇒ 𝑔′ : 𝑥 → 𝑦 and 1-cells 𝑓 : 𝑥′ → 𝑥 and ℎ : 𝑦 → 𝑦′, we have a 2-cell
𝐶 ( 𝑓 , ℎ) (𝛼) that will be denoted

𝑓 𝛼ℎ : 𝑓 𝑔ℎ⇒ 𝑓 𝑔′ℎ : 𝑥′ → 𝑦′
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and pictured as

𝑥′
𝑓
// 𝑥

𝑔
((⇓𝛼

𝑔′
66 𝑦

ℎ // 𝑦′.

The functoriality of 𝐶 (−,−) ensures that this is a proper left and right action
of 1-cells on 2-cells: in a situation such as

𝑥′′
𝑓 ′
// 𝑥′

𝑓
// 𝑥

𝑔
&&⇓𝛼

𝑔′
88 𝑦

ℎ // 𝑦′ ℎ′ // 𝑦′′ or 𝑥
1𝑥 // 𝑥

𝑔
&&⇓𝛼

𝑔′
88 𝑦

1𝑦
// 𝑦,

we have

𝑓 ′ ( 𝑓 𝛼ℎ)ℎ′ = ( 𝑓 ′ 𝑓 )𝛼(ℎℎ′) and 1𝑥𝛼1𝑦 = 𝛼.

The following observation is a reformulation in the language of polygraphs of
observations originating in [332, 338]:

4.1.6 Lemma. Any 2-polygraph 𝑃, induces a sesquicategory with 𝑃∗⩽1 as
underlying category, rewriting paths of 𝑃 as 2-cells and left and right actions
defined as in (4.5).

Any 2-category 𝐶 induces a sesquicategory in the expected way, where 𝐶′
is the category underlying 𝐶 (with 𝐶0 as objects and 𝐶1 as morphisms) and
for every 𝑥, 𝑦 ∈ 𝐶0, 𝐶 (𝑥, 𝑦) is the hom-category whose objects are 1-cells
𝑓 : 𝑥 → 𝑦 in 𝐶1 and morphisms are 2-cells 𝛼 : 𝑓 ⇒ 𝑔 : 𝑥 → 𝑦 in 𝐶2,
vertical composition ∗ is ∗1, and the action of 1-cells on 2-cells is given by
𝑓 𝛼𝑔 = 1 𝑓 ∗0 𝛼 ∗0 𝑔. Moreover, the horizontal composition ∗0 of the original
2-category can be recovered from the vertical composition and the action since,
given 𝛼 : 𝑓 ⇒ 𝑓 ′ : 𝑥 → 𝑦 and 𝛽 : 𝑔 ⇒ 𝑔′ : 𝑦 → 𝑧, we have

(1𝑥𝛼𝑔) ∗ ( 𝑓 ′𝛽1𝑧) = 𝛼 ∗0 𝛽 = ( 𝑓 𝛽1𝑧) ∗ (1𝑥𝛼𝑔′)

𝑥

𝑓

��⇓𝛼
𝑓 ′
// 𝑦

𝑔
//

⇓𝛽
𝑔′

AA
𝑧 = 𝑥

𝑓
((⇓𝛼

𝑓 ′
66 𝑦

𝑔
''⇓𝛽

𝑔′
77 𝑧 = 𝑥

𝑓
//

⇓𝛼
𝑓 ′

??
𝑦

𝑔

��⇓𝛽
𝑔′
// 𝑧.

In a general sesquicategory, the left and right members of the above equality
are not necessarily equal, and sesquicategories in which this is always the case
are precisely 2-categories:

4.1.7 Proposition. A 2-category is a sesquicategory such that for every 2-cells
𝛼 : 𝑓 ⇒ 𝑓 ′ : 𝑥 → 𝑦 and 𝛽 : 𝑔 ⇒ 𝑔′ : 𝑦 → 𝑦′ we have

(𝛼𝑔) ∗ ( 𝑓 ′𝛽) = ( 𝑓 𝛽) ∗ (𝛼𝑔′). (4.6)
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This explains the name sesquicategory, meaning a 1½-category: a sesquicate-
gory is almost a 2-category excepting that the exchange law is not required to
hold.

4.1.8 Freely generated 2-category. From the alternative description of a
2-category provided by Proposition 4.1.7, one can come up with an alter-
native construction of the 2-category 𝑃∗ generated by a 2-polygraph 𝑃 (see
§2.4.6): 𝑃∗ is the 2-category, with 𝑃∗⩽1 as underlying category, whose 2-cells
are rewriting paths of 𝑃 considered up to the congruence generated by (4.6).
This means that we do not take in account the order of rewriting steps operating
at disjoint positions and consider them up to the congruence identifying two
rewriting paths of length two of the form

𝑥
𝑢1 // 𝑥′

𝑣

��

𝑣′
//

⇓𝛼
𝑦′

𝑢2 // 𝑦
𝑤 //

𝑤′

FF⇓𝛽 𝑧
𝑢3 // 𝑧′ = 𝑥

𝑢1 // 𝑥′ 𝑣 //

𝑣′
DD⇓𝛼 𝑦
′ 𝑢2 // 𝑦

𝑤

��

𝑤′
//

⇓𝛽
𝑧
𝑢3 // 𝑧′. (4.7)

It can be shown that the sesquicategory constructed in Lemma 4.1.6 is free on
the polygraph in the expected sense, akin to §2.4.6. One of the main advantage
of considering sesquicategories instead of 2-categories here is that the 2-cells
are much easier to represent by data structures, thus making those amenable to
mechanized computations: the presence of the quotient (4.7) makes everything
more difficult.

4.1.9 Rewriting properties of 2-polygraphs. Given a 2-polygraph 𝑃, we
write here 𝑃rs for its set of rewriting steps and 𝑠1, 𝑡1 : 𝑃rs → 𝑃∗1 for the
functions which to a rewriting step respectively associates its source and target.
Any 2-polygraph 𝑃 thus induces an abstract rewriting system

𝑃∗1 𝑃rs,
𝑠1oo

𝑡1
oo

with 1-cells as vertices and rewriting steps

𝑢𝛼𝑤 : 𝑢𝑣𝑤⇒ 𝑢𝑣′𝑤,

as in (4.1), as edges from 𝑢𝑣𝑤 to 𝑢𝑣′𝑤. We always use double arrows to denote
the edges of this rewriting system. Note that, with this point of view, the two
rewriting paths shown in (4.7) are not considered to be equivalent.

This construction allows us to extend the properties of Section 1.3 to 2-poly-
graphs. In particular, a 2-polygraph is

terminating / quasi-terminating / Church-Rosser /
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confluent / locally confluent / decreasing
convergent / quasi-convergent

when the associated abstract rewriting system is. Moreover, the properties of
Section 1.3 immediately extend to our case. We list below such constructions
and properties, reformulated in the framework of 2-polygraphs.

4.1.10 Branching. A branching in a 2-polygraph 𝑃 is a pair (𝜙1, 𝜙2) of coini-
tial rewriting paths 𝜙1 : 𝑢 ⇒ 𝑣1 and 𝜙2 : 𝑢 ⇒ 𝑣2 in 𝑃∗2, which we sometimes
write (𝜙1, 𝜙2) : 𝑢 ⇒ (𝑣1, 𝑣2).

Such a branching is local when both 𝜙1 and 𝜙2 are rewriting steps. It is
confluent when there exist cofinal rewriting paths 𝜓1 : 𝑣1 ⇒ 𝑤 and 𝜓2 : 𝑣2 ⇒ 𝑤

which “close” the diagram:

𝑢
𝜙1

z�
𝜙2

�%
𝑣1

𝜓1 �$

𝑣2.

𝜓2y�
𝑤

(4.8)

We sometimes write (𝜓1, 𝜓2) : (𝑣1, 𝑣2) ⇒ 𝑤 for such a pair.
The goal of this chapter is to provide conditions which are sufficient to

ensure that a 2-polygraph is locally confluent (Section 4.3) and terminating
(Section 4.4). When both properties are satisfied, we can apply Newman’s
Lemma 1.3.21 to conclude that it is confluent.

4.2 Deciding equality

One of the main applications of showing that a 2-polygraph 𝑃 is convergent is
to show that the equality decision problem, or word problem, for 𝑃 is decidable
for those. We have already handled this situation in the case of 1-polygraphs
in §1.3.26.

4.2.1 The word problem. In the context of 2-polygraphs, the equality decision
problem for a 2-polygraph 𝑃 is often called the word problem for 𝑃, and consists
in answering the following question:

Given two 1-cells 𝑢, 𝑣 ∈ 𝑃∗1, do we have 𝑢 ≈ 𝑣?
Above, we recall that ≈ denotes the congruence generated by 𝑃2, see §2.3.2.
The problem was originally introduced by Thue [344], as well as Dehn [105]
in the closely related context of group presentations.
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A 2-polygraph has decidable word problem if there is an algorithm answering
the above question: this algorithm consists in a procedure, taking the 1-cells 𝑢
and 𝑣 as arguments, and answering true or false depending on whether 𝑢 ≈ 𝑣
holds or not. We should insist on the fact that we require that the procedure
terminates on every input, i.e., provides an answer after some finite amount of
time. When there is no such procedure, the problem is said to be undecidable.

4.2.2 Undecidability. We always restrict to finite polygraphs 𝑃 (since the al-
gorithm needs to use this polygraph, the latter must be encoded in a finite way,
although we could consider the more general case of recursively enumerable
presentations). Contrarily to the case of dimension 1, the set 𝑃∗1 of 1-cells is gen-
erally infinite, even though the polygraph 𝑃 is supposed to be finite. Therefore,
the argument used in §1.3.26 for showing that the problem is decidable cannot
be used anymore: the naive procedure, consisting in computing the equivalence
class of 𝑢 and checking whether 𝑣 belongs to it or not, is not guaranteed to
terminate since the class might not be finite. In fact, the word problem was
shown by Post [301] and Markov [271] to be undecidable in general: there
exists a finite 2-polygraph 𝑃 for which there is no algorithm deciding the word
problem. A concrete example of such a polygraph is given in §A.1.32.

Having a decidable word problem is however a property of the monoid, not
of a particular presentation:

4.2.3 Proposition. Let 𝑃 and 𝑄 be two finite Tietze equivalent 2-polygraphs.
Then the word problem for 𝑃 is decidable if and only if the word problem for
𝑄 is decidable.

Proof. Suppose given two finite Tietze equivalent 2-polygraphs 𝑃 and 𝑄 such
that the word problem is decidable for 𝑄. Given two parallel 1-cells 𝑢 and 𝑣
in 𝑃∗1, the Tietze equivalence allows the effective construction for every 1-gene-
rator 𝑎 ∈ 𝑃1 of a 1-cell [𝑎] ∈ 𝑄∗1 such that 𝑎 = [𝑎]. Extending the operation
[−] as a functor 𝑃∗1 → 𝑄∗1, we have that 𝑢 ≈ 𝑣 in 𝑃 if and only if [𝑢] ≈ [𝑣]
in 𝑄, thus allowing us to conclude. □

4.2.4 The normal form algorithm. When the 2-polygraph 𝑃 of interest is
finite and convergent, the word problem can be decided as in the case of
dimension 1 presented in §1.3.26. Namely, the normal form �̂� of a 1-cell 𝑢 can
be computed by maximally rewriting 𝑢, and two 1-cells 𝑢 and 𝑣 are equivalent
if and only if their normal forms �̂� and �̂� are equal.

We shall now present this algorithm in practice. A 1-cell 𝑢 ∈ 𝑃∗1 can be
encoded as being either

– a non-empty sequence of elements of 𝑃1, or
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– an element 𝑥 of 𝑃0, which we write id(𝑥), representing the identity over 𝑥.

In the following, we will not insist on the handling of identities and assimilate
those to empty lists in order to simplify the writing of algorithms. We denote
by len(𝑢) the length of 𝑢, with len(id(𝑥)) being 0 by convention. A natural
number 𝑖 ∈ N is a position in 𝑢 when 0 ⩽ 𝑖 < len(𝑢), and in this case we write
𝑢[𝑖] for the 𝑖-th letter of 𝑢. Given 𝑖, 𝑘 ∈ N such that 𝑖 and 𝑖 + 𝑘 − 1 are positions
in 𝑢, we write sub(𝑢, 𝑖, 𝑘) for the subword of 𝑢 of length 𝑘 starting at position 𝑖,
i.e., the word

sub(𝑢, 𝑖, 𝑘) = 𝑢[𝑖]𝑢[𝑖 + 1] . . . 𝑢[𝑖 + 𝑘 − 1] .

We say that a word 𝑣 matches 𝑢 at position 𝑖 whenever 𝑣 is a subword of 𝑢
starting at position 𝑖. This can be tested with the following first procedure:

def matches(𝑢,𝑖,𝑣) =
return (sub(𝑢,𝑖,len(𝑣)) = 𝑣)

Given 1-cells 𝑢, 𝑣 ∈ 𝑃∗1 such that tgt(𝑢) and src(𝑣) are the same, we write
concat(𝑢,𝑣) for their composition, which is simply the concatenation of the
two sequences. More generally, we allow ourselves to consider the composition
concat(𝑢1, . . . , 𝑢𝑘) of 𝑘 composable 1-cells 𝑢1, . . . , 𝑢𝑘 .

Given a rule 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, we write src(𝛼) for its source 𝑢 and tgt(𝛼) for
its target 𝑣. The normal form of a word 𝑢 can be computed with the following
recursive procedure, expressed in a language which should look familiar to
anyone accustomed to imperative programming languages:

def rec normalize(𝑃,𝑢) =
for 𝛼 ∈ 𝑃2 do

𝑣 = src(𝛼)
for 𝑖 = 0 to len(𝑢)−len(𝑣) do
if matches(𝑢,𝑖,𝑣) then
𝑤1 = sub(𝑢,0,𝑖)
𝑤2 = tgt(𝛼)
𝑤3 = sub(𝑢,𝑖+len(𝑣),len(𝑢)−len(𝑣)−𝑖)
return normalize(𝑃,concat(𝑤1,𝑤2,𝑤3))

return 𝑢

Finally, equality can be decided by the normal form algorithm which can be
implemented as

def equal(𝑃,𝑢,𝑣) =
return (normalize(𝑃,𝑢) = normalize(𝑃,𝑣))
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4.2.5 Complexity of the word problem. Let us mention the following result
obtained by Avenhaus and Madlener [18, 19] for presentations of groups, but
the proof can be applied to presentation of monoids.

4.2.6 Theorem. Let 𝑃 and 𝑄 be two Tietze equivalent finite 2-polygraphs. If
the word problem can be decided for 𝑃 in time𝑂 ( 𝑓 (𝑛)), then the word problem
for𝑄 can be solved in time𝑂 ( 𝑓 (𝑐𝑛)) for some constant natural number 𝑐 > 0.

For a finite convergent 2-polygraph 𝑃, consider a function 𝑓 : N→ N such
that for any 1-cell 𝑢 of length 𝑛 = |𝑢 | in 𝑃∗1, the leftmost reduction sequence
from 𝑢 to its normal form contains at most 𝑓 (𝑛) many steps (here, the leftmost
reduction means that we always reduce words with a reduction which rewrites
a subword as much on the left as possible). In [49], Book proves that for a
finite convergent and reduced 2-polygraph 𝑃, the normal form for 𝑢 in 𝑃∗1
can be computed in time 𝑂 (𝑛 + 𝑓 (𝑛)). We say that a polygraph 𝑃 is length-
reducing when for every rewriting rule 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2 we have |𝑢 | > |𝑣 | .
As a consequence of previous result, if a 2-polygraph 𝑃 is length-reducing and
confluent, then its word problem is decidable in linear time.

4.2.7 Other undecidable problems. The word problem is far from being the
only difficult one for 2-polygraphs [281, 50]. It is undecidable, given a finite
2-polygraph 𝑃, to determine whether

– it is terminating, locally confluent or confluent,
– there is a finite convergent polygraph presenting the same category,
– it is presenting the terminal category, a finite category, a free category, a

cancellative category, or a commutative monoid.

4.3 Critical branchings

In order to show that a 2-polygraph is confluent using the standard techniques
developed in §1.3.17 (by using Newman’s lemma, as stated in Lemma 1.3.21),
one has to check that all its local branchings are confluent. Contrarily to the case
of 1-polygraphs, a finite 2-polygraph usually has an infinite number of local
branchings. We however show here that it is enough to check for the confluence
of a finite subset of those, the critical branchings.

4.3.1 Example. Consider the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎 | 𝛼 : 𝑎𝑎 ⇒ 𝑎 ⟩ .
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In order to verify that it is confluent, one can check that all the local branchings

𝑎𝑛+3
𝑎𝑖𝛼𝑎𝑛+1−𝑖

{�
𝑎 𝑗 𝛼𝑎𝑛+1− 𝑗

�#
𝑎𝑛+2

𝑎 𝑗 𝛼𝑎𝑛− 𝑗 �#

𝑎𝑛+2

𝑎𝑖𝛼𝑎𝑛−𝑖{�
𝑎𝑛+1

can be closed, for 𝑛 ∈ N and 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛+1, where 𝑎𝑛 denotes the composite
𝑎𝑎 . . . 𝑎 of 𝑛 instances of 𝑎.

In order to ease those checks, people are often interested in critical branchings,
which are minimal possible obstructions of confluence, which will index a finite
subset of the above confluence diagrams, enough to ensure the confluence of
the 2-polygraph. In the next sections, we introduce a classification of local
branchings in order to define the critical ones. Such a classification in view of
the critical branching lemma first appeared in [218] for terms rewriting systems
and [292] for string rewriting systems.

4.3.2 Trivial branchings. A branching (𝜙1, 𝜙2) : 𝑢 ⇒ (𝑣1, 𝑣2) is trivial when
𝜙1 = 𝜙2. Such a branching is always confluent since we can take 𝑤 = 𝑣1 = 𝑣2
and 𝜙′1 = 𝜙′2 = 1𝑤 to close the diagram:

𝑢
𝜙1

{�

𝜙2

�#
𝑣1 𝑣2.

𝑤

4.3.3 Orthogonal branchings. A local branching (𝜙1, 𝜙2) : 𝑢 ⇒ (𝑣1, 𝑣2) is
orthogonal when it is of the form

𝑢 = 𝑢1𝑣𝑢2𝑤𝑢3, 𝜙1 = 𝑢1𝛼𝑢2𝑤𝑢3, 𝜙2 = 𝑢1𝑣𝑢2𝛽𝑢3,

for some words 𝑢1, 𝑣, 𝑢2, 𝑤, 𝑢3 and rules 𝛼 : 𝑣 ⇒ 𝑣′ and 𝛽 : 𝑤 ⇒ 𝑤′ (or of
the symmetric form, obtained by exchanging the roles of 𝜙1 and 𝜙2). Such a
branching is always confluent:

𝑢1𝑣𝑢2𝑤𝑢3
𝑢1𝛼𝑢2𝑤𝑢3

{�
𝑢1𝑣𝑢2𝛽𝑢3

�#
𝑢1𝑣
′𝑢2𝑤𝑢3

𝑢1𝑣
′𝑢2𝛽𝑢3 �#

𝑢1𝑣𝑢2𝑤
′𝑢3.

𝑢1𝛼𝑢2𝑤
′𝑢3{�

𝑢1𝑣
′𝑢2𝑤

′𝑢3



94 String rewriting and 2-polygraphs

Informally, it corresponds to rewriting two independent parts of the word 𝑢. Note
that the above diagram corresponds precisely to the equality (4.7). Orthogonal
branchings are also sometimes called Peiffer branchings in reference to the
corresponding notions for spherical diagrams in Cayley complexes associated
to presentations of groups [257].

4.3.4 Overlapping branchings. A local branching is overlapping when it is
not trivial nor independent.

4.3.5 Minimal branchings. We define a partial order on branchings by setting
(𝜙1, 𝜙2) ⊑ (𝜙′1, 𝜙′2) whenever the second branching can be obtained by putting
the first one in context. Formally, writing 𝑣 : 𝑥 → 𝑦 for the source of the
branching (𝜙1, 𝜙2), we have (𝜙1, 𝜙2) ⊑ (𝜙′1, 𝜙′2) whenever there are words
𝑢 : 𝑥′ → 𝑥 and 𝑤 : 𝑦 → 𝑦′ such that 𝜙′1 = 𝑢𝜙1𝑤 and 𝜙′2 = 𝑢𝜙2𝑤. In such a
situation, the confluence of the first branching (𝜙1, 𝜙2) : 𝑣 ⇒ (𝑣1, 𝑣2), say by
(𝜓1, 𝜓2) : (𝑣1, 𝑣2) ⇒ 𝑣′, implies the confluence of (𝜙′1, 𝜙′2), since we have

𝑢𝑣𝑤
𝑢𝜙1𝑤

{�

𝑢𝜙2𝑤

�#
𝑢𝑣1𝑤

𝑢𝜓1𝑤 �#

𝑢𝑣2𝑤.

𝑢𝜓2𝑤{�
𝑢𝑣′𝑤

A branching is minimal when it is minimal with respect to this order.

4.3.6 Critical branchings. A local branching is critical when it is overlapping
and minimal. The following lemma is sometimes called the critical branching
lemma:

4.3.7 Lemma. A 2-polygraph is locally confluent if and only if all its critical
branchings are confluent.

Proof. Suppose given a local branching (𝜙1, 𝜙2). If this branching is critical,
then it is confluent by hypothesis. Otherwise, it is either trivial, or orthogonal,
or non-minimal. In the first two cases, we have seen that the branching is
always confluent (§4.3.2 and §4.3.3). When the branching is non-minimal, it is
greater (with respect to ⊑) than a critical branching (since those are the minimal
ones), which is confluent by hypothesis, and we have seen that this implies the
confluence of the branching (§4.3.5). □

4.3.8 Remark. Note that the confluence of a branching (𝜙1, 𝜙2) also implies
the confluence of the branching (𝜙2, 𝜙1). We could thus further reduce the
number of critical branchings by considering them up to symmetry. We will
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refrain from doing so in the following, because it obfuscates the formulation of
the algorithms without bringing significant improvements (it “only” divides by
two the number of critical branchings).

4.3.9 Classification of critical branchings. Suppose given two rewriting
steps

𝑢1𝛼𝑢2 : 𝑢1𝑢𝑢2 ⇒ 𝑢1𝑢
′𝑢2, 𝑣1𝛽𝑣2 : 𝑣1𝑣𝑣2 ⇒ 𝑣1𝑣

′𝑣2,

with 𝛼 : 𝑢 ⇒ 𝑢′ and 𝛽 : 𝑣 ⇒ 𝑣′, forming a local branching, i.e., such that
𝑢1𝑢𝑢2 = 𝑣1𝑣𝑣2. We now study when such a branching is critical.

If the 1-cells 𝑢1 and 𝑣1 are both non-identities, they are necessarily of the
form 𝑢1 = 𝑤𝑢′1 and 𝑣2 = 𝑤𝑢′2 for some non-identity 1-cell 𝑤 and the branching
is thus not minimal. We deduce that either 𝑢1 or 𝑣1 must be an identity, and
similarly either 𝑢2 or 𝑣2 must be an identity. Since moreover, the branching
should be overlapping, the situation must be of one of the four forms given in
Figure 4.1, for some 1-cells𝑤1,𝑤2 and𝑤3. In the two first cases, we suppose that
𝑤2 is not an identity (otherwise the branching is independent). We also suppose
that the branching is not trivial, i.e., that we are not in a situation where 𝑤1 and
𝑤3 are identities and 𝛼 = 𝛽. The last two cases are called inclusion branchings
because of the relative positions of the rewriting rules as shown in the above
figures.

From the above classification, it should be clear that there is a simple algo-
rithm, which is detailed below, to compute critical branchings: for any two rules
𝛼 : 𝑢 ⇒ 𝑢′ and 𝛽 : 𝑣 ⇒ 𝑣′, we try to overlap 𝑢 and 𝑣 at various offsets which
are small enough to deduce the possible 𝑤1, 𝑤2 and 𝑤3 for the decompositions
of the above form, and remove those which are trivial. In particular, we have as
a consequence:

4.3.10 Lemma. Given a 2-polygraph 𝑃 with a finite set 𝑃2 of rewriting rules,
the number of critical branchings is finite.

4.3.11 Example. Consider the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝛼 : 𝑎𝑏𝑐 ⇒ 𝑎, 𝛽 : 𝑐𝑎 ⇒ 𝑎 ⟩ .
In order to compute the critical branchings, we consider pairs of rules and
examine how they can overlap. Suppose that we choose 𝛼 and 𝛽. The relative
positions of the source 𝑎𝑏𝑐 of 𝛼 and the source 𝑐𝑎 of 𝛽 can be

𝑎𝑏𝑐

𝑐𝑎

𝑎𝑏𝑐

𝑐𝑎

𝑎𝑏𝑐

𝑐𝑎

𝑎𝑏𝑐

𝑐𝑎

𝑎𝑏𝑐

𝑐𝑎

Among those, only the first and the last one are valid overlappings, which means
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𝑢1 𝑢 𝑢2 𝑣1 𝑣 𝑣2 diagram

1 𝑤1𝑤2 𝑤3 𝑤1 𝑤2𝑤3 1

𝑢′

��
⇑𝛼

𝑤1 //

𝑣′

BB
⇓𝛽

𝑤2 // 𝑤3 //

𝑤1 𝑤2𝑤3 1 1 𝑤1𝑤2 𝑤3

𝑣′

BB
⇓𝛽

𝑤1 //

𝑢′

��
⇑𝛼

𝑤2 // 𝑤3 //

1 𝑤1𝑤2𝑤3 1 𝑤1 𝑤2 𝑤3

𝑢′

!!
⇑𝛼

𝑤1 //

𝑣′

HH
⇓𝛽
𝑤2 // 𝑤3 //

𝑤1 𝑤2 𝑤3 1 𝑤1𝑤2𝑤3 1

𝑣′

<<

⇓𝛽
𝑤1 //

𝑢′

��
⇑𝛼
𝑤2 // 𝑤3 //

Figure 4.1 Classification of critical branchings.

that the vertically aligned letters are the same, giving rise to the two following
critical branchings:

(𝑐𝛼, 𝛽𝑏𝑐), (𝛼𝑎, 𝑎𝑏𝛽),

which can also be pictured as

𝑎

CC

⇓𝛽

𝑐 //

𝑎

  
⇑𝛼

𝑎 // 𝑏 // 𝑐 // ,

𝑎

  
⇑𝛼

𝑎 // 𝑏 //

𝑎

CC
⇓𝛽

𝑐 // 𝑎 // .

It can be checked that these are the only critical branchings (there is no critical
branching involving 𝛼 with 𝛼 or 𝛽 with 𝛽). The first branching is confluent, but
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not the second one:
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4.3.12 Example. Consider the 2-polygraph of Example 4.3.1 again:

𝑃 = ⟨ ⋆ | 𝑎 | 𝛼 : 𝑎𝑎 ⇒ 𝑎 ⟩ .
The only critical branching

𝑎𝑎𝑎
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𝑎

is confluent, therefore the 2-polygraph is locally confluent (by Lemma 4.3.7).
Each rewriting step 𝑢𝛼𝑣 : 𝑢𝑎𝑎𝑣 ⇒ 𝑢𝑎𝑣 has a source whose length is one less
than the length of the source and therefore the system is terminating. Finally,
we deduce that the 2-polygraph is convergent (by Lemma 1.3.21 and §4.1.9).

4.3.13 Example. Given a set 𝑋 , the free group on this set can be presented, as
a monoid, by the polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑎 | 𝜆 : 𝑎𝑎 ⇒ 1, 𝜌 : 𝑎𝑎 ⇒ 1 ⟩𝑎∈𝑋 .

This polygraph is always locally confluent since the two critical branchings

𝑎𝑎𝑎
𝜌𝑎

y�
𝑎𝜆

�&
𝑎 𝑎,

𝑎𝑎𝑎
𝜆𝑎

y�
𝑎𝜌

�%
𝑎 𝑎,

indexed by 𝑎 ∈ 𝑋 are confluent. The rules decrease length and the polygraph
is also terminating. Normal forms, also sometimes called reduced words, are
words which do not contain factors of the form 𝑎𝑎 or 𝑎𝑎 for some 𝑎 ∈ 𝑋 . This
construction easily extends to present the free groupoid on a graph.

4.3.14 Algorithm. The critical branchings of a 2-polygraph 𝑃 can be computed
thanks to the following algorithm, which tries to unify the sources of all pairs
of rules (𝛼, 𝛽) in 𝑃2. For simplicity, we suppose here that 𝑃 is a presentation
of a monoid, i.e., there is only one possible identity 1-cell denoted empty. The
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output is a set of pairs (𝑢1, 𝛼, 𝑢2), (𝑣1, 𝛽, 𝑣2), with 𝛼 : 𝑢′ ⇒ 𝑢′′ and 𝛽 : 𝑣′ ⇒ 𝑣′′

forming a critical branching

𝑢1𝑢
′′𝑢2 𝑢1𝑢

′𝑢2 = 𝑣1𝑣′𝑣2
𝑢1𝛼𝑢2ks 𝑣1𝛽𝑣2 +3 𝑣1𝑣′′𝑣2.

The procedure in peudo-code is

def critical_branchings(𝑃) =
𝑐𝑝 = ∅
for (𝛼, 𝛽) ∈ 𝑃2 × 𝑃2 do

𝑢 = src(𝛼)
𝑣 = src(𝛽)
for 𝑖 = 1 − len(𝑣) to len(𝑢) − 1 do
if 𝛼 ≠ 𝛽 or 𝑖 > 0 then
𝑗 = len(𝑣) + 𝑖 − len(𝑢)
𝑖′ = max(0,𝑖)
𝑗 ′ = max(0, 𝑗)
𝑙 = len(𝑣) + 𝑖 − 𝑖′ − 𝑗 ′

𝑢′ = sub(𝑢,𝑖′,𝑙)
𝑣′ = sub(𝑣,𝑖′−𝑖,𝑙)
if 𝑢′ = 𝑣′ then
𝑢1 = if 𝑖 ⩾ 0 then empty else sub(𝑣,0,−𝑖)
𝑣1 = if 𝑖 ⩾ 0 then sub(𝑢,0,𝑖) else empty
𝑢2 = if 𝑗 ⩾ 0 then sub(𝑣,len(𝑣)− 𝑗 , 𝑗) else empty
𝑣2 = if 𝑗 ⩾ 0 then empty else sub(𝑢,len(𝑢)+ 𝑗 ,− 𝑗)
𝑐𝑝 = 𝑐𝑝 ∪ {((𝑢1,𝛼,𝑢2),(𝑣1,𝛽,𝑣2))}

return 𝑐𝑝

4.4 Reduction orders

In order to show that a 2-polygraph 𝑃 is terminating, one has to consider a
well-founded order on 1-cells which is compatible with composition.

4.4.1 Definition. A reduction order on a category𝐶 is a partial order ≼ relating
pairs of parallel morphisms in 𝐶 which is

– well-founded: every weakly decreasing sequence of morphisms is eventually
stationary,

– compatible with composition: for every morphisms 𝑢 : 𝑥′ → 𝑥, 𝑣, 𝑣′ : 𝑥 → 𝑦

and 𝑤 : 𝑦 → 𝑦′, we have that 𝑣 ≻ 𝑣′ implies 𝑢𝑣𝑤 ≻ 𝑢𝑣′𝑤.
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Given a 2-polygraph 𝑃, a reduction order ≼ on 𝑃∗1 is said to be compatible with
the rules of 𝑃 when 𝑢 ≻ 𝑣 for every rule 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2. In this case, the order
≼ is called a termination order for 𝑃.

4.4.2 Proposition. A 2-polygraph 𝑃 is terminating if and only if it admits a
termination order.

Proof. Suppose that 𝑃 is terminating. Then the following relation ≼ is a reduc-
tion order compatible with 𝑃, where given 1-cells 𝑢, 𝑣 ∈ 𝑃∗1 we have 𝑢 ≽ 𝑣 if
and only if 𝑢 rewrites to 𝑣. Conversely, in a 2-polygraph equipped with a reduc-
tion order compatible with 𝑃, every rewriting step is of the form 𝑢𝑣𝑤 ⇒ 𝑢𝑣′𝑤
for some rule 𝛼 : 𝑣 ⇒ 𝑣′. In such a situation, we have 𝑣 ≻ 𝑣′ because the
order is compatible with the rules, and thus 𝑢𝑣𝑤 ≻ 𝑢𝑣′𝑤 because the order is
compatible with composition. Therefore, the existence of an infinite sequence
of reductions in 𝑃 would imply the existence of an infinite decreasing sequence
in the order, contradicting its well-foundedness. □

4.4.3 Remark. In a terminating 2-polygraph, an identity is necessarily a normal
form. Namely, suppose that we have 1𝑥 ⇒ 𝑢 for some 𝑥 ∈ 𝑃0 and 𝑢 ≠ 1𝑥 in 𝑃1.
Then we would have the infinite sequence of rewriting steps

1𝑥 ⇒ 𝑢 = 1𝑥𝑢 ⇒ 𝑢𝑢 = 1𝑥𝑢𝑢 ⇒ . . .

4.4.4 Constructing reduction orders. There is no general rule to construct a
reduction order witnessing that a 2-polygraph is terminating: in fact, deciding
termination is an undecidable problem [50, Section 2.5]. Fortunately, there is
however a “standard toolbox”, which we now introduce, from which one is able
to construct orders in many useful cases.

4.4.5 Reduction function. The most usual method to show the termination
of a 2-polygraph 𝑃 is to provide a function 𝑓 : 𝑃∗1 → 𝑁 , called a reduction
function, where (𝑁, ⩽) is a well-founded poset, which is compatible with
composition: for every 1-cells 𝑢 : 𝑥′ → 𝑥, 𝑣, 𝑣′ : 𝑥 → 𝑦 and 𝑤 : 𝑦 → 𝑦′, we
have that 𝑓 (𝑣) > 𝑓 (𝑣′) implies 𝑓 (𝑢𝑣𝑤) > 𝑓 (𝑢𝑣′𝑤). Such a reduction function
induces a reduction order ≼ on 𝑃∗1 defined by 𝑢 ≼ 𝑣 if and only if 𝑓 (𝑢) ⩽ 𝑓 (𝑣).

A reduction function is monotone when 𝑓 (𝑢) > 𝑓 (𝑣) for every rule𝛼 : 𝑢 ⇒ 𝑣.
With such a reduction function, the associated reduction order is a termination
order and thus, by Proposition 4.4.2:

4.4.6 Lemma. A polygraph equipped with a monotone reduction function is
terminating.

4.4.7 Example. The function which to every word 𝑢 associates its length |𝑢 |
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inN, also called its degree in this context, is a reduction function. If a polygraph
is length-decreasing, in the sense that for every rule𝛼 : 𝑢 ⇒ 𝑣we have |𝑢 | > |𝑣 | ,
we can thus conclude that it is terminating by Lemma 4.4.6. This is for instance
the argument we have been using to show termination in Example 4.3.12.

4.4.8 Example. Functions other than length can also be useful. For instance,
consider the presentation

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛼 : 𝑏𝑎 ⇒ 𝑎𝑎𝑎 ⟩ .
The 2-polygraph intuitively terminates because each application of a rules
decreases the number of occurrences of 𝑏 in a word. In order to formalize this,
consider the function 𝑓 : 𝑃∗1 → N defined by 𝑓 (𝑎) = 0, 𝑓 (𝑏) = 1, and extended
as a morphism of monoids, i.e., 𝑓 (1) = 0 and 𝑓 (𝑢𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣). We have
𝑓 (𝑏𝑎) = 1 > 0 = 𝑓 (𝑎) and the function is compatible with composition since
it is a morphism of monoids. Therefore the 2-polygraph is terminating. Note
that there are no critical branchings, therefore all of them are trivially confluent
and the 2-polygraph is convergent.

4.4.9 Remark. Instead of reduction functions, one could more generally con-
sider the notion of a reduction 2-functor which is a 2-functor 𝑓 : 𝑃∗ → 𝑁

where

– 𝑁 is a 2-category such that for each pair of objects 𝑥, 𝑦 ∈ 𝑁 the category
𝑁 (𝑥, 𝑦) is a well-founded poset: there is at most one morphisms between two
objects and every decreasing sequence is eventually stationary,

– 𝑓 is injective on parallel 1-cells: for every 1-cells 𝑢, 𝑣 : 𝑥 → 𝑦 in 𝑃∗1,
𝑓 (𝑢) = 𝑓 (𝑣) implies 𝑢 = 𝑣.

4.4.10 Lexicographic product. Given two posets (𝑀, ⩽𝑀 ) and (𝑁, ⩽𝑁 ), one
can equip their product 𝑀 × 𝑁 with an order ⩽𝑀×𝑁 , called the lexicographic
product of the two orders, such that (𝑚, 𝑛) ⩽𝑀×𝑁 (𝑚′, 𝑛′) whenever

– 𝑚 <𝑀 𝑚′, or
– 𝑚 = 𝑚′ and 𝑛 ⩽𝑁 𝑛′.

When the two original orders are well-founded, their lexicographic product is
always well-founded. Namely, from every decreasing sequence

(𝑚0, 𝑛0) ⩾𝑀×𝑁 (𝑚1, 𝑛1) ⩾𝑀×𝑁 (𝑚2, 𝑛2) ⩾𝑀×𝑁 . . .

the sequence of (𝑚𝑖)𝑖∈N is decreasing with respect to ⩽𝑀 and thus eventually
stationary, and similarly for the sequence (𝑛𝑖)𝑖∈N, and thus the sequence of
(𝑚𝑖 , 𝑛𝑖)𝑖∈N is also eventually stationary. As a consequence, the lexicographic
product of two reduction orders is a reduction order.
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Given a well-founded poset (𝑁, ⩽) and 𝑛 ∈ N, a partial order ⩽𝑛 can thus be
defined on 𝑁𝑛 (the product of 𝑛 copies of 𝑁) by induction on 𝑛:

– 𝑁0 is equipped with the trivial order,
– 𝑁1 = 𝑁 is equipped with the order ⩽, and
– 𝑁𝑛+1 = 𝑁 × 𝑁𝑛 is equipped with the lexicographic product of ⩽ and ⩽𝑛.

Finally, one can define a well-founded partial order ⩽lex on
∐
𝑛∈N 𝑁𝑛, called

the lexicographic order induced by ⩽, by 𝑢 ⩽lex 𝑣whenever both 𝑢 and 𝑣 belong
to 𝑁𝑛 for some 𝑛 ∈ N and 𝑢 ⩽𝑛 𝑣. For instance, given 𝑁 = {𝑎, 𝑏} with 𝑎 ⩽ 𝑏,
one has 𝑎𝑏𝑏 ⩽lex 𝑏𝑎𝑎 and 𝑏𝑏𝑏𝑎 ⩽lex 𝑏𝑏𝑎𝑎. This is easily adapted to the setting
of polygraphs: given a 2-polygraph 𝑃 and a well-founded partial order ⩽ on 𝑃1,
one can define its lexicographic extension as above, where 𝑃𝑛1 is now the set of
composable sequences of length 𝑛 of elements of 𝑃1. The resulting order ⩽lex
on 𝑃∗1 is always a reduction order.

The variant of the lexicographic order where letters are compared from right
to left (instead of from left to right) is also useful and called the colexicographic
order.

Note that, in the above definition of the lexicographic order, two words of
different lengths are always incomparable. One can define a variant of the
lexicographic order, sometimes called the dictionary order, which is such that
𝑢 ⩽ 𝑣 whenever 𝑢 is a prefix of 𝑣, or 𝑢 and 𝑣 admit respective prefixes 𝑢′
and 𝑣′, of the same length, such that 𝑢′ <lex 𝑣

′. This order is not in general
well-founded, even if the order on the letters is. For instance, with 𝑎 < 𝑏, one
has

𝑏 > 𝑎𝑏 > 𝑎𝑎𝑏 > 𝑎𝑎𝑎𝑏 > . . .

Another variant of the lexicographic order, not suffering from this problem, is
presented in next section.

4.4.11 Deglex order. Suppose given a polygraph 𝑃 equipped with a well-
founded partial order ≼1 on 𝑃1. We have seen in Example 4.4.7 that the length
on words is a reduction function and thus induces a reduction order on 𝑃∗1,
as explained in §4.4.5. Moreover, the lexicographic order induced by ≼1 is
also a reduction order on 𝑃∗1. By taking the lexicographic product of these
two reduction orders, we obtain a new reduction order ≼ on 𝑃∗1 called the
deglex order associated to ≼1. Explicitly, given two words 𝑢 = 𝑎1 . . . 𝑎𝑚 and
𝑣 = 𝑏1 . . . 𝑏𝑛, we have 𝑢 ≺ 𝑣 whenever

– 𝑚 < 𝑛, or
– 𝑚 = 𝑛, and there exists 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑛 such that 𝑎𝑖 ≼1 𝑏𝑖 and 𝑎 𝑗 = 𝑏 𝑗 for

every 𝑗 < 𝑖.
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4.4.12 Example. Consider the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛼 : 𝑎𝑏 ⇒ 𝑏𝑎 ⟩ .
If we order the letters by 𝑎 > 𝑏, the induced deglex order is a reduction order
such that 𝑎𝑏 > 𝑏𝑎. We can therefore apply Proposition 4.4.2 and deduce that the
2-polygraph is terminating. Since there is no critical branching, the 2-polygraph
is convergent.

4.4.13 Derivation. In order to construct a reduction function or a reduction
order, one sometimes needs to propagate information from the left or the right
of the word. This idea is nicely captured by the classical notion of derivation.
For instance, consider the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝛼 : 𝑐𝑏𝑎 ⇒ 𝑎𝑎𝑏𝑐 ⟩ . (4.9)

Most of the simple techniques above (considering the length, the number of
letters, or a deglex order) do not apply here to show the termination of the
rewriting system: for instance, with any deglex order we have 𝑐𝑏𝑎 < 𝑎𝑎𝑏𝑐

because the second word is longer than the first one. However, one can justify
the termination of the rewriting system by noticing that a rewriting step always
decreases the number of “occurrences of 𝑐 on the left of an occurrence of 𝑏”.
The purpose of derivation is precisely to formulate such definitions obtained by
propagating information (here, the number of occurrences of 𝑐) and summing
over each letter a quantity obtained from the propagated information (here, the
number of occurrence of 𝑐 on the left for each 𝑏 and 0 for each 𝑎 or 𝑐). For
simplicity, we consider only the case of presentations of monoids here, but it
extends seamlessly to presentations of categories.

Given a monoid (𝑀, ·, 1), an 𝑀-bimodule 𝑁 consists of a commutative
monoid (𝑁, +, 0) together with a function 𝑀 × 𝑁 × 𝑀 → 𝑁 , called an action
of 𝑀 on 𝑁 , the image of a triple (𝑢, 𝑛, 𝑣) being written 𝑢 · 𝑛 · 𝑣, which is

– linear: for every 𝑢, 𝑣 ∈ 𝑀 and 𝑛, 𝑛′ ∈ 𝑁 ,

𝑢 · (𝑛 + 𝑛′) · 𝑣 = 𝑢 · 𝑛 · 𝑣 + 𝑢 · 𝑛′ · 𝑣, 𝑢 · 0 · 𝑣 = 0,

– associative: for every 𝑢′, 𝑢, 𝑣, 𝑣′ ∈ 𝑀 and 𝑛 ∈ 𝑁 ,

𝑢′ · (𝑢 · 𝑛 · 𝑣) · 𝑣′ = (𝑢′ · 𝑢) · 𝑛 · (𝑣 · 𝑣′), 1 · 𝑛 · 1 = 𝑛.

A derivation of 𝑀 with values in 𝑁 is a function 𝑑 : 𝑀 → 𝑁 such that, for
𝑢, 𝑣 ∈ 𝑀 , one has

𝑑 (𝑢 · 𝑣) = 1 · 𝑑 (𝑢) · 𝑣 + 𝑢 · 𝑑 (𝑣) · 1 and 𝑑 (1) = 1.

When 𝑁 is equipped with a partial order, the derivation is monotone when
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– the addition is monotone: 𝑛 > 𝑛′ implies 𝑚1 + 𝑛 + 𝑚2 > 𝑚1 + 𝑛′ + 𝑚2 for
every 𝑚1, 𝑛, 𝑛

′, 𝑚2 ∈ 𝑁 ,
– the action is monotone: 𝑛 > 𝑛′ implies 𝑢 · 𝑛 · 𝑣 > 𝑢 · 𝑛′ · 𝑣 for every 𝑢, 𝑣 ∈ 𝑀

and 𝑛, 𝑛′ ∈ 𝑁 .

In the following, we will be mostly interested in derivations in the case where𝑀
is the monoid 𝑃∗1 for some fixed 2-polygraph 𝑃 with one 0-generator. In such
a situation, we say that a derivation 𝑑 is adapted to 𝑃 when 𝑑 (𝑢) > 𝑑 (𝑣) for
every 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2.

4.4.14 Lemma. Suppose given a monoid 𝑁 equipped with a well-founded par-
tial order, together with a structure of 𝑃∗1-bimodule. A derivation 𝑑 : 𝑃∗1 → 𝑁

of 𝑃∗1 with values in 𝑁 which is monotone and adapted to 𝑃, is a reduction
function.

Proof. Suppose given words 𝑢, 𝑣, 𝑣′, 𝑤 such that 𝑑 (𝑣) > 𝑑 (𝑣′), we have

𝑑 (𝑢𝑣𝑤) = 1 · 𝑑 (𝑢) · 𝑣𝑤 + 𝑢 · 𝑑 (𝑣) · 𝑤 + 𝑢𝑣 · 𝑑 (𝑤) · 1
> 1 · 𝑑 (𝑢) · 𝑣𝑤 + 𝑢 · 𝑑 (𝑣′) · 𝑤 + 𝑢𝑣 · 𝑑 (𝑤) · 1 = 𝑑 (𝑢𝑣′𝑤). □

Since 𝑃∗1 is free, an action onto a monoid 𝑁 is specified by its effect on
generators. Namely, any 𝑃∗1-bimodule 𝑁 induces, by restriction of the action,
two functions

𝑙 : 𝑃1 × 𝑁 → 𝑁 𝑟 : 𝑁 × 𝑃1 → 𝑁

(𝑎, 𝑛) ↦→ 𝑎 · 𝑛 · 1 (𝑛, 𝑏) ↦→ 1 · 𝑛 · 𝑏
which satisfy for 𝑎, 𝑏 ∈ 𝑃1 and 𝑛 ∈ 𝑁 ,

𝑟 (𝑙 (𝑎, 𝑛), 𝑏) = 𝑙 (𝑎, 𝑟 (𝑛, 𝑏)), (4.10)

both members of the equality being equal to 𝑎 · 𝑛 · 𝑏. Conversely, any such pair
of functions 𝑙 : 𝑃1 ×𝑁 → 𝑁 and 𝑟 : 𝑁 × 𝑃1 → 𝑁 satisfying the above equality
extend uniquely as an action. Similarly, a derivation 𝑑 : 𝑃∗1 → 𝑁 is uniquely
determined by the function 𝑑 : 𝑃1 → 𝑁 obtained as its restriction, and any
such function extends uniquely as a derivation.

The purpose of the action is intuitively to specify which information is prop-
agated sideways and the derivation determines how the propagated information
is used.

4.4.15 Example. The termination of the rewriting system (4.9) can be shown
as follows. Consider the monoid (N × N, +, (0, 0)) equipped with the compo-
nentwise addition, i.e., (𝑚, 𝑛) + (𝑚′, 𝑛′) = (𝑚+𝑚′, 𝑛+𝑛′), and the partial order
is the lexicographic of the standard order on N by itself. The first component
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of 𝑑 (𝑢) will count the number of 𝑏 in a word 𝑢 and the second component the
number of 𝑐 before a 𝑏. The action is given, for (𝑚, 𝑛) ∈ N × N, by

𝑎 · (𝑚, 𝑛) · 1 = (𝑚, 𝑛), 1 · (𝑚, 𝑛) · 𝑎 = (𝑚, 𝑛),
𝑏 · (𝑚, 𝑛) · 1 = (𝑚, 𝑛), 1 · (𝑚, 𝑛) · 𝑏 = (𝑚, 𝑛),
𝑐 · (𝑚, 𝑛) · 1 = (𝑚, 𝑛 + 𝑚), 1 · (𝑚, 𝑛) · 𝑐 = (𝑚, 𝑛).

The first column specifies the function 𝑙 and the second one specifies 𝑟, and
those two functions are easily checked to be compatible in the sense that (4.10)
holds. The left equation on the last line can be read as: given a word 𝑢 with 𝑚
letters 𝑏 and 𝑛 occurrences of 𝑐 before a 𝑏, the word 𝑎𝑢 has 𝑚 letters 𝑏 and
𝑛 + 𝑚 occurrences of 𝑐 before a 𝑏; other equations are similar. The derivation
𝑑 : 𝑃∗1 → N × N is defined on generators by

𝑑 (𝑎) = (0, 0), 𝑑 (𝑏) = (1, 0), 𝑑 (𝑐) = (0, 0).
The rule 𝛼 is decreasing with respect to the derivation as above: we have

𝑑 (𝑐𝑏𝑎) = 1 · 𝑑 (𝑐) · 𝑏𝑎 + 𝑐 · 𝑑 (𝑏) · 𝑎 + 𝑐𝑏 · 𝑑 (𝑎) · 1
= (0, 0) + (1, 1) + (0, 0) = (1, 1)

and

𝑑 (𝑎𝑎𝑏𝑐) = 1 · 𝑑 (𝑎) · 𝑎𝑏𝑐 + 𝑎 · 𝑑 (𝑎) · 𝑏𝑐 + 𝑎𝑎 · 𝑑 (𝑏) · 𝑐 + 𝑎𝑎𝑏 · 𝑑 (𝑐) · 1
= (0, 0) + (0, 0) + (0, 0) + (0, 0) = (0, 0).

Therefore, the rewriting system is terminating (and convergent since it has no
critical branching).

4.5 Constructing presentations of categories

In order to show that a given category 𝐶 is presented by a given 2-polygraph 𝑃,
one must show that the 1-cells of 𝐶 are in bĳection with equivalence classes of
1-cells in𝑃∗1 under the congruence generated by relations in𝑃2, see Lemma 2.3.9
for a formal statement. Without further hypothesis on the polygraph this is
usually difficult because one has little control over the equivalence classes.
However, in the case where the polygraph 𝑃 is convergent, equivalence classes
of 1-cells have normal forms as canonical representatives, which greatly sim-
plifies the situation. We explore this here by providing a method in order to
show that a given convergent polygraph is a presentation of a given category,
based on the observation that, in this case, Lemma 2.3.9 can be reformulated as
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follows. We recall that𝑉𝐶 denotes the underlying 1-polygraph of a category𝐶,
as defined in §2.1.1.

4.5.1 Lemma. A convergent 2-polygraph 𝑃 is a presentation of a category 𝐶
if and only if there is a morphism of 1-polygraphs 𝑓 : 𝑃⩽1 → 𝑉𝐶 such that

1. 𝑓0 : 𝑃0 → 𝐶0 is a bĳection between the 0-generators and the objects of 𝐶,
2. for any 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, 𝑓 (𝑢) = 𝑓 (𝑣),
3. the function 𝑓 ∗1 : 𝑃∗1 → 𝐶1 restricts to a bĳection between normal forms

in 𝑃∗1 and 𝐶1.

In the following, we sometimes write J𝑥K instead of 𝑓 (𝑥) for the image of a
generator in 𝑃0 or 𝑃1 and call it the interpretation of 𝑥 in 𝐶.

4.5.2 Example. Let us show that the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎 | 𝛼 : 𝑎𝑎 ⇒ 1 ⟩

of Example 2.3.6 is presenting the monoidN/2N. The polygraph is terminating
since the only rule decreases the length of the words and confluent since the
only critical branching is confluent:

𝑎𝑎𝑎

𝛼𝑎

��
𝑎𝛼

��
𝑎

We can thus apply Lemma 4.5.1. There is an obvious bĳection between𝑃0 = {⋆}
and the only object of the monoid (recall that a monoid is considered as a
category with only one object), and we define a morphism 𝑓 : 𝑃⩽1 → N/2N
by interpreting the generator 𝑎 as 𝑓 (𝑎) = 1. This morphism is compatible with
the relation, since 𝑓 (𝑎𝑎) = 1 + 1 = 0 = 𝑓 (1). Finally, the words of 𝑃∗1 in
normal form are 1 and 𝑎, and those are in bĳection with the elements of N/2N,
allowing us to conclude.

4.5.3 Example. Let us use Lemma 4.5.1 in order to give a simpler construction
of the presentation of the category of Example 2.3.12. We want to show that
the posetal category

𝐶 = 𝑋1𝑋
%%

𝐹
((
𝑌

𝐺

hh 1𝐺
yy

is presented by the 2-polygraph

𝑃 =
〈
𝑥, 𝑦

�� 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑥
�� 𝛼 : 𝑎𝑏 ⇒ 1𝑥 , 𝛽 : 𝑏𝑎 ⇒ 1𝑦

〉
.
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The polygraph is convergent since the rules decrease the length and the two
critical branchings are confluent:

𝑎𝑏𝑎
𝛼𝑎

{�

𝑎𝛽

�#
𝑎 𝑎,

𝑎

𝑏𝑎𝑏
𝛽𝑏

{�
𝑏𝛼

�#
𝑏 𝑏.

𝑏

We define a morphism of 1-polygraphs 𝑃′ → 𝑉𝐶 by

J𝑥K = 𝑋, J𝑦K = 𝑌, J𝑎K = 𝐹, J𝑏K = 𝐺,

which obviously induces a bĳection between 𝑃0 = {𝑥, 𝑦} and 𝐶0 = {𝑋,𝑌 }.
Finally, the 1-cells in 𝑃∗1 which are in normal form are the words over the
alphabet {𝑎, 𝑏}which do not contain 𝑎𝑎 nor 𝑏𝑏 (because 𝑎 cannot be composed
with 𝑎, and similarly for 𝑏) nor 𝑎𝑏 nor 𝑏𝑎 (because the word would not be in
normal form since the rule 𝛼 or 𝛽 would apply) as a factor. Thus, there are four
normal forms in 𝑃∗1: 1𝑥 , 1𝑦 , 𝑎 and 𝑏. They are respectively sent by 𝑓 to 1𝑋, 1𝑌 ,
𝐹 and 𝐺, and thus we have a bĳection between normal forms and 1-cells of 𝐶.
We conclude that 𝑃 is a presentation of 𝐶, i.e., 𝐶 ≃ 𝑃.

4.5.4 Remark. Note that the method given by Lemma 4.5.1 would work with
any notion of “canonical form” for the elements of 𝑃∗1 modulo≈, not necessarily
corresponding to the normal forms for a rewriting system. Namely, for a 2-
polygraph 𝑃 and a category 𝐶, suppose given a morphism of 1-polygraphs
𝑓 : 𝑃⩽1 → 𝑉𝐶 satisfying the two first conditions of Lemma 4.5.1 and a
set 𝑁 ⊆ 𝑃∗1, whose elements are called canonical forms, such that

– every element of 𝑃∗1 is equivalent to an element of 𝑁 ,
– 𝑓 induces a bĳection between 𝑁 and 𝐶1,

then 𝑃 is a presentation of 𝐶. Note that the second condition ensures that every
element of 𝑃∗1 is equivalent to a unique canonical form.

4.5.5 The standard presentation. Any category 𝐶 admits a convergent pre-
sentation 𝑃, called the standard presentation, introduced in §2.3.14, which is
defined by

– 𝑃0 is the set of 0-cells of 𝐶,
– 𝑃1 contains a 1-generator �̂� : 𝑥 → 𝑦 for every 1-cell 𝑓 : 𝑥 → 𝑦 in 𝐶,
– 𝑃2 contains 2-cells of the form

𝜂 : 1̂𝑥 ⇒ 1𝑥 : 𝑥 → 𝑥 and 𝜇 𝑓 ,𝑔 : �̂� �̂� ⇒ �̂� 𝑔 : 𝑥 → 𝑧 ,
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which can be represented as

𝑥

1𝑥

::

1̂𝑥

$$=⇒

𝜂𝑥 𝑥 and

𝑦
𝑔

��
𝑥

�̂�
77

�̂� 𝑔

99
=⇒

𝜇 𝑓 ,𝑔

𝑧,

for every 0-cell 𝑥 of 𝐶 and pair of composable 1-cells 𝑓 : 𝑥 → 𝑦 and
𝑔 : 𝑦 → 𝑧 in 𝐶.

Above, note the subtle distinction between �̂� �̂� and �̂� 𝑔: the source of the
2-cell 𝜇 𝑓 ,𝑔 is a path of length 2 (consisting of the edges �̂� and �̂�), whereas
its target is a path of length 1 (consisting of the edge �̂� 𝑔, the generator associ-
ated to the composite 1-cell 𝑓 𝑔). Similarly, a 2-cell 𝜂𝑥 has a path of length 1
(resp. 0) as source (resp. target).

The proof that 𝑃 presents 𝐶 can be performed using the above method.
The 2-polygraph 𝑃 is terminating because the rules decrease the length of the
1-cells. It is also convergent: its critical branchings are of the form

�̂� �̂�ℎ̂
𝜇 𝑓 ,𝑔 ℎ̂

{�
�̂� 𝜇𝑔,ℎ
�#

�̂� 𝑔ℎ̂

𝜇 𝑓 𝑔,ℎ
�#

�̂� 𝑔ℎ ,

𝜇 𝑓 ,𝑔ℎ
{�

�̂� 𝑔ℎ

1̂𝑥 �̂�
𝜇1𝑥 ,𝑎

{�
𝜂𝑥 �̂�

�#
�̂� �̂� ,

�̂�

�̂� 1̂𝑦
𝜇 𝑓 ,1𝑦

{�
�̂� 𝜂𝑦

�#
�̂� �̂� ,

�̂�

for some composable 1-cells 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑧 and ℎ : 𝑧 → 𝑡 of 𝐶,
and are thus confluent. The normal forms are either empty paths (identities)
or paths of length 1 consisting of a 1-cell 𝑎 which is not an identity. Finally,
we define a morphism of 1-polygraphs 𝑃⩽1 → 𝑉𝐶 such that the function on
objects 𝑃0 → 𝐶0 is the identity and the function on morphisms 𝑃1 → 𝐶1 is the
identity, which is obviously compatible with the relations in 𝑃2. This functor
clearly induces a bĳection between normal forms and 1-cells of 𝐶.

A variant where the orientation of the 2-generators 𝜂𝑥 is reversed, i.e.,
𝜂𝑥 : 1𝑥 ⇒ 1̂𝑥 , is more commonly found in the literature. It is Tietze equivalent
to the above one, and thus also a presentation of the category 𝐶, although not
a convergent one since identities are not normal forms (see Remark 4.4.3).

4.5.6 The simplicial category. As a concrete, non-trivial, and useful exam-
ple, we recall here the well-known presentation of the augmented simplicial
category Δ+, as given in [261, Proposition VII.5.2]. Its objects are natural
numbers 𝑛 ∈ N and a morphism 𝑓 : 𝑚 → 𝑛 is a weakly increasing function
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𝑓 : [𝑚] → [𝑛], where [𝑛] denotes the finite ordinal {0, . . . , 𝑛 − 1}. We claim
that this category admits a presentation by the 2-polygraph with

– 0-generators: natural numbers 𝑛 ∈ N,
– 1-generators: for 𝑛 ∈ N,

𝑠𝑛𝑖 : 𝑛 + 1→ 𝑛,

with 0 ⩽ 𝑖 < 𝑛, and
𝑑𝑛𝑖 : 𝑛→ 𝑛 + 1,

with 0 ⩽ 𝑖 ⩽ 𝑛,
– 2-generators:

𝜎 : 𝑠𝑛+1𝑖 𝑠𝑛𝑗 ⇒ 𝑠𝑛+1𝑗+1 𝑠
𝑛
𝑖 for 0 ⩽ 𝑖 ⩽ 𝑗 < 𝑛,

𝛿 : 𝑑𝑛𝑗 𝑑
𝑛+1
𝑖 ⇒ 𝑑𝑛𝑖 𝑑

𝑛+1
𝑗+1 for 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛,

𝛾 : 𝑑𝑛+1𝑖 𝑠𝑛+1𝑗 ⇒ 𝑠𝑛𝑗−1𝑑
𝑛
𝑖 for 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛,

⇒ 1𝑛 for 𝑖 = 𝑗 or 𝑖 = 𝑗 + 1,
⇒ 𝑠𝑛𝑗 𝑑

𝑛
𝑖−1 for 0 ⩽ 𝑗 + 1 < 𝑖 ⩽ 𝑛 + 1.

We consider the order on generators such that, for 𝑖, 𝑗 , 𝑚, 𝑛 ∈ N, we have

– 𝑠𝑛𝑖 ⩾ 𝑠
𝑛
𝑗 for 𝑖 < 𝑗 ,

– 𝑑𝑛𝑗 ⩾ 𝑑
𝑛
𝑖 for 𝑗 ⩾ 𝑖,

– 𝑑𝑛𝑖 ⩾ 𝑠
𝑚
𝑗 .

This order is easily shown to be well-founded, and all the rules are strictly
decreasing according to the associated deglex order. By Proposition 4.4.2,
the polygraph is thus terminating. For simplicity, from now on, we omit the
superscripts from generators.

The critical branchings of the rewriting system are

𝑠𝑖𝑠 𝑗 𝑠𝑘

v~ �'
𝑠 𝑗+1𝑠𝑖𝑠𝑘

��

𝑠𝑖𝑠𝑘+1𝑠 𝑗

��
𝑠 𝑗+1𝑠𝑘+1𝑠𝑖

 (

𝑠𝑘+2𝑠𝑖𝑠 𝑗

w�
𝑠𝑘+2𝑠 𝑗+1𝑠𝑖

𝑑𝑘𝑑 𝑗𝑑𝑖

v~ !)
𝑑 𝑗𝑑𝑘+1𝑑𝑖

��

𝑑𝑘𝑑𝑖𝑑 𝑗+1

��
𝑑 𝑗𝑑𝑖𝑑𝑘+2

 (

𝑑𝑖𝑑𝑘+1𝑑 𝑗+1

u}
𝑑𝑖𝑑 𝑗+1𝑑𝑘+2

for 𝑖 ⩽ 𝑗 ⩽ 𝑘 for 𝑖 ⩽ 𝑗 ⩽ 𝑘
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𝑑 𝑗𝑑𝑖𝑠𝑘

t| "*
𝑑𝑖𝑑 𝑗+1𝑠𝑘

��

𝑑 𝑗 𝑠𝑘−1𝑑𝑖

��
𝑑𝑖𝑠𝑘−1𝑑 𝑗+1

"*

𝑠𝑘−2𝑑 𝑗𝑑𝑖

t|
𝑠𝑘−2𝑑𝑖𝑑 𝑗+1

𝑑 𝑗𝑑𝑖𝑠𝑘

v~  (
𝑑𝑖𝑑 𝑗+1𝑠𝑘

 (

𝑑 𝑗 𝑠𝑘−1𝑑𝑖

v~
𝑑𝑖

for 𝑖 ⩽ 𝑗 < 𝑘 − 1 for 𝑖 < 𝑘 , and 𝑗 = 𝑘 − 1 or 𝑗 = 𝑘
𝑑 𝑗𝑑𝑖𝑠𝑘

u} "*
𝑑𝑖𝑑 𝑗+1𝑠𝑘

��

𝑑 𝑗 𝑠𝑘−1𝑑𝑖

��
𝑑𝑖𝑠𝑘𝑑 𝑗

!)

𝑠𝑘−1𝑑 𝑗−1𝑑𝑖

t|
𝑠𝑘−1𝑑𝑖𝑑 𝑗

𝑑 𝑗𝑑𝑖𝑠𝑘

v~

��

𝑑𝑖𝑑 𝑗+1𝑠𝑘

 (
𝑑𝑘

for 𝑖 < 𝑘 < 𝑗 for 𝑖 = 𝑗 = 𝑘

𝑑 𝑗𝑑𝑖𝑠𝑘

v~

��

𝑑𝑖𝑑 𝑗+1𝑠𝑘

��
𝑑𝑖𝑠𝑘𝑑 𝑗

 (
𝑑𝑘

𝑑 𝑗𝑑𝑖𝑠𝑘

u} "*
𝑑𝑖𝑑 𝑗+1𝑠𝑘

��

𝑑 𝑗 𝑠𝑘𝑑𝑖−1

��
𝑑𝑖𝑠𝑘𝑑 𝑗

!)

𝑠𝑘𝑑 𝑗−1𝑑𝑖−1

t|
𝑠𝑘𝑑𝑖−1𝑑 𝑗

for 𝑖 = 𝑘 or 𝑖 = 𝑘 + 1, and 𝑘 < 𝑗 for 𝑘 + 1 < 𝑖 ⩽ 𝑗

The 1-generators

𝑠𝑛𝑖 : 𝑛 + 1→ 𝑛 and 𝑑𝑛𝑖 : 𝑛→ 𝑛 + 1

of 𝑃1 are respectively interpreted as the morphisms

J𝑠𝑛𝑖 K : 𝑛 + 1→ 𝑛 and J𝑑𝑛𝑖 K : 𝑛→ 𝑛 + 1

of Δ+, which are the functions defined by

J𝑠𝑛𝑖 K (𝑘) =
{
𝑘 if 0 ⩽ 𝑘 ⩽ 𝑖,
𝑘 − 1 if 𝑖 < 𝑘 ⩽ 𝑛,

and J𝑑𝑛𝑖 K (𝑘) =
{
𝑘 if 0 ⩽ 𝑘 < 𝑖,
𝑘 + 1 if 𝑖 ⩽ 𝑘 < 𝑛.
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For instance, the graphs of
q
𝑠4

2
y

and
q
𝑑3

2
y

are respectively

4 ·
3 · · 3

2 · · 2

1 · · 1

0 · · 0

· 3

2 · · 2

1 · · 1

0 · · 0

It can be checked that the interpretation is compatible with the relations in 𝑃2.
For instance, for the rule 𝑑 𝑗𝑑𝑖 ⇒ 𝑑𝑖𝑑 𝑗+1, with 0 ⩽ 𝑖 ⩽ 𝑗 , we have

q
𝑑 𝑗𝑑𝑖

y (𝑘) = J𝑑𝑖K ◦
q
𝑑 𝑗

y (𝑘) =
{
J𝑑𝑖K (𝑘) if 𝑘 < 𝑗 ,
J𝑑𝑖K (𝑘 + 1) if 𝑗 ⩽ 𝑘 ,

=



𝑘 if 𝑘 < 𝑖 ⩽ 𝑗 ,
𝑘 + 1 if 𝑖 ⩽ 𝑘 < 𝑗 ,
𝑘 + 2 if 𝑖 ⩽ 𝑗 ⩽ 𝑘 ,

=

{q
𝑑 𝑗+1

y (𝑘) if 𝑘 < 𝑖,
q
𝑑 𝑗+1

y (𝑘 + 1) if 𝑖 ⩽ 𝑘 ,

=
q
𝑑 𝑗+1

y ◦ J𝑑𝑖K (𝑘) =
q
𝑑𝑖𝑑 𝑗+1

y (𝑘).
The normal forms are of the form

𝑠𝑛+𝑝𝑖0
𝑠𝑛+𝑝−1
𝑖1

. . . 𝑠𝑛𝑖𝑝𝑑
𝑛
𝑗0
𝑑𝑛+1𝑗2

. . . 𝑑𝑛+𝑞𝑗𝑞 , (4.11)

for 𝑛, 𝑝, 𝑞 ∈ N, and

𝑛 + 𝑝 > 𝑖0 > 𝑖1 > . . . > 𝑖𝑝 ⩾ 0, 0 ⩽ 𝑗0 < 𝑗1 < . . . < 𝑗𝑞 ⩽ 𝑛 + 𝑞.

Namely, the rule 𝛾 imposes that there is no 𝑑 𝑗 before a 𝑠𝑖 , 𝜎 (resp. 𝛿) imposes
that the indices of successive 𝑠𝑖 (resp. 𝑑𝑖) are increasing (resp. decreasing).

Every morphism 𝑓 : 𝑚 → 𝑚′ of Δ+ is the interpretation of exactly one
such a normal form. We can namely observe that, 𝑓 being a weakly increasing
function, it is uniquely determined by

– the set of “merged” elements, i.e., the set{
𝑖0, 𝑖1, . . . , 𝑖𝑝

} ⊆ [𝑚]
of elements such that 𝑓 (𝑖𝑘) = 𝑓 (𝑖𝑘 + 1), and

– its image, or equivalently its complement, i.e., the set{
𝑗0, 𝑗1, . . . , 𝑗𝑞

} ⊆ [𝑚′]
of elements 𝑗𝑘 which are not in the image of 𝑓 .

Finally, with the above notations, and writing 𝑛 = 𝑚 − 𝑝 = 𝑚′ − 𝑞, it is easily
checked that 𝑓 is precisely the interpretation of the normal form (4.11).
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4.6 Residuation

The notion of residual, which intuitively specifies what “remains” of a mor-
phism after another one, provides a powerful tool in order to derive properties of
a presented category, from combinatorial properties of its presentation. Namely,
by studying the properties of residuals, through rewriting systems, one is often
able to show interesting properties of the presented category such as the exis-
tence of pushouts, the fact that morphisms are mono, or that it embeds into its
enveloping groupoid. The exposition provided here is adapted from classical
techniques in rewriting theory originating in Lévy’s thesis [249, 191], see [342,
Section 8.7] in the context of term rewriting systems, [276] for a modern pre-
sentation, [110, Section II.4] in the context of presentations of groups, and [88]
of which the current presentation is inspired.

4.6.1 Residuation structure. A residuation structure on a category is a func-
tion which to every pair of coinitial morphisms 𝑓 : 𝑥 → 𝑦1 and 𝑔 : 𝑥 → 𝑦2
associates a morphism

𝑓 /𝑔 : 𝑦2 → 𝑧,

called the residual of 𝑓 after 𝑔, satisfying the three following conditions.

1. The morphisms 𝑓 /𝑔 and 𝑔/ 𝑓 are cofinal and satisfy

𝑓 (𝑔/ 𝑓 ) = 𝑔( 𝑓 /𝑔),
i.e.,

𝑥
𝑓

~~

𝑔

!!
𝑦1

𝑔/ 𝑓   

𝑦2.

𝑓 /𝑔}}
𝑧

2. Residuation is compatible with composition: given a morphism 𝑓 : 𝑥 → 𝑦

and morphisms 𝑔 : 𝑥 → 𝑧 and ℎ : 𝑧 → 𝑧′,

𝑓 /1𝑥 = 𝑓 , 𝑓 /(𝑔ℎ) = ( 𝑓 /𝑔)/ℎ,
1𝑥/ 𝑓 = 1𝑦 , (𝑔ℎ)/ 𝑓 = (𝑔/ 𝑓 ) (ℎ/( 𝑓 /𝑔)),

i.e.,

𝑥

𝑓

��

1𝑥 // 𝑥

𝑓

��
𝑦

1𝑦

// 𝑦

𝑥

𝑓

��

𝑔
// 𝑧

𝑓 /𝑔
��

ℎ // 𝑧′

( 𝑓 /𝑔)/ℎ
��

𝑦
𝑔/ 𝑓
// 𝑦′

ℎ/( 𝑓 /𝑔)
// 𝑦′′
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3. Self-residuation is trivial: for every morphism 𝑓 : 𝑥 → 𝑦,

𝑓 / 𝑓 = 1𝑦

i.e.,

𝑥
𝑓

��

𝑓

  
𝑦

1𝑦 ��

𝑦.

1𝑦��
𝑦

A residuation structure thus provides a witness of confluence for branchings,
which is compatible with the categorical structure.

4.6.2 Remark. A residuation structure is precisely a distributive law

ℓ : 𝐶op ⊗ 𝐶 → 𝐶 ⊗ 𝐶op

as developed §3.3.2, such that for every morphism 𝑓 : 𝑥 → 𝑦 in 𝐶 we have
ℓ( 𝑓 op, 𝑓 ) = (1𝑦 , 1𝑦), see also §3.3.14.

4.6.3 Proposition. In a category equipped with a residuation structure, every
morphism is epi.

Proof. We show that a morphism 𝑓 : 𝑥 → 𝑦 is necessarily epi. Suppose given
morphisms 𝑔, ℎ : 𝑦 → 𝑧 such that 𝑓 𝑔 = 𝑓 ℎ. We have

( 𝑓 𝑔)/ 𝑓 = ( 𝑓 / 𝑓 ) (𝑔/( 𝑓 / 𝑓 )) = 1𝑦 (𝑔/1𝑦) = 𝑔.

Thus,

𝑔 = ( 𝑓 𝑔)/ 𝑓 = ( 𝑓 ℎ)/ 𝑓 = ℎ

and the morphism 𝑓 is epi. □

4.6.4 Proposition. In a category equipped with a residuation structure, every
pair of coinitial morphisms admits a pushout.

Proof. Given coinitial morphisms 𝑓 : 𝑥 → 𝑦1 and 𝑔 : 𝑥 → 𝑦2, we claim
that the morphisms 𝑔/ 𝑓 : 𝑦1 → 𝑧 and 𝑓 /𝑔 : 𝑦2 → 𝑧 form a pushout cocone.
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Suppose given morphisms 𝑓 ′ : 𝑦1 → 𝑧′ and 𝑔′ : 𝑦2 → 𝑧′ such that 𝑓 𝑓 ′ = 𝑔𝑔′:

𝑥
𝑓

}}

𝑔

!!
𝑦1

𝑓 ′

��

𝑔/ 𝑓
!!

𝑦2
𝑓 /𝑔
}}

𝑔′

��

𝑧

ℎ��

𝑧′

The morphism ℎ = 𝑓 ′/(𝑔/ 𝑓 ) makes the two triangles commute. Namely, we
have

(𝑔/ 𝑓 )/ 𝑓 ′ = 𝑔/( 𝑓 𝑓 ′) = 𝑔/(𝑔𝑔′) = 1𝑦2/𝑔′ = 1𝑧′

from which follows the commutation of the left triangle:

(𝑔/ 𝑓 )ℎ = (𝑔/ 𝑓 ) ( 𝑓 ′/(𝑔/ 𝑓 )) = 𝑓 ′ ((𝑔/ 𝑓 )/ 𝑓 ′) = 𝑓 ′1𝑧′ = 𝑓 ′.

Moreover, we have

ℎ = 𝑓 ′/(𝑔/ 𝑓 ) = ( 𝑓 𝑓 ′)/( 𝑓 (𝑔/ 𝑓 )) = (𝑔𝑔′)/(𝑔( 𝑓 /𝑔)) = 𝑔′/( 𝑓 /𝑔)
from which we deduce that the right triangle commutes as above, by exchanging
the roles of 𝑓 and 𝑔:

( 𝑓 /𝑔)ℎ = ( 𝑓 /𝑔) (𝑔′/( 𝑓 /𝑔)) = 𝑔′ (( 𝑓 /𝑔)/𝑔′) = 𝑔′.
Conversely, given a morphism ℎ : 𝑧 → 𝑧′ such that (𝑔/ 𝑓 )ℎ = 𝑓 ′ and
( 𝑓 /𝑔)ℎ = 𝑔′, we necessarily have

ℎ = ((𝑔/ 𝑓 )ℎ)/(𝑔/ 𝑓 ) = 𝑓 ′/(𝑔/ 𝑓 ). □

4.6.5 Proposition. Suppose given a category 𝐶 such that both 𝐶 and 𝐶op are
equipped with a residuation structure. Then the canonical functor 𝐶 → 𝐶⊤,
from 𝐶 to its enveloping groupoid, is faithful.

Proof. Because 𝐶 admits a residuation structure, the collection 𝑊 of all mor-
phisms of 𝐶 forms a calculus of left fractions in the sense of [143]:

– this collection contains identities and is closed under composition,
– for any pair of coinitial morphisms 𝑓 and 𝑔 there exists morphisms 𝑓 ′ and 𝑔′

such that 𝑓 𝑓 ′ = 𝑔𝑔′ (namely, we can take 𝑓 ′ = 𝑔/ 𝑓 and 𝑔′ = 𝑓 /𝑔),
– for any morphisms ℎ : 𝑥 → 𝑦 and 𝑓 , 𝑔 : 𝑦 → 𝑧 such that ℎ 𝑓 = ℎ𝑔, there

exists a morphism ℎ′ : 𝑧 → 𝑧′ such that 𝑓 ℎ′ = 𝑔ℎ′:

𝑥
ℎ // 𝑦

𝑓
//

𝑔
// 𝑧

ℎ′ // 𝑧′
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(namely, by Proposition 4.6.3 every morphism of 𝐶 is epi and we can
take ℎ′ = 1𝑧).

The enveloping groupoid 𝐶⊤ can thus be described as the category of left frac-
tions 𝐶 [𝑊−1]. Since 𝐶op admits a residuation structure, by Proposition 4.6.3,
every morphism of 𝐶 (and thus of 𝑊) is mono, and in this case, the canonical
functor 𝐶 → 𝐶 [𝑊−1] is easily shown to be faithful. □

4.6.6 Residuated presentation. In practice, it is difficult to directly exhibit
a residuation structure on a category 𝐶 and show that it satisfies the required
axioms. We provide here a general methodology in order to show that𝐶 admits
a residuation structure in the case where it is equipped with a presentation by a
2-polygraph. Namely, in this case, we can specify the residuation structure on
generators and extend it to other morphisms by functoriality.

A residuated presentation 𝑃 is a 2-polygraph together with, for every pair of
coinitial generators 𝑎 : 𝑥 → 𝑦1 and 𝑏 : 𝑥 → 𝑦2 in 𝑃1, a morphism

𝑎/𝑏 : 𝑦1 → 𝑧

in 𝑃∗1, in such a way that

– 𝑎/𝑏 and 𝑏/𝑎 have the same target,

– the morphisms 𝑎(𝑏/𝑎) and 𝑏(𝑎/𝑏) are 𝑃-congruent:

𝑥
𝑎

~~

𝑏

  
𝑦1

𝑏/𝑎 ��

∗⇔ 𝑦2

𝑎/𝑏��
𝑧

(4.12)

– for every 1-generator 𝑎 ∈ 𝑃1, we have 𝑎/𝑎 = 1,

– for every generators 𝑎 : 𝑥 → 𝑥′ and 𝛼 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦, respectively in 𝑃1
and 𝑃2, we have

𝑎/𝑢 = 𝑎/𝑣

and there is a 2-generator

𝛼/𝑎 : 𝑢/𝑎 ⇒ 𝑣/𝑎 : 𝑥′ → 𝑦′
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in 𝑃2:

𝑥

𝑎
��

𝑢
))

𝑣

55⇓𝛼 𝑦

𝑎/𝑢=𝑎/𝑣
��

𝑥′
𝑢/𝑎

**

𝑣/𝑎
44⇓𝛼/𝑎 𝑦′.

(4.13)

4.6.7 Residuation of morphisms. Suppose fixed a residuated presentation 𝑃.
We can extend the residuation operation in order to define the residual 𝑢/𝑣 ∈ 𝑃∗1
of a morphism 𝑢 ∈ 𝑃∗1 after another morphism 𝑣 ∈ 𝑃∗1. The definition is
performed by induction on 𝑢 and 𝑣 by

𝑢/1 = 𝑢, 𝑢/(𝑣𝑣′) = (𝑢/𝑣)/𝑣′, (4.14)
1/𝑢 = 1, (𝑢𝑢′)/𝑣 = (𝑢/𝑣) (𝑢′/(𝑣/𝑢)).

We will eventually see in Theorem 4.6.15 that, under suitable hypothesis, this
induces a residuation structure on the presented category 𝑃.

4.6.8 Example. Consider the presentation

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏 = 𝑏𝑎𝑎 ⟩ .

The relation can be pictured as

𝑏

��

𝑎 //

𝑏

��
𝑎
//

𝑎
//

and the only possible residuation structure is defined by

𝑎/𝑏 = 𝑎𝑎 and 𝑏/𝑎 = 𝑏.

For instance, we have

𝑎𝑏/𝑏𝑏 = (𝑎𝑏/𝑏)/𝑏 = ((𝑎/𝑏) (𝑏/(𝑏/𝑎)))/𝑏 = (𝑎𝑎(𝑏/𝑏))/𝑏 = 𝑎𝑎1/𝑏
= 𝑎𝑎/𝑏 = (𝑎/𝑏) (𝑎/(𝑏/𝑎)) = 𝑎𝑎(𝑎/𝑏)
= 𝑎𝑎𝑎𝑎.
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Graphically,

𝑏

��

𝑎 //

𝑏

��

𝑏 //

1
��

𝑏

��

𝑎 //

𝑏

��

𝑎 //

𝑏

��

1 //

𝑏

��
𝑎
//

𝑎
//

𝑎
//

𝑎
//

1
//

and similarly, we have 𝑏𝑏/𝑎𝑏 = 𝑏.

It remains to check that the above definition is sound in the sense that we can
always compute a value for the residual using the relations of §4.6.7, and that
residual is uniquely defined, i.e., the computed value for 𝑢/𝑣 does not depend
on the way we bracket 𝑢 and 𝑣 or the order in which we use the equalities (4.14).
Compatibility with bracketing is easily handled:

4.6.9 Lemma. Residuation of morphisms is compatible with the axioms of
categories.

Proof. Residuation is compatible with associativity since

((𝑢𝑢′)𝑢′′)/𝑣 = ((𝑢𝑢′)/𝑣) (𝑢′′/(𝑣/(𝑢𝑢′)))
= (𝑢/𝑣) (𝑢′/(𝑣/𝑢)) (𝑢′′/((𝑣/𝑢)/𝑢′))
= (𝑢/𝑣) ((𝑢′𝑢′′)/(𝑣/𝑢))
= (𝑢(𝑢′𝑢′′))/𝑣

and

𝑢/((𝑣𝑣′)𝑣′′) = (𝑢/(𝑣𝑣′))/𝑣′′ = ((𝑢/𝑣)/𝑣′)/𝑣′′ = (𝑢/𝑣)/(𝑣′𝑣′′) = 𝑢/(𝑣(𝑣′𝑣′′)).

Similarly, it is compatible with left and right-unitality since

(1𝑢)/𝑣 = (1/𝑣) (𝑢/(𝑣/1)) = 𝑢/𝑣 = (𝑢/𝑣) (1/(𝑣/𝑢)) = (𝑢1)/𝑣

and

𝑢/(1𝑣) = (𝑢/1)/𝑣 = 𝑢/𝑣 = (𝑢/𝑣)/1 = 𝑢/(𝑣1). □

However, the definition given in §4.6.7 is not sound in general, because it can
be vacuous, as illustrated by the following example.

4.6.10 Example. Consider the presentation

⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝑏𝑎 = 𝑎𝑏, 𝑐𝑎 = 𝑎𝑐, 𝑑𝑎 = 𝑎𝑏𝑑, 𝑐𝑏 = 𝑏𝑎𝑐, 𝑑𝑏 = 𝑏𝑑, 𝑑𝑐 = 𝑐𝑑 ⟩ ,
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whose relations can be pictured as

𝑎

��

𝑏 //

𝑎

��

𝑏
//

𝑎

��

𝑐 //

𝑎

��
𝑐
//

𝑎

��

𝑑 //

𝑎

��

𝑏
//

𝑑
//

𝑏

��

𝑑 //

𝑏

��

𝑑
//

𝑐

��

𝑑 //

𝑐

��

𝑑
//

𝑏

��

𝑐 //

𝑏

��
𝑎
//

𝑐
//

and consider the residuation structure defined by

𝑎/𝑏 = 𝑎, 𝑎/𝑐 = 𝑎, 𝑎/𝑑 = 𝑎, 𝑏/𝑎 = 𝑏, 𝑏/𝑐 = 𝑏, 𝑏/𝑑 = 𝑏,

𝑐/𝑎 = 𝑐, 𝑐/𝑏 = 𝑎𝑐, 𝑐/𝑑 = 𝑐, 𝑑/𝑎 = 𝑏𝑑, 𝑑/𝑏 = 𝑑, 𝑑/𝑐 = 𝑑.

The process of computing the residual 𝑎𝑐/𝑏𝑑 by applying, from left to right,
the relations of §4.6.7 defining residuation of morphisms does not terminate.
Namely, the first two steps of this computation are

𝑎𝑐/𝑏𝑑 = 𝑎𝑎𝑐/𝑑 = 𝑎𝑐/𝑏𝑑,

which clearly leads to a loop since the left and the right member are the same.
This can be illustrated as follows:

𝑎
��

𝑏 //

𝑎
��

𝑑 //

𝑎
��

𝑐

��

𝑏 //

𝑎
��

𝑏
//
𝑑
//

𝑐
��

𝑏
//

4.6.11 Termination of residuation. Let 𝑃 be a fixed residuated presentation.
In order to ensure that the process of computing the residual is well-defined,
we follow the technique of considering “reversed words” introduced by De-
hornoy [109], and consider the following polygraph 𝑄 defined from 𝑃 by

𝑄0 = 𝑃0,

𝑄1 = {𝑎 : 𝑥 → 𝑦, 𝑎− : 𝑦 → 𝑥 | 𝑎 : 𝑥 → 𝑦 ∈ 𝑃1} ,
𝑄2 = {𝑎−𝑏 ⇒ 𝑣𝑢− | 𝑎, 𝑏 ∈ 𝑃1, 𝑢 = 𝑎/𝑏, 𝑣 = 𝑏/𝑎} ,

where (𝑎1 . . . 𝑎𝑛)− is a notation for 𝑎−𝑛 . . . 𝑎−1 , and 𝑎− should be thought of
as a formal inverse for the generator 𝑎. A morphism in 𝑄∗1 is a composite of
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generators in 𝑃1, some of which might be formally inverted, and rewriting step
corresponds to taking residuals in 𝑃:

𝑥
𝑎

��

𝑏

��
𝑦

𝑏/𝑎=𝑣 ��

⇓ 𝑧.

𝑢=𝑎/𝑏��
𝑤

We say that a residuated presentation 𝑃 is terminating when the associated
2-polygraph 𝑄 is terminating in the usual sense.

4.6.12 Lemma. Given a terminating residuated presentation 𝑃, the associated
2-polygraph 𝑄 is convergent and the residuation operation is well-defined on
morphisms of 𝑃∗1. Moreover, for morphisms 𝑢 : 𝑥 → 𝑦 and 𝑣 : 𝑥 → 𝑦′, the
morphisms 𝑢(𝑣/𝑢) and 𝑣(𝑢/𝑣) are 𝑃-congruent:

𝑥
𝑢

��

𝑣

  

𝑦

𝑣/𝑢 ��

∗⇔ 𝑦′.

𝑢/𝑣~~
𝑧

Proof. The polygraph 𝑄 has no critical pair, it is thus locally confluent by
Lemma 4.3.7 and confluent by Lemma 1.3.21 since it is assumed to be termi-
nating. By well-founded induction, we can show that the normal form of a word
𝑢−𝑣 is a word of the form 𝑣′𝑢′− with 𝑣′ = 𝑣/𝑢 and 𝑢′ = 𝑢/𝑣, and that any word
of this form is a normal form. The last part of the lemma follows by induction
from the assumption (4.12). □

In practice, various practical conditions are sufficient to ensure the termination
of the polygraph 𝑄, see [110, 88]. For instance,

4.6.13 Lemma. Suppose given a function 𝜔 : 𝑃1 → N, which we extend as
a function 𝜔 : 𝑃∗1 → N by 𝜔(1) = 0 and 𝜔(𝑢𝑣) = 𝜔(𝑢) + 𝜔(𝑣). Suppose
moreover that we have 𝜔(𝑎/𝑏) < 𝜔(𝑎) for every pair of generators 𝑎, 𝑏 ∈ 𝑃1.
Then the 2-polygraph 𝑄 is terminating.

Proof. We define a function 𝜔′ : 𝑄∗1 → N by 𝜔′ (𝑎) = 𝜔(𝑎) and 𝜔(𝑎−) = 0 for
𝑎 ∈ 𝑃1, 𝜔′ (𝑢𝑣) = 𝜔′ (𝑢) + 𝜔′ (𝑣), 𝜔(1) = 0. This function is a reduction order
on the 2-polygraph 𝑄 and we conclude by Lemma 4.4.6. □

Finally, we can check that residuation is well defined on morphisms of the pre-
sented category 𝑃, i.e., that it is compatible with 𝑃-congruence on morphisms.
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4.6.14 Lemma. Given a terminating residuated presentation 𝑃, for every mor-
phisms 𝑢, 𝑣 : 𝑥 → 𝑦 and 𝑤 : 𝑥 → 𝑥′ in 𝑃∗1, we have that

𝑢
∗⇔ 𝑣 implies 𝑢/𝑤 ∗⇔ 𝑣/𝑤 and 𝑤/𝑢 = 𝑤/𝑣.

Graphically,

𝑥

𝑤
��

𝑢
))

𝑣

55⇕∗ 𝑦

𝑤/𝑢=𝑤/𝑣
��

𝑥′
𝑢/𝑤

**

𝑣/𝑤
44⇕∗ 𝑦′.

Proof. The assumption that 𝑢 and 𝑣 are 𝑃-congruent means that there exists a
sequence of 2-cells of the form

𝑥
𝑢′𝑖 // 𝑥𝑖

𝑢𝑖
))

𝑣𝑖

55⇕𝛼𝑖 𝑦𝑖
𝑢′′𝑖 // 𝑦

with 1 ⩽ 𝑖 ⩽ 𝑛, 𝑢𝑖 , 𝑢′𝑖 , 𝑢
′′
𝑖 , 𝑣𝑖 ∈ 𝑃∗1 and 𝛼𝑖 ∈ 𝑃2, with either 𝛼𝑖 : 𝑢𝑖 ⇒ 𝑣𝑖 or

𝛼𝑖 : 𝑣𝑖 ⇒ 𝑢𝑖 , such that 𝑢′1𝑢1𝑢
′′
1 = 𝑢, 𝑢′𝑖+1𝑢𝑖+1𝑢

′′
𝑖+1 = 𝑢′𝑖𝑣𝑖𝑢

′′
𝑖 and 𝑢′𝑛𝑣𝑛𝑢′′𝑛 = 𝑣. We

have

𝑤/(𝑢′𝑖𝑢𝑖𝑢′′𝑖 ) = ((𝑤/𝑢′𝑖)/𝑢𝑖)/𝑢′′𝑖 = ((𝑤/𝑢′𝑖)/𝑣𝑖)/𝑢′′𝑖 = 𝑤/(𝑢′𝑖𝑣𝑖𝑢′′𝑖 )
where the equality (𝑤/𝑢′𝑖)/𝑢𝑖 = (𝑤/𝑢′𝑖)/𝑣𝑖 can be shown by recurrence on the
length of 𝑤/𝑢′𝑖 using axioms (4.13). Also, by recurrence on 𝑤/𝑢′𝑖 and using
axioms (4.13), we have the existence of a 2-generator between 𝑢𝑖/(𝑤/𝑢′𝑖) and
𝑣𝑖/(𝑤/𝑢′𝑖):

𝑥

𝑤

��

𝑢′𝑖 // 𝑥𝑖

𝑤/𝑢′𝑖

��

𝑢𝑖
++

𝑣𝑖

33⇕𝛼𝑖 𝑦𝑖

(𝑤/𝑢′𝑖 )/𝑢𝑖
=

(𝑤/𝑢′𝑖 )/𝑣𝑖
��

𝑢′′𝑖 // 𝑦

( (𝑤/𝑢′𝑖 )/𝑢𝑖 )/𝑢′′𝑖
=

( (𝑤/𝑢′𝑖 )/𝑣𝑖 )/𝑢′′𝑖
��

𝑥′
𝑢′𝑖/𝑤

// 𝑥′𝑖

𝑢𝑖/(𝑤/𝑢′𝑖 )
++

𝑣𝑖/(𝑤/𝑢′𝑖 )
33⇕ 𝑦′𝑖 𝑢′′𝑖 /( (𝑤/𝑢′𝑖 )/𝑢𝑖 )

// 𝑦′.

We conclude, by performing a recurrence on 𝑛. □

4.6.15 Theorem. Given a terminating residuated presentation 𝑃, the presented
category 𝑃 admits a residuation structure.

Proof. The residuation operation is well-defined on morphisms in 𝑃∗1 modulo
𝑃-congruence by previous lemmas and immediately satisfies the axioms of a
residuation structure. □
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The axiomatization presented in this section has the advantage of being
relatively simple to state and prove, but more advanced generalizations are
often required in practice. For instance, in many situations, not every pair of
coinitial morphisms 𝑓 and 𝑔 admit a residual, but only those which are bounded,
i.e., for which there exists 𝑓 ′ and 𝑔′ with 𝑓 𝑓 ′

∗⇔ 𝑔𝑔′. Also, it is useful to weaken
axiom (4.13) and require that for every 1-generator 𝑎 : 𝑥 → 𝑥′ and 2-generator
𝛼 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦, we have an 2-cell

𝑎/𝛼 : 𝑎/𝑢 ⇒ 𝑎/𝑣 : 𝑦 → 𝑦′

and a 2-cell

𝛼/𝑎 : 𝑢/𝑎 ⇒ 𝑣/𝑎 : 𝑥′ → 𝑦′

in 𝑃∗2 (or even in 𝑃⊤2 ):

𝑥

𝑎

��

𝑢
**

𝑣

44⇓𝛼 𝑦

𝑎/𝑢

��

𝑎/𝛼⇒ 𝑎/𝑣





𝑥′
𝑢/𝑎

++

𝑣/𝑎
33⇓𝛼/𝑎 𝑦′

(4.15)

axiom (4.13) being the particular case where we further impose that 𝑎/𝛼
is an identity and 𝛼/𝑎 is a whiskered 2-generator. In this case, in order for
Lemma 4.6.14 to hold, one has to impose further termination conditions. Given
two cofinal morphisms 𝑓 and 𝑔, we write 𝑔 | 𝑓 whenever there exists ℎ with
ℎ𝑔 = 𝑓 , and in this case we say that 𝑔 divides 𝑓 on the right. A category is right
noetherian when every infinite sequence ( 𝑓𝑖) of cofinal morphisms 𝑓𝑖+1 | 𝑓𝑖 is
eventually stationary. In particular, a category presented by a 2-polygraph whose
relations are homogeneous (i.e., preserve the length of words) necessarily has
this property. The following theorem is due to Dehornoy: see [110, Section II.4]
for detailed statement and proof.

4.6.16 Theorem. Given a residuated presentation with generalized axiom (4.15),
whose presented category is right Noetherian, every bounded pair of morphisms
𝑢 and 𝑣 in 𝑃∗1 admits a residual.

4.6.17 Example. Consider the positive braid monoid 𝐵+4 , see §A.1.21, which
admits a presentation by a 2-polygraph with three generators 𝑎0, 𝑎1, 𝑎2 and
three relations

𝛼01 : 𝑎0𝑎1𝑎0 ⇒ 𝑎1𝑎0𝑎1, 𝛼12 : 𝑎1𝑎2𝑎1 ⇒ 𝑎2𝑎1𝑎2, 𝛼02 : 𝑎0𝑎2 ⇒ 𝑎2𝑎0,
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which can respectively be pictured as

𝑎0

��

𝑎1 //

𝛼01 ⇒
𝑎0
��

𝑎1
��

𝑎1
//
𝑎0
//

𝑎1

��

𝑎2 //

𝛼12 ⇒
𝑎1
��

𝑎2
��

𝑎2
//
𝑎1
//

𝑎0

��

𝑎2 //

𝛼02 ⇒ 𝑎0

��
𝑎2

//

We define residuation on generators by

𝑎0/𝑎0 = 1, 𝑎1/𝑎0 = 𝑎1𝑎0, 𝑎2/𝑎0 = 𝑎2,

𝑎0/𝑎1 = 𝑎0𝑎1, 𝑎1/𝑎1 = 1, 𝑎2/𝑎1 = 𝑎2𝑎1,

𝑎0/𝑎2 = 𝑎0, 𝑎1/𝑎2 = 𝑎1𝑎2, 𝑎2/𝑎2 = 1.

We can check axiom (4.13), i.e., that residuation of 1-generators is compatible
with 2-generators. For instance, for the relation 𝛼01, the residuals of 𝑎0 (𝑎1 is
similar) and 𝑎2 after the source and the target are respectively

1
//
𝑎1 //

𝑎0 //

𝑎0
OO

𝑎0
//
1
OO

𝑎1
//

𝛼01⇓
𝑎0
//

1
OO

1
OO

𝑎0

��

𝑎1 //

𝑎0
��

𝑎0 //

1
��

𝑎1 //

1
��

𝑎1
��

1 //
𝑎1
��

𝑎1 //

1
��

𝑎1
//
𝑎0
//

1
//

1
//

𝑎0 //
𝑎1 //

𝑎2 //
𝑎0 //

𝑎1 //

𝑎0
OO

𝑎1

OO

𝑎0 //

𝑎1
OO

𝑎2

OO

𝑎0
//

𝑎2

OO

𝑎1
//

𝛼01⇓

𝑎2
OO

𝑎0
//

𝑎2
OO

𝑎2

��

𝑎1 //

𝑎2

��

𝑎0 //

𝑎2

��

𝑎1 //

𝑎2
��

𝑎1
��

𝑎1

��

𝑎0 //

𝑎1
��

𝑎1 //

1
��

𝑎2 //

1
��

𝑎0
��

1 //
𝑎0
��

𝑎2 //

𝑎0
��

𝑎1
//
𝑎2
//
𝑎0
//
𝑎1
//

1
//
𝑎2
//

and we can thus take 𝑎0/𝛼01 = 11 , 𝑎2/𝛼01 = 1𝑎2𝑎1𝑎0 , 𝛼01/𝑎0 = 1𝑎1𝑎0 and
𝛼01/𝑎2 to be the 2-cell

𝑎1 //

𝑎0 ��

𝑎2 //
𝑎0

��

𝑎0 ??

𝑎1 ��

𝑎2
//

𝑎1

  

𝑎2 ��

𝑎0 //
𝑎2

��

𝑎1
??

.

𝑎0
//
𝑎1
//

𝑎2

>>
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Other cases are left to the reader. Being homogeneous, this presentation is right
Noetherian and residuation is always terminating [108]. The category 𝐵+4 is
thus residuated. The argument generalize to all positive braid monoids 𝐵+𝑛.

4.6.18 Deciding equality. As a last remark, note that for residuated presen-
tations 𝑃 the word problem can be solved in the following way. Given two
morphisms 𝑢, 𝑣 : 𝑥 → 𝑦 in 𝑃∗1, we have 𝑢

∗⇔ 𝑣 if and only if

𝑢/𝑣 ∗⇔ 1𝑦 and 𝑣/𝑢 ∗⇔ 1𝑦 .

This follows easily from the fact that residuals corresponds to pushouts cocones
by Proposition 4.6.4. In particular, when 𝑃 has no 2-generator with an identity
as source or as target, we have 𝑢

∗⇔ 𝑣 if and only if

𝑢/𝑣 = 1𝑦 and 𝑣/𝑢 = 1𝑦 .



5
Tietze transformations and completion

In this chapter, we introduce a notion of Tietze transformation for 2-polygraphs,
generalizing the one introduced in Section 1.2 for 1-polygraphs. The Tietze
transformations are elementary operations on 2-polygraphs, which preserve
the presented category, and such that any two finite 2-polygraphs presenting
the same category can be transformed into one another by applying a series
of such transformations. Our notion, introduced in Section 5.1, is very close
to the one first introduced by Tietze for presentations of groups [345]. We
refer to [257, 263] for more details on the notion of Tietze transformation in
combinatorial group theory, see also [81] for a historical account. The notion
of Tietze transformation was developed in the polygraphic language in [145].

By using Tietze transformations, one seeks to turn a given presentation of
a category into another one, possessing better computational properties. In
particular, the Knuth-Bendix completion procedure described in Section 5.2
applies those transformations to turn a presentation into a confluent one.

We have seen in §1.3.26 how convergent presentations lead to a solution of
the word problem: for those, the equivalence between two words is immediately
decided by comparing their normal forms. In order to tackle the word problem
for an arbitrary presentation, a good strategy thus consists in trying to trans-
form it into a convergent one by using Tietze transformations. From this point
of view, we naturally ask ourselves whether a finite presentation of a category
with decidable word problem can always be turned into a convergent one by ap-
plying Tietze transformations. This problem, called universality of convergent
presentations, is introduced in Section 5.3. We will see in Chapters 8 and 9 that
the answer to this question is negative.

123
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5.1 Tietze transformations

5.1.1 Definition. The elementary Tietze transformations are the following
transformations of a 2-polygraph 𝑃 into a 2-polygraph 𝑄:

(T1) adding a definable 1-generator: given 𝑎 ∉ 𝑃1, 𝑢 : 𝑥 → 𝑦 ∈ 𝑃∗1, and
𝛼 ∉ 𝑃2 we define

𝑄 = ⟨ 𝑃0 | 𝑃1, 𝑎 : 𝑥 → 𝑦 | 𝑃2, 𝛼 : 𝑎 ⇒ 𝑢 ⟩ ,

(T2) adding a derivable relation: given 𝑢, 𝑣 ∈ 𝑃∗1 such that 𝑢 ≈ 𝑣 and 𝛼 ∉ 𝑃2,
we define

𝑄 = ⟨ 𝑃0 | 𝑃1 | 𝑃2, 𝛼 : 𝑢 ⇒ 𝑣 ⟩ .

The Tietze equivalence is the smallest equivalence relation on 2-polygraphs
which is stable under isomorphisms and Tietze transformations. We respectively
write (T1) and (T2) for operations (T1) and (T2) performed backward.

These local transformations completely axiomatize the property of present-
ing the same categories. This was first shown by Tietze [345] for presentations
of groups, and the proof extends to the case of 2-polygraphs.

5.1.2 Theorem. Two finite 2-polygraphs 𝑃 and 𝑄 present the same category,
i.e., 𝑃 ≃ 𝑄, if and only if they are Tietze equivalent.

Proof. Let 𝑃 be a 2-polygraph. If the 2-polygraph 𝑄 is either isomorphic to
𝑃 or obtained by performing transformations (T1) or (T2) on 𝑃, then 𝑄 is
isomorphic to 𝑃. Therefore, any two Tietze equivalent 2-polygraphs present the
same category.

Conversely, suppose that 𝑃 and 𝑄 present the same category 𝐶. Up to
isomorphism, that is, renaming of generators, we may suppose that 𝑃0 = 𝑄0,
𝑃1 ∩ 𝑄1 = ∅ and 𝑃2 ∩ 𝑄2 = ∅. We write 𝑞𝑃 : 𝑃∗1 → (𝑃∗1/≈𝑃) = 𝐶 for
the quotient functor (see Section 2.3): this functor is full and such that 𝑢 ≈𝑃 𝑣
precisely when 𝑞𝑃 (𝑢) = 𝑞𝑃 (𝑣). Similarly, we also consider the quotient functor
𝑞𝑄 : 𝑄∗1 → 𝐶. Starting from the presentation 𝑃, we apply the following series
of Tietze equivalences.

1. Given a 1-generator 𝑎 ∈ 𝑄1, its image 𝑞𝑄 (𝑏) is a morphism of 𝐶 and there-
fore has a representative in𝑃∗1: since 𝑞𝑃 is full, there exists 𝑢𝑎 ∈ 𝑃∗1 satisfying
𝑞𝑃 (𝑢𝑎) = 𝑞𝑄 (𝑏). By a transformation (T1), we add to 𝑃 the 1-generator 𝑎
and the relation 𝑢𝑎 ⇒ 𝑎. Performing this for every generator 𝑎 ∈ 𝑄1, we
obtain the 2-polygraph

𝑃′ = ⟨ 𝐶0 | 𝑃1 ∪𝑄1 | 𝑃2 ∪ {𝑢𝑎 ⇒ 𝑎 | 𝑎 ∈ 𝑄1} ⟩ .
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2. Given a 1-cell 𝑢 = 𝑎1 . . . 𝑎𝑛 ∈ 𝑄∗1, by construction of 𝑃′, we have that
𝑞𝑃
′ (𝑢𝑎) = 𝑞𝑄 (𝑎), which implies

𝑞𝑃
′ (𝑢) = 𝑞𝑃′ (𝑎1) . . . 𝑞𝑃′ (𝑎𝑛)

= 𝑞𝑃
′ (𝑢𝑎1 ) . . . 𝑞𝑃

′ (𝑢𝑎𝑛 )
= 𝑞𝑄 (𝑎1) . . . 𝑞𝑄 (𝑎𝑛)
= 𝑞𝑄 (𝑢).

For each relation 𝛼 : 𝑢 ⇒ 𝑣 in 𝑄2, we have 𝑞𝑄 (𝑢) = 𝑞𝑄 (𝑣), which
implies 𝑞𝑃′ (𝑢) = 𝑞𝑃

′ (𝑣) by the above, and therefore 𝑢 ≈𝑃′ 𝑣. By a trans-
formation (T2), we can thus add to the previous 2-polygraph the derivable
relation 𝛼 : 𝑢 ⇒ 𝑣. Performing this for every relation 𝛼 ∈ 𝑄2, we obtain the
2-polygraph

𝑃′′ = ⟨ 𝐶0 | 𝑃1 ∪𝑄1 | 𝑃2 ∪𝑄2 ∪ {𝑢𝑎 ⇒ 𝑎 | 𝑎 ∈ 𝑄1} ⟩ .

3. Suppose given a 1-generator 𝑎 ∈ 𝑃1. For similar reasons as in first step, there
exists 𝑣𝑎 ∈ 𝑄∗1 such that 𝑞𝑄 (𝑣𝑎) = 𝑞𝑃 (𝑎), which implies 𝑞𝑃′′ (𝑣𝑎) = 𝑞𝑃′′ (𝑎),
i.e., 𝑣𝑎 ≈𝑃′′ 𝑎. By a transformation (T2), we can therefore add the derivable
relation 𝑣𝑎 ⇒ 𝑎. Performing this for every generator 𝑎 ∈ 𝑃1, we obtain the
2-polygraph 𝑃′′′ which is

⟨ 𝐶0 | 𝑃1 ∪𝑄1 | 𝑃2 ∪𝑄2 ∪ {𝑣𝑎 ⇒ 𝑎 | 𝑎 ∈ 𝑃1} ∪ {𝑢𝑎 ⇒ 𝑎 | 𝑎 ∈ 𝑄1} ⟩ .

By exchanging the roles of 𝑃 and𝑄, one shows that𝑄 is also Tietze equivalent
to the same polygraph 𝑃′′′. Therefore, the 2-polygraphs 𝑃 and 𝑄 are Tietze
equivalent. □

5.1.3 Remark. Similarly to the case of 1-polygraphs (Remark 1.2.13), Tietze
transformations can be extended to account for infinite 2-polygraphs. The notion
of Tietze transformation has to be refined in the following way: we say that a
polygraph𝑃 Tietze expands to a polygraph𝑄when there is a transfinite sequence
of Tietze transformations from 𝑃 to 𝑄, and we define Tietze equivalence as the
smallest equivalence relation containing Tietze expansion. The above proof
can be adapted in order to show that two polygraphs (of arbitrary cardinality)
present the isomorphic categories if and only if they are Tietze equivalent.

5.1.4 Example. Consider the symmetric group 𝑆3 on 3 elements. We consider
it here as a monoid (in which elements happen to have inverses). It can be
described as the category with only one object, whose morphisms are bĳec-
tions 𝑓 : [3] → [3], where [3] denotes the set {0, 1, 2} with three elements,
equipped with usual composition and identity. This group is generated by the
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two transpositions 𝑠 and 𝑡 whose graphs are respectively

0 1 2
· · ·

· · ·
0 1 2

0 1 2
· · ·

· · ·
0 1 2

and working out the relations which are satisfied by those generators, one can
come up with the following presentation of 𝑆3:

𝑃 = ⟨ ⋆ | 𝑠, 𝑡 | 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡 ⟩

see §5.2.7 and §A.1.19 for details.
The group 𝑆3 can also be considered as the group of symmetries of an

equilateral triangle

0 1

2

𝑠

𝑟

Namely, any bĳection between the set of vertices determines a unique symmetry.
As such, it can be generated by a symmetry 𝑠 about a vertical axis and a rotation 𝑟
of angle 2𝜋/3: those respectively correspond to the bĳections between vertices
whose graphs are

0 1 2
· · ·

· · ·
0 1 2

0 1 2
· · ·

· · ·
0 1 2

Note that the interpretation of 𝑠 is the same as previously, and that 𝑟 can
be expressed in terms of the previous generators as 𝑟 = 𝑡𝑠. Working out the
relations satisfied by those generators, one obtains the following presentation:

𝑄 = ⟨ ⋆ | 𝑠, 𝑟 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑟𝑠𝑟𝑠 = 1 ⟩ ,

which is the usual presentation of the dihedral group 𝐷3, see §A.1.24.
Since the two above 2-polygraphs 𝑃 and 𝑄 present the same group, Theo-

rem 5.1.2 asserts that they are Tietze equivalent. For instance, the presentation 𝑃
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can be transformed into 𝑄 by the following series of Tietze transformations.
Starting from the 2-polygraph 𝑃,

(T1) add the definable generator 𝑟 = 𝑡𝑠:

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑟 = 𝑡𝑠 ⟩ ,

(T2) add the relation 𝑟𝑟𝑟 = 1 (derivable since 𝑟𝑟𝑟 = 𝑡𝑠𝑡𝑠𝑡𝑠 = 𝑡𝑡𝑠𝑡𝑡𝑠 = 𝑠𝑠 = 1):

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑟 = 𝑡𝑠 ⟩ ,

(T2) add the relation 𝑟𝑠𝑟𝑠 = 1 (derivable since 𝑟𝑠𝑟𝑠 = 𝑡𝑠𝑠𝑡𝑠𝑠 = 𝑡𝑡 = 1):

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑟𝑠𝑟𝑠 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑟 = 𝑡𝑠 ⟩ ,

(T2) add the relation 𝑡 = 𝑟𝑠 (derivable since 𝑡 = 𝑡𝑠𝑠 = 𝑟𝑠):

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑟𝑠𝑟𝑠 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑟 = 𝑡𝑠, 𝑡 = 𝑟𝑠 ⟩ ,

(T2) remove the relation 𝑟 = 𝑡𝑠 (derivable since 𝑟 = 𝑟𝑠𝑠 = 𝑡𝑠):

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑡𝑡 = 1, 𝑟𝑠𝑟𝑠 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑡 = 𝑟𝑠 ⟩ ,

(T2) remove the relation 𝑡𝑡 = 1 (derivable since 𝑡𝑡 = 𝑟𝑠𝑟𝑠 = 1):

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑟𝑠𝑟𝑠 = 1, 𝑠𝑡𝑠 = 𝑡𝑠𝑡, 𝑡 = 𝑟𝑠 ⟩ ,

(T2) remove the relation 𝑠𝑡𝑠 = 𝑡𝑠𝑡, which is derivable since

𝑠𝑡𝑠 = 𝑠𝑟𝑠𝑠 = 𝑠𝑟 = 𝑟𝑟𝑟𝑠𝑟𝑠𝑠 = 𝑟𝑟𝑠 = 𝑟𝑠𝑠𝑟𝑠 = 𝑡𝑠𝑡

to obtain

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝑟𝑟𝑟 = 1, 𝑠𝑠 = 1, 𝑟𝑠𝑟𝑠 = 1, 𝑡 = 𝑟𝑠 ⟩ .

(T1) finally, remove the definable generator 𝑡 (which does not occur in any
relation other than 𝑡 = 𝑟𝑠) to obtain 𝑄.

5.1.5 Example. The monoid (N/3N) × (N/2N) admits the presentation〈
⋆
�� 𝑠, 𝑡 �� 𝑠3 = 1, 𝑡2 = 1, 𝑡𝑠 = 𝑠𝑡

〉
but it also admits the presentation〈

⋆
�� 𝑟 �� 𝑟6 = 1

〉
(hint: define 𝑟 by 𝑟 = 𝑡𝑠). This shows that we have an isomorphism

(N/3N) × (N/2N) ≃ N/6N
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as already noted in Example 3.3.7. More generally, one can show that the
monoids

(N/𝑝N) × (N/𝑞N) ≃ N/𝑝𝑞N

are isomorphic when 𝑝 and 𝑞 are relatively prime natural numbers.

5.1.6 Reduced 2-polygraphs. Tietze equivalences allow one to simplify pre-
sentations without changing the presented category. In particular, one can,
without loss of generality, restrict to the following class of 2-polygraphs, which
are often easier to handle than general 2-polygraphs. Those were studied by
Metivier [280] for term rewriting systems, and Squier [326, Theorem 2.4] for
string rewriting systems.

A 2-polygraph 𝑃 is

– left reduced when, for every rule 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, 𝑢 is not reducible by any
rule other than 𝛼,

– right reduced when, for every rule 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2, 𝑣 is not reducible by any
rule,

– reduced when it is both left and right reduced.

Note that a left reduced 2-polygraph never has inclusion critical branchings, as
defined in §4.3.9, which often simplifies the study of branchings.

5.1.7 Theorem ([326, Theorem 2.4]). Every convergent 2-polygraph 𝑃 is Tietze
equivalent to a reduced convergent 2-polygraph.

Proof. Starting from the 2-polygraph 𝑃, we successively apply the following
Tietze transformations.

1. Replace every 2-cell 𝛼 : 𝑢 ⇒ 𝑣 by 𝛼 : 𝑢 ⇒ �̂�, where �̂� is the normal form
of 𝑢:

𝑢
𝛼 +3 𝑣

∗��
�̂�

(T2)
⇝

𝑢 +3

"*

𝑣
∗��
�̂�

(T2)
⇝

𝑢

𝛼 "*

𝑣
∗��

�̂�.

2. If the resulting 2-polygraph contains parallel 2-cells, remove all but one:

𝑢

𝛼1

�$

𝛼𝑛

:B �̂�
(T2)
⇝ 𝑢

𝛼 +3 �̂�.

3. Finally, remove, in the resulting 2-polygraph, every 2-cell whose source is
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reducible by another 2-cell:

𝑢𝑣𝑤
𝛼 +3

𝑢𝛽𝑤 #+

𝑢𝑣𝑤

𝑢𝑣𝑤

KS (T2)
⇝

𝑢𝑣𝑤

𝑢𝛽𝑤 #+

𝑢𝑣𝑤

𝑢𝑤𝑤.

KS

These steps all correspond to Tietze transformations of type (T2) and the
resulting polygraph is clearly reduced. □

5.1.8 Example. Consider the following presentation of the symmetric group 𝑆3:〈
⋆

���� 𝑟, 𝑠, 𝑡
���� 𝜎 : 𝑠𝑠⇒ 1 𝛾 : 𝑠𝑡𝑠⇒ 𝑡𝑠𝑡, 𝜌 : 𝑡𝑠⇒ 𝑟

𝜏 : 𝑡𝑡 ⇒ 1, 𝛾′ : 𝑠𝑡𝑠⇒ 𝑠𝑠𝑡𝑠𝑡

〉
.

It is not reduced because the target of 𝛾′ is not reduced (its normal form
is 𝑡𝑠𝑡) and the sources of 𝛾 and 𝛾′ are reducible by 𝜌. Applying the procedure
described in the proof of Theorem 5.1.7, we obtain the following reduced,
Tietze equivalent, presentation:

⟨ ⋆ | 𝑟, 𝑠, 𝑡 | 𝜎 : 𝑠𝑠⇒ 1, 𝜏 : 𝑡𝑡 ⇒ 1, 𝛾 : 𝑠𝑟 ⇒ 𝑟𝑡, 𝜌 : 𝑡𝑠⇒ 𝑟 ⟩ .

5.1.9 The reduced standard presentation. In §4.5.5, we have seen that every
category𝐶 admits a canonical presentation, the standard presentation. One can
actually achieve a smaller presentation by not adding identities as 1-generators.
The reduced standard polygraphic presentation of𝐶 is the 2-polygraph 𝑅where

– 𝑅0 is the set of objects of 𝐶,
– 𝑅1 is the set of morphisms of 𝐶 which are not identities,
– 𝑅2 contains 2-cells of the form

𝜇𝑎,𝑏 : 𝑎𝑏 ⇒ (𝑏 ◦ 𝑎) : 𝑥 → 𝑧,

for every object 𝑥 of 𝐶 and pair of composable morphisms 𝑎 : 𝑥 → 𝑦 and
𝑏 : 𝑦 → 𝑧 in 𝐶 such that 𝑏 ◦ 𝑎 is not an identity, and 2-cells of the form

𝜇′𝑎,𝑏 : 𝑎𝑏 ⇒ 𝑥 : 𝑥 → 𝑥,

for every every object 𝑥 of 𝐶 and pair of composable morphisms 𝑎 : 𝑥 → 𝑦

and 𝑏 : 𝑦 → 𝑥 in 𝐶 such that 𝑏 ◦ 𝑎 = 1𝑥 .

The proof that this is indeed a presentation of𝐶 can be performed by adapting
the rewriting argument provided in §4.5.5. Another way to show this, since we
know that the standard presentation 𝑃 of 𝐶 is a presentation of 𝐶, is to show
that 𝑅 is Tietze equivalent to 𝐶. Starting from 𝑃, this can be done by using the
following series of Tietze transformations.
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– For each 2-cell 𝜇𝑎,𝑏 : 𝑎𝑏 ⇒ (𝑏 ◦ 𝑎) : 𝑥 → 𝑥 such that 𝑏 ◦ 𝑎 = 1𝑥 is an
identity one can add the derivable 2-cell 𝜇′𝑎,𝑏 : 𝑎𝑏 ⇒ 𝑥 and remove the
2-cell 𝜇𝑎,𝑏 by using transformations (T2):

𝑦 𝑏

��
𝑥

𝑎
55

1𝑥

<<

=⇒

𝜇𝑎,𝑏 𝑥 ⇝

𝑦 𝑏

��
𝑥

𝑎
55

=⇒
𝜇′𝑎,𝑏 𝑥.

Note the subtle difference between 𝜇 𝑓 ,𝑔 and 𝜇′𝑓 ,𝑔: in the first case the target
is the path of length one consisting of the 1-generator 1𝑥 , whereas in the
second case it is the path of length zero at 𝑥.

– For each 𝑥 ∈ 𝑃0, remove the 1-generator 1𝑥 along with the 2-cell 𝜂𝑥 by
using transformation (T1): this can be done because this 1-generator does
not occur in the source or target of any 2-cell other than 𝜂𝑥 .

The resulting 2-polygraph is the reduced standard presentation. In fact, this
presentation is precisely the one that one would obtain by applying the procedure
described in the proof of Theorem 5.1.7.

5.1.10 Tietze reductions. There are two kinds of Tietze transformations: (T1)
adding a definable generator and (T2) adding a derivable relation. During a Ti-
etze equivalence, those can also be performed backward: (T1) removing a
definable generator and (T2) removing a derivable relation. A Tietze equiva-
lence using only the two backward transformations is called a Tietze reduction,
and consists in making the presentation smaller by suitable removing genera-
tors and relations. It would be nice if two 2-polygraphs 𝑃 and 𝑄 where Tietze
equivalent if and only if they reduce to a common 2-polygraph: this would
mean that we do not have to come up with new generators or relations in order
to study Tietze equivalence. We have seen in §1.2.10 that this holds in the case
of 1-polygraphs, but we show here that this is not the case for 2-polygraphs.
This explains why the proof of Theorem 5.1.2 proceeds by transforming two
polygraphs into a bigger one, which contains both, and not a smaller one.

Consider the presentation

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛼 : 𝑎𝑎 ⇒ 𝑎, 𝛽 : 𝑏𝑏 ⇒ 𝑏, 𝛾 : 𝑎𝑎 ⇒ 𝑏𝑏 ⟩ .
One can apply to it the following Tietze transformations:

(T2) add the derivable relation 𝑎 = 𝑏:

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑎 = 𝑎, 𝑏𝑏 = 𝑏, 𝑎𝑎 = 𝑏𝑏, 𝑎 = 𝑏 ⟩
(the relation is derivable by 𝑎 = 𝑎𝑎 = 𝑏𝑏 = 𝑏),
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(T2) remove the derivable relation 𝑏𝑏 = 𝑏:

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑎 = 𝑎, 𝑎𝑎 = 𝑏𝑏, 𝑎 = 𝑏 ⟩

(the relation is derivable by 𝑏𝑏 = 𝑎𝑎 = 𝑎 = 𝑏),
(T2) remove the derivable relation 𝑎𝑎 = 𝑏𝑏:

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑎 = 𝑎, 𝑎 = 𝑏 ⟩

(respectively derivable since 𝑎 = 𝑏),
(T1) remove the definable generator 𝑏:

𝑃′ = ⟨ ⋆ | 𝑎 | 𝑎𝑎 = 𝑎 ⟩ .

The polygraphs 𝑃 and 𝑃′ are thus Tietze equivalent and 𝑃 presents the free
monoid with an idempotent element: this monoid has two elements 1 and 𝑎,
with multiplication given by 1𝑎 = 𝑎1 = 𝑎𝑎 = 𝑎.

The polygraph 𝑃 is Tietze minimal, in the sense that no non-trivial Tietze
reduction can be applied to it; otherwise said, in order to prove a non-trivial
Tietze equivalence, one has to begin by adding definable generators or derivable
relations. Namely, the 1-generator 𝑎 cannot be removed along the relation 𝛼
because 𝑎 occurs in the source of 𝛾, and similarly for 𝛽. Finally, we can show
that no relation is derivable by contradiction as follows.

– Suppose that 𝛼 is derivable. This means that the 2-polygraph 𝑃 is Tietze
equivalent to the 2-polygraph

𝑄 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛽 : 𝑏𝑏 ⇒ 𝑏, 𝛾 : 𝑎𝑎 ⇒ 𝑏𝑏 ⟩

and we have 𝑃 ≃ 𝑄. The 2-polygraph 𝑄 is not convergent, but it is Tietze
equivalent to the convergent 2-polygraph

𝑄′ = ⟨ ⋆ | 𝑎, 𝑏 | 𝛽 : 𝑏𝑏 ⇒ 𝑏, 𝛾′ : 𝑎𝑎 ⇒ 𝑏, 𝛿 : 𝑏𝑎 ⇒ 𝑎𝑏 ⟩

(the relation 𝛿 is derivable by 𝑏𝑎 = 𝑏𝑏𝑎 = 𝑎𝑎𝑎 = 𝑎𝑏, see also Exam-
ple 5.2.3). The termination of 𝑄′ can be shown using the deglex order
generated by 𝑏 > 𝑎, and the critical branchings are confluent:

𝑏𝑏𝑏
𝛽𝑏

x�
𝑏𝛽

�&
𝑏𝑏 𝑏𝑏

𝑎𝑎𝑎
𝛾′𝑎
w�

𝑎𝛾′

�'
𝑏𝑎

𝛿
+3 𝑎𝑏
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𝑏𝑏𝑎

𝛽𝑎

��

𝑏𝛿
�'
𝑏𝑎𝑏

𝛿𝑏��
𝑎𝑏𝑏

𝑎𝛽w�
𝑏𝑎

𝑏𝑎𝑎
𝛿𝑎
w�

𝑏𝛾′

��

𝑎𝑏𝑎

𝑎𝛿 ��
𝑎𝑎𝑏

𝛾′𝑏 �'
𝑏𝑏.

The normal forms are 1, 𝑎, 𝑏 and 𝑎𝑏, i.e., there are four morphisms in 𝑄
whereas there are only two in 𝑃, contradicting the isomorphism 𝑃 ≃ 𝑄.

– By exchanging the role of 𝑎 and 𝑏 in previous case, and reversing the
orientation of 𝛾 (which does not change the presented category), the relation 𝛽
is not derivable either.

– Suppose that 𝛾 is derivable. This means that 𝑃 is Tietze equivalent to the
2-polygraph

𝑄 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛼 : 𝑎𝑎 ⇒ 𝑎, 𝛽 : 𝑏𝑏 ⇒ 𝑏 ⟩ .

Again, 𝑄 is convergent (rules decrease the length of morphisms and there
is no critical pair) and every word of the form 𝑎𝑏𝑎𝑏𝑎𝑏 . . . as normal form,
whereas 𝑃 has only two elements.

Since the presentation 𝑃′ is also (obviously) minimal, we see that there is no
way to show that 𝑃 and 𝑃′ are Tietze equivalent by Tietze reducing both to a
common 2-polygraph.

5.1.11 Tietze transformations up to equivalence. We have seen in Theo-
rem 5.1.2 that Tietze transformations generate the following equivalence rela-
tion on polygraphs: two polygraphs are equivalent when they present isomorphic
categories. We consider here the following variant of the notion of equivalence:
two polygraphs are equivalent when they present equivalent categories. A cor-
responding notion of Tietze transformation can be obtained as a variant of those
presented in §5.1.1, by adding the following kind of transformation:

(T0) adding an isomorphic 0-generator: given 𝑥 ∈ 𝑃0, 𝑦 ∉ 𝑃0, 𝑎, 𝑏 ∉ 𝑃1,
𝛼, 𝛽 ∉ 𝑃2, we define

𝑄 =
〈
𝑃1, 𝑦

�� 𝑃1, 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑥
�� 𝑃2, 𝛼 : 𝑎𝑏 ⇒ 1𝑥 , 𝛽 : 𝑏𝑎 ⇒ 1𝑦

〉
.
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5.2 The Knuth-Bendix completion procedure

We have seen that convergent 2-polygraphs are very convenient to work with.
When given a polygraph which does not have this property, one can in many
cases use Tietze transformations to turn it into one which does, preserving the
presented category. We present here a procedure due to Knuth and Bendix [218]
(in the setting of term rewriting systems) whose purpose is to perform this
transformation in an automated way: starting from a 2-polygraph with a reduc-
tion order, it adds definable 2-generators until possibly reaching a convergent
2-polygraph, which is Tietze equivalent to the original one. We use the termi-
nology of “procedure” and not an “algorithm”, because there is no guarantee
that it will eventually stop, although it very often does in practice.

This procedure is based on two observations. The first one is that, in a
terminating 2-polygraph, the completion of any confluent critical branching
can always be chosen to be convergent towards a normal form. In fact, suppose
that a critical pair (𝜙1, 𝜙2) is closed by (𝜙′1, 𝜙′2) as shown on the left diagram
below:

𝑢
𝜙1

z�
𝜙2

�$
𝑣1

𝜙′1 �$

𝑣2

𝜙′2z�
𝑤

𝑢
𝜙1

z�
𝜙2

�%
𝑣1

𝜙′1 �$

𝑣2.

𝜙′2y�
𝑤
𝜓��

𝑤

The termination property yields a normalization path 𝜓 from 𝑤 to a normal
form 𝑤 of 𝑤, so that we may close the diagram by the new pair (𝜓 ◦ 𝜙′1, 𝜓 ◦ 𝜙′2)
as shown above on the right.

The second observation is that, given a non-confluent critical pair as on the
left below,

𝑢
𝜙1

z�
𝜙2

�$
𝑣1 𝑣2

⇝

𝑢
𝜙1

z�
𝜙2

�$
𝑣1 +3 𝑣2

or
𝑢

𝜙1

z�
𝜙2

�$
𝑣1 𝑣2ks

we have 𝑣1 ≈ 𝑣2 and it is therefore possible to add the definable relation
𝑣1 ⇒ 𝑣2 or 𝑣2 ⇒ 𝑣1 to the polygraph without changing the presented category
since this is a Tietze transformation of type (T2). The new presentation is
“more confluent” in the sense that the above critical pair is now confluent.
We are thus tempted to add new rules in this way for every critical branching.
However, newly added rules can create new non-confluent branchings and we
want therefore to add as few of them as possible. For instance, in the above



134 Tietze transformations and completion

situation, suppose that we have added a rule 𝑣1 ⇒ 𝑣2 and that there was already
another reduction 𝑣1 ⇒ 𝑣′1, making a non-confluent branching, as shown on the
left below:

𝑢
𝜙1

z�
𝜙2

�$
𝑣1

��

+3 𝑣2

𝑣′1

⇝

𝑢
𝜙1

z�
𝜙2

�$
𝑣1

��

+3 𝑣2

𝑣′1

3; ⇝

𝑢
𝜙1

z�
𝜙2

�%
𝑣1

��

𝑣2.

𝑣′1

3;

In order to make the polygraph confluent, we are now forced to add a new
rule between 𝑣′1 and 𝑣2, say 𝑣′1 ⇒ 𝑣2, making the former rule 𝑣1 ⇒ 𝑣2 useless:
it would have been preferable to directly add the rule 𝑣′1 ⇒ 𝑣2 instead of
𝑣1 ⇒ 𝑣2. For this reason, given a critical branching as above, we only add
new rules 𝑣1 ⇒ 𝑣2 (or 𝑣2 ⇒ 𝑣1), between normal forms 𝑣1 (resp. 𝑣2) of 𝑣1
(resp. 𝑣2). Finally the newly added rules must be oriented without breaking the
termination of the original polygraph. This is usually done by orienting rules
according to a reduction order.

5.2.1 The completion procedure. Suppose given a finite 2-polygraph 𝑃,
equipped with a total reduction order ≼ which is compatible with 𝑃, i.e., 𝑢 ≻ 𝑣
for every 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃∗2. By Proposition 4.4.2, the polygraph 𝑃
is necessarily terminating.

The Knuth-Bendix completion procedure starts with the 2-polygraph 𝑃 and
iteratively transforms it by adding definable relations, as follows.

1. For every critical branching

𝑣 𝑢
𝜙ks 𝜓 +3 𝑤

we compute reduction paths 𝜙′ : 𝑣
∗⇒ �̂� and 𝜓 : 𝑤

∗⇒ 𝑤 to some normal
forms �̂� and 𝑤 of 𝑣 and 𝑤 respectively, until finding one with �̂� ≠ 𝑤. If there
is none the procedure halts and returns the computed polygraph.

2. With the normal forms computed in previous step, we either have �̂� ≽ 𝑤, in
which case we add a 2-generator 𝛼 : �̂� ⇒ 𝑤 to 𝑃, or �̂� ≼ 𝑤, in which case
we add a 2-generator 𝛼 : 𝑤⇒ �̂� to 𝑃:

𝑢
𝜙

{�
𝜓

�$
𝑣

𝜙′ ��

𝑤
𝜓′��

�̂� 𝛼
+3 𝑤

𝑢
𝜙

{�
𝜓

�%
𝑣

𝜙′ ��

𝑤
𝜓′��

�̂� 𝑤.𝛼
ks

3. Go back to step 1.
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If the procedure stops, it returns a 2-polygraph, which we denote as KB(𝑃)
and call a Knuth-Bendix completion of 𝑃. In the case where the procedure
does not terminate, it constructs an infinite sequence 𝑃 = 𝑃0, 𝑃1, 𝑃2, . . . of
2-polygraphs, where 𝑃𝑖+1 is obtained from 𝑃𝑖 by adding a derivable relation.
This sequence is thus increasing, in the sense that we have 𝑃𝑖 ⊆ 𝑃 𝑗 for 𝑖 ⩽ 𝑗 ,
and thus admits an inductive limit

⋃
𝑖 𝑃

𝑖 , which we still denote as KB(𝑃).
5.2.2 Theorem ([218, 189]). The Knuth-Bendix completion KB(𝑃) of a 2-poly-
graph 𝑃 is a convergent presentation of the category 𝑃.

Proof. Since all the rules respect the termination order by construction, the
reduction order ≼ is a termination order, and the polygraph KB(𝑃) is thus
terminating by Proposition 4.4.2. Moreover, step 1 ensures that all the critical
branchings are confluent, and the polygraph KB(𝑃) is thus locally confluent by
Lemma 4.3.7 and confluent by Lemma 1.3.21. Finally, the procedure proceeds
by adding derivable transformations at step 2, i.e., by performing Tietze trans-
formations of type (T2). By Theorem 5.1.2, the polygraph KB(𝑃) thus presents
the same category as 𝑃. □

Note that the above theorem applies in both the cases where the procedure
terminates and where it does not. It can moreover be noted that the 2-polygraph
KB(𝑃) is finite if and only if the 2-polygraph 𝑃 is finite and the Knuth-Bendix
completion procedure halts. For implementation purposes, we are thus mostly
interested in the cases where the procedures computes a result after a finite
amount of time, but for theoretical purposes it is still useful when it runs
indefinitely. It is also interesting to remark that if the starting 2-polygraph 𝑃 is
already convergent, we immediately have KB(𝑃) = 𝑃.

5.2.3 Example. Consider the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝑏𝑏 ⇒ 𝑏, 𝑎𝑎 ⇒ 𝑏𝑏 ⟩

already encountered in §5.1.10, equipped with the deglex order generated by
𝑏 > 𝑎, which is compatible with 𝑃. The two critical branchings are

𝑏𝑏𝑏

x� �&
𝑏𝑏

��

𝑏𝑏

��
𝑏 𝑏

𝑎𝑎𝑎

v~  (
𝑏𝑏𝑎

��

𝑎𝑏𝑏

��
𝑏𝑎 𝑎𝑏

and the dotted arrows are chosen normalization 1-cells. In the first case, the
two normal forms are equal, but not in the second one. Since 𝑏𝑎 > 𝑎𝑏, the
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Knuth-Bendix procedure adds a rule 𝑏𝑎 ⇒ 𝑎𝑏, thus obtaining the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝑏𝑏 ⇒ 𝑏, 𝑎𝑎 ⇒ 𝑏𝑏, 𝑏𝑎 ⇒ 𝑎𝑏 ⟩ .
Once this new rule added, all the critical pairs are confluent (see §5.1.10), so
that the procedure halts on the above convergent 2-polygraph.

5.2.4 Example. Consider the following 2-polygraph from [238]

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐 ⟩ ,
equipped with the deglex order associated to the reverse alphabetic order. The
Knuth-Bendix completion does not terminate and gives rise to the infinite
convergent presentation

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 𝑎𝑐𝑛, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐 ⟩𝑛∈N .

Namely, at the 𝑛-th step of the procedure the rule 𝛼𝑛+1 is added by closing the
critical branching

𝑑𝑎𝑐𝑛𝑏
𝛽𝑐𝑛𝑏

t|
𝑑𝛼𝑛

!)
𝑎𝑐𝑛+1𝑏

𝛼𝑛+1 ,4

𝑑𝑎𝑐𝑛

𝛽𝑐𝑛��
𝑎𝑐𝑛+1.

It can be remarked that if we take the converse orientation for rule 𝛽

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛽 : 𝑎𝑐 ⇒ 𝑑𝑎 ⟩
and equip the polygraph with the deglex order associated to the reverse alpha-
betic order, the procedure halts immediately since there is no critical branching.

As illustrated in the above example, the procedure depends on many param-
eters, each of which can have a strong influence on the output of the procedure,
i.e., how small the completed polygraph will be, or even the termination of the
procedure: the termination order, the order in which critical pairs are studied
in step 1, the normal forms �̂� and 𝑤 chosen for each critical pair in step 1.

5.2.5 Detailed description of the procedure. The procedure can be improved
so that it produces reduced polygraphs, by combining it with the procedure pre-
sented in §5.1.6. It can also be more efficiently implemented by observing that if
a pair is confluent at some stage, then it is still confluent if new rules are added,
therefore one can restrict step 1 to consider only critical branchings formed by
newly added rules. In a more operational way, close to the presentation given
by Huet [189], the resulting improved procedure can be described as follows.
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We generalize here slightly the situation of the previous section and suppose
given a 2-polygraph 𝑃 together with a reduction order which is not necessarily
compatible with 𝑃 (the procedure will reorient the rules anyway) and may be
partial. The procedure will modify the following variables:

– a set 𝐸 of equations, i.e., pairs 𝑢 = 𝑣 with 𝑢, 𝑣 ∈ 𝑃∗1, whose initial value is

𝐸 = {𝑢 = 𝑣 | 𝛼 : 𝑢 ⇒ 𝑣 ∈ 𝑃2}
– a polygraph 𝑄, which is initially the polygraph 𝑃 where the set of rules has

been replaced by the empty set:

𝑄0 = 𝑃0 𝑄1 = 𝑃1 𝑄2 = ∅.
The procedure repeats the following steps until we have 𝐸 = ∅:
1. pick an equation 𝑢 = 𝑣 in 𝐸 and remove it from 𝐸 ,
2. compute normal forms �̂� and �̂� of 𝑢 and 𝑣,
3. if �̂� = �̂� then go back to step 1,
4. if neither �̂� ≺ �̂� or �̂� ≺ �̂� then fail,
5. if �̂� ≺ �̂� then exchange 𝑢 and 𝑣 (and �̂� and �̂�) so that �̂� ≻ �̂�,
6. for each rule 𝛼𝑖 : 𝑢𝑖 ⇒ 𝑣𝑖 in𝑄2 such that 𝑢𝑖 rewrites to 𝑢′𝑖 by the rule 𝑢 ⇒ 𝑣

a.b remove 𝛼𝑖 from 𝑄2,
b.b add 𝑢′𝑖 = 𝑣𝑖 to 𝐸 ,

7. add 𝛼 : 𝑢 ⇒ 𝑣 to 𝑄2,
8. replace each rule 𝛼𝑖 : 𝑢𝑖 ⇒ 𝑣𝑖 of 𝑄2 by 𝛼𝑖 : 𝑢𝑖 ⇒ 𝑣𝑖 , where 𝑣𝑖 is a normal

form of 𝑣𝑖 with respect to 𝑄 as computed in previous step,
9. in the polygraph 𝑄, for each critical branching

𝑤
𝜙

z�
𝜓

�$
𝑢′ 𝑣′

where 𝜙 consists of the rule 𝛼 in context, add 𝑢′ = 𝑣′ to 𝐸 .

In the end, i.e., when 𝐸 = ∅ is reached after a finite number of steps, the proce-
dure returns the polygraph 𝑄. This polygraph is reduced and Tietze equivalent
to the original polygraph 𝑃. It is also possible to reasonably define a notion of
outcome of the procedure when it does not terminate, see [189] for details.

5.2.6 Example. Consider the presentation

⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏, 𝑏𝑎 ⇒ 𝑐 ⟩
obtained from the usual presentation of 𝐵+3 , see §A.1.21, by adding a generator 𝑐
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along with its definition 𝑏𝑎 = 𝑐. We consider the deglex order induced by
𝑎 > 𝑏 > 𝑐, which is compatible with the rules. The procedure will

– replace 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏 by 𝑎𝑐 ⇒ 𝑐𝑏,
– add the rule 𝑏𝑐𝑏 ⇒ 𝑐𝑐 coming from the non-confluent critical branching

𝑏𝑎𝑐

x� �'
𝑐𝑐 𝑏𝑐𝑏,ks

– add the rule 𝑏𝑐𝑐 ⇒ 𝑐𝑐𝑎 coming from the non-confluent critical branching

𝑏𝑐𝑏𝑎

v~  (
𝑐𝑐𝑎 𝑏𝑐𝑐.ks

We finally obtain the convergent Tietze equivalent presentation

⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝑏𝑎 ⇒ 𝑐, 𝑎𝑐 ⇒ 𝑐𝑏, 𝑏𝑐𝑏 ⇒ 𝑐𝑐, 𝑏𝑐𝑐 ⇒ 𝑐𝑐𝑎 ⟩ .

5.2.7 The symmetric group. Let us work out a fundamental and non-trivial
example of a presentation of a monoid. Given 𝑛 ∈ N, we consider the symmetric
group 𝑆𝑛+1 of bĳections on a set with 𝑛 + 1 elements. We claim that it admits a
presentation by the 2-polygraph

𝑃 =
〈

⋆
�� 𝑎0, . . . , 𝑎𝑛−1

�� 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖, 𝑗 〉
where the 2-generators are

𝛼𝑖 : 𝑎𝑖𝑎𝑖 ⇒ 1 for 0 ⩽ 𝑖 < 𝑛,
𝛽𝑖 : 𝑎𝑖+1𝑎𝑖𝑎𝑖+1⇒ 𝑎𝑖𝑎𝑖+1𝑎𝑖 for 0 ⩽ 𝑖 < 𝑛 − 1,
𝛾𝑖, 𝑗 : 𝑎 𝑗𝑎𝑖 ⇒ 𝑎𝑖𝑎 𝑗 for 0 ⩽ 𝑖 < 𝑖 + 1 < 𝑗 < 𝑛,

see §A.1.19 for details. Our strategy to show this result is based on the following
two steps.

1. We use the Knuth-Bendix completion procedure to compute a convergent
2-polygraph 𝑄 presenting the same category as 𝑃.

2. We use the techniques presented in Section 4.5 to show that𝑄 is a presenta-
tion of 𝑆𝑛+1, by showing that elements of𝑄∗1 in normal form are in bĳection
with the elements of 𝑆𝑛+1.

In order to apply the Knuth-Bendix procedure, we equip the polygraph 𝑃
with the deglex reduction order ≼ induced induced by 𝑎 𝑗 > 𝑎𝑖 whenever 𝑗 > 𝑖,
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which is compatibles with the rules. After a finite amount of steps, the Knuth-
Bendix procedure terminates, producing the convergent 2-polygraph 𝑄 with
the same 0- and 1-generators, and with rules

𝛼𝑖 : 𝑎𝑖𝑎𝑖 ⇒ 1 for 0 ⩽ 𝑖 < 𝑛,
𝛽𝑘𝑖 : 𝑎𝑖+𝑘+1 . . . 𝑎𝑖𝑎𝑖+𝑘+1⇒ 𝑎𝑖+𝑘𝑎𝑖+𝑘+1 . . . 𝑎𝑖 for 0 ⩽ 𝑘 < 𝑛,

and 0 ⩽ 𝑖 < 𝑛 − 𝑘 − 1,
𝛾𝑖, 𝑗 : 𝑎 𝑗𝑎𝑖 ⇒ 𝑎𝑖𝑎 𝑗 for 0 ⩽ 𝑖 < 𝑖 + 1 < 𝑗 < 𝑛,

where 𝑎𝑖+𝑘+1 . . . 𝑎𝑖 denotes the sequence of 𝑎 𝑗 , with indices 𝑗 decreasing one
by one between 𝑖 + 𝑘 +1 and 𝑖. The reader is advised to compute this by himself
or refer to [247] for details.

In an element of 𝑄∗1 in normal form, because of the rules 𝛼𝑖 and 𝛾𝑖, 𝑗 , if we
have a factor 𝑎𝑖𝑎 𝑗 , then we have 𝑖 < 𝑗 or 𝑖 = 𝑗 + 1. Taking the rules 𝛽𝑖, 𝑗 in
account too, we see that the normal forms are the words of the form

𝑤0𝑤1𝑤2 . . . 𝑤𝑛−1 with 𝑤𝑖 = 𝑎𝑖𝑎𝑖−1𝑎𝑖−2 . . . 𝑎𝑖−𝑘𝑖 .

Now, let us show that those normal forms are in bĳective correspondence with
the elements of 𝑆𝑛+1, i.e., bĳections 𝑓 : [𝑛 + 1] → [𝑛 + 1]. First, we interpret
the generator 𝑎𝑖 as the bĳection J𝑎𝑖K : [𝑛 + 1] → [𝑛 + 1] which exchanges 𝑖
and 𝑖 + 1, and can be depicted as

0 𝑖 𝑖+1 𝑛

... ...

0 𝑖 𝑖+1 𝑛

To any bĳection 𝑓 : [𝑛 + 1] → [𝑛 + 1], we associate a 1-cell 𝑢 𝑓 ∈ 𝑃∗1 defined
by induction on 𝑛. We set 𝑢 𝑓 = 1 whenever 𝑛 = 0. Otherwise, we write
𝑓 ′ : [𝑛] → [𝑛] for the function obtained from 𝑓 by “removing” 𝑛 from the
source of 𝑓 and 𝑓 (𝑛) from its image, i.e.,

𝑓 ′ (𝑖) =
{
𝑓 (𝑖) if 𝑓 (𝑖) < 𝑓 (𝑛)
𝑓 (𝑖) − 1 if 𝑓 (𝑖) > 𝑓 (𝑛)

and define

𝑢 𝑓 = 𝑢 𝑓 ′𝑎𝑛−1𝑎𝑛−2 . . . 𝑎 𝑓 (𝑛) .

For instance, consider the bĳection 𝑓 : [6] → [6] such that the images of 0,
1, 2, 3, 4 and 5 are respectively 4, 1, 0, 5, 2 and 3. Its associated word 𝑢 𝑓 is
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𝑎0𝑎1𝑎0𝑎3𝑎2𝑎4𝑎3, which can be pictured as

0 1 2 3 4 5

0 1 2 3 4 5

Finally, using the above description of normal forms, it can be shown that 𝑢 𝑓
is a normal form for any bĳection 𝑓 , and that this provides a bĳection between
normal forms and elements of 𝑆𝑛+1. Other examples of such completions for
finite groups can be found in [247, 166, 145].

5.2.8 Generated subcategories. As an application of the previously devel-
oped techniques, consider the following situation. We suppose given a cate-
gory 𝐶 presented by a 2-polygraph 𝑃 and a set 𝐺 of morphisms of 𝐶, whose
elements are called generators. The category generated by 𝐺, denoted ⟨𝐺⟩ is
the smallest subcategory of 𝐶 which contains the elements of 𝐺 as morphisms
(and is closed under identities and composition, source and target of morphisms
in𝐶). Our goal here is to compute a presentation of it: we will provide a method
to perform this it in the case where𝐶 admits a suitable convergent presentation.
Before addressing the general case, we look at the following example: let 𝐶 be
the monoid N/6N, presented by〈

⋆
�� 𝑎 �� 𝑎6 ⇒ 1

〉
and let us compute the category generated by 𝐺 =

{
𝑎2}.

First, note that we can always suppose that each morphism 𝑓 ∈ 𝐺 admits a
1-generator 𝑏 ∈ 𝑃1 as a representative. Otherwise, given a representative 𝑢 ∈ 𝑃∗1
of 𝑓 , we can apply to 𝑃 the Tietze transformation which consists in adding a
new generator 𝑏 together with the rule 𝑢 ⇒ 𝑏. In our example, this amounts to
considering the presentation〈

⋆
�� 𝑎, 𝑏 �� 𝑎6 ⇒ 1, 𝑎2 ⇒ 𝑏

〉
.

For this reason, we will suppose in the following that the set 𝐺 of generating
morphisms is a subset of the 1-generators, i.e., 𝐺 ⊆ 𝑃1 (in the above example,
we have𝐺 = {𝑏}). Moreover, we can suppose that the presentation is convergent
and reduced: if it is not the case, we can apply the Knuth-Bendix procedure,
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and hope that it succeeds. For instance, with the previous presentation, consider
the deglex order with 𝑎 < 𝑏. The critical branchings

𝑎𝑎𝑎

s{ #+
𝑏𝑎 𝑎𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
px $,𝑏𝑎𝑎𝑎𝑎

��
1

𝑏𝑏𝑎𝑎
��

𝑏𝑏𝑏

are not confluent, and it can be checked that adding the induced relations
𝑏𝑎 ⇒ 𝑎𝑏 and 𝑏3 ⇒ 1 makes the presentation convergent and the rule 𝑎6 ⇒ 1
superfluous. We thus consider the alternative, convergent, presentation〈

⋆
�� 𝑎, 𝑏 �� 𝑎2 ⇒ 𝑏, 𝑏𝑎 ⇒ 𝑎𝑏, 𝑏3 ⇒ 1

〉
of N/6N. Using Proposition 5.2.9 below, we can finally deduce that the cate-
gory ⟨𝑎2⟩ admits the presentation〈

⋆
�� 𝑏 �� 𝑏3 ⇒ 1

〉
.

It is thus the monoid N/3N, as expected.
Below, given 𝐺 ⊆ 𝑃1, we write 𝐺∗ ⊆ 𝑃∗1 for the set of morphisms in 𝑃∗1

which can be expressed as composites of generators in 𝐺.

5.2.9 Proposition. Suppose given a convergent 2-polygraph 𝑃 together with a
set 𝐺 ⊆ 𝑃1 of generators, such that for every rule 𝑢 ⇒ 𝑣 in 𝑃2 with 𝑢 ∈ 𝐺∗ we
have 𝑣 ∈ 𝐺∗. Then the category generated by 𝐺 admits a presentation by the
polygraph 𝑄 where

– 𝑄0 ⊆ 𝑃0 consists of the sources and targets of elements of 𝐺,
– 𝑄1 = 𝐺 ⊆ 𝑃1,
– 𝑄2 ⊆ 𝑃2 consists of the rules 𝑢 ⇒ 𝑣 in 𝑃2 such that 𝑢 ∈ 𝐺∗ and 𝑣 ∈ 𝐺∗.
Proof. Since ⟨𝐺⟩ has to be closed under taking the source and target of mor-
phisms in𝐺, it contains at least𝑄0 as objects, and conversely, any composite of
morphisms in 𝐺 will have elements of 𝑄0 as source and target; 𝑄0 is thus pre-
cisely the set of 0-cells of ⟨𝐺⟩. The morphisms in ⟨𝐺⟩ contain the equivalence
classes 𝑎 of 1-generators 𝑎 ∈ 𝐺, and since it is closed under composition and
identities, its morphisms are precisely the equivalence classes of morphisms
in 𝐺∗ ⊆ 𝑃∗1. Finally, given 𝑢, 𝑣 ∈ 𝐺∗ such that 𝑢 = 𝑣, since 𝑃 is convergent
both 𝑢 and 𝑣 rewrite to a common element 𝑤 ∈ 𝑃∗1, i.e., 𝑢

∗⇒ 𝑤 and 𝑣
∗⇒ 𝑤. By

induction, the two rewriting paths contain only rules in 𝑃1 and 𝑤 ∈ 𝐺∗, thus𝑄2
is sufficient to generate the required equivalence on elements of 𝐺∗. □
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As a bonus, note that the 2-polygraph 𝑄 in the previous proposition is neces-
sarily convergent, because 𝑃 is supposed to be so.

5.2.10 Remark. Suppose that we start with a 2-polygraph 𝑃 together with a
set 𝐺 ⊆ 𝑃1, such that the following property is satisfied: for every rule 𝑢 ⇒ 𝑣

in 𝑃2, 𝑢 ∈ 𝐺∗ implies 𝑣 ∈ 𝐺∗. In order to be able to apply previous proposition,
we need to ensure that 𝑃 is convergent and, if this is not the case, we can
apply the Knuth-Bendix completion procedure in order to obtain a convergent
polygraph. However, in general, the completed polygraph will not satisfy the
property anymore. In order to improve this, the Knuth-Bendix procedure can
be modified in order not to produce “bad rules”, i.e., rules of the form 𝑢 ⇒ 𝑣

with 𝑢 ∈ 𝐺∗ and 𝑣 ∈ 𝑃∗1 \ 𝐺∗, which prevent the resulting polygraph from
satisfying the required property. Namely, the completion procedure adds new
rules of the form 𝑢 ⇒ 𝑣 where both 𝑢 and 𝑣 are normal forms. In the case such
a rule is “bad”, it can be useful to add instead a rule 𝑢′ ⇒ 𝑣 where 𝑢′

∗⇒ 𝑢

and 𝑢′ ∈ 𝑃∗1 \ 𝐺∗.
5.2.11 Exercise. A presentation for the symmetric groups 𝑆𝑛 was constructed
in §5.2.7. Deduce from it a presentation for the alternating groups 𝐴3 and 𝐴4,
see §A.1.20.

5.3 Universality of finite convergent rewriting

We have seen in Section 4.2 that a finite convergent rewriting system always has
decidable word problem. The question of universality of convergent rewriting is
the converse question, first asked by Jantzen [202], see also [32, 203, 204, 114]:

Given a category 𝐶 admitting a finite presentation with decidable word
problem, does it always admit a finite convergent presentation?

The answer to this question is negative, but showing this requires more tools
than we have at our disposal for now, and will be handled in Chapters 8 and 9.
We however study here restricted forms of the question.

5.3.1 Universality of Knuth-Bendix completion. A more restricted variant
of the above question consists in wondering whether it is always possible to
add or remove relations to a 2-polygraph so that it becomes convergent. Kapur
and Narendran [213] have shown that this is not the case, by considering the
usual presentation of the braid monoid 𝐵+3 , detailed in §A.1.21:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏 ⟩ . (5.1)
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They show that there is no finite convergent presentation of this monoid on
the same generators, see Proposition 5.3.3 below. As a consequence, for such a
presentation, the Knuth-Bendix procedure will never end whichever reduction
order or strategy for considering rules is adopted.

5.3.2 Lemma. The polygraph 𝑃 has decidable word problem.

Proof. Since the only relation preserves the length of 1-cells, equivalence
classes contain 1-cells of the same length and are therefore finite. □

5.3.3 Proposition. There is no finite convergent rewriting system which is
Tietze equivalent to the polygraph 𝑃 by a sequence of Tietze transformation
consisting only in adding or removing derivable relations.

Proof. First notice that 𝑎𝑏𝑏𝑎𝑏
∗⇔ 𝑏𝑎𝑏𝑏𝑎 is derivable in 𝑃 since we have

𝑎𝑏𝑏𝑎𝑏 ⇐ 𝑎𝑏𝑎𝑏𝑎 ⇒ 𝑎𝑏𝑏𝑎𝑏.

More generally, by induction, it can be shown that

𝑎𝑖+1𝑏 𝑗+2𝑎𝑏
∗⇔ 𝑏𝑎𝑏𝑖+2𝑎 𝑗+1 (5.2)

for every 𝑖, 𝑗 ∈ N. Namely, the base case where 𝑖 = 𝑗 = 0 is handled above, and
if we suppose that (5.2) holds for some 𝑖 and 𝑗 , we have

𝑎𝑖+2𝑏 𝑗+2𝑎𝑏
∗⇔ 𝑎𝑏𝑎𝑏𝑖+2𝑎 𝑗+1 ⇒ 𝑏𝑎𝑏𝑖+3𝑎 𝑗+1

and

𝑎𝑖+1𝑏 𝑗+2𝑎𝑏 ⇐ 𝑎𝑖+1𝑏 𝑗+1𝑎𝑏𝑎
∗⇔ 𝑏𝑎𝑏𝑖+2𝑎 𝑗+2,

which constitute the induction step on 𝑖 and 𝑗 respectively. Another easy remark
is that, for 𝑛 ∈ N, any word 𝑢 such that the relation 𝑢

∗⇔ 𝑏𝑛𝑎𝑏 (resp. 𝑢
∗⇔ 𝑏𝑎𝑏𝑛)

is derivable is of the form 𝑢 = 𝑏𝑛−𝑖𝑎𝑏𝑎𝑖 (resp. 𝑢 = 𝑎𝑖𝑏𝑎𝑏𝑛−𝑖) for some 𝑖 with
0 ⩽ 𝑖 ⩽ 𝑛. Writing 𝑢 for the equivalence class of a word 𝑢 under

∗⇔, we thus
have

𝑏𝑛𝑎𝑏 =
{
𝑏𝑛−𝑖𝑎𝑏𝑎𝑖

�� 0 ⩽ 𝑖 ⩽ 𝑛
}

𝑏𝑎𝑏𝑛 =
{
𝑎𝑖𝑏𝑎𝑏𝑛−𝑖

�� 0 ⩽ 𝑖 ⩽ 𝑛
}

.

We now proceed by contradiction. Suppose given a finite 2-polygraph 𝑄 con-
vergent and Tietze equivalent to 𝑃 by a sequence of Tietze transformations
consisting only in adding or removing derivable relations. By Theorem 5.1.7,
we can suppose that 𝑄 is reduced. Since, {𝑎𝑏𝑎, 𝑏𝑎𝑏} is an equivalence class,
𝑄 should contain either 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏 or 𝑏𝑎𝑏 ⇒ 𝑎𝑏𝑎. We suppose that we are
in the former case, the other one being similar. Writing 𝑙 for the length of the
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longest left-hand side of a rule in 𝑄, and

𝑢 = 𝑎𝑙+1𝑏𝑙+2𝑎𝑏 𝑣 = 𝑏𝑎𝑏𝑙+2𝑎𝑙+1

we have 𝑢
∗⇔ 𝑣 and therefore both 𝑢 and 𝑣 should reduce to a common

word. The only factors in those words whose equivalence class is not a sin-
gleton are of the form 𝑏𝑛𝑎𝑏 or 𝑏𝑎𝑏𝑛. Therefore, we must have rules of the
form 𝑏𝑛𝑎𝑏 ⇒ 𝑤 or 𝑏𝑎𝑏𝑛 ⇒ 𝑤. By the preceding remark, the word 𝑤 has
to be of the form 𝑏𝑛−𝑖𝑎𝑏𝑎𝑖 (resp. 𝑎𝑖𝑏𝑎𝑏𝑛−𝑖) with 0 < 𝑖 ⩽ 𝑛 and therefore is
reducible by the rule 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏, which contradicts the assumption that the
rewriting system is reduced. □

As an alternative example, it is shown in [203] that the monoid (in fact,
group) presented by

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏𝑏𝑎 = 1 ⟩
admits no finite convergent presentation on the same generators.

5.3.4 Other Tietze transformations. The result of Proposition 5.3.3 can be
restated as follows: there is a finite 2-polygraph 𝑃 which cannot be transformed
into a finite convergent one by using Tietze transformations (T2) only. However,
this does not bring a definitive answer to the original question of universality
of rewriting raised at the beginning of this section, since it does not rule out
the possibility of turning a presentation into a convergent one by using both
transformations (T1) and (T2). In fact, this is the case for the presentation (5.1)
of 𝐵+3 . Namely, if we use a transformation (T1) to introduce a generator 𝑐 and a
relation 𝑏𝑎 = 𝑐, the resulting presentation can be completed into a convergent
one, this was already detailed in Example 5.2.6: adding a superfluous generator
allows the Knuth-Bendix procedure to produce a convergent presentation of 𝐵+3 .
Finding a counter-example to the problem of universality in full generality is
much more difficult and will be addressed in Chapters 8 and 9.

The situation encountered for 𝐵+3 , where the introduction of a definable
generator improves the properties of the presentation is not an “isolated case”.
For instance for every natural number 𝑛 > 3, the plactic monoid 𝑃𝑛 of type 𝐴
does not have a finite presentation on the usual generators [226]. However,
if we add the column generators, we get a finite presentation [46, 74, 172],
see Section B.2 for details on convergent presentations of plactic monoids.
Modified Knuth-Bendix completion procedures have been proposed in order to
exploit this and allow for adding generators to handle such situations [166].

5.3.5 Conditions for convergence. Since not every monoid admits a presen-
tation by a finite convergent rewriting system, a natural question is whether
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there are natural conditions on monoids which ensure that this is the case.
Diekert [114] has addressed this question in the case of abelian groups: he de-
rived a whole class of finite string rewriting systems presenting abelian groups
with decidable word problem, which are not Tietze equivalent to a finite con-
vergent string rewriting system on the same alphabet. Moreover, he constructed
necessary and sufficient conditions for the existence of a convergent presen-
tation for finitely generated abelian groups. However, the question for general
monoids was still open at this time and new methods had to be introduced
to solve this problem, which concerns intrinsic properties of the presented
monoid. In this direction, Squier introduced in [326, 328] homotopical and ho-
mological approaches to formulate necessary conditions for a finitely presented
monoid to have a finite convergent presentation. The homotopical construction
is presented in Chapter 8 and the homological one in Chapter 9.



6
Linear rewriting

This chapter presents rewriting techniques for associative algebras. We look
here for algorithms turning a given presentation by generators and relations into
a rewriting system by orienting the latter, thereby producing linear bases of the
presented algebra. In particular, this approach applies to various fundamental
decision problems, such as the word problem, ideal membership, or to compute
quadratic bases, e.g., Poincaré-Birkhoff-Witt bases, Hilbert series, syzygies of
presentations, homology groups and Poincaré series. However, if we require
rewriting rules to be compatible with the linear structure, we immediately face
the following problem: for any rule 𝑢 → 𝑣, we also have −𝑢 → −𝑣 and thus

𝑣 = −𝑢 + (𝑢 + 𝑣) → −𝑣 + (𝑢 + 𝑣) = 𝑢.

Therefore, 𝑢 → 𝑣 implies 𝑣→ 𝑢 and thus no rewriting system can be terminat-
ing. In order to fix this problem, one can either restrict rewriting to be decreasing
with respect to a monomial order, as in the non-commutative Gröbner basis
approach [39, 44, 289], or consider the structure of linear polygraph introduced
in [160] with an appropriate notion of reduction. It is the latter notion that we
present in this chapter.

We first introduce linear polygraphs as a framework for linear rewriting in
Section 6.1. We then study the confluence properties of linear polygraphs in
Section 6.2. Finally, in Section 6.3, we express Gröbner bases and Poincaré-
Birkhoff-Witt bases in the setting of linear polygraphs. The polygraphic ap-
proach presented in this chapter subsumes many linear rewriting models de-
veloped throughout the 20th century. We present a brief historical overview of
these works in Section 6.4.

The way to define rewriting in associative algebras depends on the definition
considered for the associative algebra structure, either as an internal monoid in
the category of vector spaces, or a linear category with a single object [287].
In this chapter, we consider the first point of view, as introduced in [160].

146
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6.1 Linear rewriting

In this section, we introduce the notion of rewriting in associative algebras.

6.1.1 Associative algebras. Suppose fixed a ground field k. An (associative)
algebra (𝐴, 𝑚, 𝑒) consists of a k-vector space 𝐴 together with an operation
𝑚 : 𝐴 ⊗ 𝐴→ 𝐴 and an element 𝑒 ∈ 𝐴 such that the operation 𝑚 is associative
and admits 𝑒 as neutral element. Otherwise said, an algebra is a monoid object
(see Example 10.1.5) in the category Vect of vector spaces and linear maps. A
morphism of algebras 𝜙 : (𝐴, 𝑚, 𝑒) → (𝐵, 𝑚′, 𝑒′) is a linear map 𝜙 : 𝐴 → 𝐵

which is compatible with operations 𝑚 and 𝑚′ and the neutral elements:

𝜙(𝑚(𝑥, 𝑦)) = 𝑚′ (𝜙(𝑥), 𝜙(𝑦)), 𝜙(𝑒) = 𝑒′,
for all 𝑥, 𝑦 in 𝐴. We denote by Alg the category of algebras and their morphisms.

6.1.2 Free algebras. Given a set 𝑃0, we will denote by 𝑃ℓ0 the free algebra
over 𝑃0. A monomial of 𝑃ℓ0 is an element of the free monoid 𝑃∗0 over 𝑃0. The
monomials of 𝑃ℓ0 form a linear basis of the algebra 𝑃ℓ0 , thus every 0-cell 𝑝 of 𝑃ℓ0
can be uniquely written as a linear combination

𝑝 =
𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖

of pairwise distinct monomials 𝑢1, . . . , 𝑢𝑘 of 𝑃ℓ0 , with 𝜆1, . . . , 𝜆𝑝 non-zero
scalars, called the canonical decomposition of 𝑝. We define the support of 𝑝 as
the set supp (𝑝) = {𝑢1, . . . , 𝑢𝑘}.

6.1.3 Linear 1-polygraphs. A linear 1-polygraph consists of a set 𝑃0, together
with a set 𝑃1 equipped with two functions 𝑠0, 𝑡0 : 𝑃1 → 𝑃ℓ0 . Such a polygraph
is thus characterized by a diagram of sets and functions

𝑃0

𝑖0
��

𝑃1
𝑠0

�� 𝑡0��

𝑃ℓ0

(6.1)

where 𝑃ℓ0 is the free algebra over a set 𝑃0 and 𝑖0 : 𝑃0 → 𝑃ℓ0 is the canonical
inclusion. We often write

⟨ 𝑥𝑖 | 𝛼𝑖 : 𝑢𝑖 → 𝑣𝑖 ⟩
for a 1-polygraph with the 𝑥𝑖 as elements of 𝑃0 and the 𝛼𝑖 as elements of 𝑃1
with 𝑠0 (𝛼𝑖) = 𝑢𝑖 and 𝑡0 (𝛼𝑖) = 𝑣𝑖 .
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6.1.4 One-dimensional algebras. A 1-algebra is a category internal to Alg.
It thus consists of a diagram

𝐴0 𝐴1
𝑠0oo

𝑡0
oo

comprising two algebras 𝐴0 and 𝐴1, whose elements are respectively called 0-
and 1-cells, and two algebra morphisms 𝑠0, 𝑡0 : 𝐴1 → 𝐴0 respectively providing
the source and target of a 1-cell, together with an algebra morphism 𝑖 : 𝐴0 → 𝐴1
which to every 0-cell 𝑝 associates the identity 𝑖(𝑝) on 𝑝, and an algebra
morphism 𝑚 : 𝐴1 ×𝐴0 𝐴1 → 𝐴1 which to every pair of composable 1-cells
associates their composite, in such a way that composition is associative and
admits identities as neutral elements. According to our notations for categories,
we set 𝑚(𝜙, 𝜙′) = 𝜙 ∗0 𝜙′ for any pair 𝜙, 𝜙′ of composable 1-cells.

6.1.5 Lemma. Let 𝐴 be 1-algebra, then

– for all composable 1-cells 𝜙 and 𝜙′ in 𝐴,

𝜙 ∗0 𝜙′ = 𝜙 − 𝑡0 (𝜙) + 𝜙′, (6.2)

– every 1-cell 𝜙 in 𝐴 is invertible with inverse

𝜙− = 𝑠0 (𝜙) − 𝜙 + 𝑡0 (𝜙),
– the product of two 1-cells 𝜙, 𝜙′ in 𝐴 decomposes into

𝜙𝜙′ = 𝜙𝑠0 (𝜙′) + 𝑡0 (𝜙)𝜙′ − 𝑡0 (𝜙)𝑠0 (𝜙′)
= 𝑠0 (𝜙)𝜙′ + 𝜙𝑡0 (𝜙′) − 𝑠0 (𝜙)𝑡0 (𝜙′).

(6.3)

Proof. For any composable 1-cells 𝜙 and 𝜙′ in 𝐴, we have

𝜙 ∗0 𝜙′ = (𝜙 − 𝑠0 (𝜙′) + 𝑠0 (𝜙′)) ∗0 (𝑡0 (𝜙) − 𝑡0 (𝜙) + 𝜙′).
By linearity of the 0-composition, this implies

𝜙 ∗0 𝜙′ = 𝜙 ∗0 𝑡0 (𝜙) − 𝑠0 (𝜙′) ∗0 𝑡0 (𝜙) + 𝑠0 (𝜙′) ∗0 𝜙′

and by neutrality of identities we get (6.2).
The second condition is deduced from the first one. Let 𝜙 be a 1-cell in 𝐴,

we set 𝜙− = 𝑠0 (𝜙) − 𝜙 + 𝑡0 (𝜙). We have 𝑠0 (𝜙−) = 𝑡0 (𝜙) and 𝑡0 (𝜙−) = 𝑠0 (𝜙).
Moreover, from (6.2), we have 𝜙 ∗0 𝜙− = 𝑠0 (𝜙) and 𝜙− ∗0 𝜙 = 𝑡0 (𝜙). We have
thus proved that 𝜙− is 0-inverse of 𝜙.

Let us prove the third condition. Let 𝜙, 𝜙′ be 1-cells in 𝐴. The product of
these two 1-cells in 𝐴1 decomposes into

𝜙𝜙′ = (𝜙 ∗0 𝑡0 (𝜙)) (𝑠0 (𝜙′) ∗0 𝜙′).
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The 0-composition being an algebra morphism, we deduce that

𝜙𝜙′ = 𝜙𝑠0 (𝜙′) ∗0 𝑡0 (𝜙)𝜙′.
From (6.2), we deduce the first equality in (6.3). The second equality is proved
symmetrically. □

6.1.6 Free 1-algebras. A linear 1-polygraph 𝑃 generates a free 1-algebra,
denoted by 𝑃ℓ , with 𝑃ℓ0 as algebra of 0-cells and an algebra 𝑃ℓ1 of 1-cells that
we now describe. A 1-monomial of 𝑃ℓ is a triple

𝑢𝛼𝑣 (6.4)

with 𝑢, 𝑣 ∈ 𝑃∗0 monomials and 𝛼 ∈ 𝑃1. We respectively define the source and
target of such a monomial by

𝑠ℓ0 (𝑢𝛼𝑣) = 𝑢𝑠0 (𝛼)𝑣, 𝑡ℓ0 (𝑢𝛼𝑣) = 𝑢𝑡0 (𝛼)𝑣.
We consider (𝑃ℓ0 ⊗ k𝑃1 ⊗ 𝑃ℓ0) ⊕ 𝑃ℓ0 the free 𝑃ℓ0-bimodule on 1-monomials, and
we form the 𝑃ℓ0-bimodule

𝑃ℓ1 = (𝑃ℓ0 ⊗ k𝑃1 ⊗ 𝑃ℓ0) ⊕ 𝑃ℓ0/∼,
whose elements are linear combinations of the form

𝜙 =
∑︁
𝑖

𝜆𝑖𝜙𝑖 + 1𝑝 , (6.5)

where the 𝜙𝑖 are distinct monomials and 1𝑝 is a formal identity on a 0-
cell 𝑝 ∈ 𝑃ℓ0 , quotiented by the relation ∼ generated by the relations

𝜙𝑠ℓ0 (𝜓) + 𝑡ℓ0 (𝜙)𝜓 − 𝑡ℓ0 (𝜙)𝑠ℓ0 (𝜓) = 𝑠ℓ0 (𝜙)𝜓 + 𝜙𝑡ℓ0 (𝜓) − 𝑠ℓ0 (𝜙)𝑡ℓ0 (𝜓), (6.6)

where 𝜙 and 𝜓 range over 1-monomials. The relation (6.6) encodes a linear
version of the exchange law. The multiplication of the algebra structure in 𝑃ℓ1
precisely associates to two 1-cells 𝜙 and 𝜓 the cell defined by either member
of (6.6). The source and target maps are the above functions 𝑠ℓ0 and 𝑡ℓ0 on
monomials, extended by linearity. Given a 1-cell 𝜙 in 𝑃ℓ , its size is the minimum
number of 1-monomials 𝜙𝑖 occurring in a decomposition of the form (6.5) of 𝜙.
In particular, a monomial is of size 1.

If we write 𝑖1 : 𝑃1 → 𝑃ℓ1 for the canonical inclusion, sending 𝛼 ∈ 𝑃1 to the
monomial (6.4) where 𝑢 and 𝑣 are the empty words, we obtain a diagram

𝑃0

𝑖0
��

𝑃1
𝑠0

�� 𝑡0
��

𝑖1
��

𝑃ℓ0 𝑃ℓ1

𝑠ℓ0oo

𝑡ℓ0

oo
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which “commutes” in the sense that we have 𝑠ℓ0 ◦ 𝑖1 = 𝑠0 and 𝑡ℓ0 ◦ 𝑖1 = 𝑡0. In the
following, we often simply write respectively 𝑠 (𝜙) and 𝑡 (𝜙) instead of 𝑠ℓ0 (𝜙)
and 𝑡ℓ0 (𝜙) for the source and target of a 1-cell 𝜙.

The free 1-algebra 𝑃ℓ is characterized by the following universal property:

6.1.7 Lemma. Suppose given a linear 1-polygraph 𝑃, a 1-algebra 𝐴 with 𝑃ℓ0
as underlying algebra of 0-cells and a function 𝑓 : 𝑃1 → 𝐴1 such that for every
1-generator 𝛼 : 𝑢 → 𝑣 in 𝑃1, we have 𝑓 (𝛼) : 𝑢 → 𝑣. Then there exists a unique
morphism of 1-algebras

𝑓 ∗ : 𝑃ℓ → 𝐴

such that 𝑓 ∗ (𝛼) = 𝑓 (𝛼) for every 𝛼 in 𝑃1, seen as a 1-cell in 𝑃ℓ .

In the sequel, we will use the following decomposition result.

6.1.8 Lemma. Let 𝑃 be a linear 1-polygraph. Then, every non-identity 1-cell 𝜙
of 𝑃ℓ admits a decomposition 𝜙 = 𝜙1 ∗0 · · · ∗0 𝜙𝑘 , for some 𝑘 ∈ N, where the
𝜙𝑖 are 1-cells of size 1 in 𝑃ℓ .

Proof. The 1-cell 𝜙 decomposes into 𝜙 = 𝜆1𝜓1 + . . .+𝜆𝑘𝜓𝑘 +1𝑝 . When 𝑘 = 1,
the 1-cell 𝜙 is of size 1. Otherwise, for any 𝑖 ∈ {1, . . . , 𝑘}, we set

𝛼𝑖 = 𝜆1𝑡 (𝜓1) + . . . + 𝜆𝑖𝑡 (𝜓𝑖), 𝛽𝑖 = 𝜆1𝑠(𝜓1) + . . . + 𝜆𝑘𝑠(𝜓𝑘)
and 𝛼0 = 𝛽𝑝+1 = 0. For each 𝑖 ∈ {1, . . . , 𝑘}, we define the 1-cell of size 1

𝜙𝑖 = 𝜆𝑖𝜓𝑖 + 1𝑝 + 1𝛼𝑖−1 + 1𝛽𝑖+1 .

We have 𝑠(𝜙𝑖) = 𝑝 + 𝛼𝑖−1 + 𝛽𝑖 and 𝑡 (𝜙𝑖) = 𝑝 + 𝛼𝑖 + 𝛽𝑖+1, so that 𝜙1 ∗0 · · · ∗0 𝜙𝑘
is a well-defined 1-cell of 𝑃ℓ . Following relation (6.2), we deduce

𝜙1∗0· · ·∗0𝜙𝑝 =
𝑘∑︁
𝑖=1

𝜆𝑖𝜓𝑖+
𝑘∑︁
𝑖=1
(1𝑝+1𝛼𝑖−1+1𝛽𝑖+1 )−

𝑘−1∑︁
𝑖=1
(𝜆𝑖1𝑡 (𝜓𝑖 )+1𝑝+1𝛼𝑖−1+1𝛽𝑖+1 ).

We conclude thanks to 𝛼𝑘−1 = 𝜆1𝑡 (𝜓1) + . . . + 𝜆𝑘−1𝑡 (𝜓𝑘−1), and 𝛽𝑘+1 = 0. □

6.1.9 Presentations and ideals of linear polygraphs. Let 𝑃 be a linear 1-
polygraph. The algebra presented by 𝑃 is the quotient algebra 𝑃 = 𝑃ℓ0/𝑃1 of
the algebra 𝑃ℓ0 by the congruence generated by the 1-generators in 𝑃1. We will
denote by 𝑝 the image of a 0-cell 𝑝 of 𝑃ℓ0 through the canonical projection. We
say that an algebra 𝐴 is presented by 𝑃, or that 𝑃 is a presentation of 𝐴, if 𝐴 is
isomorphic to 𝑃. Two linear 1-polygraphs 𝑃 and 𝑄 are Tietze equivalent when
they present isomorphic algebras: 𝑃 ≃ 𝑄.

We define the boundary of a 1-cell 𝜙 in the free 1-algebra 𝑃ℓ , as the 0-cell

𝑑 (𝜙) = 𝑡0 (𝜙) − 𝑠0 (𝜙).
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We denote by 𝐼 (𝑃) the ideal of the algebra 𝑃ℓ0 generated by the boundaries of
the 1-cells in 𝑃1. Since the algebra 𝑃ℓ0 is free, the ideal 𝐼 (𝑃) is consists of all
the linear combinations

𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖𝑑 (𝛼𝑖)𝑣𝑖 ,

where the 𝑢𝑖𝛼𝑖𝑣𝑖 are pairwise distinct 1-monomials of 𝑃ℓ , and the 𝜆𝑖 are non-
zero scalars, so that the algebra 𝑃 is isomorphic to the quotient of 𝑃ℓ0 by 𝐼 (𝑃).
6.1.10 Example. The Weyl algebra of dimension 𝑛 over a field k of charac-
teristic zero is the algebra presented by the linear 1-polygraph whose 0-cells
are

𝑥1, . . . , 𝑥𝑛, 𝜕1, . . . , 𝜕𝑛

and with the following 1-cells:

𝑥𝑖𝑥 𝑗 → 𝑥 𝑗𝑥𝑖 𝜕𝑖𝜕 𝑗 → 𝜕 𝑗𝜕𝑖 𝜕𝑖𝑥 𝑗 → 𝑥 𝑗𝜕𝑖 for any 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛,
𝜕𝑖𝑥𝑖 → 𝑥𝑖𝜕𝑖 + 1 for any 1 ⩽ 𝑖 ⩽ 𝑛.

6.1.11 Lemma. Let 𝑃 be a linear 1-polygraph. For all 0-cells 𝑝 and 𝑞 of 𝑃ℓ0 ,
the following two conditions are equivalent:

1. The 0-cell 𝑞 − 𝑝 belongs to the ideal 𝐼 (𝑃).
2. There exists a 1-cell 𝜙 : 𝑝 → 𝑞 in the free 1-algebra 𝑃ℓ .

As a consequence, 𝐼 (𝑃) exactly contains the 0-cells 𝑝 of 𝑃ℓ such that 𝑝 = 0
holds in 𝑃.

Proof. Suppose that 𝑞 − 𝑝 ∈ 𝐼 (𝑃), that is,

𝑞 − 𝑝 =
∑︁

1⩽𝑖⩽𝑘
𝜆𝑖𝑢𝑖𝑑 (𝛼𝑖)𝑣𝑖 .

Then the following 1-cell 𝜙 of 𝑃ℓ has source 𝑝 and target 𝑞:

𝜙 =
𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖𝛼𝑖𝑣𝑖 +
(
𝑝 −

𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖𝑠 (𝛼𝑖)𝑣𝑖
)
.

Conversely, let 𝜙 : 𝑝 → 𝑞 be a 1-cell of 𝑃ℓ . Using Lemma 6.1.8, we
decompose 𝜙 into 1-cells of size 1:

𝜙 = 𝜙1 ∗0 · · · ∗0 𝜙𝑘 with 𝜙𝑖 = 𝜆𝑖𝑢𝑖𝛼𝑖𝑣𝑖 + ℎ𝑖 .
Since 𝑡 (𝜙𝑖) = 𝑠 (𝜙𝑖+1), we have 𝑞 − 𝑝 = 𝑑 (𝜙1) + · · · + 𝑑 (𝜙𝑝). Moreover, since
𝑑 (𝜙𝑖) = 𝜆𝑖𝑢𝑖𝑑 (𝛼𝑖)𝑣𝑖 we have that each 𝑑 (𝜙𝑖) belongs to 𝐼 (𝑃), and thus so
does 𝑞 − 𝑝.
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Finally, if one applies the equivalence to the case 𝑝 = 0, since 0 = 0 holds
in 𝑃, we get that 𝑞 is in 𝐼 (𝑃) if and only if we have 𝑞 = 0 in 𝑃. □

6.1.12 Left-monomiality. A linear 1-polygraph 𝑃 is left-monomial if, for ev-
ery 1-generator 𝛼 of 𝑃1, the source of 𝛼 is a monomial of 𝑃ℓ0 that does not
belong to supp (𝑡 (𝛼)). Note that, from any linear 1-polygraph 𝑃, one obtains
a Tietze equivalent left-monomial linear 1-polygraph as follows. For every
1-generator 𝛼 in 𝑃1, if the boundary 𝑑 (𝛼) is 0, discard 𝛼, otherwise, replace 𝛼
with

𝛼′ : 𝑢 → 𝑢 − 1
𝜆
𝑑 (𝛼),

where 𝑢 is any chosen monomial in supp (𝑑 (𝛼)) and 𝜆 is the coefficient of 𝑢
in 𝑑 (𝛼).

6.2 Rewriting properties of linear polygraphs

In the linear setting, the definition of a rewriting step is more difficult than in the
set-theoretic case, which can be explained as follows. In the set-theoretic case
developed in previous chapters, a 1-polygraph 𝑃 generates two different objects:
a free 1-category 𝑃∗ and a free 1-groupoid 𝑃⊤. In this situation, we define a
rewriting step as a size-one 1-cell of 𝑃∗, and their compositions generate all
the 1-cells of 𝑃∗. But, in the case of associative algebras, there is no difference
between the free 1-category and the free 1-groupoid (see also Theorem 18.3.3),
which is the cause of the problem mentioned in the introduction of the present
chapter. For this reason, we need adopt a different point of view to define
rewriting steps and positive 1-cells. Here, we identify, among the 1-cells of 𝑃ℓ ,
a set of positive 1-cells that will play the same role as the 1-cells of 𝑃∗ with
respect to 𝑃⊤ in the case of set-theoretic rewriting. When defining this set,
we need to ensure that two conditions are satisfied. Firstly, the set of positive
1-cells should be big enough for every 1-cell of 𝑃ℓ to factor into a composite
of positive 1-cells and opposites of positive 1-cells, as given by Lemma 6.1.8
and Lemma 6.2.2. Secondly, the set of positive 1-cells should be small enough
for preventing a non-trivial 1-cell and its inverse to be positive at the same time,
so that the polygraph has a chance to be terminating.

In this section, 𝑃 denotes a left-monomial linear 1-polygraph.

6.2.1 Rewriting steps and normal forms. A rewriting step of 𝑃 is a 1-cell
𝜆𝜙 + 1𝑝 of size 1 of the free 1-algebra 𝑃ℓ that satisfies the condition

supp (𝜆𝑠 (𝜙) + 𝑝) = {𝑠 (𝜙)} ⊔ supp (𝑎),
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that is, such that 𝜆 ≠ 0 and 𝑠 (𝜙) ∉ supp (𝑝). A 1-cell of the free 1-algebra 𝑃ℓ is
called positive if it is a (possibly empty) 0-composite 𝜙1 ∗0 · · · ∗0 𝜙𝑘 of rewriting
steps of 𝑃.

6.2.2 Lemma. Let 𝑃 be a left-monomial linear 1-polygraph. Every 1-cell 𝜙 of
size 1 of 𝑃ℓ can be decomposed into 𝜙 = 𝜓 ∗0 𝜒− , where each of 𝜓 and 𝜒 is
either an identity or a rewriting step of 𝑃.

Proof. Write 𝜙 = 𝜆𝜙′ + 1𝑞 , where 𝜙′ : 𝑢 → 𝑝 is a 1-monomial of 𝑃ℓ . Let 𝜇
be the coefficient of 𝑢 in 𝑞, possibly zero, so that 𝑞 = 𝜇𝑢 + 𝑟 with 𝑟 such that
supp (𝑟) does not contain 𝑢. Put

𝜓 = (𝜆 + 𝜇)𝜙′ + 1𝑟 and 𝜒 = 𝜆1𝑝 + 𝜇𝜙′ + 1𝑟 .

The linearity of the 0-composition of 𝑃ℓ gives 𝜙 = 𝜓 ∗0 𝜒− . Moreover, by
hypothesis, 𝑢 does not belong to any of supp (𝑝) or supp (𝑟). As a consequence,
each of the 1-cells 𝜓 and 𝜒 is either an identity (if 𝜆 + 𝜇 = 0 for 𝜓, if 𝜇 = 0
for 𝜒) or a rewriting step. □

6.2.3 Reduced cells and normal forms. A 0-cell 𝑝 of 𝑃ℓ0 is called reduced if
there is no rewriting step of 𝑃 of source 𝑝. The reduced 0-cells of 𝑃ℓ0 form a
linear subspace of the free algebra 𝑃ℓ0 which we denote by Red(𝑃). Because 𝑃
is left-monomial, the set of reduced monomials of 𝑃ℓ0 , denoted by Red𝑚 (𝑃),
forms a basis of Red(𝑃).

If 𝑝 is a 0-cell of 𝑃ℓ0 , a normal form of 𝑝 is a reduced 0-cell 𝑞 of 𝑃ℓ0 such that
there exists a positive 1-cell of source 𝑝 and target 𝑞 in the free 1-algebra𝑃ℓ .

6.2.4 Binary relations on free algebras. Assume that ⊢ is a binary relation on
the free monoid 𝑃∗0 generated by the set 𝑃0. We say that ⊢ is stable by context
if 𝑢 ⊢ 𝑢′ implies 𝑣𝑢𝑤 ⊢ 𝑣𝑢′𝑤 for all 𝑢, 𝑢′, 𝑣 and 𝑤 in 𝑃∗0. We say that ⊢ is
compatible with 𝑃1 if 𝑢 ⊢ 𝑣 holds for every 1-cell 𝛼 : 𝑢 → 𝑝 in 𝑃1 and every
monomial 𝑣 in supp (𝑝).

The relation ⊢ is extended to the 0-cells of the free algebra 𝑃ℓ0 by setting 𝑝 ⊢ 𝑞
when the following two conditions hold:

1. supp (𝑝) \ supp (𝑞) ≠ ∅,
2. for every 𝑣 in supp (𝑞) \ supp (𝑝), there exists 𝑢 in supp (𝑝) \ supp (𝑞), such

that 𝑢 ⊢ 𝑣.
As a consequence, if 𝑢 is a monomial and 𝑝 is a 0-cell of 𝑃ℓ0 , then 𝑢 ⊢ 𝑝 holds if
and only if 𝑢 ⊢ 𝑣 holds for every 𝑣 in supp (𝑝). Hence, we use the same notation
for the relation on 𝑃∗0 and for its extension to the 0-cells of 𝑃ℓ0 .

The relation ⊢ on the 0-cells of 𝑃ℓ0 corresponds to the restriction to finite
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subsets of 𝑃∗0 of the so-called multiset relation generated by ⊢. We refer to [20,
Section 2.5] for the general definition and the main properties of multiset
relations, and, in particular, the fact that ⊢ is well-founded on the 0-cells if and
only if it is well-founded on the monomials, see also §1.4.1.

6.2.5 The termination order. Define ≻𝑃 as the smallest transitive binary
relation on 𝑃∗0 that is stable by context and compatible with 𝑃1. We say that
the polygraph 𝑃 terminates if the relation ≻𝑃 is well-founded. In that case,
the reflexive closure ≽𝑃 of the relation ≻𝑃 is a well-founded order, called
the termination order of 𝑃 (this relation is also sometimes written ∗→). This
notion of termination order on linear polygraphs corresponds to that defined
for 2-polygraphs in Section 4.4.

Assume that the polygraph 𝑃 terminates. Then the minimal 0-cells for the
termination order of 𝑃 are the reduced ones. Moreover, for every non-identity
positive 1-cell 𝑝 of𝑃ℓ1 , we have 𝑠 (𝑝) ≻𝑃 𝑡 (𝑝). This implies that the 1-algebra𝑃ℓ
contains no infinite sequence of 0-composable rewriting steps

𝑝0
𝜙1 // 𝑝1

𝜙2 // · · · 𝜙𝑛−1 // 𝑎𝑛−1
𝜙𝑛
// 𝑎𝑛

𝜙𝑛+1 // · · ·

As a consequence, every 0-cell of 𝑃ℓ0 admits at least one normal form. If 𝑃
terminates, induction on the well-founded order ≻𝑃 is called noetherian induc-
tion.

6.2.6 Monomial orders. A well-founded total order ⩽ on the free monoid 𝑃∗0
such that the relation < is stable by context, is called a monomial order. A
classical example of a monomial order is given, for any well-founded total order
relation > on 𝑃0, by the deglex order generated by >, as already introduced in
§4.4.11, which is defined by

1. 𝑢 >deglex 𝑣 for all monomials 𝑢 and 𝑣 of 𝑃∗0 such that 𝑢 has greater length
than 𝑣, and

2. 𝑢𝑥𝑣 >deglex 𝑢𝑦𝑤 for all 𝑥 > 𝑦 of 𝑃0, and monomials 𝑢, 𝑣 and 𝑤 of 𝑃ℓ0 such
that 𝑣 and 𝑤 have the same length.

Given a monomial order ≼ on 𝑃ℓ0 . If 𝑝 is a non-zero 1-cell of 𝑃ℓ0 , the leading
monomial of 𝑝 is the maximum element of supp (𝑝) with respect to ≼ (or 0
if supp (𝑝) is empty), it is denoted by lm≼ (𝑝). The leading coefficient of 𝑝
is the coefficient lc≼ (𝑝) of lm≼ (𝑝) in 𝑝, and the leading term of 𝑝 is the
element lt≼ (𝑝) = lc≼ (𝑝)lm≼ (𝑝) of 𝑃ℓ0 . Observe that, for 𝑝 and 𝑞 in 𝑃ℓ0 , we
have 𝑝 ≺ 𝑞 if and only if either lm≼ (𝑝) ≺ lm≼ (𝑞) or (lt≼ (𝑝) = lt≼ (𝑞) and
𝑝 − lt≼ (𝑝) ≺ 𝑞 − lt≼ (𝑞)).

If there exists a monomial order ≻ on 𝑃ℓ0 that is compatible with 𝑃1, then the
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polygraph 𝑃 terminates: the order ≻ is well-founded, and 𝑝 ≻𝑃 𝑞 implies 𝑝 ≻ 𝑞
for all 0-cells 𝑝 and 𝑞. However, the converse implication does not hold, as
illustrated by the following example.

6.2.7 Example. The following linear 1-polygraph terminates:

𝑃 =
〈
𝑥, 𝑦, 𝑧

�� 𝛾 : 𝑥𝑦𝑧 → 𝑥3 + 𝑦3 + 𝑧3 〉
.

Indeed, for every monomial 𝑢 of 𝑃ℓ1 , denote by 𝐴(𝑢) the number of factors 𝑥𝑦𝑧
that occur in 𝑢, by 𝐵(𝑢) the number of 𝑦 that 𝑢 contains, and we consider the
function𝐶 (𝑢) = 3𝐴(𝑢) + 𝐵(𝑢). It is sufficient to check that𝐶 (𝑢𝑥𝑦𝑧𝑣) is strictly
greater than each of 𝐶 (𝑢𝑥3𝑣), 𝐶 (𝑢𝑦3𝑣) and 𝐶 (𝑢𝑧3𝑣), for all monomials 𝑢 and 𝑣
of 𝑃ℓ1 , see [160, Example 3.2.4] for details. However, no monomial order on 𝑃ℓ0
is compatible with 𝑃1, because, for such an order ≻, one of the monomials 𝑥3,
𝑦3, 𝑧3 is always greater than 𝑥𝑦𝑧.

6.2.8 Lemma. If 𝑃 is a terminating left-monomial linear 1-polygraph, then,
as a vector space, 𝑃ℓ0 admits the decomposition

𝑃ℓ0 = Red(𝑃) + 𝐼 (𝑃).
Proof. Since the polygraph 𝑃 terminates, every 0-cell 𝑝 of 𝑃ℓ0 admits at least a
normal form 𝑞. Let us write 𝑝 = 𝑞+ (𝑝−𝑞), and note that 𝑞 belongs to Red(𝑃),
by hypothesis, and that 𝑝 − 𝑞 is in 𝐼 (𝑃), by Lemma 6.1.11. □

6.2.9 Branchings. A branching of the polygraph 𝑃 is a pair (𝜙, 𝜓) of positive
1-cells of the free 1-algebra 𝑃ℓ with the same source, called the source of (𝜙, 𝜓).
We do not distinguish the branchings (𝜙, 𝜓) and (𝜓, 𝜙). A branching (𝜙, 𝜓)
of 𝑃 is called local if both 𝜙 and 𝜓 are rewriting steps of 𝑃ℓ . For a branching
(𝜙, 𝜓) of 𝑃 of source 𝑝, define the branching

𝜆𝑢(𝜙, 𝜓)𝑣 + 𝑞 = (𝜆𝑢𝜙𝑣 + 𝑞, 𝜆𝑢𝜓𝑣 + 𝑞),
of 𝑃 of source 𝜆𝑢𝑝𝑣 + 𝑞, for all scalar 𝜆, monomials 𝑢 and 𝑣 and 0-cell 𝑞 of 𝑃ℓ .
Note that, if (𝜙, 𝜓) is local and 𝜆 ≠ 0, then 𝜆𝑢(𝜙, 𝜓) + 𝑞 is also local.

6.2.10 Classification of local branchings. Consider a local branching

(𝜆𝑢1𝛼𝑢2 + 𝑝, 𝜇𝑣1𝛽𝑣2 + 𝑞)
of 𝑃. We have two main possibilities, depending on whether

𝑢1𝑠 (𝛼)𝑢2 = 𝑣1𝑠 (𝛽)𝑣2
holds or not. Moreover, in the case of equality, there are three different situa-
tions, depending on the respective positions of 𝑠 (𝛼) and 𝑠 (𝛽) in this common
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monomial. This analysis leads to a partition of the local branchings of 𝑃 into
the following four families.

1. Trivial branchings: 𝜆(𝜙, 𝜙) + 𝑞, for all 1-monomial 𝜙 : 𝑢 → 𝑝 of 𝑃ℓ ,
non-zero scalar 𝜆, and 0-cell 𝑞 of 𝑃ℓ , with 𝑢 ∉ supp (𝑞).

2. Additive branchings: (𝜆𝜙+𝜇𝑣+𝑟, 𝜆𝑢+𝜇𝜓+𝑟), for all 1-monomials 𝜙 : 𝑢 → 𝑝

and 𝜓 : 𝑣 → 𝑞 of 𝑃ℓ , non-zero scalars 𝜆 and 𝜇, and 0-cell 𝑟 of 𝑃ℓ , with
𝑢 ≠ 𝑣 and 𝑢, 𝑣 ∉ supp (𝑟).

3. Multiplicative branchings: 𝜆(𝜙𝑣, 𝑢𝜓)+𝑟, for all 1-monomials 𝜙 : 𝑢 → 𝑝 and
𝜓 : 𝑣→ 𝑞 of 𝑃ℓ , non-zero scalar 𝜆, and 0-cell 𝑟 of 𝑃ℓ , with 𝑢, 𝑣 ∉ supp (𝑟).

4. Overlapping branchings: 𝜆(𝜙, 𝜓) + 𝑟 , for all 1-monomials 𝜙 : 𝑢 → 𝑝 and
𝜓 : 𝑢 → 𝑞 of 𝑃ℓ such that (𝜙, 𝜓) is neither trivial nor multiplicative, every
non-zero scalar 𝜆, and every 0-cell 𝑟 of 𝑃ℓ , with 𝑢 ∉ supp (𝑟).

The critical branchings of 𝑃 are the overlapping branchings of 𝑃 such that 𝜆 = 1
and 𝑟 = 0, and that cannot be factored (𝜙, 𝜓) = 𝑢(𝜙′, 𝜓′)𝑣 in a non-trivial way.
Note that an overlapping branching has a unique decomposition 𝜆𝑢(𝜙, 𝜓)𝑣 + 𝑟,
with (𝜙, 𝜓) critical.

6.2.11 Confluence. Assume that 𝑃 is a left-monomial linear 1-polygraph. A
branching (𝜙, 𝜓) of 𝑃 is called confluent if there exist positive 1-cells 𝜙′ and 𝜓′
of 𝑃ℓ1 as in

𝑝
𝜙

~~

𝜓

  
𝑞1

𝜙′   

𝑞2

𝜓′~~
𝑟

If 𝑝 is a 0-cell of 𝑃ℓ0 , we say that 𝑃 is confluent at 𝑝 (resp. locally confluent
at 𝑝, resp. critically confluent) if every branching (resp. local branching, resp.
critical branching) of 𝑃 of source 𝑝 is confluent. We say that 𝑃 is confluent
(resp. locally confluent, resp. critically confluent) if it is so at every 0-cell of 𝑃ℓ .
We say that 𝑃 is convergent when it is both terminating and confluent.

When the polygraph 𝑃 is confluent, then every 0-cell of 𝑃ℓ0 admits at most
one normal form, and when it is convergent then every 0-cell 𝑝 of 𝑃ℓ0 has a
unique normal form, denoted by 𝑝, such that 𝑝 = 𝑞 holds in 𝑃 if and only if
𝑝 = 𝑞 holds in 𝑃ℓ0 . As a consequence, if 𝑃 is a convergent presentation of an
algebra 𝐴, the assignment of each element 𝑝 of 𝐴 to the normal form of any
representative of 𝑝 in 𝑃ℓ , written 𝑝 by extension, defines a section 𝐴→ 𝑃ℓ of
the canonical projection, where 𝐴 is seen as a 1-algebra with identity 1-cells
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only. Note that the section is linear, that is �𝜆𝑝 + 𝜇𝑞 = 𝜆𝑝 + 𝜇𝑞, and it preserves
the unit, that is 1̂ = 1. However, in general the equality 𝑝𝑞 = 𝑝𝑞 does not hold.

6.2.12 Proposition. Let 𝑃 be a terminating left-monomial linear 1-polygraph.
The following assertions are equivalent:

1. The polygraph 𝑃 is confluent.
2. Every 0-cell of 𝐼 (𝑃) admits 0 as a normal form.
3. As a vector space, 𝑃ℓ0 admits the direct decomposition 𝑃ℓ0 = Red(𝑃) ⊕ 𝐼 (𝑃).
Proof. 1⇒ 2. By Lemma 6.1.11, if 𝑝 is in 𝐼 (𝑃), then there exists a 1-cell
𝜙 : 𝑝 → 0 in 𝑃ℓ1 . Since 𝑃 is confluent, this implies that 𝑝 and 0 have the same
normal form, if any. And, since 0 is reduced, this implies that 0 is a normal
form of 𝑝.

2⇒3. By Lemma 6.2.8, it is sufficient to prove that Red(𝑃)∩ 𝐼 (𝑃) is reduced
to 0. On the one hand, if 𝑝 is in Red(𝑃), then 𝑝 is reduced and, thus, admits
itself as only normal form. On the other hand, if 𝑝 is in 𝐼 (𝑃), then 𝑝 admits 0
as a normal form by hypothesis.

3⇒ 1. Consider a branching (𝜙, 𝜓) of 𝑃, with 𝜙 : 𝑝 → 𝑞 and 𝜓 : 𝑝 → 𝑟.
Since 𝑃 terminates, each of 𝑞 and 𝑟 admits at least one normal form, say 𝑞′ and 𝑟 ′
respectively. Hence, there exist positive 1-cells 𝜙′ : 𝑞 → 𝑞′ and 𝜓′ : 𝑟 → 𝑟 ′

in 𝑃ℓ . Note that the difference 𝑞′ − 𝑟 ′ is also reduced. Moreover, the 1-cell
(𝜙 ∗0 𝜙′)− ∗0 (𝜓 ∗0 𝜓′) has 𝑞′ as source and 𝑟 ′ as target. This implies, by
Lemma 6.1.11, that 𝑞′−𝑟 ′ also belongs to 𝐼 (𝑃). The hypothesis gives 𝑞′−𝑟 ′ = 0,
so that (𝜙, 𝜓) is confluent. □

6.2.13 Theorem. Let 𝐴 be an algebra and 𝑃 a convergent presentation of 𝐴.
Then the set Red𝑚 (𝑃) of reduced monomials of 𝑃ℓ is a linear basis of 𝐴. As
a consequence, the vector space Red(𝑃), equipped with the product defined by
𝑝 · 𝑞 = 𝑝𝑞, is an algebra that is isomorphic to 𝐴.

Proof. If 𝑃 is convergent, Proposition 6.2.12 implies that the following se-
quence of vector spaces is exact:

0 // 𝐼 (𝑃) // // 𝑃ℓ0
// // Red(𝑃) // 0.

Thus, since the algebra 𝑃ℓ0/𝐼 (𝑃) is isomorphic to 𝑃, convergence implies that
the set Red𝑚 (𝑃) is a linear basis of 𝑃. We deduce that Red(𝑃) and 𝑃 are
isomorphic as vector spaces. There remains to transport the product of 𝑃
to Red(𝑃) to get the result. □

6.2.14 Proving confluence. The techniques developed in previous chapters
for proving confluence in practical cases can be adapted to the setting of linear
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polygraphs. Namely, by a direct adaptation of the proof in the set-theoretic
case, see Lemma 2.5.8, one can show an analogous of Newman’s lemma: a
terminating left-monomial linear 1-polygraph 𝑃 which is locally confluent is
confluent. The critical branching lemma, see Lemma 4.3.7, also generalizes
to our setting. However, compared to the set-theoretic case, one has to add an
extra termination assumption in order to accommodate with the linearity of
contexts. The reason is explained in Remark 6.2.18 below, and we defer the
proof to next chapter where it will be proved in the more general setting of
coherent presentations, see Lemma 7.6.5.

6.2.15 Lemma. Suppose given a terminating left-monomial linear 1-poly-
graph 𝑃. If 𝑃 is critically confluent, then 𝑃 is locally confluent.

A terminating left-monomial linear 1-polygraph 𝑃 in which all critical branch-
ings are confluent is thus necessarily confluent.

6.2.16 Example. Let 𝐴 be the algebra presented by the linear 1-polygraph

𝑃 =
〈
𝑥, 𝑦

�� 𝛼 : 𝑥𝑦 → 𝑥2 〉
.

This polygraph terminates, because 𝑥𝑦 > 𝑥2 holds for the deglex order gener-
ated by 𝑦 > 𝑥. This presentation is also confluent, because it has no critical
branching, see Lemma 6.2.15. Hence, the set

Red𝑚 (𝑃) =
{
𝑦𝑖𝑥 𝑗

�� 𝑖, 𝑗 ∈ N}
is a linear basis of the algebra 𝐴. Moreover, the product defined by

𝑦𝑖𝑥 𝑗 · 𝑦𝑘𝑥𝑙 =
{
𝑦𝑖𝑥 𝑗+𝑘+𝑙 if 𝑗 ⩾ 𝑘 ,
𝑦𝑖− 𝑗+𝑘𝑥2 𝑗+𝑙 if 𝑗 ⩽ 𝑘 ,

turns Red(𝑃) into an algebra that is isomorphic to 𝐴.
Now, consider the presentation𝑄 =

〈
𝑥, 𝑦

�� 𝛽 : 𝑥2 → 𝑥𝑦
〉

of 𝐴. Termination
of 𝑄 follows from the deglex order generated by 𝑥 > 𝑦, but 𝑄 is not confluent,
since it has a non-confluent critical branching:

𝑥3
𝛽𝑥

~~

𝑥𝛽

  

𝑥𝑦𝑥 𝑥2𝑦

𝛽𝑦
��

𝑥𝑦2

Thus the 0-cell 𝑥𝑦𝑥 − 𝑥𝑦2 is both in Red(𝑄) and 𝐼 (𝑄), proving that the sum
Red(𝑄) + 𝐼 (𝑄) is not direct. As a consequence, Red𝑚 (𝑄) is not a linear basis
of 𝐴.
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6.2.17 Example. The polygraph of Example 6.1.10 that presents the Weyl
algebra of dimension 𝑛 is convergent with the following six families of confluent
critical branchings:

𝑥 𝑗𝑥𝑖𝑥𝑘 // 𝑥 𝑗𝑥𝑘𝑥𝑖
��

𝑥𝑖𝑥 𝑗𝑥𝑘

22

,,

𝑥𝑘𝑥 𝑗𝑥𝑖

𝑥𝑖𝑥𝑘𝑥 𝑗 // 𝑥𝑘𝑥𝑖𝑥 𝑗

BB

𝜕 𝑗𝜕𝑖𝜕𝑘 // 𝜕 𝑗𝜕𝑘𝜕𝑖
��

𝜕𝑖𝜕 𝑗𝜕𝑘

22

,,

𝜕𝑘𝜕 𝑗𝜕𝑖

𝜕𝑖𝜕𝑘𝜕 𝑗 // 𝜕𝑘𝜕𝑖𝜕 𝑗

DD

𝑥 𝑗𝜕𝑖𝑥𝑘 // 𝑥 𝑗𝑥𝑘𝜕𝑖
��

𝜕𝑖𝑥 𝑗𝑥𝑘

22

,,

𝑥𝑘𝑥 𝑗𝜕𝑖

𝜕𝑖𝑥𝑘𝑥 𝑗 // 𝑥𝑘𝜕𝑖𝑥 𝑗

DD

𝜕 𝑗𝜕𝑖𝑥𝑘 // 𝜕 𝑗𝑥𝑘𝜕𝑖
��

𝜕𝑖𝜕 𝑗𝑥𝑘

22

,,

𝑥𝑘𝜕 𝑗𝜕𝑖

𝜕𝑖𝑥𝑘𝜕 𝑗 // 𝑥𝑘𝜕𝑖𝜕 𝑗

DD

𝑥𝑖𝜕𝑖𝑥 𝑗 + 𝑥 𝑗 // 𝑥𝑖𝑥 𝑗𝜕𝑖 + 𝑥 𝑗
!!

𝜕𝑖𝑥 𝑗𝑥𝑘

44

..

𝑥 𝑗𝑥𝑖𝜕𝑖 + 𝑥 𝑗
𝜕𝑖𝑥 𝑗𝑥𝑖 // 𝑥 𝑗𝜕𝑖𝑥𝑖

<<

𝜕 𝑗𝜕𝑖𝑥 𝑗 // 𝜕 𝑗𝑥 𝑗𝜕𝑖
!!

𝜕𝑖𝜕 𝑗𝑥 𝑗

00

**

𝑥 𝑗𝜕 𝑗𝜕𝑖 + 𝜕𝑖
𝜕𝑖𝑥 𝑗𝜕 𝑗 + 𝜕𝑖 // 𝑥 𝑗𝜕𝑖𝜕 𝑗 + 𝜕𝑖

<<

where 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛.

6.2.18 Remark. The critical branching lemma for linear 1-polygraphs given in
Lemma 6.2.15 differs from its set-theoretic counterpart because it requires the
polygraph to be terminating, as noted in [160, Section 4.2]. Indeed, in the set-
theoretic case, the termination hypothesis is not required, and non-overlapping
branchings are always confluent, independently of critical confluence. The
following two counterexamples show that the linear case is different. The ter-
mination assumption comes from the fact that the rewriting steps are modulo
the vector space structure. We refer the reader to [82] for an explanation of the
linear critical pair lemma in terms of modulo rewriting.

6.2.19 Example. On the one hand, some local branchings can be non-confluent
without termination, even if critical confluence holds. Indeed, the linear 1-poly-
graph

⟨ 𝑥, 𝑦, 𝑧, 𝑡 | 𝛼 : 𝑥𝑦 → 𝑥𝑧, 𝛽 : 𝑧𝑡 → 2𝑦𝑡 ⟩
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has no critical branching, but it has a non-confluent additive branching:

4𝑥𝑦𝑡
4𝛼𝑡

// 4𝑥𝑧𝑡
4𝑥𝛽

// · · ·

2𝑥𝑧𝑡

2𝑥𝛽 11

𝑥𝑧𝑡 + 𝑥𝛽
))

𝑥𝑦𝑡 + 𝑥𝑧𝑡

𝛼𝑡 + 𝑥𝑧𝑡 22

𝑥𝑦𝑡 + 𝑥𝛽 ,,

= 𝑥𝑧𝑡 + 2𝑥𝑦𝑡

3𝑥𝑦𝑡 𝛼𝑡 + 2𝑥𝑦𝑡
66

3𝛼𝑡
,, 3𝑥𝑧𝑡

3𝑥𝛽
// 6𝑥𝑦𝑡

6𝛼𝑡
// · · ·

The only positive 1-cells of source 2𝑥𝑧𝑡 are alternating 0-compositions of 2𝑘𝑥𝛽
and 2𝑘+1𝛼𝑡, whose targets are all the 0-cells 2𝑘𝑥𝑧𝑡 and 2𝑘+1𝑥𝑦𝑡, for 𝑘 ⩾ 1.
Similarly, the only positive 1-cells of source 3𝑥𝑦𝑡 have the 0-cells 3.2𝑘𝑥𝑦𝑡 and
3.2𝑘𝑥𝑧𝑡 as targets, for 𝑘 ⩾ 0. The other possible 1-cells of source 2𝑥𝑧𝑡 and 3𝑥𝑦𝑡
are not positive, like the dotted ones. Here, it is the termination hypothesis that
fails, as testified by the infinite sequences of rewriting steps in the previous
diagram.

6.2.20 Example. On the other hand, the lack of critical confluence may imply
that some non-overlapping local branchings are not confluent, even under the
hypothesis of termination. For example, the linear 1-polygraph

⟨ 𝑥, 𝑦, 𝑧 | 𝛼 : 𝑥𝑦 → 2𝑥, 𝛽 : 𝑦𝑧 → 𝑧 ⟩
terminates, but it has a non-confluent orthogonal branching:

6𝑥𝑧 3𝑥𝑧

3𝑥𝑦𝑧
3𝛼𝑧

OO 3𝑥𝛽 66

2𝑥𝛽 + 𝑥𝑦𝑧
((

𝑥𝑦𝑦𝑧 + 𝑥𝑦𝑧

𝛼𝑦𝑧 + 𝑥𝑦𝑧 22

𝑥𝑦𝛽 + 𝑥𝑦𝑧 ,,

= 2𝑥𝑧 + 𝑥𝑦𝑧

2𝑥𝑦𝑧 𝛼𝑧 + 𝑥𝑦𝑧
66

2𝛼𝑧 ((
2𝑥𝛽 ��

4𝑥𝑧 2𝑥𝑧

Here, it is the hypothesis on confluence of critical branchings that is not satisfied,
since the critical branching (𝛼𝑧, 𝑥𝛽) of source 𝑥𝑦𝑧 is not confluent. As a
consequence, the only 1-cells that would close the confluence diagram of the
Peiffer branching are the dotted ones, which are not positive.
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6.2.21 Reduced convergent presentations. As with 2-polygraphs in §5.1.6,
without loss of generality, we can restrict to the class of reduced linear poly-
graphs. We say that a left-monomial linear polygraph 𝑃 is left-reduced if, for
every 1-cell 𝛼 of 𝑃, the only rewriting step of 𝑃 of source 𝑠 (𝛼) is 𝛼 itself. We
say that 𝑃 is right-reduced if, for every 1-cell 𝛼 of 𝑃, the 0-cell 𝑡 (𝛼) is reduced.
We say that 𝑃 is reduced if it is both left-reduced and right-reduced.

Using the same proof as for 2-polygraphs, Theorem 5.1.7, we prove that
every convergent left-monomial linear 1-polygraph is Tietze equivalent to a
reduced convergent one.

6.2.22 Completion of presentations. The completion procedure, developed
by Buchberger for commutative algebras [65] and by Knuth and Bendix for term
rewriting systems [218], see Section 5.2, adapts to terminating left-monomial
linear 1-polygraphs as follows, to transform them into convergent ones.

Fix a left-monomial linear 1-polygraph 𝑃, and a well-founded strict order
that is stable by context and compatible with 𝑃1. For each non-confluent critical
branching (𝜙, 𝜓) of 𝑃, consider 𝑝 = 𝑟 − 𝑠, where 𝑟 and 𝑠 are arbitrary normal
forms of 𝑡 (𝜙) and 𝑡 (𝜓), respectively. If supp (𝑝) contains a maximal element 𝑢,
add the 1-cell 𝑢 → 𝑞 to 𝑃, where 𝑞 is defined by 𝑝 = 𝜆𝑢 + 𝑞 and 𝑢 ∉ supp (𝑞);
otherwise, the procedure fails. After the exploration of all the critical branchings
of 𝑃, the procedure, if it has not failed, yields a terminating left-monomial
linear 1-polygraph 𝑄 such that 𝑃 ≃ 𝑄. If 𝑄 is not confluent, restart with 𝑄.
The procedure either stops when it reaches a convergent left-monomial linear
1-polygraph, or runs forever.

6.3 Linear bases induced by monomial orders

In this section, we consider linear rewriting systems whose rewriting rules are
oriented with respect to a fixed monomial order. Suppose fixed a monomial
order on polynomials (a well-founded order suitably compatible with multipli-
cation) and an ideal 𝐼. A polynomial 𝑝 =

∑
𝑖 𝜆𝑖𝑢𝑖 in the ideal 𝐼, can of course

be interpreted as a relation ∑︁
𝑖

𝜆𝑖𝑢𝑖 = 0

However, supposing that 𝑢0 is the monomial which is the greatest with respect
to the fixed order, called the leading monomial, it can also be interpreted as a
relation

𝑢0 =
1
𝜆0

∑︁
𝑖≠0

𝑢𝑖
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which, in turn, can be seen as a rewriting rule transforming the left member 𝑢0
into the right member. A Gröbner basis is then a generating set for the ideal
such that the associated rewriting rules forms a confluent rewriting system, and
Buchberger’s algorithm to compute a basis can be seen as a form of Knuth-
Bendix completion [67].

6.3.1 Gröbner bases. Let 𝑃0 be a set, and let 𝐼 be an ideal of the free alge-
bra 𝑃ℓ0 . A Gröbner basis for 𝐼 with respect to a monomial order ≼ on 𝑃∗0 is a
subset G of 𝐼 such that the ideals of 𝑃ℓ0 generated by lm≼ (𝐼) and by lm≼ (G)
coincide.

6.3.2 Proposition. If 𝑃 is a convergent left-monomial linear 1-polygraph,
and ≼ is a monomial order on 𝑃∗0 that is compatible with 𝑃1, then the set

𝑑 (𝑃1) = {𝑑 (𝛼) | 𝛼 ∈ 𝑃1}
of boundaries of 1-generators of 𝑃 is a Gröbner basis for (𝐼 (𝑃), ≼).

Conversely, let 𝑃0 be a set, let ≼ be a monomial order on 𝑃ℓ0 , let 𝐼 be an
ideal of 𝑃ℓ0 and G be a subset of 𝐼. Define 𝑃(G) the linear 1-polygraph whose
set of 0-cells is 𝑃0 and having one 1-cell

𝛼𝑝 : lm(𝑝) → lm(𝑝) − 1
lc(𝑝) 𝑝,

for each 𝑝 in G. If G is a Gröbner basis for (𝐼, ≼), then 𝑃(G) is a convergent
left-monomial presentation of the algebra 𝑃ℓ/𝐼, such that 𝐼 (𝑃(G)) = 𝐼, and ≼
is compatible with 𝑃(G)1.

Proof. If the polygraph 𝑃 is convergent, then 𝑑 (𝛼) is in 𝐼 (𝑃) for every 1-cell 𝛼
of 𝑃. Since ≼ is compatible with 𝑃1, we have lm(𝑑 (𝛼)) = 𝑠 (𝛼) for every
1-cell 𝛼 of 𝑃. Now, if 𝑝 is in 𝐼 (𝑃), it is a linear combination

𝑝 =
∑︁
𝑖

𝜆𝑖𝑢𝑖𝑑 (𝛼𝑖)𝑣𝑖

of 1-cells 𝑢𝑖𝑑 (𝛼𝑖)𝑣𝑖 , where 𝛼𝑖 is a 1-cell of 𝑃, and 𝑢𝑖 and 𝑣𝑖 are monomials
of 𝑃ℓ0 . This implies that

lm(𝑝) = 𝑢𝑖𝑠 (𝛼𝑖)𝑣𝑖 = 𝑢𝑖lm(𝑑 (𝛼𝑖))𝑣𝑖
hold for some 𝑖. Thus 𝑑 (𝑃1) is a Gröbner basis for (𝐼 (𝑃), ≼).

Conversely, assume that G is a Gröbner basis for (𝐼, ≼). By definition, ≼ is
compatible with 𝑃(G)1, hence 𝑃(G) terminates, and 𝐼 (𝑃(G)) = 𝐼 holds, so
that the algebra presented by 𝑃(G) is indeed isomorphic to 𝑃ℓ/𝐼. Moreover,
the reduced monomials of 𝑃(G)ℓ are the monomials of 𝑃ℓ that cannot be
decomposed as 𝑢lm(𝑎)𝑣 with 𝑎 in G, and 𝑢 and 𝑣 monomials of 𝑃ℓ . Thus, if a
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reduced 0-cell 𝑝 of 𝑃(G)ℓ is in 𝐼, its leading monomial must be 0, because G
is a Gröbner basis of (𝐼, ≼). As a consequence of Proposition 6.2.12, we get
that 𝑃(G) is confluent. □

By previous proposition and the critical branching lemma (Lemma 6.2.15),
the notion of Gröbner basis can be related to confluence as follows. This
is sometimes called Buchberger’s criterion for determining whether a set of
polynomials forms a Gröbner basis with respect to a fixed monomial order.

6.3.3 Proposition. Let 𝑃0 be a set, ≼ be a monomial order on 𝑃∗0, and 𝐼 be
an ideal of the free algebra 𝑃ℓ0 . A subset G of 𝐼 is a Gröbner basis for (𝐼, ≼)
if and only if the linear 1-polygraph lm(G) of Proposition 6.3.2 is critically
confluent.

6.3.4 Polygraphs for graded associative algebras. Let denote by gVect the
category of (non-negatively) graded vector spaces over k and graded linear
maps of degree 0. Recall that a graded vector space 𝑉 admits a decomposition
𝑉 =

⊕
𝑖∈N𝑉

(𝑖) , and the elements of 𝑉 (𝑖) are said to be homogeneous of
degree 𝑖. A graded associative algebra is an internal monoid in the category
gVect. Following [160, Section 2.2] we can define a notion of polygraph, called
graded linear polygraphs, for presentation of graded algebras. Let us expand
this notion in low dimensions.

A graded linear 1-polygraph is a data (𝑃0, 𝑃1) made of

– a graded linear 0-polygraph 𝑃0, that is a graded set 𝑃0 =
∐
𝑖∈N 𝑃

(𝑖)
0 ,

– a graded cellular extension 𝑃1 of the free graded algebra 𝑃ℓ0 generated by
𝑃0, meaning that 𝑃1 =

∐
𝑖∈N 𝑃

(𝑖)
1 and that the source and target of each

1-generator in 𝑃 (𝑖)1 are homogeneous of degree 𝑖.

If 𝑁 ⩾ 2, a 1-polygraph 𝑃 is called 𝑁-homogeneous if 𝑃0 is concentrated
in degree 1 and 𝑃1 is concentrated in degree 𝑁 . We say quadratic and cubical
instead of 2-homogeneous and 3-homogeneous, respectively.

An algebra 𝐴 is called 𝑁-homogeneous if it admits a presentation by an
𝑁-homogeneous graded linear 1-polygraph.

6.3.5 Poincaré-Birkhoff-Witt bases. Let 𝐴 be an 𝑁-homogeneous algebra,
for 𝑁 ⩾ 2, let 𝑃0 be a generating set of 𝐴, concentrated in degree 1, and let ≼ be
a monomial order on 𝑃∗0. A Poincaré-Birkhoff-Witt (PBW) basis for (𝐴, 𝑃0, ≼)
is a subset B of 𝑃∗0 satisfying the following conditions:

1. B is a linear basis of 𝐴, with [𝑢]B denoting the decomposition of an
element 𝑢 of 𝑃∗0 in the basis B.
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2. For all 𝑢 and 𝑣 in B, we have 𝑢𝑣 ≽ [𝑢𝑣]B .
3. An element 𝑢 of 𝑃∗0 belongs to B if and only if for every decomposition
𝑢 = 𝑣𝑢′𝑤 of 𝑢 in 𝑃∗0 such that 𝑢′ has degree 𝑁 , then 𝑢′ is in B.

6.3.6 Proposition. If 𝑃 is a convergent left-monomial 𝑁-homogeneous presen-
tation of an algebra 𝐴, and ≼ is a monomial order on 𝑃ℓ0 that is compatible
with 𝑃1, then the set Red𝑚 (𝑃) of reduced monomials of 𝑃ℓ0 is a PBW basis
for (𝐴, 𝑃0, ≼).

Conversely, let 𝐴 be an 𝑁-homogeneous algebra, let 𝑃0 be a generating set
of 𝐴 that is concentrated in degree 1, let ≼ a monomial order on 𝑃ℓ0 , and B be a
PBW basis of (𝐴, 𝑃0, ≼). Define 𝑃(B) as the linear 1-polygraph with 0-cells 𝑃0
and with one 1-cell

𝛼𝑢,𝑣 : 𝑢𝑣→ [𝑢𝑣]B
for all 𝑢 and 𝑣 in B such that 𝑢𝑣 has degree 𝑁 and 𝑢𝑣 ≠ [𝑢𝑣]B . Then 𝑃(B)
is a convergent left-monomial 𝑁-homogeneous presentation of 𝐴, such that
Red𝑚 (𝑃(B)) = B, and ≼ is compatible with 𝑃(B)1.

Proof. If 𝑃 is a convergent left-monomial presentation of 𝐴, Theorem 6.2.13
implies that the set Red𝑚 (𝑃) of reduced monomials of 𝑃∗0 is a linear basis
of 𝐴. The fact that ≼ is compatible with 𝑃1 implies Axiom 2 of a PBW
basis, and Axiom 3 comes from the definition of a reduced monomial for an
𝑁-homogeneous left-monomial linear 1-polygraph.

Conversely, assume thatB is a PBW basis for (𝐴, 𝑃0, ≼). By definition, 𝑃(B)
is 𝑁-homogeneous and left-monomial, and Axiom 2 of a PBW basis implies
Red𝑚 (𝑃(B)) = B. Termination of 𝑃(B) is given by Axiom 2 of a PBW basis,
because ≼ is well-founded. By Proposition 6.2.12, it is sufficient to prove that
Red(𝑃(B)) ∩ 𝐼 (𝑃(B)) = 0 to get confluence: on the one hand, a reduced 0-
cell 𝑎 of Red(𝑃(B)) is a linear combination of 0-cells of B, so that 𝑎 is its only
normal form; and, on the other hand, if 𝑎 belongs to 𝐼 (𝑃(B)), then 𝑎 admits 0
as a normal form by Lemma 6.1.11. Finally, the algebra presented by 𝑃(B) is
isomorphic to Red(𝑃(B)), that is to kB, hence to 𝐴, by Theorem 6.2.13 and
because B is a linear basis of 𝐴. □

6.4 Historical account of linear rewriting

Gröbner basis theory for ideals in commutative polynomial rings was introduced
by Buchberger in [65]. He defined the notion of 𝑆-polynomial to describe the
obstructions to local confluence and gave an algorithm for computation of
Gröbner bases, [65, 66, 69], see also [67] for an historical account. In the
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commutative setting, any ideal of a polynomial ring has a finite Gröbner basis.
Indeed, the Buchberger algorithm on a finite family of generators of an ideal
always terminates and returns a Gröbner basis of the ideal. More recently,
refined efficient algorithms have been proposed to achieve this task, such as
Faugère’s 𝐹4 and 𝐹5 algorithms [125, 126].

Shirshov introduced in [325] an algorithm to compute a linear basis of a Lie
algebra defined by generators and relations. He used the notion of composition
of elements in a free Lie algebra, that corresponds to the notion of 𝑆-polynomial
in the work of Buchberger. He gave an algorithm to compute bases in free
algebras having the computational properties of the Gröbner bases. He proved
that irreducible elements for such a basis forms a linear basis of the Lie algebra.
This result is called now the Composition Lemma for Lie algebras [45].

The Gröbner basis theory has been developed for other types of algebras,
such as associative algebras by Bokut in [44] and by Bergman in [39]. They
prove Newman’s Lemma for rewriting systems in free associative algebras com-
patible with a monomial order stating that local confluence and confluence are
equivalent properties. This result was called Composition Lemma by Bokut and
Diamond Lemma for ring theory by Bergman, see also [289, 347]. In general,
the Buchberger algorithm does not terminate for ideals in a non-commutative
multivariate polynomial ring. Indeed, its termination would give a decision pro-
cedure of the undecidable word problem. Even if the ideal is finitely generated
it may not have a finite Gröbner basis. However, an infinite Gröbner basis can
be computed over a ground field, [289, 348]. The Buchberger algorithm is the
analogue of the Knuth-Bendix completion procedure in a linear setting. Sev-
eral frameworks unify Buchberger and Knuth-Bendix algorithms, in particular
a Gröbner basis corresponds to a confluent and terminating presentation of an
algebra, see [68].

Finally, note that ideas in the style of Gröbner’s basis approach appear in many
independent works throughout the 20th century. Günter has defined a similar
notion in 1913 [311]. Janet [199, 200, 201] and Thomas [343] developed the
notion of involutive bases that are particular cases of Gröbner bases in the
context of partial differential algebra. We refer to [197, 198] for an historical
account on involutive bases and their applications to algebraic analysis of linear
partial differential systems. Hironaka in [183] and Grauert in [150] compute
bases of ideals in rings of power series having analogous properties to Gröbner
bases but without a constructive method for computing such bases. In [94],
Cohn gave a method to decide the word problem by a normal form algorithm
based on a confluence property. Much more recently, Gröbner basis theory
was developed in various non-commutative contexts such as Weyl algebras,
see [318], or operads [116, 269].
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7
Coherence by convergence

To any presentation of a category 𝐶 by a 2-polygraph 𝑃 corresponds a free
(2, 1)-category 𝑃⊤2 , as defined in §2.5.1. An extended presentation then consists
in a choice of a family 𝑃3 of 3-generators between some pairs of parallel 2-cells
in 𝑃⊤2 . Since the category𝐶 is already entirely determinated by the presentation
⟨ 𝑃0 | 𝑃1 | 𝑃2 ⟩, we are mostly interested in the case where the congruence
generated by 𝑃3 is the full relation among pairs of parallel 2-cells in 𝑃⊤2 , that
is, when each 2-sphere is filled with a 3-cell generated by 𝑃3. An extended
presentation satisfying this property is said to be coherent.

Any given presentation 𝑃 of a category can be extended into a coherent one by
taking all parallel pairs of 2-cells as 3-generators, but we are mainly interested
in “small” coherent presentations, which are amenable to computations. The
key result in building small coherent presentations is Theorem 7.3.5, a refined
version of Newman’s lemma, called here Squier’s homotopical theorem. It
states that a convergent presentation 𝑃 can be extended to a coherent one by
taking for 𝑃3 a family of confluence diagrams of critical branchings. As a
consequence, if 𝑃 is finite convergent, then 𝑃3 can be chosen finite.

We then introduce a notion of Tietze transformation preserving the coherence
property and the presented category. This, combined with Squier’s homotopical
theorem, suggests the following general procedure to build a coherent extension
of a given – not necessarily convergent – presentation 𝑃:

1. Use the Knuth-Bendix completion procedure to compute a convergent
2-polygraph 𝑄 presenting the same category as 𝑃.

2. Use Squier’s homotopical theorem to extend 𝑄 into a coherent presenta-
tion �̃�.

3. Use Tietze transformations to reduce �̃� into a smaller coherent presenta-
tion �̃�, which extends 𝑃.

The first two steps can be performed at once, using what we call a coherent

169
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completion procedure, and a transfer theorem (Theorem 7.1.6), providing an
immediate description of the coherent extension of 𝑃 from the one of 𝑄.

Coherent presentations will prove essential for computing, in low dimen-
sions, homotopical and homological invariants of presented categories intro-
duced in Chapter 8 and Chapter 9. Moreover, we shall see in Chapter 23 how
they extend in any dimension to polygraphic resolutions (Chapter 19) of the
presented category. In the language of homotopy theory, these resolutions are
cofibrant replacements of a category by a free (𝜔, 1)-category. Note also that
the rewriting method for calculating coherent presentations can be applied in
many algebraic contexts, as illustrated in Appendix B.

This chapter is organized as follows. In Section 7.1, we introduce the notion
of acyclic extension of a 2-category, which consists of the additional data of
3-generators “filling all the spheres”. This leads in Section 7.2 to the notion of
coherent presentation of a category 𝐶, that is, a 2-polygraph 𝑃 presenting 𝐶
together with an acyclic extension of the free (2, 1)-category on 𝑃. Coherent
presentations are then constructed from convergent ones in Section 7.3. The
appropriate notion of Tietze transformation between coherent presentations is
studied in Section 7.4: this allows us in Section 7.5 to formulate a coherent
variant of the Knuth-Bendix completion procedure, but also a reduction pro-
cedure, which can be used to obtain smaller coherent presentations. Finally, in
Section 7.6, we study coherent presentations of algebras, thereby defining the
proper notion of coherent extension for the linear polygraphs of Chapter 6.

7.1 Acyclic extensions

7.1.1 Cellular extension of a 2-category. A 2-sphere in a 2-category 𝐶

is a pair (𝛼, 𝛽) of parallel 2-cells in 𝐶, i.e., satisfying 𝑠1 (𝛼) = 𝑠1 (𝛽) and
𝑡1 (𝛼) = 𝑡1 (𝛽). A cellular extension of 𝐶 is a set 𝑋 equipped with two maps
𝑠2, 𝑡2 : 𝑋 → 𝐶2 such that, for every 𝐴 in 𝑋 , the pair (𝑠2 (𝐴), 𝑡2 (𝐴)) is a 2-sphere
of 𝐶. More generally, we also call any such element 𝐴 in 𝑋 a 2-sphere of 𝐶.

Every 2-category 𝐶 has two canonical cellular extensions:

– the empty extension,
– the full one that contains all the 2-spheres of 𝐶, denoted by Sph(𝐶).

7.1.2 Quotient 2-category. A congruence on a 2-category𝐶 is an equivalence
relation ≈ on the 2-cells of 𝐶 such that

– given 𝜙 : 𝑢 ⇒ 𝑣 and 𝜙′ : 𝑢′ ⇒ 𝑣′ in 𝐶2, 𝜙 ≈ 𝜙′ implies 𝑢 = 𝑢′ and 𝑣 = 𝑣′,
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– given 1-cells and 2-cells of 𝐶 as in the following diagram

𝑥
𝑢 // 𝑥′

��

𝜙1⇓

""

𝜓

=⇒ =⇒

𝜓′
<<

𝜙2⇓

FF
𝑦′ 𝑣 // 𝑦

if 𝜓 ≈ 𝜓′, then

𝑢 ∗0 (𝜙1 ∗1 𝜓 ∗1 𝜙2) ∗0 𝑣 ≈ 𝑢 ∗0 (𝜙1 ∗1 𝜓′ ∗1 𝜙2) ∗0 𝑣.
We define the quotient 2-category of a 2-category 𝐶 by a congruence ≈

on 𝐶 as the 2-category, denoted by 𝐶/≈, whose 0-cells and 1-cells are those
of 𝐶, and whose 2-cells are the equivalence classes of 2-cells of 𝐶 modulo the
congruence ≈, composition and identities being induced by those of 𝐶.

Given a cellular extension 𝑋 of 𝐶, the congruence generated by 𝑋 , denoted
by ≈𝑋, is defined as the smallest congruence on 𝐶 such that 𝜙 ≈𝑋 𝜓, for every
2-sphere (𝜙, 𝜓) in 𝑋 . That is, ≈𝑋 is the smallest equivalence relation on the
parallel 2-cells compatible with all the compositions of 𝐶 and relating 𝜙 and
𝜓, for every (𝜙, 𝜓) in 𝑋 .

7.1.3 Acyclic extension. We say that a cellular extension 𝑋 of a 2-category 𝐶
is acyclic, or equivalently that 𝐶 is 𝑋-acyclic, if 𝜙 ≈𝑋 𝜓 holds for every
2-sphere (𝜙, 𝜓) of 𝐶. This is equivalent to say that the equality 𝜙 = 𝜓 holds in
the quotient 2-category 𝐶/≈𝑋, where 𝜙 and 𝜓 denote the images of the 2-cells
under the canonical projection 𝐶 → 𝐶/≈𝑋. For instance, any 2-category 𝐶 is
Sph(𝐶)-acyclic.

7.1.4 Remark. A congruence on a free (2, 1)-category is called a homotopy
relation by Squier in [328]. He noticed that these relations are not really the
same as usual homotopies in the sense of algebraic topology and justified
the terminology by saying that, for a homotopy relation generated by a set of
2-spheres, two “homotopic” paths can be transformed into one another by a
finite sequence of elementary transformation steps. In [328], the relation ≈𝑋 is
called an homotopy relation generated by 𝑋 . The terminology homotopy basis
for an acyclic cellular extension was introduced in [220, 147] and since then has
been widely used by various authors. Note also that Squier did not formulate his
results on the properties of homotopy relations in the categorical language we
use in the present chapter. Instead of (2, 1)-categories, he considered 2-dimen-
sional cellular complexes defined by directed graphs with inverses and whose
2-cells correspond to the exchange relation between compositions with respect
to 0- and 1-composition. The categorical formulation of Squier’s constructions
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presented here was introduced in [161, 165]. Another formulation, using the
structure of monoidal category, is given in [233].

7.1.5 Transfer theorem for acyclic extensions. Given two presentations 𝑃
and 𝑄 of a 1-category 𝐶, by Lemma 2.5.3, there exist two 2-functors

𝑓 : 𝑃⊤ → 𝑄⊤ and 𝑔 : 𝑄⊤ → 𝑃⊤

and, for every 1-cell 𝑣 in 𝑄⊤, there exists a 2-cell 𝜓𝑣 : 𝑓 𝑔(𝑣) ⇒ 𝑣 in 𝑄⊤ that
satisfy the conditions given in Lemma 2.5.3. Let us define a cellular extension
𝑋𝑄 of the (2, 1)-category 𝑄⊤ that contains one 3-generator

𝑓 𝑔(𝑣) 𝜓𝑣

�%
𝐴𝛼

�𝑓 𝑔(𝑢)

𝑓 𝑔 (𝛼) /7

𝜓𝑢
*2

𝑣

𝑢 𝛼

8@ (7.1)

for every 2-generator 𝛼 : 𝑢 ⇒ 𝑣 of𝑄. Furthermore, given a cellular extension 𝑋
of the (2, 1)-category 𝑃⊤, we will denote by 𝑓 (𝑋) the cellular extension of𝑄⊤
that contains one 3-generator

𝑓 (𝑢)

𝑓 (𝜙)
!)

𝑓 (𝜙′ )

5=
𝑓 (𝐴)

�

𝑓 (𝑣)

for every 3-generator 𝐴 : 𝜙 ⇛ 𝜙′ of 𝑋 . Using these notations, we can formulate
the following transfer result among acyclic extensions of presentations of a
given category.

7.1.6 Theorem. Let 𝑃 and 𝑄 be two presentations of the same category. If 𝑋
is an acyclic cellular extension of the (2, 1)-category 𝑃⊤, then the cellular
extension 𝑓 (𝑋) ⊔𝑋𝑄 is an acyclic cellular extension of the (2, 1)-category𝑄⊤.

The proof consists in extending the notation on 3-generators 𝐴𝛼 of (7.1),
where 𝛼 is a 2-generator of𝑄, in a functorial way, to define a 3-cell of the shape

𝑓 𝑔(𝑣) 𝜓𝑣

�%
𝐴𝜙

�𝑓 𝑔(𝑢)

𝑓 𝑔 (𝜙) /7

𝜓𝑢
*2

𝑣

𝑢 𝜙

8@

for any 2-cell 𝜙 in𝑄⊤. Then, given two parallel 2-cells 𝜙, 𝜙′ : 𝑢 ⇒ 𝑣 of𝑄⊤, one
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proves that 𝜙 ≈ 𝑓 (𝑋)⊔𝑋𝑄
𝜙′ by constructing a 3-cell with source 𝜙 and target 𝜙′

obtained by compositions along 0-cells, 1-cells and 2-cells of the 3-cells 𝐴𝛼.
This construction is based on the notion of free (3, 1)-category generated by a
cellular extension, which is the aim of the following section. The full proof of
Theorem 7.1.6 will be given in Section 7.2.5.

7.2 Coherent presentations

7.2.1 (3, 1)-polygraphs. A (3, 1)-polygraph is a pair (𝑃, 𝑃3) consisting of a
2-polygraph 𝑃 and a cellular extension 𝑃3 of the free (2, 1)-category 𝑃⊤. It
thus consists of a diagram of sets and functions

𝑃1
𝑠0

�� 𝑡0
��

𝑖1

��

𝑃2
𝑠1

~~ 𝑡1
~~

𝑖2
��

𝑃3
𝑠2

~~ 𝑡2
~~

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃⊤2

𝑠∗1oo

𝑡∗1
oo

together with the compositions and identities of the underlying (2, 1)-category

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃⊤2

𝑠∗1oo

𝑡∗1
oo

whose source and target maps 𝑠𝑖 and 𝑡𝑖 satisfy the globular relations

𝑠∗𝑖 ◦ 𝑠𝑖+1 = 𝑠∗𝑖 ◦ 𝑡𝑖+1 and 𝑡∗𝑖 ◦ 𝑠𝑖+1 = 𝑡∗𝑖 ◦ 𝑡𝑖+1
for every 𝑖 ∈ {0, 1}. The elements of the cellular extension 𝑃3 are called
the 3-generators of the (3, 1)-polygraph (𝑃, 𝑃3). We write 𝐴 : 𝜙 ⇛ 𝜓 for a
3-generator 𝐴 in 𝑃3 such that 𝑠2 (𝐴) = 𝜙 and 𝑡2 (𝐴) = 𝜓, often pictured as

𝑢

𝜙

�%

𝜓

9A𝐴
�� 𝑣

and, more generally, we will call 𝐴 a 3-generator of the cellular extension. A
(3, 1)-polygraph 𝑃 will be also denoted by

⟨ 𝑃0 | 𝑃1 | 𝑃2 | 𝑃3 ⟩
and we will write 𝑃⩽𝑘 for its underlying 𝑘-polygraph for 0 ⩽ 𝑘 ⩽ 2. Morphisms
of (3, 1)-polygraphs are defined as for 3-polygraphs (§10.1.8) and we denote
by Pol3,1 the resulting category.
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7.2.2 Example. As a simple example, consider the (3, 1)-polygraph with only
one generator in each dimension:

⟨ ⋆ | 𝑎 | 𝛼 : 𝑎𝑎 ⇒ 𝑎 | 𝐴 : 𝑎𝛼 ∗ 𝛼 ⇛ 𝛼𝑎 ∗ 𝛼 ⟩ .

The 3-generator 𝐴 can be represented by the diagram

𝑎𝑎 𝛼

� 
𝐴

�

𝑎𝑎𝑎

𝑎𝛼 .6

𝛼𝑎 (0

𝑎

𝑎𝑎 𝛼

=E .

In Section 7.3, Example 7.3.6, we use a rewriting argument to show that the
3-generator 𝐴 forms an acyclic extension of the free (2, 1)-category generated
by ⟨ ⋆ | 𝑎 | 𝛼 ⟩.

7.2.3 Free (3, 1)-category. The definition of 3-category is adapted from the
one of 2-category by replacing the hom-categories and the composition func-
tors by hom-2-categories and composition 2-functors. We refer the reader to
Chapter 14 for the complete definition of strict 𝑛-categories for all 𝑛 ⩾ 0. In a
3-category, the 3-cells can be composed in three different ways:

– by ∗0, along their 0-dimensional boundary:

𝑥

𝑢

��

𝑢′

BB
𝑦𝑓

��
𝑓 ′

��

𝐴
*4

𝑣

��

𝑣′

CC
𝑧𝑔

��
𝑔′

��

𝐵
*4 ↦−→ 𝑥

𝑢𝑣

��

𝑢′𝑣′

@@
𝑧,𝑓 𝑔

��
𝑓 ′𝑔′

��

𝐴 ∗0 𝐵
*4

– by ∗1, along their 1-dimensional boundary:

𝑥

𝑢

��𝑣 //

𝑤

BB
𝑦

𝑓
��

𝑓 ′
��

𝑔

��
𝑔′

��

𝐴
*4

𝐵

*4
↦−→ 𝑥

𝑢

��

𝑤

@@
𝑦,𝑓 ∗1𝑔

��

𝑓 ′∗1𝑔′

��

𝐴 ∗1 𝐵
*4
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– by ∗2, along their 2-dimensional boundary:

𝑥

𝑢

  

𝑣

>> 𝑦𝑓

��
𝑔

��

ℎ

��

𝐴
*4

𝐵
*4 ↦−→ 𝑥

𝑢

  

𝑣

==
𝑦.𝑓

��
ℎ

��

𝐴 ∗2 𝐵
*4

A (3, 1)-category is a 3-category whose 2-cells are invertible with respect
to the composition ∗1 and whose 3-cells are invertible with respect to the
composition ∗2 (which implies their invertibility with respect to ∗1).

The free (3, 1)-category over a (3, 1)-polygraph 𝑃 is the (3, 1)-category,
denoted by 𝑃⊤, or 𝑃⊤⩽2 (𝑃3) in some contexts, whose

– underlying 2-category is the free (2, 1)-category 𝑃⊤⩽2,
– set 𝑃⊤3 of 3-cells consists of all formal compositions with respect to ∗0, ∗1

and ∗2 of 3-generators of 𝑃, of their inverses, and of identities of 2-cells,
considered up to associativity, identity, exchange and inverse relations.

This construction will be detailed in arbitrary dimension 𝑛 ⩾ 1 in Section 15.3.
We denote by 𝐴− the inverse with respect to ∗2 of a 3-cell 𝐴: it satisfies

𝐴 ∗2 𝐴− = 1𝑠2 (𝐴) and 𝐴− ∗2 𝐴 = 1𝑡2 (𝐴) . Note that if a 3-cell 𝐴 is invertible with
respect to the composition ∗2, and its 2-source and 2-target are invertible, then
it is invertible with respect the composition ∗1, with inverse given by

𝑡2 (𝐴)− ∗1 𝐴− ∗1 𝑠2 (𝐴)− .
Every 3-cell 𝐴 of the (3, 1)-category 𝑃⊤ of size 𝑘 ⩾ 1 has a decomposition

𝐴 = 𝐶1 [𝐴𝜖1
1 ] ∗2 . . . ∗2 𝐶𝑘 [𝐴𝜖𝑘𝑘 ],

with 𝜖1, . . . , 𝜖𝑘 ∈ {−, +}, and 𝐴1, . . . , 𝐴𝑘 are 3-generators of 𝑃, where for every
1 ⩽ 𝑖 ⩽ 𝑘 , 𝐶𝑖 [𝐴𝜖𝑖𝑖 ] denotes a composition of the form

𝑓2 ∗2 ( 𝑓1 ∗0 𝐴𝜖𝑖𝑖 ∗0 𝑔1) ∗2 𝑔2,

where 𝑓 𝑗 , 𝑔 𝑗 are 𝑗-cells for 𝑗 = 1, 2, and where 𝐴+𝑖 is equal to 𝐴𝑖

7.2.4 Coherent presentations. A (3, 1)-polygraph 𝑃 is coherent when 𝑃3 is
an acyclic extension of the free (2, 1)-category 𝑃⊤⩽2. This amounts to requiring
that for every pair of parallel 2-cells 𝜙 and 𝜓 in 𝑃⊤2 , there is a 3-cell 𝐹 : 𝜙 ⇛ 𝜓

in 𝑃⊤3 .
An extended presentation of a 1-category 𝐶 is a (3, 1)-polygraph 𝑃 whose

underlying 2-polygraph 𝑃⩽2 is a presentation of 𝐶. A coherent presentation
of 𝐶 is an extended presentation 𝑃 of 𝐶 which is coherent.
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7.2.5 Proof of Theorem 7.1.6. Let us denote by 𝑌 the cellular extension
𝑓 (𝑋) ⊔ 𝑋𝑄. We construct, for every 2-cell 𝜙 : 𝑢 ⇒ 𝑣 of 𝑄⊤, a 3-cell 𝐴𝜙 of the
free (3, 1)-category 𝑄⊤ (𝑌 ) with the following shape:

𝑓 𝑔(𝑣) 𝜓𝑣

�%
𝐴𝜙

�𝑓 𝑔(𝑢)

𝑓 𝑔 (𝜙) /7

𝜓𝑢
*2

𝑣

𝑢 𝜙

8@

by extending the notation 𝐴𝛼, where 𝛼 is a 2-generator of 𝑄, in a functorial
way, according to the following formulas:

𝐴1𝑢 = 1𝜓𝑢 , 𝐴𝜙∗0𝜙′ = 𝐴𝜙 ∗0 𝐴𝜙′ , 𝐴𝜙− = 𝑓 𝑔(𝜙)− ∗1 𝐴−𝜙 ∗1 𝜙− ,

𝐴𝜙∗1𝜙′ =
(
𝑓 𝑔(𝜙) ∗1 𝐴𝜙′

) ∗2 (
𝐴𝜙 ∗1 𝜙′

)
.

We prove that the 3-cells 𝐴𝜙 are well-defined, i.e., their definition is compatible
with the relations on 2-cells, such as the exchange relation. Indeed, whenever
the composition of the 2-cells 𝜙1, 𝜙2, 𝜙′1 and 𝜙′2 are defined in 𝑄⊤, we have

𝐴(𝜙1∗0𝜙2 )∗1 (𝜙′1∗0𝜙′2 ) =
(( 𝑓 𝑔(𝜙1) ∗0 𝑓 𝑔(𝜙2)) ∗1 (𝐴𝜙′1 ∗0 𝐴𝜙′2

)∗2((𝐴𝜙1 ∗0 𝐴𝜙2 ) ∗1 (𝜙′1 ∗0 𝜙′2)
)

=
(( 𝑓 𝑔(𝜙1) ∗1 𝐴𝜙′1 ) ∗0 ( 𝑓 𝑔(𝜙2) ∗1 𝐴𝜙′2 )

)∗2((𝐴𝜙1 ∗1 𝜙′1) ∗0 (𝐴𝜙2 ∗1 𝜙′2)
)

=
(( 𝑓 𝑔(𝜙1) ∗1 𝐴𝜙′1 ) ∗2 (𝐴𝜙1 ∗1 𝜙′1)

)∗0(( 𝑓 𝑔(𝜙2) ∗1 𝐴𝜙′2 ) ∗2 (𝐴𝜙2 ∗1 𝜙′2)
)

= 𝐴(𝜙1∗1𝜙′1 )∗0 (𝜙2∗1𝜙′2 ) .

Now, let us consider two parallel 2-cells 𝜙, 𝜙′ : 𝑢 ⇒ 𝑣 of 𝑄⊤. The 2-cells
𝑔(𝜙) and 𝑔(𝜙′) are parallel in 𝑃⊤ so that, by 𝑋-acyclicity of 𝑃⊤, there exists a
3-cell

𝑔(𝑢)

𝑔 (𝜙)
�'

𝑔 (𝜙′ )

6>𝐴

� 𝑔(𝑣)

in the (3, 1)-category 𝑃⊤ (𝑋). By definition of 𝑌 and functoriality of 𝑓 , there
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exists a 3-cell

𝑓 𝑔(𝑢)

𝑓 𝑔 (𝜙)
 (

𝑓 𝑔 (𝜙′ )

6>
𝑓 (𝐴)

�

𝑓 𝑔(𝑣)

in the free (3, 1)-category 𝑃⊤ (𝑌 ). Using the 3-cells 𝑓 (𝐴), 𝐴𝜙 and 𝐴𝜙′ , we get
the following 3-cell from 𝜙 to 𝜙′ in 𝑃⊤ (𝑌 ):

𝑢

𝜙

�%𝜏−𝑢 +3

𝜙′

9A𝑓 𝑔(𝑢)

𝑓 𝑔 (𝜙)
�'

𝑓 𝑔 (𝜙′ )

7?𝑓 𝑔(𝑣)
𝜏𝑣 +3 𝑣.

𝜏−𝑢 ∗1𝐴−𝜙
�

𝑓 (𝐴)

�

𝜏−𝑢 ∗1𝐴𝜙′
�

This concludes the proof that the (2, 1)-category 𝑄⊤ is 𝑌 -acyclic.

7.2.6 Cofibrant replacements and coherent presentation. The notion of
coherent presentation of a category corresponds to the notion of cofibrant
replacement for the model structure for 2-categories introduced by Lack in [229,
231]. This will be detailed and generalized in Chapter 21, and we only give
here a brief overview. In this model structure a 2-category is cofibrant if its
underlying 1-category is free, and a 2-functor 𝐹 : 𝐶 → 𝐷 is a weak equivalence
if it satisfies the following two conditions.

1. Every 0-cell 𝑦 of 𝐷 is equivalent to a 0-cell 𝐹 (𝑥) for 𝑥 in 𝐶, i.e., there
exist 1-cells 𝑢 : 𝐹 (𝑥) → 𝑦 and 𝑣 : 𝑦 → 𝐹 (𝑥) and invertible 2-cells
𝑓 : 𝑢 ∗1 𝑣⇒ 1𝐹 (𝑥 ) and 𝑔 : 𝑣 ∗1 𝑢 ⇒ 1𝑦 in 𝐷.

2. For every 0-cells 𝑥 and 𝑥′ in 𝐶, the induced functor

𝐹 (𝑥, 𝑥′) : 𝐶 (𝑥, 𝑥′) → 𝐷 (𝐹 (𝑥), 𝐹 (𝑥′))

is an equivalence of categories.

In particular, an equivalence of 2-categories is a weak equivalence. A cofibrant
replacement of a 2-category 𝐶 is a cofibrant 2-category 𝐶 that is weakly
equivalent to 𝐶. The following theorem is proved in [145, Theorem 1.3.1]:
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7.2.7 Theorem. Let 𝑃 be an extended presentation of a category 𝐶. Then the
(3, 1)-polygraph 𝑃 is a coherent presentation of𝐶 if and only if the (2, 1)-cate-
gory 𝑃 is a cofibrant replacement of 𝐶.

Note that a given category𝐶 may admit other cofibrant replacements than the
2-categories presented by coherent presentations of 𝐶. For instance, consider
the terminal category 1cat: it contains one 0-cell and the corresponding identity
1-cell only. This category 1cat is cofibrant and, as a consequence, is a cofibrant
replacement of itself: this cofibrant replacement corresponds to the coherent
presentation of the terminal category given by the (3, 1)-polygraph with one
0-generator and no higher-dimensional generators. But the terminal category
also admits, as a cofibrant replacement, the 2-category with two 0-cells 𝑥, 𝑦,
two 1-cells 𝑢, 𝑣 as follows

𝑥

𝑢
%%
𝑦

𝑣

dd

and two invertible 2-cells 𝑓 : 𝑢𝑣 ⇒ 1𝑥 and 𝑔 : 𝑣𝑢 ⇒ 1𝑦 . However, this 2-
category is not presented by a coherent presentation of the terminal category,
since it has two 0-cells.

7.3 Coherent confluence

In this section, we extend to (3, 1)-polygraphs the results on coherent confluence
given in Section 2.5 for (2, 0)-polygraphs.

7.3.1 Coherent confluence. Let 𝑃 be a (3, 1)-polygraph. A branching (𝜙, 𝜓)
of 𝑃 is coherently confluent if there exist 2-cells 𝜙′ and 𝜓′ in 𝑃∗2 and a 3-cell 𝐹
in 𝑃⊤3 of the form

𝑢
𝜙

{�

𝜓

�#
𝑣

𝜙′ �#

𝐴
⇛ 𝑤.

𝜓′{�
𝑤

We say that 𝑃 is coherently confluent (resp. locally coherently confluent, resp.
critically coherently confluent) when every branching (resp. local branching,
resp. critical branching) of 𝑃 is coherently confluent. We say that 𝑃 is coherently
convergent if it terminates and is coherently confluent. Note that, given a 2-poly-
graph 𝑃, by taking 𝑃3 = Sph(𝑃∗) to be the set of all 2-spheres of 𝑃∗ (see
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§7.1.1), the notions of coherent confluence and coherent convergence in the
(3, 1)-polygraph (𝑃, 𝑃3) boil down to the ones of confluence and convergence
of the 2-polygraph defined in §4.1.9.

The following result essentially amounts to a coherent version of Newman’s
lemma for 2-polygraphs (Lemma 1.3.21). Its proof is essentially the same as in
the case of 1-polygraphs (Lemma 2.5.8).

7.3.2 Proposition. Let 𝑃 be a terminating (3, 1)-polygraph. If 𝑃 is locally
coherently confluent, then 𝑃 is coherently confluent.

As above, we recover the Newman’s lemma for 2-polygraphs, by taking 𝑃3 to
be the set of all 2-spheres. Similarly, the following result is a coherent version
of the critical branching lemma (Lemma 4.3.7).

7.3.3 Lemma. Let 𝑃 be a (3, 1)-polygraph. If 𝑃 is critically coherently conflu-
ent, then 𝑃 is locally coherently confluent.

Proof. We proceed by case analysis on the type of the local branchings of 𝑃.
First, non-overlapping (i.e., trivial and orthogonal) branchings are always co-
herently confluent. Indeed, if 𝜙 : 𝑢 ⇒ 𝑣 is a rewriting step of 𝑃, then the trivial
branching (𝜙, 𝜙) is coherently confluent because of

𝑢
𝜙

{�

𝜙

�#
𝑣

1𝑣 �#

= 𝑣.

1𝑣{�
𝑣

And, if 𝜙 : 𝑢 ⇒ 𝑢′ and 𝜓 : 𝑣⇒ 𝑣′ are rewriting steps of 𝑃, then the orthogonal
branching (𝜙𝑣, 𝑢𝜓) is coherently confluent thanks to the following equality

𝑢𝑣
𝜙𝑣

{�
𝑢𝜓

�#
𝑢′𝑣

𝑢′𝜓 �#

= 𝑢𝑣′.

𝜙𝑣′{�
𝑢′𝑣′

Now, assume that (𝜙, 𝜓) is an overlapping branching, where 𝜙 : 𝑢 ⇒ 𝑣 and
𝜓 : 𝑢 ⇒ 𝑤 are rewriting steps of 𝑃. Then we have 𝑢 = 𝑢1𝑢

′𝑢2, 𝜙 = 𝑢1𝜙
′𝑢2

and 𝜓 = 𝑢1𝜓
′𝑢2, where 𝑢1, 𝑢′ and 𝑢2 are 1-cells of 𝑃∗1, and 𝜙′ and 𝜓′ are

rewriting steps of 𝑃 such that (𝜙′, 𝜓′) is a critical branching of 𝑃. By hypothesis,
(𝜙′, 𝜓′) is critically coherently confluent, from which we deduce the existence
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of 2-cells 𝜙′′ and 𝜓′′ of 𝑃∗2, and of a 3-cell 𝐹 of 𝑃⊤3

𝑢1𝑢
′𝑢2

𝑢1𝜙
′𝑢2

{�
𝑢1𝜓

′𝑢2

�#
𝑢1𝑣
′𝑢2

𝑢1𝜙
′′𝑢2 �#

𝑢1𝐹𝑢2 *4 𝑢1𝑤
′𝑢2

𝑢1𝜓
′′𝑢2{�

𝑢1𝑢
′′𝑢2

proving that (𝜙, 𝜓) is coherently confluent. □

Again, the critical branching lemma (Lemma 4.3.7) can be recovered by tak-
ing 𝑃3 to be the set of 2-spheres in a 2-polygraph.

7.3.4 Proposition. Let 𝑃 be a (3, 1)-polygraph. If 𝑃 is coherently convergent
then 𝑃 is coherent.

As for 1-polygraphs we prove the following coherence result, called Squier’s
homotopical theorem [328, Theorem 5.2] (see also [161, 233]).

7.3.5 Theorem. Let 𝑃 be a convergent 2-polygraph, and 𝑃3 be a cellular
extension of the free (2, 1)-category 𝑃⊤. If 𝑃3 contains, for every critical
branching (𝜙, 𝜓) of 𝑃, one 3-generator of the form

𝑢
𝜙

{�

𝜓

�#
𝑣

𝜙′ �#

𝐴 *4 𝑤

𝜓′{�
𝑢′

(7.2)

where 𝜙′ and 𝜓′ are 2-cells in 𝑃∗2, then the (3, 1)-polygraph (𝑃, 𝑃3) is coherent.

A 3-generator of the form (7.2), indexed by a critical branching of 𝑃, is called
a generating confluence of the polygraph 𝑃. Theorem 7.3.5 states that the set of
generating confluences of a convergent 2-polygraph 𝑃, indexed by all its critical
branchings, forms an acyclic extension of the (2, 1)-category 𝑃⊤.

7.3.6 Example. Consider the monoid 𝑀 with the convergent presentation

⟨ ⋆ | 𝑎 | 𝛼 : 𝑎𝑎 ⇒ 𝑎 ⟩ .

This 2-polygraph has exactly one critical branching, whose corresponding gen-
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erating confluence has the form:

𝑎𝑎𝑎
𝛼𝑎

{�
𝑎𝛼

�#
𝑎𝑎

𝛼 �#

𝐴 *4 𝑎𝑎.

𝛼{�
𝑎

By Theorem 7.3.5, the (3, 1)-polygraph ⟨ ⋆ | 𝑎 | 𝛼 | 𝐴 ⟩ defined in Exam-
ple 7.2.2 is thus a coherent presentation of the monoid 𝑀 .

7.3.7 The standard coherent presentation. Recall from §2.3.14 and §4.5.5
that the standard presentation of a category 𝐶 is the 2-polygraph Std2 (𝐶) such
that

– the 0-generators are the 0-cells of 𝐶,
– there is a 1-generator �̂� : 𝑥 → 𝑦 for every 1-cell 𝑓 : 𝑥 → 𝑦 of 𝐶,
– there is a 2-generator 𝜇 𝑓 ,𝑔 : �̂� �̂� ⇒ �̂� 𝑔 for all composable 1-cells 𝑓 and 𝑔

of 𝐶,
– there is a 2-generator 𝜂𝑥 : 1𝑥 ⇒ 1̂𝑥 for every 0-cell 𝑥 of 𝐶.

The standard coherent presentation Std3 (𝐶) of 𝐶 is the presentation Std2 (𝐶)
extended with the following 3-generators

�̂� 𝑔ℎ̂ 𝜇 𝑓 𝑔,ℎ

��
�̂� �̂�ℎ̂

𝜇 𝑓 ,𝑔 ℎ̂ 3;

�̂� 𝜇𝑔,ℎ
#+

�̂� 𝑔ℎ

�̂� 𝑔ℎ
𝜇 𝑓 ,𝑔ℎ

BJ
𝐴 𝑓 ,𝑔,ℎ


�

1̂𝑥 �̂�
𝜇1𝑥, 𝑓

��
�̂�

𝜂𝑥 �̂�
6>

�̂�

𝐿 𝑓


�

�̂�1̂𝑦
𝜇 𝑓 ,1𝑦

��
�̂�

�̂� 𝜂𝑦
6>

�̂�

𝑅 𝑓


�

for all 1-cells 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑧 and ℎ : 𝑧 → 𝑡 of 𝐶. Those 3-generators
can be shown to form an acyclic cellular extension of the free (2, 1)-cate-
gory Std2 (C)⊤ (by first reversing the orientation of the generators 𝜂𝑥 , as ex-
plained in §4.5.5, and then applying Theorem 7.3.5).

7.4 Tietze transformations of (3, 1)-polygraphs

We extend here the notion of Tietze transformation presented in §1.2.5 for
1-polygraphs and in Section 5.1 for 2-polygraphs to (3, 1)-polygraphs.
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7.4.1 Tietze transformations. If 𝑃 is a (3, 1)-polygraph, an elementary Tietze
transformation on 𝑃 is one of the following operations transforming 𝑃 into a
(3, 1)-polygraph 𝑄:

(T1) adding a definable 1-cell: 𝑄 is obtained from 𝑃 by adding a 1-generator
𝑎 : 𝑥 → 𝑦 together with a 2-generator 𝛼 : 𝑢 ⇒ 𝑎 for some 1-cell
𝑢 : 𝑥 → 𝑦 ∈ 𝑃∗1:

𝑥

𝑢

##
𝑦 ⇝ 𝑥

𝑢

$$

𝑎

::
𝛼⇓ 𝑦,

(T2) adding a derivable 2-cell: 𝑄 is obtained from 𝑃 by adding a 2-generator
𝛼 : 𝑢 ⇒ 𝑣 together with a 3-generator 𝐴 : 𝜙 ⇛ 𝛼 for some 3-cell
𝜙 : 𝑢 ⇒ 𝑣 ∈ 𝑃⊤2 :

𝑥

𝑢

##

𝑣

;;𝜙⇓ 𝑦 ⇝ 𝑥

𝑢

$$

𝑣

::
𝜙⇓ 𝐴
⇛⇓𝛼 𝑦,

(T3) adding a derivable 3-cell: 𝑄 is obtained from 𝑃 by adding a 3-generator
𝐴 : 𝜙 ⇛ 𝜓 for some 3-cell 𝐹 : 𝜙 ⇛ 𝜓 ∈ 𝑃⊤3 :

𝑥

𝑢

##

𝑣

;;𝜙⇓ 𝐹
⇛⇓𝜓 𝑦 ⇝ 𝑥

𝑢

$$

𝑣

::
𝜙⇓ 𝐴
⇛⇓𝜓 𝑦.

A Tietze transformation between (3, 1)-polygraphs 𝑃 and𝑄 is a finite sequence
of polygraphs 𝑃 = 𝑃1, 𝑃2, . . . , 𝑃𝑛 = 𝑄 such that, for 1 ⩽ 𝑖 < 𝑛, either 𝑃𝑖+1
is obtained from 𝑃𝑖 by an elementary Tietze transformation, or 𝑃𝑖 is obtained
from 𝑃𝑖+1 by an elementary Tietze transformation. Two (3, 1)-polygraphs
are Tietze equivalent when there is a Tietze transformation between them. As
in §1.2.5 and Section 5.1, the notion of Tietze equivalence is supposed to be
closed by isomorphism.

7.4.2 Functors induced by Tietze transformations. For any of the above
elementary Tietze transformations from a (3, 1)-polygraph 𝑃 to a (3, 1)-poly-
graph 𝑄, there is a canonical morphism of polygraphs 𝑃 → 𝑄, witnessing the
inclusion of 𝑃 into 𝑄, which induces a 3-functor 𝐹 : 𝑃⊤ → 𝑄⊤ between the
freely generated (3, 1)-categories. This functor always admits a retraction, i.e.,
a 3-functor 𝐺 : 𝑄⊤ → 𝑃⊤ such that 𝐺 ◦ 𝐹 = 1𝑃⊤ . For instance, in the case
of (T1), with the same notations as above, the functor 𝐺 is such that 𝐺𝑎 = 𝑢,
𝐺𝛼 = 1𝑢 and 𝐺 leaves the other generators of 𝑄 unchanged.
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We recall the following result from [145, Theorem 2.1.3]:

7.4.3 Theorem. Two finite (3, 1)-polygraphs 𝑃 and 𝑄 are Tietze equivalent if
and only if there is an equivalence between the presented 2-categories 𝑃 and𝑄
which induces a bĳection between the respective sets of 0-cells.

As a consequence, if a (3, 1)-polygraph 𝑃 is a coherent presentation of a
category 𝐶 and if there exists a Tietze transformation from 𝑃 to a (3, 1)-poly-
graph 𝑄, then 𝑄 is also a coherent presentation of 𝐶.

7.4.4 Higher Nielsen transformations. As a particular subset of Tietze trans-
formation, we identify the following family of transformations, which will
prove useful in the following. The elementary Nielsen transformations on a
(3, 1)-polygraph 𝑃 are the following transformations:

(N1) the replacement of a 2-cell by a formal inverse (including in the source
and target of every 3-cell),

(N2) the replacement of a 3-cell by a formal inverse,
(N3) the replacement of a 3-cell 𝐹 : 𝜓 ⇛ 𝜓′ by a 3-cell

�̃� : 𝜙 ∗1 𝜓 ∗1 𝜒 ⇛ 𝜙 ∗1 𝜓′ ∗1 𝜒
where 𝜙 and 𝜒 are 2-cells of 𝑃⊤.

The Nielsen equivalence on (3, 1)-polygraphs is the smallest equivalence re-
lation identifying any two polygraphs between which there is an elementary
Nielsen transformation. The following is shown in [145, Section 2.1.4]:

7.4.5 Lemma. The elementary Nielsen transformations are Tietze transforma-
tions.

7.4.6 Collapsible generators. Given a (3, 1)-polygraph 𝑃, we identify the
following families of redundant generators in the polygraph. Following the
terminology introduced by Brown [60], we say that a 2-generator 𝛼 of 𝑃 is
collapsible if

– the target of 𝛼 is a 1-generator 𝑎 ∈ 𝑃1, and
– the source of 𝛼 is a 1-cell in which 𝑎 does not occur.

Similarly, a 3-generator 𝐴 of 𝑃 is collapsible if

– the target of 𝐴 is a 2-generator 𝛼 ∈ 𝑃2, and
– the source of 𝐴 is a 2-cell in which 𝛼 does not occur.

A 3-sphere Φ is a pair (𝐹, 𝐺) of 3-cells in 𝑃⊤3 with the same source and with
the same target, where 𝐹 and 𝐺 are respectively the source and target of the
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3-sphere. Note that a 3-sphere can be seen as a 4-generator in a (4, 1)-polygraph,
which consists of a (3, 1)-polygraph 𝑃 equipped with a cellular extension 𝑃4
of the freely generated (3, 1)-category 𝑃⊤, see Section 15.3. We thus denote
by Φ : 𝐹 𝐺 a 3-sphere from 𝐹 to 𝐺. A 3-sphere Φ : 𝐹 𝐴 whose target 𝐴
is a 3-generator is said to be collapsible.

Given a collapsible 2-generator 𝛼 : 𝑢 ⇒ 𝑎, we write 𝑃/𝛼 for the (3, 1)-poly-
graph with

– 𝑃0 as 0-generators,
– 𝑃1 \ {𝑎} as 1-generators,
– 𝑃2 \ {𝛼} as 2-generators, where every occurrence of 𝑎 in the source or target

of a 2-generator has been replaced by 𝑢,
– 𝑃3 as 3-generators, where every occurrence of 𝛼 in the source or target of a

3-generator has been replaced by 1𝑢.

Similarly, given a collapsible 3-generator 𝐴 : 𝜙 ⇛ 𝛼, we write 𝑃/𝐴 for the
(3, 1)-polygraph with

– 𝑃0 as 0-generators,
– 𝑃1 as 1-generators,
– 𝑃2 \ {𝛼} as 2-generators,
– 𝑃3 \ {𝐴} as 3-generators, where every occurrence of 𝛼 in the source or target

of a 3-generator has been replaced by 𝜙.

Similarly, given a collapsible 3-sphere Φ : 𝐹 𝐴, we write 𝑃/Φ for the
(3, 1)-polygraph 𝑃0, 𝑃1, 𝑃2 and 𝑃3 \ {𝐴} as sets of 0-, 1-, 2- and 3-generators
respectively.

In the above situation, the target generator of the collapsible cell is said to be
redundant, and the polygraph 𝑃/𝛼 (resp. 𝑃/𝐴, resp. 𝑃/Φ) is said to be obtained
from 𝑃 by collapsing 𝛼 (resp. 𝐴, resp. Φ).

7.4.7 Example. In the polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝛼 : 𝑎𝑏 ⇒ 𝑐, 𝛽 : 𝑎𝑐 ⇒ 𝑏𝑐, 𝛾 : 𝑎𝑏 ⇒ 𝑐 | 𝐴 : 𝛼 ⇛ 𝛾 ⟩
the 2-generator 𝛼 is collapsible and the polygraph resulting from its collapse is

𝑃/𝛼 = ⟨ ⋆ | 𝑎, 𝑏 | 𝛽 : 𝑎𝑎𝑏 ⇒ 𝑏𝑎𝑏, 𝛾 : 𝑎𝑏 ⇒ 𝑎𝑏 | 𝐴 : 1𝑎𝑏 ⇛ 𝛾 ⟩
The following is shown in [145, Section 2.3]:

7.4.8 Proposition. Let 𝑃 be a (3, 1)-polygraph. Given a collapsible 2-gene-
rator 𝛼 (resp. 3-generator 𝐴, resp. 3-sphere Φ) of 𝑃, the (3, 1)-polygraphs 𝑃
and 𝑃/𝛼 (resp. 𝑃/𝐴, resp. 𝑃/Φ) are Tietze equivalent.
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7.4.9 Remark. The class of collapsible generators can be made larger, and
thus lead to more collapses, by working “up to Nielsen equivalence”. By this,
we mean that one can consider that a generator is collapsible in a (3, 1)-
polygraph 𝑃, when 𝑃 is Nielsen equivalent to a polygraph 𝑄 in which the
corresponding generator is collapsible. Namely, one can generalize the above
notion of collapse to those generators.

7.5 Coherent completion and reduction

Given a convergent 2-polygraph 𝑃, Squier’s homotopical theorem (Theo-
rem 7.3.5) provides a way to extend it into a coherent presentation of the
category 𝑃. When the 2-polygraph 𝑃 is not convergent, we can use the Knuth-
Bendix completion procedure (Section 5.2) in order to obtain a convergent
presentation of the category 𝑃 and then apply Squier’s theorem on it in order to
finally obtain a coherent presentation of 𝑃. We present the coherent completion
procedure from [166, 145] which combines the two steps at once: it adds both
2- and 3-generators to the polygraph, in order to obtain a coherent convergent
presentation.

Often, the resulting coherent presentation of 𝑃 is not minimal, in the sense
that some of its generators are collapsible. In such a situation, it is desirable to
remove those superfluous generators in order to obtain a smaller presentation.
We also present here techniques to perform this, which, when combined with
the procedure described above, give rise to a coherent completion-reduction
procedure.

7.5.1 Family of generating confluences. Given a 2-polygraph 𝑃, a cellular
extension 𝑋 of the free (2, 1)-category 𝑃⊤ containing a 3-generator

𝑢
𝜙

{�

𝜓

�#
𝑣

𝜙′ �#

𝐴𝜙,𝜓*4 𝑤

𝜓′{�
𝑢′

(7.3)

for every critical branching (𝜙, 𝜓) of 𝑃 is called a family of generating conflu-
ences for 𝑃.

A Squier completion of the polygraph 𝑃 is a (3, 1)-polygraph, denoted by
Sq(𝑃), obtained from 𝑃 by adding a 3-generator of the form (7.3) for every crit-
ical branching (𝜙, 𝜓). By Theorem 7.3.5, such a (3, 1)-polygraph is a coherent
presentation of the category 𝑃. Note that the notation is slightly abusive since
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a polygraph Sq(𝑃) is not entirely determined by 𝑃. In particular, it depends on
a choice of confluences for the critical branchings, and the orientation of the
3-generator 𝐴𝜙,𝜓 . We will see in Chapter 23 that this choice can be encoded as
a 𝜄-contraction and can be extended in all higher dimensions.

7.5.2 Coherent completion of terminating 2-polygraphs. By extending the
Knuth-Bendix completion procedure, see Section 5.2, we define a procedure
that computes a coherent presentation of a category 𝐶 starting with a termi-
nating, but not necessarily confluent, presentation of 𝐶, by suitably adding 2-
and 3-generators obtained from computing critical branchings. The procedure
is defined as follows.

Given a terminating 2-polygraph 𝑃, equipped with a total termination order,
the coherent completion of 𝑃 is the (3, 1)-polygraph obtained from 𝑃 by succes-
sive applications of Knuth-Bendix and Squier completion steps, as follows. In
this procedure, one considers each critical branching (𝜙, 𝜓) of 𝑃 and performs
the following operations:

– if the branching is confluent, the procedure adds a 3-generator

𝐴 : 𝜙 ∗1 𝜙′ ⇛ 𝜓 ∗1 𝜓′

to the polygraph (if such a generator is not already present):

𝑣 𝜙′

�&
𝐴
�𝑢

𝜙 -5

𝜓 )1

�̂� = 𝑤,

𝑤 𝜓′

9A

– if the branching is not confluent, the procedure coherently adds a 2-generator

𝛼 : �̂�⇒ 𝑤 if �̂� > 𝑤 or 𝛼 : 𝑤⇒ �̂� if 𝑤 > �̂�

and a 3-generator

𝐴 : 𝜙 ∗1 𝜙′ ⇛ 𝜓 ∗1 𝜓′

to the polygraph:

𝑣
𝜙′ +3

𝐴
�

�̂�KS

𝛼

��
𝑢

𝜙 -5

𝜓 )1 𝑤
𝜓′
+3 𝑤.
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In the second case, the procedure adds a new 2-generator 𝛼, which can in
turn create new critical branchings, which have to be inspected by the proce-
dure. For this reason, like in the usual Knuth-Bendix procedure, the process
is not guaranteed to terminate. In this situation, this defines an increasing
sequence of (3, 1)-polygraphs, whose inductive limit is a potentially infinite
(3, 1)-polygraph.

As a consequence of Theorem 7.3.5, the (3, 1)-polygraph constructed using
this procedure satisfies the following property [145, Theorem 2.2.5]:

7.5.3 Theorem. Let 𝑃 be a terminating 2-polygraph. Any coherent completion
of 𝑃 is a coherent convergent presentation of the category 𝑃.

7.5.4 Generic homotopical reduction. In order to reduce the size of the
(3, 1)-polygraph obtained by a coherent completion of a terminating 2-poly-
graph, one can identify generators which can be collapsed, and thus be removed
without changing the presented category nor the coherence of the category (see
Proposition 7.4.8). We formalize here the process of collapsing multiple such
generators at once.

A collapsible part of a (3, 1)-polygraph 𝑃 is a family 𝑋 of its generators
that we can collapse together, in the sense introduced in §7.4.6. Explicitly,
it consists in a triple 𝑋 = (𝑋2, 𝑋3, 𝑋4) made of a family 𝑋2 of 2-generators
of 𝑃, a family 𝑋3 of 3-generators of 𝑃 and a family 𝑋4 of 3-spheres of the free
(2, 1)-category 𝑃⊤, such that the following conditions are satisfied:

– the elements of 𝑋2, 𝑋3 and 𝑋4 are collapsible, potentially up to a Nielsen
transformation (see Remark 7.4.9),

– no 2-generator of 𝑋2 is the target of a 3-generator in 𝑋3,
– no 3-generator of 𝑋3 is the target of a 3-sphere in 𝑋4,
– the following relations are well-founded:

– the relation <1 on 𝑃1 such that 𝑏 <1 𝑎 when there exists a 1-generator
𝛼 : 𝑢 ⇒ 𝑎 in 𝑋2 such that 𝑏 occurs in 𝑢,

– the relation <2 on 𝑃2 such that 𝛽 <2 𝛼 when there exists a 2-generator
𝐴 : 𝜙 ⇛ 𝛼 in 𝑋2 such that 𝛽 occurs in 𝜙,

– the relation <3 on 𝑃3 such that 𝐵 <3 𝐴 when there exists a 3-sphere
Φ : 𝐹 𝐴 in 𝑋3 such that 𝐵 occurs in 𝐹.

Given such a collapsible part 𝑋 , one can define a (3, 1)-polygraph 𝑃/𝑋 ,
obtained by successively collapsing all the elements of 𝑋 , which is called
the homotopical reduction of 𝑃 with respect to 𝑋 . By construction, the poly-
graph 𝑃/𝑋 is Tietze equivalent to 𝑃.
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7.5.5 Generating triple confluences. The coherent elimination of 3-gener-
ators of a (3, 1)-polygraph 𝑃 by homotopical reduction requires a collapsible
set of 3-spheres of 𝑃⊤. When 𝑃 is convergent and coherent, its triple critical
branchings provide a convenient way to build such a set.

A local triple branching is a triple (𝜙, 𝜒, 𝜓) of 2-cells which are rewrit-
ing steps with a common source. Similarly to local branchings, local triple
branchings are classified into three families:

– trivial triple branchings have two of the 2-cells equal,
– orthogonal triple branchings have at least one of their 2-cells that form an

orthogonal branching with the other two,
– overlapping triple branchings are the remaining local triple branchings.

Local triple branchings are ordered by inclusion of their sources, similarly to
branchings. A critical triple branching is an overlapping triple branching that is
minimal for this inclusion. For a reduced 2-polygraph, such a triple branching
can have two different shapes, where 𝜙, 𝜓 and 𝜒 are 2-generators:

𝑢1
//

��
𝑢2 // CC𝑢3 //

��
𝑢4 //

𝑣
//

𝜙

KS

𝜓
��

𝜒

KS

or 𝑢1
//

��
𝑢2 // CC

𝑢3 // 𝑢4 //
��

𝑣
// .

𝜙

KS

𝜓
��

𝜒

KS

When the polygraph is not reduced, the other possible type of critical branch-
ings, with an inclusion of one source into the other one, generates several other
possibilities.

If 𝑃 is a coherent and convergent (3, 1)-polygraph, a generating triple con-
fluence of 𝑃 is a 3-sphere

𝑣

𝜙′1
&.

𝐴

𝑥′ 𝜓′′

��
𝑢

𝜙 19

𝜒 +3

𝜓 %-

𝑤

𝜒′1

9A

𝜒′2 �%

𝐶′ �̂�

𝑥
𝜓′2

08
𝐵

𝑣′ 𝜙′′

DL
Φ
�?

𝑣

𝜙′1
&.

𝜙′2 �%

𝑥′ 𝜓′′

��
𝑢

𝜙 19

𝐶

𝜓 %-

𝑤′ 𝜒′′ +3
𝐵′

𝐴′
�̂�

𝑥

𝜓′1

9A

𝜓′2

08 𝑣′ 𝜙′′

DL

where (𝜙, 𝜒, 𝜓) is a triple critical branching of 𝑃 and the 3-cells are generated
by the generating confluence induced by the critical branchings.

7.5.6 Coherent completion-reduction. In practice, we apply homotopical
reduction to a coherent completion 𝑄 of a terminating 2-polygraph 𝑃. In such
a situation, one can define a collapsible part 𝑋 of 𝑄 whose elements are
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– some of the generating triple confluences of 𝑄,

– the 3-generators coherently adjoined with a 2-generator by coherent comple-
tion to reach confluence,

– some collapsible 2-generators or 3-generators already present in the initial
presentation 𝑃.

In practice, the collapsible triple confluences are chosen among those in which
some 3-generator 𝐴 occurs in the source or the target without 1-dimensional
whiskers, and occurs exactly once. Similarly, the collapsible 3-generators are
chosen among those where a 2-generator 𝛼 occurs in the source or the target
without whiskers, and occurs exactly once. Finally, the collapsible 2-generators
are chosen among those of the form 𝛼 : 𝑢 ⇒ 𝑎 or 𝛼 : 𝑎 ⇒ 𝑢 where 𝑎 is
a generator which does not occur in 𝑢. Moreover, one should check that the
conditions of §7.5.5 are satisfied. In particular, one should be careful not to
select too many such generators in order for the well-foundedness conditions
to be satisfied. An illustration is given in Example 7.5.8 below.

If 𝑃 is a terminating 2-polygraph, the coherent completion-reduction of 𝑃
with respect to a collapsible part 𝑋 of its completion 𝑄 is the (3, 1)-polygraph
the homotopical reduction 𝑄/𝑋 of 𝑄 with respect to 𝑋 .

7.5.7 Theorem. Let 𝑃 be a terminating 2-polygraph. A coherent completion-
reduction of 𝑃 is a coherent presentation of the category 𝑃.

We refer to Appendix B for examples of coherent completion-reduction
calculations in the algebraic situations of Artin, plactic and Chinese monoids.
We end this section with a simple example to illustrate the method.

7.5.8 Example. Consider the following presentation of the braid monoid 𝐵+3 ,
already encountered in Example 5.2.6 and §5.3.1, see also §A.1.21:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏, 𝑏𝑎 ⇒ 𝑐 ⟩

and equipped with the deglex order induced by 𝑎 > 𝑏 > 𝑐. The 2-polygraph 𝑃
is terminating and its coherent completion is the (3, 1)-polygraph:

𝑄 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝛼, 𝛽, 𝛾, 𝛿 | 𝐴, 𝐵, 𝐶, 𝐷 ⟩ ,

where 𝛼 : 𝑎𝑐 ⇒ 𝑐𝑏, 𝛽 : 𝑏𝑎 ⇒ 𝑐, 𝛾 : 𝑎𝑐𝑎 ⇒ 𝑐𝑐, 𝛿 : 𝑏𝑐𝑐 ⇒ 𝑐𝑐𝑎 and 𝐴,
𝐵, 𝐶, 𝐷 are the following 3-generators, induced by completion of the critical
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branchings:

𝑐𝑐

𝑏𝑎𝑐

𝛽𝑐 /7

𝑏𝛼 &.
𝑏𝑐𝑏

𝛾

QY

𝐴
�

𝑐𝑐𝑎

𝑏𝑎𝑏𝑎

𝛾𝑎 /7

𝑏𝑐𝛽 &. 𝑏𝑐𝑐

𝛿

QY

𝐵
�

𝑐𝑐𝑐𝑏

𝐶

�𝑏𝑐𝑏𝑐𝑏

𝛾𝑐𝑏 19

𝑏𝑐𝛾 %-

𝑐𝑐𝑎𝑐

𝑐𝑐𝛼dl

𝑏𝑐𝑐𝑐 𝛿𝑐

AI

𝑐𝑐𝑐𝑐

𝐷

�

𝑐𝑐𝑐𝑏𝑎
𝑐𝑐𝑐𝛽ks

𝑏𝑐𝑏𝑐𝑐

𝛾𝑐𝑐 19

𝑏𝑐𝛿 $, 𝑏𝑐𝑐𝑐𝑎
𝛿𝑐𝑎
+3 𝑐𝑐𝑎𝑐𝑎 .

𝑐𝑐𝛼𝑎

PX

The coherent presentation 𝑄 of 𝐵+3 can be reduced using the collapsible part
consisting of the following two generating triple confluences

𝑐𝑐𝑎𝑐
𝑐𝑐𝛼 +3

𝐵𝑐
�

𝑐𝑐𝑐𝑏

𝑏𝑐𝑏𝑎𝑐

𝛾𝑎𝑐 -5

𝑏𝑐𝛽𝑐 +3

𝑏𝑐𝑏𝛼 (0

𝑏𝑐𝑐𝑐

𝛿𝑐

RZ

𝑏𝑐𝐴
�

𝑏𝑐𝑏𝑐𝑏

𝑏𝑐𝛾

RZ
Φ
�?

𝑐𝑐𝑎𝑐 𝑐𝑐𝛼

��
𝑏𝑐𝑏𝑎𝑐

𝛾𝑎𝑐 19

𝑏𝑐𝑏𝛼
#+

= 𝑐𝑐𝑐𝑏

𝐶

�𝑏𝑐𝑏𝑐𝑏

𝛾𝑐𝑏

8@

𝑏𝑐𝛾 #+

𝑐𝑐𝑎𝑐

𝑐𝑐𝛼bj

𝑏𝑐𝑐𝑐 𝛿𝑐

DL

and

𝑐𝑐𝑐𝑏𝑎
𝑐𝑐𝑐𝛽 +3

𝐶𝑎 
�

𝑐𝑐𝑐𝑐

𝑏𝑐𝑏𝑐𝑏𝑎

𝛾𝑐𝑏𝑎 .6

𝑏𝑐𝛾𝑎
+3

𝑏𝑐𝑏𝑐𝛽 (0

𝑏𝑐𝑐𝑐𝑎
𝛿𝑐𝑎
+3

𝑏𝑐𝐵
�

𝑐𝑐𝑎𝑐𝑎

𝑐𝑐𝛼𝑎

^f

𝑏𝑐𝑏𝑐𝑐

𝑏𝑐𝛿

RZ
Ψ
�?

𝑐𝑐𝑐𝑏𝑎 𝑐𝑐𝑐𝛽

��
𝑏𝑐𝑏𝑐𝑏𝑎

𝛾𝑐𝑏𝑎 2:

𝑏𝑐𝑏𝑐𝛽 #+

q 𝑐𝑐𝑐𝑐

𝐷

�

𝑐𝑐𝑐𝑏𝑎
𝑐𝑐𝑐𝛽ks

𝑏𝑐𝑏𝑐𝑐
𝛾𝑐𝑐

7?

𝑏𝑐𝛿
"*
𝑏𝑐𝑐𝑐𝑎

𝛿𝑐𝑎
+3 𝑐𝑐𝑎𝑐𝑎

𝑐𝑐𝛼𝑎

KS

together with the 3-generators 𝐴 and 𝐵 coherently adjoined with the 2-generators
𝛾 and 𝛿 during coherent completion and the 2-generator 𝛽 : 𝑏𝑎 ⇒ 𝑐 that defines
the redundant generator 𝑐. The generators 𝛽, 𝐴, 𝐵, Φ and Ψ are collapsible up
to a Nielsen transformation, with respective redundant generators 𝑐, 𝛾, 𝛿, 𝐶,
and 𝐷. We conclude that 𝑋 is collapsible since the relations <1, <2 and <3 are
respectively included in the following well-founded total orders, and are thus
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well-founded:

𝑐 > 𝑏 > 𝑎 𝛿 > 𝛾 > 𝛽 > 𝛼 𝐷 > 𝐶 > 𝐵 > 𝐴.

It follows that the homotopical reduction of the coherent presentation 𝑄 with
respect to this collapsible part is the following coherent (3, 1)-polygraph:

𝑅 = ⟨ ⋆ | 𝑏, 𝑎 | 𝑎𝑏𝑎 ⇒ 𝑏𝑎𝑏 | ⟩ .

By Theorem 7.5.7, we recover that the monoid 𝐵+3 admits a coherent presenta-
tion made of Artin’s presentation and no 3-generator. This example is general-
ized in [145] where coherent presentations of Artin monoids are constructed,
see also Appendix B.

7.6 Coherent presentations of associative algebras

In this section, we define the notion of coherent presentation of an associative
algebra, by extending the notion of presentation of an algebra introduced in
Chapter 6.

7.6.1 Extended presentations. A cellular extension of a 1-algebra 𝐴, with the
notations of §6.1.4, is a set 𝑋 equipped with functions 𝑠1, 𝑡1 : 𝑋 → 𝐴1 such that
𝑠0 ◦ 𝑠1 = 𝑠0 ◦ 𝑡1. A linear 2-polygraph (𝑃, 𝑃2) consists of a linear 1-polygraph
together with a cellular extension 𝑃2 of the free 1-algebra 𝑃ℓ generated by 𝑃. An
extended presentation of an algebra 𝐴 is a linear 2-polygraph whose underlying
linear 1-polygraph presents 𝐴. A linear 2-polygraph is left-monomial when the
underlying linear 1-polygraph is, in the sense of §6.1.12.

A 2-algebra is an internal 2-category in the category Alg of algebras. Note
that contrarily to the set-theoretic case, we will not bother about distinguishing
whether we take cells to be invertible or not: it can be shown that the notion of
2-algebra coincides with the notion of internal 2-groupoid in the category of
algebras, see [160]. Any linear 2-polygraph 𝑃 freely generates a linear 2-algebra
that we denote as 𝑃ℓ , and whose algebra of 2-cells is in particular written 𝑃ℓ2 .

7.6.2 Coherent confluence and convergence. Let 𝑃 be a left-monomial linear
2-polygraph. A branching (𝜙, 𝜓) of 𝑃 is coherently confluent if there exist
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positive 1-cells 𝜙′ and 𝜓′ in 𝑃ℓ1 and a 2-cell 𝐹 in 𝑃ℓ2 as in

𝑝
𝜙

��

𝜓

��
𝑞1

𝜙′ ��

𝐴⇒ 𝑞2.

𝜓′��
𝑟

If 𝑝 is a 0-cell of 𝑃ℓ0 , say that 𝑃 is coherently confluent (resp. locally coherently
confluent, resp. critically coherently confluent) at 𝑝 if every branching (resp.
local branching, resp. critical branching) of 𝑃 of source 𝑝 is coherently conflu-
ent. Say that 𝑃 is coherently confluent (resp. locally coherently confluent, resp.
critically coherently confluent) if it is so at every 0-cell of 𝑃ℓ0 , and that 𝑃 is
coherently convergent if it is terminating and coherently confluent.

7.6.3 Lemma. Let 𝑃 be a left-monomial linear 2-polygraph with a fixed 0-
cell 𝑝, and suppose that 𝑃 is coherently confluent at every 0-cell 𝑞 such that
𝑝
∗→ 𝑞. Let 𝜙 be a 1-cell of 𝑃ℓ1 which admits a decomposition

𝑝0
𝜙
// 𝑝𝑘 = 𝑝0

𝜙1 // 𝑝1
𝜙2 // · · · 𝜙𝑘 // 𝑝𝑘

into 1-cells 𝜙𝑖 of size 1. If 𝑝 ∗→ 𝑝𝑖 holds for every 0 ⩽ 𝑖 < 𝑘 , then there exist
positive 1-cells 𝜙′ and 𝜓 in 𝑃ℓ1 and a 2-cell 𝐹 in 𝑃ℓ2 as in

𝑝𝑘 𝜙′

��𝐹��
𝑝0

𝜙 22

𝜓

33 𝑝′

Proof. Proceed by induction on 𝑘 . If 𝑘 = 0, then 𝜙 is an identity, so tak-
ing 𝜙′ = 𝜓 = 1𝑝0 and 𝐹 = 1𝜙 proves the result. Otherwise, we construct

𝑝𝑘 𝜙′2

��
𝐹��

𝑝1

𝜙2∗0 · · ·∗0𝜙𝑘
44

𝜓2 //

𝜙′1
$$=

𝑞2 𝜙′2

��𝐺��
𝑝0

𝜙1
44

𝜓′1

33 𝑞1
𝜓′2

33 𝑝′.

Apply Lemma 6.2.2 to the 1-cell 𝜙1 of size 1 to get the positive 1-cells 𝜙′1
and 𝜓1 such that 𝜙1 = 𝜙′1 ∗0 𝜓−1 . We have 𝑝

∗→ 𝑝𝑖 for every 1 ⩽ 𝑖 < 𝑘 ,
so the induction hypothesis applies to 𝜙2 ∗0 · · · ∗0 𝜙𝑘 , providing the positive
1-cells 𝜙′2 and 𝜓2, and the 2-cell 𝐹. Then, consider the branching (𝜙′1, 𝜓2),
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whose source 𝑝1 satisfies 𝑝 ∗→ 𝑝1: by hypothesis, this branching is coherently
confluent, giving the positive 1-cells 𝜙′2 and 𝜓′2, and the 2-cell 𝐺. □

The following result is a formulation of coherent Newman’s lemma for
linear polygraphs. The proof is the same as in the set-theoretical case given by
Proposition 7.3.2.

7.6.4 Proposition. Let 𝑃 be a terminating left-monomial linear 2-polygraph.
If 𝑃 is locally coherently confluent then it is coherently confluent.

The following result is a formulation of the coherent critical branchings
lemma, Lemma 7.3.3, for linear polygraphs. Due to the linearity of contexts,
the termination is necessary and the proof differs from the set-theoretical case,
as already explained in Remark 6.2.18.

7.6.5 Lemma. Suppose given a terminating left-monomial linear 2-poly-
graph 𝑃. If 𝑃 is critically coherently confluent, then 𝑃 is locally coherently
confluent.

Proof. We proceed by noetherian induction on the sources of the local branch-
ings to prove that 𝑃 is locally coherently confluent at every 0-cell of 𝑃ℓ0 . We
note that a reduced 0-cell cannot be the source of a local branching, so 𝑃 is
locally coherently confluent at reduced 0-cells. Now, fix a non-reduced 0-cell 𝑝
of 𝑃ℓ0 , and assume that 𝑃 is locally coherently confluent at every 0-cell 𝑞 with
𝑝
∗→ 𝑞. With a termination-based argument similar to that of Proposition 7.3.2,

we deduce that 𝑃 is coherently confluent at every 𝑞. Then we proceed by case
analysis on the type of the local branchings, noting that an aspherical branching
𝜆(𝜙, 𝜙) + 𝑏 is always coherently confluent.

For an additive branching, we construct

𝜆𝑝 + 𝜇𝑣 + 𝑟
𝜙′1

,,

𝜆𝑝 + 𝜇𝜓 + 𝑟
%%

𝑝′
𝜙′2

��

𝐹
��

𝜆𝑢 + 𝜇𝑣 + 𝑟

𝜆𝜙 + 𝜇𝑣 + 𝑟 66

𝜆𝑢 + 𝜇𝜓 + 𝑟 ((

= 𝜆𝑝 + 𝜇𝑞 + 𝑟
𝜙′
==

𝜓′
!!

=

=

𝑟 ′.

𝜆𝑢 + 𝜇𝑞 + 𝑟
𝜆𝜙 + 𝜇𝑞 + 𝑟

99

𝜓′1

22 𝑞′
𝜓′2

BB

By linearity of the 0-composition, we have

(𝜆𝜙 + 𝜇𝑣 + 𝑟) ∗0 (𝜆𝑝 + 𝜇𝜓 + 𝑟) = 𝜆𝜙 + 𝜇𝜓 + 𝑟 = (𝜆𝑢 + 𝜇𝜓 + 𝑟) ∗0 (𝜆𝜙 + 𝜇𝑞 + 𝑟).



194 Coherence by convergence

Note that the dotted 1-cells 𝜆𝑝 + 𝜇𝜓 + 𝑟 and 𝜆𝜙 + 𝜇𝑞 + 𝑟 are not positive in
general, since 𝑢 can be in supp (𝑞) or 𝑣 in supp (𝑝). However, those 1-cells are
of size 1, and Lemma 6.2.2 applies to both of them, to give positive 1-cells 𝜙′1,
𝜓′1, 𝜙′ and 𝜓′ that satisfy

𝜙′1 = (𝜆𝑝 + 𝜇𝜓 + 𝑟) ∗0 𝜙′ 𝜓′1 = (𝜆𝜙 + 𝜇𝑞 + 𝑟) ∗0 𝜓′.

Now, 𝑢 ∗→ 𝑝, 𝑣 ∗→ 𝑞, 𝜆 ≠ 0 and 𝜇 ≠ 0 imply 𝜆𝑢 + 𝜇𝑣 + 𝑟 ∗→ 𝜆𝑝 + 𝜇𝑞 + 𝑟 .
Thus, the branching (𝜙′, 𝜓′) is coherently confluent by hypothesis, yielding the
positive 1-cells 𝜙′2 and 𝜓′2 and the 2-cell 𝐹.

Next, in the case of an orthogonal branching, we construct

𝜆𝑝𝑣 + 𝑟
𝜙′1

,,

𝜆𝑝𝜓 + 𝑟
##

𝑝′
𝜙′2

��

𝐻
��

𝜆𝑢𝑣 + 𝑟

𝜆𝜙𝑣 + 𝑟 66

𝜆𝑢𝜓 + 𝑟 ((

= 𝜆𝑝𝑞 + 𝑟
𝜙′
>>

𝜓′
  

𝐹−��

𝐺��

𝑑.

𝜆𝑢𝑞 + 𝑟
𝜆𝜙𝑞 + 𝑟

;;

𝜓′1

22 𝑞′
𝜓′2

DD

Use the linearity of the 0-composition to obtain

(𝜆𝜙𝑣 + 𝑟) ∗0 (𝜆𝑝𝜓 + 𝑟) = 𝜆𝜙𝜓 + 𝑟 = (𝜆𝑢𝜓 + 𝑟) ∗0 (𝜆𝜙𝑞 + 𝑟).
Again, the dotted 1-cells 𝜆𝜙𝑞 + 𝑟 and 𝜆𝑝𝜓 + 𝑟 are not positive in general: this
is the case, for example, if either supp (𝑢𝑞) ∩ supp (𝑟) or supp (𝑝𝑣) ∩ supp (𝑟) is
not empty. Let 𝑝 =

∑𝑘
𝑖=1 𝜇𝑖𝑢𝑖 be the canonical decomposition of 𝑝. By linearity

of the 0-composition, the 1-cell 𝜆𝑝𝜓 + 𝑟 admits the following decomposition
in 1-cells of size 1:

𝜆𝑝𝜓 + 𝑟 = 𝜓1 ∗0 · · · ∗0 𝜓𝑘
with

𝜓 𝑗 =
∑︁

1⩽𝑖< 𝑗
𝜆𝜇𝑖𝑢𝑖𝑞 + 𝜆𝜇 𝑗𝑢 𝑗𝜓 +

∑︁
𝑗<𝑖⩽𝑘

𝜆𝜇𝑖𝑢𝑖𝑣 + 𝑟 .

We have 𝑢 ∗→ 𝑢𝑖 for every 𝑖, and 𝑣 ∗→ 𝑏, giving 𝜆𝑢𝑣 + 𝑣 ∗→ 𝑡 (𝜓 𝑗 ) for every 𝑗 .
Hence𝜆𝑝𝜓+𝑟 is eligible to Lemma 7.6.3, yielding 𝜙′1, 𝜙′ and 𝐹. The cells𝜓′1,𝜓′

and 𝐺 are obtained similarly from 𝜆𝜙𝑞 + 𝑟 . Finally, 𝜆𝑢𝑣 + 𝑟 ∗→ 𝜆𝑝𝑞 + 𝑟 implies,
by induction hypothesis, that (𝜙′, 𝜓′) is coherently confluent, giving 𝜙′2, 𝜓′2
and 𝐻.
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Finally, for an overlapping branching (𝜆𝜙 + 𝑟, 𝜆𝜓 + 𝑟), we construct

𝜆𝑝 + 𝑟
𝜙′1

++

𝜆𝜙′ + 𝑟
""

𝐹��

𝑝′
𝜙′2

��

𝐼��𝜆𝑢 + 𝑟

𝜆𝜙 + 𝑟 66

𝜆𝜓 + 𝑟 ((

𝜆𝑠 + 𝑟
𝜙′′
??

𝜓′′
��

𝐺��

𝐻��

𝑡.

𝜆𝑞 + 𝑟
𝜆𝜓′ + 𝑟

<<

𝜓′1

33 𝑞′
𝜓′2

DD

Consider the unique decomposition (𝜙, 𝜓) = 𝑣(𝜙0, 𝜓0)𝑤, with (𝜙0, 𝜓0) critical.
Since (𝜙0, 𝜓0) is coherently confluent by hypothesis, one obtains

𝑝0
𝜙′0

��
𝐹0��𝑢0

𝜙0 00

𝜓0
..

𝑟0.

𝑞0 𝜓′0

>>

Define the positive 1-cells 𝜙′ = 𝑣𝜙′0𝑤 and 𝜓′ = 𝑣𝜓′0𝑤, and the 2-cell 𝐹 = 𝑣𝐹0𝑤.
As previously, the dotted 1-cells are not positive in general, if supp (𝑐) inter-
sects supp (𝑝) or supp (𝑞) for example. However, the 1-cell 𝜙′ is positive, so that
it is a 0-composite 𝜙′ = 𝜒1 ∗0 · · · ∗0 𝜒𝑘 of rewriting steps. As a consequence,
we have the chain of reductions

𝑢
∗→ 𝑝 = 𝑠 (𝜒1) ∗→ · · · ∗→ 𝑠 (𝜒𝑘) ∗→ 𝑠.

Since we have 𝜆 ≠ 0 and 𝑢 ∉ supp (𝑟) by hypothesis, the inequality

𝜆𝑢 + 𝑟 ∗→ 𝜆𝑠 (𝜒𝑖) + 𝑟
holds for every 𝑖, so that the following decomposition of the 1-cell 𝜆𝜙′ + 𝑟
satisfies the hypotheses of Lemma 7.6.3:

𝜆𝜙′ + 𝑟 = (
𝜆𝜒1 + 𝑟

) ∗1 · · · ∗1 (
𝜆𝜒𝑘 + 𝑟

)
.

This gives 𝜙′1, 𝜙′′ and 𝐺. Proceed similarly with the 1-cell 𝜆𝜓′ + 𝑟 to ob-
tain 𝜓′1, 𝜓′′ and 𝐻. Finally, apply the induction hypothesis on (𝜙′′, 𝜓′′), since
𝜆𝑢 + 𝑟 ∗→ 𝜆𝑠 + 𝑟 , to get 𝜙′2, 𝜓′2 and 𝐼. □

Given a terminating left-monomial linear 1-polygraph 𝑃, taking 𝑃2 to be the set
of all 2-spheres, critical coherent confluence (resp. local coherent confluence)
in the linear 2-polygraph (𝑃, 𝑃2) is the same as critical confluence (resp. local
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confluence) in 𝑃. We thus deduce the critical branching lemma for linear
1-polygraphs, already announced in Lemma 6.2.15, as a particular case.

With a proof similar to the one in the set-theoretical case, see Theorem 7.3.5,
we have the coherent Squier theorem for linear polygraphs:

7.6.6 Theorem. Let𝑃 be a convergent left-monomial linear 1-polygraph and𝑃2
be a cellular extension of 𝑃ℓ1 that contains a 2-cell

𝑝
𝜙

��

𝜓

��
𝑞

𝜙′ ��

𝐴⇒ 𝑟

𝜓′��

𝑝′

for every critical branching (𝜙, 𝜓) of 𝑃, with 𝜙′ and 𝜓′ positive 1-cells of 𝑃ℓ1 .
Then the 2-polygraph (𝑃, 𝑃2) is coherent.

7.6.7 Example. We consider the quadratic algebra 𝐴 presented by〈
𝑥, 𝑦, 𝑧

�� 𝑥2 + 𝑦𝑧 = 0, 𝑥2 + 𝜆𝑧𝑦 = 0
〉

where 𝜆 is a fixed scalar different from 0 and 1, from [300, Section 4.3].
Put 𝜇 = 𝜆−1. The algebra 𝐴 admits the presentation

𝑃 =
〈
𝑥, 𝑦, 𝑧

�� 𝛼 : 𝑦𝑧 → −𝑥2, 𝛽 : 𝑧𝑦 → −𝜇𝑥2 〉
.

The deglex order generated by 𝑧 > 𝑦 > 𝑥 satisfies 𝑦𝑧 > 𝑥2 and 𝑧𝑦 > 𝑥2,
proving that 𝑃 terminates. However, 𝑃 is not confluent. Indeed, it has two
critical branchings:

−𝑥2𝑦

𝑦𝑧𝑦

𝛼𝑦 11

𝑦𝛽
,, −𝜇𝑦𝑥2

and

−𝜇𝑥2𝑧

𝑧𝑦𝑧

𝛽𝑧 22

𝑧𝛼 -- −𝑧𝑥2

and neither of them is confluent, because the monomials 𝑥2𝑦, 𝑦𝑥2, 𝑥2𝑧 and 𝑧𝑥2

are reduced. The adjunction of the 1-cells

𝛾 : 𝑦𝑥2 → 𝜆𝑥2𝑦 and 𝛿 : 𝑧𝑥2 → 𝜇𝑥2𝑧

gives a left-monomial linear 1-polygraph

𝑄 =

〈
𝑥, 𝑦, 𝑧

���� 𝛼 : 𝑦𝑧→ −𝑥2, 𝛾 : 𝑦𝑥2→ 𝜆𝑥2𝑦,

𝛽 : 𝑧𝑦→ −𝜇𝑥2, 𝛿 : 𝑧𝑥2→ 𝜇𝑥2𝑧

〉

that also presents 𝐴, since 𝛾 and 𝛿 induce relations that already hold in 𝑃, and
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that also terminates, because of 𝑦𝑥2 > 𝑥2𝑦 and 𝑧𝑥2 > 𝑥2𝑧. Moreover, each one
of the four critical branchings of 𝑄 is confluent:

−𝑥2𝑦

𝐴��𝑦𝑧𝑦

𝛼𝑦 44

𝑦𝛽 )) −𝜇𝑦𝑥2

−𝜇𝛾
UU

−𝜇𝑥2𝑧

𝐵��𝑧𝑦𝑧

𝛽𝑧 55

𝑧𝛼 ++ −𝑧𝑥2

−𝛿

UU

−𝑥4

𝐶��
𝑦𝑧𝑥2

𝛼𝑥2 55

𝑦𝛿 &&

𝑥2𝑦𝑧

𝑥2𝛼ii

𝜇𝑦𝑥2𝑧
𝜇𝛾𝑧

FF

−𝜇𝑥4

𝐷
��

𝑧𝑦𝑥2

𝛽𝑥2 77

𝑧𝛾 &&

𝑥2𝑧𝑦.

𝑥2𝛽gg

𝜆𝑧𝑥2𝑦 𝜆𝛿𝑦

EE

Theorem 7.6.6 implies that the 2-polygraph

⟨ 𝑥, 𝑦, 𝑧 | 𝛼, 𝛽, 𝛾, 𝛿 | 𝐴, 𝐵, 𝐶, 𝐷 ⟩

is a coherent presentation of 𝐴.
This coherent presentation can be reduced to a smaller one by a collapsing

mechanism, similar to the one developed in §7.5.6 in the set-theoretic case, and
hinted at on this example. First, some 2-cells may be removed without breaking
acyclicity, because their boundary can also be filled by a composite of other
2-cells. Here, the “critical 3-branchings”, where three rewriting steps overlap,
reveal two relations between 2-cells:

−𝑥2𝑦𝑧 −𝑥2𝛼

��
𝐴𝑧��

−𝐶��𝑦𝑧𝑦𝑧

𝛼𝑦𝑧
11

𝑦𝛽𝑧 //

𝑦𝑧𝛼
--

−𝜇𝑦𝑥2𝑧

−𝜇𝛾𝑧
OO

𝑦𝐵��

𝑥4

−𝑦𝑧𝑥2

−𝑦𝛿
OO

−𝛼𝑥2

FF
⇛

−𝑥2𝑦𝑧 −𝑥2𝛼

��

𝑦𝑧𝑦𝑧

𝛼𝑦𝑧 44

𝑦𝑧𝛼 **

= 𝑥4,

−𝑦𝑧𝑥2 −𝛼𝑥2

FF

−𝜇𝑥2𝑧𝑦 −𝜇𝑥2𝛽

��
𝐵𝑦��

−𝜇𝐷��𝑧𝑦𝑧𝑦

𝛽𝑧𝑦
22

𝑧𝛼𝑦 //

𝑧𝑦𝛽 ,,

−𝑧𝑥2𝑦

−𝛿𝑦
OO

𝑧𝐴��

𝜇2𝑥4

−𝜇𝑧𝑦𝑥2

−𝜇𝑧𝛾
OO

−𝜇𝛽𝑥2

FF
⇛

𝑏𝑥2𝑧𝑦 −𝜇𝑥2𝛽

��

𝑧𝑦𝑧𝑦

𝛽𝑧𝑦 44

𝑧𝑦𝛽 **

= 𝜇2𝑥4.

𝑏𝑧𝑦𝑥2 −𝜇𝛽𝑥2

FF



198 Coherence by convergence

Since the boundaries of 𝐶 and 𝐷 can also be filled using 𝐴 and 𝐵 only, the
2-polygraph ⟨ 𝑥, 𝑦, 𝑧 | 𝛼, 𝛽, 𝛾, 𝛿 | 𝐴, 𝐵 ⟩ is also a coherent presentation of 𝐴.
Next, the 1-cells 𝛾 and 𝛿 are redundant, because the corresponding relations
can be derived from 𝛼 and 𝛽, as testified by the 2-cells 𝐴 and 𝐵: removing 𝛾
with 𝐴, and 𝛿 with 𝐵, proves that 𝑃ℓ1 admits an empty acyclic cellular extension,
so that ⟨ 𝑥, 𝑦, 𝑧 | 𝛼, 𝛽 | ⟩ is actually a coherent presentation of 𝐴.

7.6.8 Example (The standard coherent presentation). Assume that 𝐴 = k ⊕ 𝐴+
is an augmented algebra, and fix a linear basis B of 𝐴+. For 𝑢 and 𝑣 in B,
write 𝑢 ⊗ 𝑣 for the product of 𝑢 and 𝑣 in the free algebra over B, and 𝑢𝑣 for
their product in 𝐴. Consider the linear 1-polygraph Std(B)1 whose 0-cells are
the elements of B, and with a 1-cell

𝑢 ⊗ 𝑣 𝑢 |𝑣→ 𝑢𝑣,

for all 𝑢 and 𝑣 in B. Note that 𝑢𝑣 belongs to the free algebra over B because 𝐴 is
augmented. By definition, Std(B)1 is a presentation of 𝐴. Moreover, Std(B)1
terminates by a length argument: for all 𝑢 and 𝑣 inB, the monomial 𝑢⊗𝑣 is a word
of length 2 in the free monoid over B, while 𝑢𝑣 is a word of length 1. Finally,
Std(B)1 has one critical branching (𝑢 |𝑣 ⊗ 𝑤, 𝑢 ⊗ 𝑣 |𝑤) for each triple (𝑢, 𝑣, 𝑤) of
elements ofB, and this critical branching is confluent. Thus, extending Std(B)1
with a 2-cell

𝑢𝑣 ⊗ 𝑤 𝑢𝑣 |𝑤

��
𝑢 |𝑣 |𝑤��𝑢 ⊗ 𝑣 ⊗ 𝑤

𝑢 |𝑣⊗𝑤 22

𝑢⊗𝑣 |𝑤 ,,

𝑢𝑣𝑤

𝑢 ⊗ 𝑣𝑤 𝑢 |𝑣𝑤

DD

for each triple (𝑢, 𝑣, 𝑤) of elements ofB produces, by Theorem 7.6.6, a coherent
presentation of 𝐴, denoted by Std(B)2. Note that the free 2-algebra over Std(B)2
does not depend (up to isomorphism) on the choice of the basis B.

This coherent presentation of 𝐴 is extended in every dimension in §23.3.8
to obtain a polygraphic version of the standard resolution of an algebra. As in
the previous example, the next dimension contains the 3-cells generated by the
“critical 3-branchings” of Std1 (B): there is one such 3-cell 𝑢 |𝑣 |𝑤 |𝑥 for each
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quadruple (𝑢, 𝑣, 𝑤, 𝑥) of elements of B, with source

𝑢𝑣 ⊗ 𝑤 ⊗ 𝑥
𝑢𝑣 |𝑤⊗𝑥

--

𝑢 |𝑣 |𝑤⊗𝑥��

𝑢𝑣𝑤 ⊗ 𝑥
𝑢𝑣𝑤 |𝑥

��
𝑢 |𝑣𝑤 |𝑥��𝑢 ⊗ 𝑣 ⊗ 𝑤 ⊗ 𝑥

𝑢 |𝑣⊗𝑤⊗𝑥
66

𝑢⊗𝑣 |𝑤⊗𝑥 //

𝑢⊗𝑣⊗𝑤 |𝑥
((

𝑢⊗𝑣 |𝑤 |𝑥��

𝑢 ⊗ 𝑣𝑤 ⊗ 𝑥

𝑢 |𝑣𝑤⊗𝑥

;;

𝑢⊗𝑣𝑤 |𝑥
##

𝑢𝑣𝑤𝑥

𝑢 ⊗ 𝑣 ⊗ 𝑤𝑥
𝑢⊗𝑣 |𝑤𝑥

11 𝑢 ⊗ 𝑣𝑤𝑥
𝑢 |𝑣𝑤𝑥

EE

and target

𝑢𝑣 ⊗ 𝑤 ⊗ 𝑥
𝑢𝑣 |𝑤⊗𝑥

--

𝑢𝑣⊗𝑤 |𝑥
##

1𝑢|𝑣⊗𝑤|𝑥��

𝑢𝑣𝑤 ⊗ 𝑥
𝑢𝑣𝑤 |𝑥

��

𝑢𝑣 |𝑤 |𝑥��

𝑢 ⊗ 𝑣 ⊗ 𝑤 ⊗ 𝑥

𝑢 |𝑣⊗𝑤⊗𝑥
66

𝑢⊗𝑣⊗𝑤 |𝑥
((

𝑢𝑣 ⊗ 𝑤𝑥 𝑢𝑣 |𝑤𝑥 //

𝑢 |𝑣 |𝑤𝑥��

𝑢𝑣𝑤𝑥.

𝑢 ⊗ 𝑣 ⊗ 𝑤𝑥

𝑢 |𝑣⊗𝑤𝑥

;;

𝑢⊗𝑣 |𝑤𝑥
11 𝑢 ⊗ 𝑣𝑤𝑥

𝑢 |𝑣𝑤𝑥

EE



8
Categories of finite derivation type

In Chapter 7, we have seen a canonical and efficient way to extend a convergent
presentation of a category 𝐶 by a 2-polygraph 𝑃 into a coherent one. Precisely,
the 3-cells used in this extension procedure are in one-to-one correspondence
with the confluence diagrams of critical branchings in 𝑃 (Theorem 7.3.5). Now
if 𝑃 is finite, so is the set of its critical branchings and therefore the set of
3-cells generating coherence can be taken to be finite. In such a situation, we
say that the polygraph 𝑃 has finite derivation type, or FDT. The relevance of this
concept lies in the following invariance property: if a category𝐶 admits a finite
presentation 𝑃 having finite derivation type, then all finite presentations of 𝐶
also have FDT (Theorem 8.1.2). This invariance will prove essential to show
that some finitely presented categories do not admit convergent presentations.

This finiteness condition, introduced by Squier [328] is of homotopical na-
ture, and is in some sense a refinement of the homological condition introduced
earlier in [326]. The latter will be discussed in the next chapter. Using these
conditions, Squier managed to produce an explicit example of a finitely pre-
sented monoid, with decidable word problem, but having no finite convergent
presentation. This provides a negative answer to the question of universality of
finite convergent rewriting we raised in Section 5.3. Let us finally emphasize the
power of the FDT invariant: by performing computations on one presentation
of a monoid, we are able to deduce properties of any finite presentation of it!

The finiteness condition is introduced in Section 8.1 and studied in the case of
convergent 2-polygraphs in Section 8.2. In Section 8.3, we define the notion of
identities among relations for 2-polygraphs, generalizing those already known
for presentations of groups: such identities are described by 2-spheres of the
free (2, 1)-category on the 2-polygraph.

200
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8.1 Finite derivation type

A 2-polygraph 𝑃 has finite derivation type, or FDT for short, if it is finite and
if the (2, 1)-category 𝑃⊤ admits a finite acyclic cellular extension. Otherwise
said, there is a finite coherent (3, 1)-polygraph 𝑄 of which 𝑃 is the underlying
2-polygraph. A category𝐶 has finite derivation type if it admits a finite coherent
presentation.

8.1.1 Tietze invariance of the FDT property. Recall from Section 5.1 that
two 2-polygraphs are Tietze equivalent when they present isomorphic cate-
gories. We say that a property P on 2-polygraphs is Tietze invariant when for
every Tietze equivalent 2-polygraphs 𝑃 and 𝑄, the polygraph 𝑃 satisfies the
property P if and only if the polygraph 𝑄 does.

Given two Tietze equivalent 2-polygraphs 𝑃 and 𝑄 whose sets 𝑃2 and 𝑄2
of 2-generators are finite, consider a finite acyclic cellular extension 𝑋 of the
free (2, 1)-category 𝑃⊤. By Theorem 7.1.6, the cellular extension 𝑋 transfers
to a finite cellular extension of the free (2, 1)-category 𝑄⊤. We may therefore
state the following invariance result, first proved by Squier for monoids [328,
Theorem 4.3] and revisited in [165, Theorem 4.2.3] in polygraphic terms.

8.1.2 Theorem. Let 𝑃 and𝑄 be two Tietze equivalent 2-polygraphs such that 𝑃2
and 𝑄2 are finite. Then 𝑃 has finite derivation type if and only if 𝑄 has finite
derivation type.

This result shows that the property for a category 𝐶 of having finite derivation
type does not depend on the presentation, provided that it is finite.

The following result will help prove that a presentation admits no finite
acyclic cellular extension, i.e., that the presented category does not have finite
derivation type.

8.1.3 Proposition. Let 𝑃 be a 2-polygraph and let 𝑋 be an acyclic extension
of the free (2, 1)-category 𝑃⊤. If 𝑃⊤ admits a finite acyclic cellular extension,
then there exists a finite subset of 𝑋 that is an acyclic cellular extension of 𝑃⊤.

Proof. Suppose that 𝑃⊤ admits a finite acyclic cellular extension 𝑌 and let 𝐴
be a 3-generator of 𝑌 . Since 𝑋 is an acyclic extension of 𝑃⊤, there exists a
3-cell 𝐹𝐴 : 𝑠2 (𝐴) ⇛ 𝑡2 (𝐴) in the free (3, 1)-category 𝑃⊤ (𝑋). This induces a
3-functor between free (3, 1)-categories 𝑓 : 𝑃⊤ (𝑌 ) → 𝑃⊤ (𝑋), which is the
identity on 𝑃 and such that 𝑓 (𝐴) = 𝐹𝐴 for every 3-generator 𝐴 of 𝑌 . Let 𝑋𝑌
be the subset of 𝑋 containing all the 3-generators occurring in some 3-cell 𝐹𝐴,
for 𝐴 in 𝑌 . Since 𝑌 is finite and each 3-cell 𝐹𝐴 can be written as a composition
of finitely many 3-generators of 𝑋 , we deduce that 𝑋𝑌 is finite.
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Finally, consider a 2-sphere (𝜙, 𝜓) of 𝑃⊤. By hypothesis, there exists a 3-cell
𝐴 : 𝜙 ⇛ 𝜓 in 𝑃⊤ (𝑌 ). By application of 𝑓 , one obtains a 3-cell 𝑓 (𝐴) : 𝜙 ⇛ 𝜓

in 𝑃⊤ (𝑋). Moreover, the 3-cell 𝑓 (𝐴) is a composite of cells 𝐹𝐴, and the 3-cell
𝑓 (𝐴) is thus in 𝑋⊤𝑌 . As a consequence, one has 𝜙 ≈𝑋𝑌 𝜓, so that 𝑋𝑌 is a finite
acyclic cellular extension of 𝑃⊤. □

8.2 Convergence and finite derivation type

Theorem 7.3.5 states that any family of generating confluences of a convergent
2-polygraph 𝑃 forms an acyclic extension of the free (2, 1)-category 𝑃⊤. The
set of critical branchings of a finite 2-polygraph being finite, we deduce that a
finite convergent 2-polygraph has finite derivation type. Moreover, from The-
orem 8.1.2, the property of having finite derivation type is Tietze invariant for
finite 2-polygraphs. We thus obtain a finiteness condition for finitely presented
categories to have a presentation by a finite convergent 2-polygraph.

8.2.1 Theorem. If a category admits a finite convergent presentation, then it
has finite derivation type.

This result was first proved by Squier for finitely presented monoids [328,
Theorem 5.3]. Several others proofs can be found in the literature: we refer
to [233] for a reformulation of Squier’s arguments and to [165] for a proof in
the polygraphic language presented in this book.

Now suppose we want to show that some category does not admit a finite
convergent presentation: by Theorem 8.2.1 it is sufficient to prove that it has
no finite derivation type. The first example based on this argument, due to
Squier [328], is presented in §8.2.3. Before that, we turn to a simplified version
introduced by Lafont and Prouté in [238, 233].

8.2.2 Example. Consider the monoid 𝑀 presented by the following 2-poly-
graph:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑑′ | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐, 𝛽′ : 𝑑′𝑎 ⇒ 𝑎𝑐 ⟩ .
This is a variant of the monoid already encountered in Example 5.2.4. It ad-
mits a finite presentation and has a decidable word problem, yet it does not
have finite derivation type and, as a consequence, it does not admit a finite
convergent presentation. To prove these facts, the 2-polygraph 𝑃 is completed,
by Knuth-Bendix procedure (see Section 5.2), into the following infinite con-
vergent 2-polygraph

�̃� = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑑′ | 𝛼𝑛, 𝛽, 𝛽′ ⟩𝑛∈N ,
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with

𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 𝑎𝑐𝑛, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐, 𝛽′ : 𝑑′𝑎 ⇒ 𝑎𝑐.

Event though the polygraph �̃� is infinite, we can implement an algorithm to
normalize 1-cells in �̃� by iteratively rewriting those, and therefore decide the
word problem in �̃�, and thus in 𝑃, by comparing normal forms. The 2-poly-
graph �̃� has two infinite families of critical branchings from which we deduce
two infinite families of 3-generators:

𝑎𝑐𝑛+1𝑏 𝛼𝑛+1

�"
𝐴𝑛
�𝑑𝑎𝑐𝑛𝑏

𝛽𝑐𝑛𝑏 19

𝑑𝛼𝑛 &.

𝑎𝑐𝑛+1

𝑑𝑎𝑐𝑛 𝛽𝑐𝑛

>F

𝑎𝑐𝑛+1𝑏 𝛼𝑛+1

�"
𝐴′𝑛
�𝑑′𝑎𝑐𝑛𝑏

𝛽′𝑐𝑛𝑏 19

𝑑′𝛼𝑛 &.

𝑎𝑐𝑛+1.

𝑑′𝑎𝑐𝑛 𝛽′𝑐𝑛

=E

The 3-generators 𝐴′𝑛 induce a projection functor 𝑓 : �̃�⊤ → 𝑃⊤ which is
the identity on 0- and 1-generators, sends the 2-generators 𝛼0, 𝛽 and 𝛽′ to
themselves and the image of 𝛼𝑛, for 𝑛 > 0, is defined by induction by

𝑓 (𝛼𝑛+1) = 𝛽′−𝑐𝑛𝑏 ∗1 𝑑′ 𝑓 (𝛼𝑛) ∗1 𝛽′𝑐𝑛.
This functor is a retract of the canonical inclusion functor 𝑔 : 𝑃⊤ → �̃�⊤. By
the transfer theorem (Theorem 7.1.6), the family

𝑋 = { 𝑓 (𝐴𝑛) | 𝑛 ∈ N}
is thus an infinite acyclic cellular extension of the (2, 1)-category 𝑃⊤: in this
case, the generators of the form (7.1) are superfluous because 𝑓 ◦ 𝑔 is the
identity on 𝑃⊤.

By Proposition 8.1.3, in order to conclude that the polygraph 𝑃 does not
have FDT, it is enough to show that no finite subset of 𝑋 forms an acyclic
cellular extension of 𝑃⊤. A fully explicit direct proof of this fact is rather
tedious. A complete proof is given in [233, Section 5] using an abelianized
form of the category 𝑃⊤ in terms of monoidal groupoids. Note also that this
can be shown indirectly by a homological argument outlined in the next chapter.
Indeed, in Example 9.3.11 we show that the third integral homology group of
the monoid 𝑀 is not of finite type. This shows by Theorem 9.3.4 that the
monoid 𝑀 does not have FDT, and so in particular, we cannot extract a finite
acyclic cellular extension of 𝑃⊤ from 𝑋 .

8.2.3 Squier’s monoids. We now recall Squier’s original example of a finitely
presented monoid that does not admit a finite convergent presentation and
studied in [328] and [326] using homotopical and homological arguments
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respectively. Consider, for 𝑘 ⩾ 1, the monoid 𝑆𝑘 defined in [328, Example 4.5]
and presented by

⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑𝑖 , 𝑒𝑖 | 𝛼𝑛, 𝛽𝑖 , 𝛾𝑖 , 𝛿𝑖 , 𝜀𝑖 ⟩𝑛∈N,1⩽𝑖⩽𝑘 ,
where the rules are 𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 1 for 𝑛 ∈ N, and for 1 ⩽ 𝑖 ⩽ 𝑘 ,

𝛽𝑖 : 𝑑𝑖𝑎 ⇒ 𝑎𝑐𝑑𝑖 , 𝛾𝑖 : 𝑑𝑖𝑐 ⇒ 𝑐𝑑𝑖 , 𝜀𝑖 : 𝑑𝑖𝑒𝑖 ⇒ 1, 𝛿𝑖 : 𝑑𝑖𝑏 ⇒ 𝑏𝑑𝑖 .

Squier proves the following properties for the monoid 𝑆1 in [328, Theorem 6.7,
Corollary 6.8]. The proof is reworked in [233, Section 6] and in [165, Section 6]
using polygraphs.

8.2.4 Theorem. The monoid 𝑆1 is a finitely presented monoid that has the
following properties.

1. It has a decidable word problem.
2. It does not have finite derivation type.
3. It does not have a finite convergent presentation.

Proof. The monoid 𝑆1 has the following infinite presentation:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 | 𝛼𝑛, 𝛽, 𝛾, 𝛿, 𝜀 ⟩𝑛∈N
with

𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 1, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐𝑑, 𝛾 : 𝑑𝑐 ⇒ 𝑐𝑑, 𝜀 : 𝑑𝑒 ⇒ 1, 𝛿 : 𝑑𝑏 ⇒ 𝑏𝑑.

This presentation is infinite, so that the normal-form algorithm of §4.2.4
cannot be applied to decide the word problem in the monoid 𝑆1. However, the
sources of the 2-generators 𝛼𝑛 are the elements of the regular language 𝑎𝑐∗𝑏.
This implies that the sources of the 2-generators of the polygraph 𝑃 form a
regular language over the finite set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Following [294, Proposition
3.6], this implies that the word problem for 𝑆1 is decidable, which proves
Condition 1.

The Condition 3 is a consequence of Condition 2 and Theorem 8.2.1.
We sketch the main arguments of the proof of Condition 2, and we refer

to [328] for the original proof and to [165, Section 6] for the proof presented
here. We denote by 𝛾𝑛 : 𝑑𝑐𝑛 ⇒ 𝑐𝑛𝑑 the 2-cell of 𝑃∗2 defined by induction on 𝑛
as follows:

𝛾0 = 1𝑥 and 𝛾𝑛+1 = 𝛾𝑐𝑛 ∗1 𝑐𝛾𝑛.
For every 𝑛, we write 𝜙𝑛 : 𝑑𝑎𝑐𝑛𝑏 ⇒ 𝑎𝑐𝑛+1𝑏𝑑 the following composite in 𝑃∗1

𝑑𝑎𝑐𝑛𝑏
𝛽𝑐𝑛𝑏 +3 𝑎𝑐𝑑𝑐𝑛𝑏

𝑎𝑐𝛾𝑛𝑏 +3 𝑎𝑐𝑛+1𝑑𝑏 𝑎𝑐𝑛+1 𝛿 +3 𝑎𝑐𝑛+1𝑏𝑑 .
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Considering for every natural number 𝑛 ⩾ 0, the following 2-sphere of 𝑃⊤2 :

𝑎𝑐𝑛+1𝑏𝑑𝑒 𝑎𝑐𝑛+1𝑏𝜀 +3 𝑎𝑐𝑛+1𝑏
𝛼𝑛+1

��
𝑑𝑎𝑐𝑛𝑏𝑒

𝜙𝑛𝑒 19

𝑑𝛼𝑛𝑒 *2

1

𝑑𝑒 𝜀

6> (8.1)

we prove that the monoid 𝑆1 admits the following finite presentation

𝑄 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 | 𝛼0, 𝛽, 𝛾, 𝛿, 𝜀 ⟩ .
We also prove that the 2-polygraph 𝑃 is convergent and the Squier completion
of 𝑃 contains a 3-generator 𝐴𝑛 with shape

𝑎𝑐𝑛+1𝑏𝑑
𝛼𝑛+1𝑑

�!
𝑑𝑎𝑐𝑛𝑏

𝜙𝑛
2:

𝑑𝛼𝑛

.6
𝐴𝑛
�

𝑑

for every natural number 𝑛. In order to show that the monoid 𝑆1 does not have
FDT, by Theorem 8.1.2, it is sufficient to check that the polygraph 𝑄 admits no
finite acyclic cellular extension. We denote by 𝑔 : 𝑃⊤ → 𝑄⊤ the projection that
sends the 2-cells 𝛽, 𝛾, 𝛿 and 𝜀 to themselves and whose value on 𝛼𝑛 is given
by induction on 𝑛, thanks to (8.1), i.e.,

𝑔(𝛼0) = 𝛼 and 𝑔(𝛼𝑛+1) = (𝜙𝑛𝑒 ∗1 𝑎𝑐𝑛+1𝑏𝜀)− ∗1 𝑑𝑓 (𝛼𝑛)𝑒 ∗1 𝜀.
By application of Theorem 7.1.6 to the canonical inclusion 𝑓 : 𝑄⊤ → 𝑃⊤ and 𝑔
defined above, we deduce that the monoid 𝑆1 admits the coherent presentation

𝑄 =
〈

⋆
�� 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 �� 𝛼0, 𝛽, 𝛾, 𝛿, 𝜀

�� �̃�𝑛 〉
𝑛∈N

where �̃�𝑛 is the 3-generator

𝑎𝑐𝑛+1𝑏𝑒
𝑔 (𝛼𝑛+1 )𝑑

�!
𝑑𝑎𝑐𝑛𝑏

𝜙𝑛
2:

𝑑𝑔 (𝛼𝑛 )
.6

�̃�𝑛
�
𝑑.

By studying the relations among 3-cells in the 3-category generated by the
coherent presentation 𝑄 in terms of generating critical, see §7.5.5, we show
that the polygraph 𝑄 is not Tietze equivalent to a polygraph having FDT.
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Following Theorem 8.1.2, this shows that the monoid 𝑆1 does not have FDT.
We refer to [165] for more details on this proof. □

8.2.5 Higher-dimensional finite derivation type. With the aim of character-
izing the class of finite presented decidable monoids admitting a finite con-
vergent presentation, some refinements of the FDT condition were introduced,
such as the 2-dimensional FDT property [274], and the infinite-deimensional
FDT property [163], see also §23.4.1. Note that the characterization of this
class by finiteness conditions is still an open problem.

8.3 Identities among relations

The 3-generators in a coherent presentation are closely related to the notion
of identity among relations, which originates in the work of Peiffer and Rei-
demeister in combinatorial group theory [295, 310]. This notion is based on
the one of crossed module, introduced by Whitehead, in algebraic topology, for
the classification of homotopy 2-types [354, 355]. There exist several formula-
tions of identities for presentations of groups: as homological 2-syzygies [64],
as homotopical 2-syzygies [252], or as Igusa’s pictures [252, 212]. One can
also interpret identities as the critical pairs of a presentation of a group by a
convergent string rewriting system [100]. The latter approach yields an algo-
rithm based on Knuth-Bendix’s completion procedure that computes a family
of generators of the module of identities among relations [179].

In this section, we introduce the notion of identity among relations for a
2-polygraph. We relate the property for a polygraph of having a finite gener-
ating set of identities among relations to the property of having abelian finite
derivation type. First, let us recall the notion of natural system used in this
section.

8.3.1 Natural system. The category of factorizations of a small category 𝐶
is the category, denoted by F𝐶, whose 0-cells are the 1-cells of 𝐶 and whose
1-cells from 𝑤 to 𝑤′ are pairs (𝑢, 𝑣) of 1-cells of 𝐶 such that the following
diagram commutes in 𝐶:

·
𝑤

��

·𝑢oo

𝑤′
��· 𝑣
// ·

The triple (𝑢, 𝑤, 𝑣) is called a factorization of 𝑤′. A natural system on 𝐶 is
a functor 𝐷 : F𝐶 → Ab with values in the category Ab of abelian groups.
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We will denote by 𝐷𝑤 the abelian group which is the image of 𝑤 by 𝐷. The
category of natural systems is denoted Nat(𝐶,Ab). We refer to §F.2.2 for more
details on this notion.

8.3.2 Identities among relations. Let 𝑃 be a 2-polygraph. We define the
natural system Π(𝑃) on the presented category 𝑃 of identities among relations
of 𝑃 as follows.

– If 𝑢 is a 1-cell of 𝑃, the abelian groupΠ(𝑃)𝑢 is generated by one element ⌊𝜙⌋,
for each 2-cell 𝜙 : 𝑣⇒ 𝑣 of the (2, 1)-category 𝑃⊤ such that 𝑣 = 𝑢, and subject
to the relation

⌊𝜙 ∗1 𝜓⌋ = ⌊𝜙⌋ + ⌊𝜓⌋ , (8.2)

for every 2-cells 𝜙 : 𝑣⇒ 𝑣 and 𝜓 : 𝑣⇒ 𝑣 of 𝑃⊤, with 𝑣 = 𝑢, and

⌊𝜙 ∗1 𝜓⌋ = ⌊𝜓 ∗1 𝜙⌋ , (8.3)

for every 2-cells 𝜙 : 𝑣⇒ 𝑤 and 𝜓 : 𝑤⇒ 𝑣 of 𝑃⊤, with 𝑣 = 𝑤 = 𝑢.
– If 𝑤′ = 𝑢𝑤𝑣 is a factorization in 𝑃, then the homomorphism of groups

Π(𝑃) (𝑢,𝑣) : Π(𝑃)𝑤 → Π(𝑃)𝑤′ is defined by

Π(𝑃) (𝑢,𝑣) (⌊𝜙⌋) = ⌊�̂�𝜙𝑣⌋ ,
where �̂� and �̂� are any representative 1-cells of 𝑢 and 𝑣 in 𝑃∗1 respectively.

Note that the value of Π(𝑃) (𝑢,𝑣) does not depend on the choice of the repre-
sentative 1-cells �̂� and �̂�. This proves that Π(𝑃) is a natural system on 𝑃. We
will often write ⌊𝑢𝜙𝑣⌋ instead of ⌊�̂�𝜙𝑣⌋.

As consequence of the defining relations of each group Π(𝑃)𝑢, the relations

⌊1𝑢⌋ = 0, ⌊𝜙−⌋ = − ⌊𝜙⌋ , and ⌊𝜓 ∗1 𝜙 ∗1 𝜓−⌋ = ⌊𝜙⌋
hold for every 1-cell 𝑢 and every 2-cells 𝜙 : 𝑢 ⇒ 𝑢 and 𝜓 : 𝑣 ⇒ 𝑢 of the free
(2, 1)-category 𝑃⊤.

8.3.3 Loops and cellular extensions. In some situations, it is helpful to con-
sider cellular extensions by the means of 2-loops in a 2-category𝐶, i.e., 2-cells 𝜙
such that 𝑠1 (𝜙) = 𝑡1 (𝜙). The following result will be useful in the sequel.

8.3.4 Lemma. Let𝐶 be a (2, 1)-category and let𝑌 be a family of 2-loops in𝐶.
The following assertions are equivalent.

1. The cellular extension 𝑌 := {𝛽 : 𝛽 ⇛ 1𝑠1 (𝛽) , 𝛽 ∈ 𝑌 } of 𝐶 is acyclic.
2. Every 2-loop 𝜙 in 𝐶 has a decomposition

𝜙 =
(
𝜓1 ∗1 𝑢1𝛽

𝜖1
1 𝑣1 ∗1 𝜓−1

) ∗1 · · · ∗1 (
𝜓𝑝 ∗1 𝑢𝑝𝛽𝜖𝑝𝑝 𝑣𝑝 ∗1 𝜓−𝑝

)
(8.4)
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with, for every 1 ⩽ 𝑖 ⩽ 𝑝, 𝛽𝑖 in 𝑌 , 𝜖𝑖 in {−, +}, 𝑢𝑖 , 𝑣𝑖 1-cells of 𝐶 and 𝜓𝑖 a
2-cell of 𝐶.

Proof. Suppose that 𝐶 is 𝑌 -acyclic. Given a closed 2-cell 𝜙 : 𝑤 ⇒ 𝑤 in 𝐶,
by hypothesis there exists a 3-cell 𝐴 : 𝜙 ⇛ 1𝑤 in 𝐶 (𝑌 ). In the (3, 1)-category
𝐶 (𝑌 ) the 3-cell 𝐴 can be decomposed into

𝐴 = 𝐴1 ∗2 · · · ∗2 𝐴𝑘 ,

where each 𝐴𝑖 is a 3-cell of 𝐶 (𝑌 ) that contains exactly one generating 3-cell
of 𝑌 . Thus each 3-cell 𝐴𝑖 has the shape

𝜓𝑖 ∗1 𝑢𝑖𝛽𝜖𝑖𝑖 𝑣𝑖 ∗1 𝜓′𝑖
with 𝛽𝑖 ∈ 𝑌 , 𝜖𝑖 ∈ {−, +}, 𝑢𝑖 , 𝑣𝑖 1-cells of 𝐶 and 𝜓𝑖 , 𝜓

′
𝑖 , 2-cells of 𝐶. By

hypothesis on 𝐴, we have 𝜙 = 𝑠2 (𝐴), hence 𝜙 = 𝜓1 ∗1 𝑢1𝑠2 (𝛽𝜖1
1 )𝑣1 ∗1 𝜓′1. For

𝜖1 = +, we have:

𝜙 = 𝜓1 ∗1 𝑢1𝛽1𝑣1 ∗1 𝜓′1
=

(
𝜓1 ∗1 𝑢1𝛽1𝑣1 ∗1 𝜓−1

) ∗1 (
𝜓1 ∗1 𝜓′1

)
=

(
𝜓1 ∗1 𝑢1𝛽1𝑣1 ∗1 𝜓−1

) ∗1 𝑠2 (𝐴2).

And, for 𝜖1 = −, we have:

𝜙 = 𝜓1 ∗1 𝜓′1
=

(
𝜓1 ∗1 𝑢1𝛽

−
1 𝑣1 ∗1 𝜓−1

) ∗1 (
𝜓1 ∗1 𝑢1𝛽1𝑣1 ∗1 𝜓′1

)
=

(
𝜓1 ∗1 𝑢1𝛽

−
1 𝑣1 ∗1 𝜓−1

) ∗1 𝑠2 (𝐴2).

We proceed by induction on 𝑘 to prove that 𝜙 has a decomposition as in (8.4).
Conversely, we assume that every closed 2-cell 𝜙 in 𝐶 has a decomposition

as in (8.4). Then we have 𝜙 ≈𝑌 1𝑠1 (𝜙) for every closed 2-cell 𝜙 in 𝐶. Let us
consider two parallel 2-cells 𝜙 and 𝜓 in 𝐶. Then 𝜙 ∗1 𝜓− is a closed 2-cell,
yielding 𝜙 ∗1 𝜓− ≈𝑌 1𝑠 (𝜙) . We compose both members by 𝜓 on the right hand
to get 𝜙 ≈𝑌 𝜓. Thus 𝑌 is a homotopy basis of 𝐶. □

8.3.5 Abelian finite derivation type. A (2, 1)-category 𝐶 is called abelian
if, for every 1-cell 𝑢 of 𝐶, the group Aut𝐶𝑢 of 2-loops of 𝐶 with source 𝑢 is
abelian. For 𝐶 an (2, 1)-category, its abelianization 𝐶ab is the quotient of 𝐶 by
the cellular extension that contains one 2-sphere 𝜙 ∗1 𝜓 ⇛ 𝜓 ∗1 𝜙 for every
2-loops 𝜙 and 𝜓 of 𝐶 with the same source.

One says that a 2-polygraph 𝑃 has abelian finite derivation type, or FDTab for
short, when the abelian (2, 1)-category 𝑃⊤ab admits a finite acyclic extension.
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8.3.6 Proposition. Given a 2-polygraph 𝑃, there exists an isomorphism of
natural systems on the free category 𝑃∗1:

Π(𝑃)𝜋◦(−) ≃−→ Aut𝑃
⊤
ab
(−) . (8.5)

Proof. For a 1-cell 𝑢 of 𝑃⊤ab, we define the morphism of groups

Φ𝑢 : Π(𝑃)𝑢 → Aut𝑃
⊤
ab
𝑢

given on generators by Φ𝑢 (⌊𝜙⌋) = 𝜙𝜓 , where 𝜙 is a 2-loop of 𝑃⊤ab on a 1-cell
𝑣 such that 𝑣 = 𝑢 and 𝜓 : 𝑣 ⇒ 𝑢 is any 2-cell of 𝑃⊤ab. The morphism Φ𝑢 is
well-defined. Indeed, it is independent of the choice of 𝜓, and its definition is
compatible with the relations (8.2) and (8.3) defining Π(𝑃)𝑢.

For the relation (8.2), let 𝜙1 and 𝜙2 be 2-loops of 𝑃⊤ab on a 1-cell 𝑣 such that
𝑣 = 𝑢 and let 𝜓 : 𝑣⇒ 𝑢 be an 2-cell of 𝑃⊤ab. Then,

Φ𝑢 (⌊𝜙1 ∗1 𝜙2⌋) = (𝜙1 ∗1 𝜙2)𝜓

= 𝜙𝜓1 ∗1 𝜙
𝜓
2

= Φ𝑢 (⌊𝜙1⌋) ∗1 Φ𝑢 (⌊𝜙2⌋)
= Φ𝑢 (⌊𝜙1⌋ + ⌊𝜙2⌋).

For the relation (8.3), we fix 2-cells 𝜙1 : 𝑣1 ⇒ 𝑣2, 𝜙2 : 𝑣2 ⇒ 𝑣1 and 𝜓 : 𝑣1 ⇒ 𝑢,
with 𝑣1 = 𝑣2 = 𝑢. Then,

Φ𝑢 (⌊𝜙1 ∗1 𝜙2⌋) = (𝜙1 ∗1 𝜙2)𝜓
= (𝜓− ∗1 𝜙1) ∗1 (𝜙2 ∗1 𝜙1) ∗1 (𝜙−1 ∗1 𝜓)
= (𝜙2 ∗1 𝜙1)𝜓−∗1𝜙1

= Φ𝑢 (⌊𝜙2 ∗1 𝜙1⌋).

Thus Φ𝑢 is a morphism of groups from Π(𝑃)𝑢 to Aut𝑃
⊤
ab
𝑢 . Moreover, it admits

𝜙 ↦→ ⌊𝜙⌋ as inverse and, as a consequence, is an isomorphism.
Let us prove that Φ𝑢 is natural in 𝑢. Let 𝐾 be a context of 𝑃∗1 such that

𝑣 = 𝐾 [𝑢], and prove the equality of the two morphisms Φ𝑣 ◦ Π(𝑃)𝐾 and
Aut𝑃𝐾 ◦Φ𝑢. Let 𝜙 be a 2-loop of 𝑃⊤ab with source 𝑢′ such that 𝑢′ = 𝑢. We fix a
2-cell 𝜓 : 𝑢′ → 𝑢 in 𝑃⊤ab and consider the 2-cell 𝐾 [𝜓] : 𝐾 [𝑢′] → 𝑣 of 𝑃⊤ab.
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Then, we have

Φ𝑣 ◦ Π(𝑃)𝐾 (⌊𝜙⌋) = (𝐾 [𝜙])𝐾 [𝜓]
= 𝐾 [𝜓−] ∗1 𝐾 [𝜙] ∗1 𝐾 [𝜓]
= 𝐾 [𝜓− ∗1 𝜙 ∗1 𝜓]
= 𝐾 [𝜙𝜓]
= Aut𝑃

⊤
ab
𝐾 ◦Φ𝑢 (⌊𝜙⌋). □

Proposition 8.3.6 characterizes the natural system Π(𝑃) on the category 𝑃
up to isomorphism. Using this characterization, we deduce the following result.

8.3.7 Proposition. A 2-polygraph 𝑃 has FDTab if and only if the natural
system Π(𝑃) is finitely generated.

Proof. Suppose that the 2-polygraph 𝑃 has FDTab. Then the abelian (2, 1)-
category 𝑃⊤ab admits a finite acyclic extension 𝑋 . Given a 3-generator 𝐴 : 𝜙 ⇛ 𝜓

in 𝑋 , we write 𝜕𝐴 = 𝜙 ∗2 𝜓− and 𝜕𝑋 = {𝜕𝐴 | 𝐴 ∈ 𝑋} for the set of 2-loops
of 𝑃⊤ab associated to 3-generators in 𝑋 .

By Lemma 8.3.4, any 2-loop 𝜙 can be written in 𝑃⊤ab as

𝜙 =
(
𝜓1 ∗1 𝑢1𝜕𝐴

𝜖1
1 𝑣1 ∗1 𝜓−1

) ∗1 . . . ∗1 (
𝜓𝑝 ∗1 𝑢𝑝𝜕𝐴𝜖𝑝𝑝 𝑣𝑝 ∗1 𝜓−𝑝

)
,

with, for every 1 ⩽ 𝑖 ⩽ 𝑝, 𝐴𝑖 in 𝑋 , 𝜖𝑖 in {−1, +1}, 𝑢𝑖 , 𝑣𝑖 1-cells of 𝑃∗1 and 𝜓𝑖 a
2-cell of the free (2, 1)-category 𝑃⊤. As a consequence, for any ⌊𝜙⌋ in Π(𝑃),
we have the following decomposition:

⌊𝜙⌋ =
𝑘∑︁
𝑖=1
(−1) 𝜖𝑖 ⌊

𝜓𝑖 ∗1 𝑢𝑖𝜕𝐴𝑖𝑣𝑖 ∗1 𝜓−𝑖
⌋
=

𝑘∑︁
𝑖=1
(−1) 𝜖𝑖𝑢𝑖 ⌊𝜕𝐴𝑖⌋ 𝑣𝑖 .

Thus, the elements of ⌊𝜕𝑋⌋ form a finite generating set for the natural system
of abelian groups Π(𝑃).

Conversely, suppose that the natural system Π(𝑃) is finitely generated. There
exists a finite set 𝑋 of 2-loops of the abelian (2, 1)-category 𝑃⊤ab such that, for
every 1-cell 𝑢 of 𝑃 and every 2-loop 𝜙 with source 𝑤 of 𝑃⊤ab such that 𝑤 = 𝑢,
one can write

⌊𝜙⌋ =
𝑝∑︁
𝑖=1

𝜖𝑖𝑢𝑖 ⌊𝛼𝑖⌋ 𝑣𝑖 ,

with, for every 1 ⩽ 𝑖 ⩽ 𝑝, 𝛼𝑖 in 𝑋 , 𝜖𝑖 an integer and 𝑢𝑖 , 𝑣𝑖 1-cells of 𝑃 such that,
for every representative �̂�𝑖 of 𝑢𝑖 and �̂�𝑖 of 𝑣𝑖 in 𝑃⊤ab, �̂�𝑖𝛼𝑖 �̂�𝑖 is a 2-loop of 𝑃⊤ab
whose source 𝑤𝑖 that satisfies 𝑤𝑖 = 𝑤. We fix, for every 𝑖, a 2-cell 𝜓𝑖 : 𝑤⇒ 𝑤𝑖
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in 𝑃⊤. Then, the properties of Π(𝑃) imply:

⌊𝜙⌋ =
𝑝∑︁
𝑖=1

⌊
𝜓𝑖 ∗1 �̂�𝑖𝛼𝜖𝑖𝑖 �̂�𝑖 ∗1 𝜓−𝑖

⌋
=

⌊ (
𝜓1 ∗1 �̂�1𝛼

𝜖1
1 𝑣1 ∗1 𝜓−1

) ∗1 . . . ∗1 (
𝜓𝑝 ∗1 �̂�𝑝𝛼𝜖𝑝𝑝 𝑣𝑝 ∗1 𝜓−𝑝

) ⌋
.

We use the isomorphism (8.5) and Lemma 8.3.4 to deduce that the cellu-
lar extension

{
𝐴𝛼 : 𝛼⇒ 1𝑠 (𝛼)

�� 𝛼 ∈ 𝑋}
of 𝑃⊤ab is acyclic, proving that the

2-polygraph 𝑃 has FDTab. □

The following result states that the property of being finitely generated
for Π(𝑃) is Tietze invariant for polygraphs 𝑃 having a finite set of 2-gener-
ators [164, Proposition 2.3.5].

8.3.8 Proposition. Let 𝑃 and 𝑄 be two Tietze equivalent 2-polygraphs such
that 𝑃2 and 𝑄2 are finite. Then the natural system Π(𝑃) is finitely generated if
and only if the natural system Π(𝑄) is finitely generated.

From this result and Proposition 8.3.7, we deduce that the property FDTab
is Tietze invariant for finite polygraphs. As a consequence, we can define a
category FDTab if it admits a presentation by a finite 2-polygraph having FDTab.

We conclude this chapter with a remarkable properties of the natural sys-
tem of identities among relations from [164, Proposition 2.4.2], which is a
consequence of Squier’s homotopical theorem. By Theorem 7.3.5, the set of
generating confluences of a convergent 2-polygraph 𝑃 forms an acyclic ex-
tension of the (2, 1)-category 𝑃⊤. Following the proof of Proposition 8.3.7,
we transform this extension into a generating set for the natural system Π(𝑃),
proving the following result.

8.3.9 Theorem. Let 𝑃 be a convergent 2-polygraph. The natural system Π(𝑃)
is generated by the generating confluences of 𝑃.
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Homological syzygies and confluence

The main purpose of algebraic topology is the classification of topological
spaces and continuous maps by means of discrete algebraic invariants pre-
serving homotopy equivalence. Among those invariants, a particularly im-
portant one is homology, which assigns to each space a sequence of abelian
groups. Starting from very geometric insights, homology has developed into
a whole body of concepts and methods known as homological algebra, and
has been applied to the study of various algebraic structures, including groups
and monoids [260]. For instance, the homology of a monoid is defined by
first building a resolution of it, that is, an exact sequence of left-modules over
the ring generated by the monoid, ending at the trivial module. Of course the
soundness of this definition is based on the fact that the homology does not
depend on the choice of the resolution.

Squier showed in his 1987 article [326] that a convergent presentation 𝑃 of
a monoid 𝑀 yields a partial resolution generated by the set 𝑃1 of generators in
dimension 1, by the set 𝑃2 of rules in dimension 2 and by the critical branchings
in dimension 3. If moreover the presentation 𝑃 is finite, the Squier resolution is
finitely generated up to dimension 3. In this case, we say that the monoid𝑀 is of
homological type left-FP3. This property readily implies that the third integral
homology group 𝐻3 (𝑀,Z) of the monoid is finitely generated. Therefore, a
monoid whose third homology group is not finitely generated does not admit
a finite convergent presentation. By explicitly exhibiting an example of this
type, Squier first provided a negative answer to the question of universality of
convergent rewriting.

The homological finiteness condition is of course linked to the homotopical
one discussed in the previous chapter. Indeed, we will prove that for a monoid,
the property of having FDT implies the property of having left-FP3 (Theo-
rem 9.3.4). In this sense, the homological finiteness condition is weaker than

212
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its homotopical counterpart. It however has the advantage of being simpler to
compute.

We begin by introducing the finite homological type for monoids in Sec-
tion 9.1. We study the case 𝑛 = 2 in Section 9.2 and show that finitely presented
monoids are left-FP2 (Proposition 9.2.4). Then, we study the case 𝑛 = 3 in
Section 9.3, and show that monoids with finite convergent presentations have
the left-FP3 property (Theorem 9.3.5). We illustrate these results with several
examples. The constructions of this chapter will be generalized in any homo-
logical dimension for 1-categories in Section 23.5. The case of monoids treated
in this chapter corresponds to 1-categories with a single object.

The homological notions used in this chapter are recalled in Appendix E. In
particular, homology of monoids is recalled in §E.4. In this chapter, we study
the homological type left-FP3 relative to left modules, but the homological type
right-FP3 relative to right modules is treated in the same way. We refer to §F.3
and §9.3.14 for relationships between homology types according to the module
categories considered.

9.1 Monoids of finite homological type

9.1.1 Monoid ring. Let 𝑀 be a monoid. The ring generated by 𝑀 is the free
abelian group over 𝑀 , denoted by Z𝑀 . Its elements are formal sums

∑
𝑢∈𝑀 𝑛𝑢𝑢

of elements 𝑢 of 𝑀 with coefficients 𝑛𝑢 ∈ Z, finitely many of which are non-
zero, and it is equipped with the canonical extension of the product of 𝑀:

( ∑︁
𝑢∈𝑀

𝑛𝑢𝑢

) (∑︁
𝑣∈𝑀

𝑛𝑣𝑣

)
=

∑︁
𝑢,𝑣∈𝑀

𝑛𝑢𝑛𝑣𝑢𝑣 =
∑︁
𝑤∈𝑀

( ∑︁
𝑢𝑣=𝑤

𝑛𝑢𝑛𝑣

)
𝑤.

This construction coincides with the one of the freeZ-module, thus the notation.

9.1.2 Free modules. Given a monoid 𝑀 and a set 𝑋 , we write Z𝑀 [𝑋] for the
free left Z𝑀-module generated by 𝑋: its elements are formal sums of the form∑︁

𝑢∈𝑀,𝑥∈𝑋
𝑛𝑢,𝑥𝑢[𝑥]

with 𝑛𝑢,𝑥 ∈ Z, finitely many of which are non-zero, and other operations are
defined in the expected way. Any function 𝑓 : 𝑋 → 𝐶, where 𝐶 is a Z𝑀-
module extends uniquely as a morphism of Z𝑀-modules 𝑓 : Z𝑀 [𝑋] → 𝐶.
Note that any Z𝑀-module is also canonically a Z-module.
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9.1.3 Resolutions. If 𝑀 is a monoid, the trivial Z𝑀-module is the abelian
group Z equipped with the trivial action 𝑢𝑛 = 𝑛, for every 𝑢 in 𝑀 and 𝑛 in Z. A
partial resolution of length 𝑛 of this trivial module consists of a chain complex

𝐶𝑛
𝑑𝑛 // 𝐶𝑛−1

𝑑𝑛−1 // · · · 𝑑2 // 𝐶1
𝑑1 // 𝐶0

𝑑0 // Z // 0 (9.1)

where, for 0 ⩽ 𝑘 ⩽ 𝑛, the 𝐶𝑘 are left Z𝑀-modules, and the 𝑑𝑘 are Z𝑀-linear
maps making the complex exact. By convention, 𝐶−1 = Z and 𝑑−1 : Z→ 0 is
the terminal map. The main properties on resolutions that we use in this chapter
are recalled in §E.3.

A contracting homotopy of a chain complex of the form (9.1) is a sequence

𝐶𝑛 𝐶𝑛−1
𝑖𝑛oo · · ·𝑖𝑛−1oo 𝐶1

𝑖2oo 𝐶0
𝑖1oo Z

𝑖0oo

where the 𝑖𝑘 are Z-linear maps for 0 ⩽ 𝑘 ⩽ 𝑛, and such that

𝑑𝑘 ◦ 𝑖𝑘 + 𝑖𝑘−1 ◦ 𝑑𝑘−1 = 1𝐶𝑘−1

holds for 0 ⩽ 𝑘 ⩽ 𝑛, see §E.2.6 for details. By convention, 𝑖−1 : 0 → Z is the
initial map. Any chain complex of the form (9.1) equipped with a contracting
homotopy is necessarily a partial resolution, see Proposition E.2.7.

9.1.4 Homological type left-FP𝑛. A monoid 𝑀 has homological type left-
FP𝑛 (where FP𝑛 stands for “finitely 𝑛-presented”), for a natural number 𝑛, if
there exists a partial resolution of length 𝑛 of the trivial Z𝑀-module Z of the
form (9.1), where the 𝐶𝑖 are projective modules which are finitely generated. A
monoid 𝑀 has homological type left-FP∞ if it has homological type left-FP𝑛
for all 𝑛 ⩾ 0.

We will use the following characterization given by Proposition F.3.6: a
monoid 𝑀 has homological type left-FP𝑛 if and only if there exists a free,
finitely generated partial resolution of the trivial Z𝑀-module Z of length 𝑛:

𝐹𝑛 // 𝐹𝑛−1 // · · · // 𝐹0 // Z. (9.2)

9.1.5 Finiteness homological type and homology. For a monoid 𝑀 , having
homological type left-FP𝑛 implies a finiteness property on its homology mod-
ules. First, we recall the definition of homology of a monoid and we refer to
§E.4 for more details. Given a free resolution

· · · // 𝐹𝑛+1
𝑑𝑛+1 // 𝐹𝑛 // · · · // 𝐹1

𝑑1 // 𝐹0
𝜀 // Z
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of the trivial Z𝑀-module Z by left Z𝑀-modules, the operation of tensoring by
the trivial right Z𝑀-module Z gives the following complex of Z-modules:

· · · // Z ⊗Z𝑀 𝐹𝑛+1
𝑑𝑛+1 // Z ⊗Z𝑀 𝐹𝑛 // · · · // Z ⊗Z𝑀 𝐹1

𝑑1 // Z ⊗Z𝑀 𝐹0

where 𝑑𝑘 denotes the map 1Z ⊗Z𝑀 𝑑𝑘 , for all 𝑘 ⩾ 1. The 𝑛-th homology group
of 𝑀 with integral coefficient Z is defined as the following Z-module:

H𝑛 (𝑀,Z) = ker 𝑑𝑛/im 𝑑𝑛+1,

with the convention that 𝑑0 = 0. By definition, for any monoid 𝑀 , we have
H0 (𝑀,Z) ≃ Z.

Now, suppose that the monoid𝑀 has homological type left-FP𝑛 and consider
a resolution of 𝑀 of the form (9.2). Then the Z-modules Z ⊗Z𝑀 𝐹𝑖 are finitely
generated for 0 ⩽ 𝑖 ⩽ 𝑛. This proves the following result.

9.1.6 Proposition. If a monoid 𝑀 has homological type left-FP𝑛 for some
𝑛 ∈ N, then the groups 𝐻𝑘 (𝑀,Z) are finitely generated for 0 ⩽ 𝑘 ⩽ 𝑛.

9.1.7 Homological type left-FP0. Let 𝑀 be a monoid. We write 𝑃0 = {⋆} for
a set with one element. We have that Z𝑀 [𝑃0] ≃ Z𝑀 and sometimes implicitly
identify the elements of these two modules. The augmentation map of Z𝑀 is
the morphism of Z𝑀-modules

𝜀 : Z𝑀 [𝑃0] → Z
defined by 𝜀(𝑢) = 1 for any 𝑢 inZ𝑀 . The augmentation map is clearly surjective
and thus the sequence

Z𝑀 [𝑃0] 𝜀 // Z // 0

is exact. It follows that every monoid has homological type left-FP0.

9.1.8 Homological type left-FP1. Let 𝑃 be a presentation of a monoid 𝑀 .
We define a free partial resolution of length 1 of the trivial Z𝑀-module Z by
Z𝑀-modules

Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0

where the morphism 𝜀 is the augmentation map and the morphism 𝑑1 is defined,
on any generator [𝑎], by

𝑑1 ( [𝑎]) = 𝑎 − 1.

A section of the canonical projection 𝜋 : 𝑃∗1 → 𝑀 is a map 𝑀 → 𝑃∗1 sending
every 𝑢 in𝑀 to a 1-cell �̂� of 𝑃∗1 such that 𝜋(�̂�) = 𝑢. In general, we do not assume
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that the chosen section is functorial, i.e., that 𝑢𝑣 = �̂̂�𝑣 holds in 𝑃∗1. However, we
assume that 1̂ = 1. For a 1-cell 𝑢 of 𝑃∗1, we simply write �̂� for �̂�.

9.1.9 Proposition. If a monoid 𝑀 is finitely generated, then it has homological
type left-FP1, and thus the group 𝐻1 (𝑀,Z) is finitely generated.

Proof. We first note that the sequence is a chain complex. Indeed, exactness
at Z was already observed in §9.1.7. Moreover, we have

𝜀𝑑1 [𝑎] = 𝜀(𝑎) − 𝜀(1) = 1 − 1 = 0

for every 1-generator 𝑎 of 𝑃. In order to prove exactness atZ𝑀 [𝑃0], as explained
in §9.1.3, we construct contracting homotopies

𝑖0 : Z→ Z𝑀 [𝑃0] and 𝑖1 : Z𝑀 [𝑃0] → Z𝑀 [𝑃1]

as follows. The morphism 𝑖0 is simply defined by 𝑖0 (1) = 1 and extended by
linearity. As for 𝑖1 we first need to extend the bracket map [−] : 𝑃1 → Z𝑀 [𝑃1]
to a map [−] : 𝑃∗1 → Z𝑀 [𝑃1]. This is done by induction on the length of the
words in 𝑃∗1 by setting

[1] = 0 and [𝑎𝑤] = [𝑎] + 𝑎[𝑤],

for 𝑎 ∈ 𝑃1 and 𝑤 ∈ 𝑃∗1 (technically, we extend the map as a derivation, see
§4.4.13). It follows that the equation

𝑑1 ( [𝑤]) = 𝑤 − 1 (9.3)

holds for all elements 𝑤 of 𝑃∗1, not just for generators. We reason by induction
on the length of the words in 𝑃∗1. One first has 𝑑1 ( [1]) = 0 = 1 − 1. Let now
𝑎 ∈ 𝑃1 and 𝑤 ∈ 𝑃∗1 such that the equation (9.3) holds for 𝑤. Then

𝑑1 ( [𝑎𝑤]) = 𝑑1 ( [𝑎]) + 𝑎𝑑1 ( [𝑤]) = 𝑎 − 1 + 𝑎(𝑤 − 1) = 𝑎𝑤 − 1.

Now, we choose a section and define the morphism 𝑖1 by setting

𝑖1 (𝑢) = [�̂�]

and extending it by linearity. Finally, for any 𝑢 ∈ 𝑀 , we have 𝑖0𝜀(𝑢) = 1 and

𝑑1𝑖1 (𝑢) = 𝑑1 [�̂�] = �̂� − 1 = 𝑢 − 1.

Thus, 𝑑1𝑖1 + 𝑖0𝜀 = 1Z𝑀 and 𝑖0, 𝑖1 are a contracting homotopies. □
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9.2 Monoids having homological type left-FP2

9.2.1 Presentations and partial resolutions of length 2. Let 𝑃 be a presen-
tation of a monoid 𝑀 . We define a partial resolution of length 2 of the trivial
Z𝑀-module Z by free Z𝑀-modules

Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.

The morphisms 𝜀 and 𝑑1 are those defined in the previous section. The mor-
phism 𝑑2 is defined, on generators of Z𝑀 [𝑃2], by

𝑑2 ( [𝛼]) = [𝑠 (𝛼)] − [𝑡 (𝛼)],
for every𝛼 in𝑃2, and called the Reidemester-Fox Jacobian of the presentation𝑃.

9.2.2 Normalization strategies. Let 𝑃 be a 2-polygraph with a given section.
A normalization strategy 𝜎 for 𝑃 is a map

𝜎 : 𝑃∗1 → 𝑃⊤2

that sends every 1-cell 𝑤 of 𝑃∗1 to a 2-cell

𝜎(𝑤) : 𝑤⇒ 𝑤

in 𝑃⊤2 , such that 𝜎(𝑤) = 1𝑤 holds for every 1-cell 𝑤 of 𝑃∗1. A normalisation
strategy 𝜎 is a left (resp. right) one if it also satisfies

𝜎(𝑤𝑣) = 𝜎(𝑤)𝑣 ∗1 𝜎(𝑤𝑣)
(
resp. 𝜎(𝑤𝑣) = 𝑤𝜎(𝑣) ∗1 𝜎(𝑤�̂�)

)
that is

𝜎(𝑤𝑣) =
·

𝑣

��
𝜎(𝑤𝑣)
��·

𝑤 **

𝑤

DD𝜎 (𝑤)
�#

𝑤𝑣

33 ·
(
resp. 𝜎(𝑤𝑣) =

· 𝑣

���̂� **

𝜎 (𝑣)~�
𝜎(𝑤�̂�)��·

𝑤
44

𝑤𝑣

33 ·
)
.

A 2-polygraph 𝑃 always admits left and right normalisation strategies. Let us
prove this in the left case, the right case being treated in the same way. Let us
arbitrarily choose a 2-cell 𝜎(𝑤𝑎) : 𝑤𝑎 ⇒ 𝑤𝑎 in 𝑃⊤2 , for every 1-cell 𝑤 of 𝑃∗1
and every 1-generator 𝑎 of 𝑃, such that 𝑤 = 𝑤 and 𝑤𝑎 ≠ 𝑤𝑎. Then we extend 𝜎
into a left normalisation strategy by setting 𝜎(𝑤) = 1𝑤 if 𝑤 = 𝑤 (which implies
𝜎(1) = 1), and

𝜎(𝑤) = 𝜎(𝑣)𝑎 ∗1 𝜎 (̂𝑣𝑎)
if 𝑤 ≠ 𝑤 and 𝑤 = 𝑣𝑎 with 𝑣 in 𝑃∗1 and 𝑎 in 𝑃1.
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9.2.3 Proposition. Let 𝑀 be a monoid and let 𝑃 be a presentation of 𝑀 . The
sequence of Z𝑀-modules

Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0

is a partial free resolution of length 2 of Z.

Proof. In Proposition 9.1.9, we have proved the exactness at Z and Z𝑀 [𝑃0],
and exactness at Z𝑀 [𝑃1] remains to be shown. The equation 𝑑1𝑑2 = 0 is a
consequence of (9.3). Indeed, we have

𝑑1𝑑2 [𝛼] = 𝑑1 [𝑠(𝛼)] − 𝑑1 [𝑡 (𝛼)] = 𝑠(𝛼) − 𝑡 (𝛼) = 0,

for every 2-generator 𝛼 of 𝑃, where the last equality comes from the equality
𝑠 (𝛼) = 𝑡 (𝛼), which holds because 𝑃 is a presentation of 𝑀 .

In order to prove the exactness at Z𝑀 [𝑃1], we construct a contracting ho-
motopy of the complex. The morphisms of Z-modules 𝑖0 and 𝑖1 are defined in
the proof of Proposition 9.1.9, and the morphism of Z-modules

𝑖2 : Z𝑀 [𝑃1] → Z𝑀 [𝑃2]
is defined by fixing a left normalization strategy 𝜎 for the 2-polygraph 𝑃.
Namely, we define the morphism of Z-modules 𝑖2 by its value on generic
elements

𝑖2 (𝑢[𝑎]) = [𝜎(�̂�𝑎)],
where the bracket [−] is extended to every 2-cell of the free (2, 1)-category 𝑃⊤
by the following relations

[1𝑢] = 0, [𝑢𝜙𝑣] = 𝑢[𝜙], [𝜙 ∗1 𝜓] = [𝜙] + [𝜓],
for all 1-cells 𝑢 and 𝑣 and 2-cells 𝜙 and 𝜓 of 𝑃⊤ such that the composite 𝜙 ∗1 𝜓
are defined.

We have, on the one hand,

𝑖1𝑑1 (𝑢[𝑎]) = 𝑖1 (𝑢𝑎 − 𝑢) = [𝑢𝑎] − [�̂�]
and, on the other hand,

𝑑2𝑖2 (𝑢[𝑎]) = 𝑑2 [𝜎(�̂�𝑎)] = [�̂�𝑎] − [𝑢𝑎] = 𝑢[𝑎] + [�̂�] − [𝑢𝑎].
For the equality in the middle, one proves that 𝑑2 [𝜙] = [𝑠 (𝜙)] − [𝑡 (𝜙)] holds
for every 2-cell 𝜙 of 𝑃⊤ by induction on the size of 𝜙. Hence we have

𝑑2𝑖2 + 𝑖1𝑑1 = 1Z𝑀 [𝑃1 ] ,

thus concluding the proof. □
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The previous proposition allows us to deduce:

9.2.4 Proposition. If a monoid 𝑀 admits a finite presentation, then it has
homological type left-FP2, and thus the group 𝐻2 (𝑀,Z) is finitely generated.

9.2.5 Homological 2-syzygies. The kernel of the morphism 𝑑2 defined in
§9.2.1 is called theZ𝑀-module of homological 2-syzygies of the 2-polygraph 𝑃.
Using natural systems as modules, we will establish in Section 23.5 an isomor-
phism between the homological 2-syzygies and the identities among relations
for a 1-category presented by a 2-polygraph.

9.3 Homological type left-FP3 and confluence

9.3.1 Coherent presentations and partial resolutions of length 3. Let 𝑃 be
a coherent presentation of a monoid 𝑀 . Let us extend the partial resolution of
Proposition 9.2.3 into the resolution of length 3

Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.

The boundary map 𝑑3 is defined, for every 3-cell 𝐴 of 𝑃, by

𝑑3 [𝐴] = [𝑠2 (𝐴)] − [𝑡2 (𝐴)].
The bracket notation [−] is extended to 3-cells of 𝑃⊤ by setting

[𝑢𝐹𝑣] = 𝑢[𝐹] [𝐹 ∗1 𝐺] = [𝐹] + [𝐺] [𝐹 ∗2 𝐺] = [𝐹] + [𝐺]
for all 1-cells 𝑢 and 𝑣 and 3-cells 𝐹 and 𝐺 of 𝑃⊤ such that the composites are
defined. In particular, the latter relation implies [1𝜙] = 0 for every 2-cell 𝜙
of 𝑃⊤. We check, by induction on the size, that 𝑑3 [𝐹] = [𝑠2 (𝐹)] − [𝑡2 (𝐹)]
holds for every 3-cell 𝐹 of 𝑃⊤.

9.3.2 Proposition. Let 𝑃 be a coherent presentation of a monoid 𝑀 . The
sequence of Z𝑀-modules

Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0

is a partial free resolution of length 3 of Z.

Proof. We proceed with the same notations as in the proof of Proposition 9.2.3,
with the extra hypothesis that 𝜎 is a left normalization strategy for 𝑃. This
implies that 𝑖2 (𝑢[𝑣]) = [𝜎(�̂�𝑣)] holds for all 𝑢 in 𝑀 and 𝑣 in 𝑃∗1, by induction
on the length of 𝑣. We have 𝑑2𝑑3 = 0 because 𝑠1𝑠2 = 𝑠1𝑡2 and 𝑡1𝑠2 = 𝑡1𝑡2. Then,
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we define the following morphism of Z-modules 𝑖3 : Z𝑀 [𝑃2] → Z𝑀 [𝑃3] by
setting, for 𝑢 ∈ 𝑀 and 𝛼 ∈ 𝑃3,

𝑖3 (𝑢[𝛼]) = [𝜎(�̂�𝛼)]
where 𝜎(�̂�𝛼) is a 3-cell of 𝑃⊤ with the following shape, with 𝑣 = 𝑠 (𝛼) and
𝑤 = 𝑡 (𝛼):

�̂�𝑤
𝜎 (𝑢𝑤)

��
�̂�𝑣

𝑢𝛼
2:

𝜎 (𝑢𝑣)
/7 𝑢𝑣

𝜎 (𝑢𝛼)

�

Let us note that such a 3-cell necessarily exists in 𝑃⊤ because 𝑃3 is an acyclic
cellular extension of 𝑃⊤. Then we have, on the one hand,

𝑖2𝑑2 (𝑢[𝛼]) = 𝑖2 (𝑢[𝑣] − 𝑢[𝑤]) = [𝜎(�̂�𝑣)] − [𝜎(�̂�𝑤)]
and, on the other hand,

𝑑3𝑖3 (𝑢[𝛼]) = [�̂�𝛼 ∗1 𝜎(�̂�𝑤)] − [𝜎(�̂�𝑣)]
= 𝑢[𝛼] + [𝜎(�̂�𝑤)] − [𝜎(�̂�𝑣)].

Hence 𝑑3𝑖3 + 𝑖2𝑑2 = 1Z𝑀 [𝑃2 ] , concluding the proof. □

9.3.3 Remark. The proof of Proposition 9.3.2 uses the fact that 𝑃3 is an acyclic
cellular extension to produce, for every 2-cell 𝛼 of 𝑃2 and every 𝑢 in 𝑀 , a 3-cell
𝜎(�̂�𝛼) with the required shape. The hypothesis on 𝑃3 could thus be modified to
only require the existence of such a 3-cell in 𝑃⊤: however, it is proved in [163]
that this implies that 𝑃3 is an acyclic cellular extension.

The previous proposition has the following consequence, already noted in [306],
[99, Theorem 3.2], and [233, Theorem 3]:

9.3.4 Theorem. Let𝑀 be a finitely presented monoid. If𝑀 has finite derivation
type, then it has homological type left-FP3, and thus the group 𝐻3 (𝑀,Z) is
finitely generated.

By Theorem 8.2.1 and Proposition 9.1.6, this implies the following homological
finiteness condition for finite convergence [326, Theorem 4.1]:

9.3.5 Theorem. If a monoid 𝑀 admits a finite convergent presentation, then it
has homological type left-FP3, and thus the group 𝐻3 (𝑀,Z) is finitely gener-
ated.

The construction of this chapter will be generalized in Chapter 23 to produce a
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free resolution of infinite length, involving 𝑛-fold critical branchings for every
natural number 𝑛 (Theorem 23.3.3).

9.3.6 Example. Consider the monoid 𝑀 with the convergent presentation

𝑃 = ⟨ ⋆ | 𝑎 | 𝜇 : 𝑎𝑎 ⇒ 𝑎 ⟩ .
Writing𝑤 for the normal form of a word𝑤, we have𝑤 = 𝑎 for every non-identity
1-cell 𝑤 ∈ 𝑃∗1. With the leftmost normalization strategy 𝜎, we get, writing the
2-cell 𝜇 as a string diagram :

𝜎(𝑎) = 1𝑎 𝜎(𝑎𝑎) = 𝜎(𝑎𝑎𝑎) = 𝜇𝑎 ∗1 𝜇 = .

The presentation has exactly one critical branching, whose corresponding gen-
erating confluence can be written in the two equivalent ways

𝑎𝑎

� 


�
𝑎𝑎𝑎

.6

(0

𝑎

𝑎𝑎

=E or *4 .

The Z𝑀-module ker 𝑑2 is generated by

𝑑3

[ ]
=

[ ]
−

[ ]

=
[ ]

+
[ ]

−
[ ]

−
[ ]

= 𝑎
[ ]

−
[ ]

.

We will see in Chapter 23 that the construction of the partial resolution in
Proposition 9.3.2 can be extended in arbitrary length. We only provide here a
small generalization [326, Theorem 3.2], which is enough to imply a negative
answer to the universality of finite convergent rewriting, see Example 9.3.11.

9.3.7 A short exact sequence. Theorem 7.3.5 states that any set 𝑃3 of gen-
erating confluences of a convergent 2-polygraph 𝑃, indexed by all its critical
branchings, forms an acyclic extension of the (2, 1)-category 𝑃⊤. Following
Proposition 9.3.2, this induces a partial free resolution of length 3 of Z by
Z𝑀-modules

Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.
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We have also shown in §7.5.5 that the triple generating confluences of 𝑃 gen-
erate the relations among the 3-cells of the free (3, 1)-category (𝑃, 𝑃3)⊤. We
will show in Sections 23.2 and 23.3 that this allows us to extend the previous
resolution with a boundary map 𝑑4 : Z𝑀 [𝑃4] → Z𝑀 [𝑃3] defined on the free
module generated by a set of 4-chains 𝑃4 indexed by generating triple conflu-
ences. In particular, when there are no critical triples, we recover the following
result shown by Squier in [326, Theorem 3.2], see also Corollary 23.3.6.

9.3.8 Proposition. Suppose given a convergent 2-polygraph 𝑃 without criti-
cal 3-branching, and write 𝑃3 for a set of 2-spheres containing a confluence
diagram for every critical branching of 𝑃. Then the sequence of Z𝑀-modules

0 // Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0

is a partial resolution of length 4 of Z.

In the rest of this section, we show that this result turns out to be very useful
for constructing examples of finitely presented monoids having an infinite third
integral homology group while having a decidable word problem.

9.3.9 Example. Consider the monoid 𝑀 presented by the 2-polygraph

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 1 ⟩𝑛∈N .

The polygraph 𝑃 is convergent without critical branchings. Hence, by Squier’s
Theorem 7.3.5 it can be extended into a coherent presentation with an empty set
of 3-generators. Following Proposition 9.3.2, we have a partial free resolution
of length 3 of Z by free Z𝑀-modules:

0 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.

We have

𝑑1 (𝑎) = 𝑑1 (𝑏) = 𝑑1 (𝑐) = 0

and

𝑑2 ( [𝛼𝑛]) = [𝑎] + 𝑛[𝑐] + [𝑏]
for all 𝑛 ⩾ 0. As a consequence 𝐻1 (𝑀,Z) = Z and H2 (𝑀,Z) = ker 𝑑2 is the
free Z-module generated by

[𝛼𝑛] − 𝑛[𝛼1] + (𝑛 − 1) [𝛼0]
for 𝑛 ⩾ 2. Since𝐻2 (𝑀) is not finitely generated, this shows that the finitely gen-
erated monoid 𝑀 cannot be finitely presented, by Propositions 9.1.6 and 9.2.4.
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9.3.10 Example. Consider the monoid 𝑀 presented by the following 2-poly-
graph considered in [238]:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐 ⟩ .
We have seen in Example 5.2.4 that using the Knuth-Bendix completion proce-
dure, this polygraph can be completed into the following convergent polygraph
with infinitely many 2-generators:

𝑃 = ⟨ 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 𝑎𝑐𝑛, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐 ⟩𝑛∈N .

There are infinitely many critical branchings, indexed by 𝑛 ∈ N:

𝑎𝑐𝑛+1𝑏 𝛼𝑛+1

�"
𝐴𝑛


�
𝑑𝑎𝑐𝑛𝑏

𝛽𝑐𝑛𝑏 19

𝑑𝛼𝑛 &.

𝑎𝑐𝑛+1

𝑑𝑎𝑐𝑛 𝛽𝑐𝑛

=E

Denoting by 𝑃3 the set of 3-generators {𝐴𝑛 | 𝑛 ∈ N}, by Theorem 7.3.5, 𝑃3
extends 𝑃 into a coherent presentation. This system has no critical 3-branching,
thus by Proposition 9.3.8, we have an exact sequence

0 // Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.

To calculate homology groups of 𝑀 , we consider the maps 𝑑𝑘 := 1Z ⊗Z𝑀 𝑑𝑘
defined on Z[𝑃𝑘] and with values in Z[𝑃𝑘−1]. We have

𝑑1 (𝑎) = 𝑑1 (𝑏) = 𝑑1 (𝑐) = 𝑑1 (𝑑) = 0,

𝑑2 ( [𝛼𝑛]) = [𝑎] + 𝑛[𝑐] + [𝑏] − ([𝑎] − 𝑛[𝑐]) = [𝑏],
𝑑2 ( [𝛽]) = [𝑑] + [𝑎] − ([𝑎] + [𝑐]) = [𝑑] − [𝑐],
𝑑3 ( [𝐴𝑛]) = [𝛽] + [𝛼𝑛+1] − ([𝛼𝑛] + [𝛽]) = [𝛼𝑛+1] − [𝛼𝑛] .

Thus

𝐻0 (𝑀,Z) = Z, 𝐻1 (𝑀,Z) = Z2, 𝐻𝑖 (𝑀,Z) = 0, for 𝑖 = 2, 3.

At this stage, therefore, we cannot use the finiteness condition of Theorem 9.3.5
to conclude the existence of a convergent presentation for the monoid 𝑀 . As
noted in [238, Section 3.5], we can nevertheless construct a finite convergent
presentation of 𝑀 with another orientation of the rule 𝛽. Indeed, the following
polygraph presents the monoid M and has no critical branching:

⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑 | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛾 : 𝑎𝑐 ⇒ 𝑑𝑎 ⟩ .
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It is therefore trivially convergent.

9.3.11 Example. Consider the monoid 𝑀 of Example 8.2.2 presented by the
following 2-polygraph:

𝑃 = ⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑑′ | 𝛼0 : 𝑎𝑏 ⇒ 𝑎, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐, 𝛽′ : 𝑑′𝑎 ⇒ 𝑎𝑐 ⟩ .

We have seen that, by using the Knuth-Bendix completion procedure it can be
completed into an infinite convergent polygraph, from which we deduce the
following coherent presentation

𝑃 =
〈

⋆
�� 𝑎, 𝑏, 𝑐, 𝑑, 𝑑′ �� 𝛼𝑛, 𝛽, 𝛽′ �� 𝐴𝑛, 𝐴′𝑛 〉

𝑛∈N ,

with

𝛼𝑛 : 𝑎𝑐𝑛𝑏 ⇒ 𝑎𝑐𝑛, 𝛽 : 𝑑𝑎 ⇒ 𝑎𝑐, 𝛽′ : 𝑑′𝑎 ⇒ 𝑎𝑐,

and

𝐴𝑛 : 𝛽𝑐𝑛𝑏 ∗1 𝛼𝑛+1 ⇛ 𝑑𝛼𝑛 ∗1 𝛽𝑐𝑛, 𝐴′𝑛 : 𝛽′𝑐𝑛𝑏 ∗1 𝛼𝑛+1 ⇛ 𝑑′𝛼𝑛 ∗1 𝛽′𝑐𝑛.

There are no critical 3-branching and thus by Proposition 9.3.8 we have a partial
resolution of length 4

0 // Z𝑀 [𝑃3] 𝑑3 // Z𝑀 [𝑃2] 𝑑2 // Z𝑀 [𝑃1] 𝑑1 // Z𝑀 [𝑃0] 𝜀 // Z // 0.

The computations are similar to those of Example 9.3.10. The map 𝑑1 is zero
on the Z-module Z𝑃1, and we have

𝑑2 ( [𝛼𝑛]) = [𝑏], 𝑑2 ( [𝛽]) = [𝑑] − [𝑐], 𝑑2 ( [𝛽′]) = [𝑑′] − [𝑐],

𝑑3 ( [𝐴𝑛]) = [𝛼𝑛+1] − [𝛼𝑛], 𝑑3 ( [𝐴′𝑛]) = [𝛼𝑛+1] − [𝛼𝑛] .

We deduce that

𝐻0 (𝑀,Z) = Z, 𝐻1 (𝑀,Z) = Z2, 𝐻2 (𝑀,Z) = 0,

and the Z-module 𝐻3 (𝑀,Z) is freely generated by the infinite family

( [𝐴𝑛] − [𝐴′𝑛])𝑛⩾0.

Following Theorem 9.3.5, we deduce that the monoid 𝑀 does not have a finite
convergent presentation. This example thus exhibits a finitely presented monoid,
with a decidable word problem, which does not admit a finite convergent
presentation. It therefore illustrates the fact that string rewriting theory is not
universal for deciding the word problem in monoids, see Section 5.3.
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9.3.12 Example. Consider the coherent presentation of the monoid 𝐵+3 given
in Example 7.5.8. By Proposition 9.3.2, it induces a resolution of the trivial
Z𝐵+3 -module Z, from which we can compute the following homology groups:

𝐻0 (𝐵+3 ,Z) = 𝐻1 (𝐵+3 ,Z) = 𝐻2 (𝐵+3 ,Z) = Z, 𝐻3 (𝐵+3 ,Z) = 0.

9.3.13 Remark. Note that in combinatorial group theory several examples
of finitely presented groups with a decidable word problem that do not have
homological type FP3 were discovered before Squier’s work on homology of
monoids. In particular, Stallings constructed in [329] a finitely presented group
whose its 3-dimensional homology group with integer coefficients is not finitely
generated and thus it does not have homological type left-FP3. The group is
presented by

⟨ ⋆ | 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 | [𝑑, 𝑎], [𝑒, 𝑎], [𝑑, 𝑏], [𝑒, 𝑏], [𝑎−𝑑, 𝑐], [𝑎−𝑒, 𝑐], [𝑏−𝑎, 𝑐] ⟩
where [𝑢, 𝑣] denotes the relation 𝑢𝑣 = 𝑣𝑢. Bieri proved that this group has
a decidable word problem [40]. It was not yet known that its word problem
cannot be solved by the normal form algorithm.

9.3.14 Remarks on other homological finiteness conditions. In the defi-
nition of homological type left-FP𝑛 for a monoid 𝑀 (§9.1.4), changing left
modules to right modules, bimodules or natural systems gives the definitions of
the homological types right-FP𝑛, bi-FP𝑛 and FP𝑛. We refer the reader to [163,
Section 5.2] for the relations between these different finiteness conditions, see
also §F.3.3. In particular, for 𝑛 = 3, all of these homotopical conditions are
consequences of the finite derivation type property defined in Section 8.1.
Moreover, all these homological finiteness properties are necessary conditions
for finite convergence. The proof are similar to the one for the left-FP3 property
given in Section 9.3. In particular, for the right-FP3 property, we consider right
modules and, to get the contracting homotopy, we construct a right normaliza-
tion strategy 𝜎 by defining a 3-cell 𝜎(𝛼�̂�) with shape

𝑤�̂�
𝜎 (𝑤𝑢)

��
𝑣�̂�

𝛼𝑢
2:

𝜎 (𝑣𝑢)
/7 𝑣𝑢

𝜎 (𝛼𝑢)

�

for any 2-generator 𝛼 : 𝑣⇒ 𝑤 and element 𝑢 in the monoid 𝑀 .
To conclude this chapter, we summarize in the following theorem the prop-

erties of the family of monoids 𝑆𝑘 , for 𝑘 ⩾ 0, defined in §8.2.3, which is
Squier’s original example [326, 328]. This family illustrates the homological
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and homotopical finiteness conditions for the convergence of string rewriting
systems studied in this and the previous chapter, see Theorems 8.2.1 and 9.3.5.

9.3.15 Theorem. For 𝑘 ⩾ 1, the monoid 𝑆𝑘 is a finitely presented monoid that
has the following properties.

1. It has a decidable word problem [326, Example 4.5].
2. For 𝑘 = 1, it does not have finite derivation type [328, Theorem 6.7].
3. For 𝑘 = 1, it has homological type left-FP∞ [326, Example 4.5].
4. For 𝑘 ⩾ 2, it does not have homological type left-FP3 [326, Example 4.5].
5. It does not have a finite convergent presentation.

Conditions 1, 2, and 5 are seen in Theorem 8.2.4 for 𝑘 = 1. Theorem 9.3.4
proves that finite derivation type implies homological type left-FP3. The con-
ditions 2 and 3 on monoid 𝑆1 prove that the converse implication is false in
general. Note, however, that in the special case of groups, the property of hav-
ing finite derivation type is equivalent to the homological finiteness condition
left-FP3 [100]. The latter result is based on the Brown-Huebschmann isomor-
phism between identities among relations and homological syzygies [64], see
also Theorem 23.5.3.
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10
Three-dimensional polygraphs

We have seen in Chapter 1 that 1-polygraphs provide a notion of presentation for
sets and in Chapter 2 that 2-polygraphs provide a notion of presentation for cat-
egories. We go on climbing the dimensional ladder and establish 3-polygraphs
as a notion of presentation for 2-categories, see Section 10.1. As expected, those
consist in generators for 0-, 1- and 2-dimensional cells, together with relations
between freely generated 2-cells, which are represented by generating 3-cells.
As particular cases, let us mention the notions of presentation of monoidal
category (when there is only one 0-generator) and of PRO (when there is only
one 0-generator and one 1-generator). This includes 2-categories encoding the-
ories for fundamental algebraic structures such as monoids, groups, etc. Note
that in the point of view on (3, 1)-polygraphs we adopt here, the 3-cells en-
code relations, as opposed to Chapter 7 where they encode coherences between
relations.

Any 3-polygraph induces an abstract rewriting system, so that all general
rewriting concepts still make sense in this setting: confluence, termination, etc.
However, more specific tools have to be adapted to this context: the notion
of critical branching is defined for 3-polygraphs in Section 10.2, along with
the proof that confluence of critical branchings implies the local confluence of
the polygraph (Lemma 10.2.8). In the case where the polygraph is terminating
(techniques to show this will be presented in Chapter 11), local confluence
implies confluence, and we thus have a systematic method to show the con-
vergence of a 3-polygraph. When this is the case, normal forms give canonical
representatives for 2-cells modulo the congruence generated by 3-cells, and we
explain how to exploit this to show that a given 3-polygraph is a presentation
of a given 2-category in Section 10.3. There is however a major difference with
the case of 2-dimensional polygraphs: a finite convergent polygraph might give
rise to an infinite number of critical branchings (Section 10.4). This prevents us
from making direct generalizations of homotopical or homological finiteness
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conditions (Chapters 8 and 9) from 2- to 3-polygraphs. Finally, in Section 10.5,
we provide some techniques for combining presentations of 2-categories and
for building presentations of 2-categories in a modular way.

10.1 Three-dimensional polygraphs

10.1.1 Definition. A 3-polygraph (𝑃, 𝑃3) consists of a 2-polygraph 𝑃 together
with a cellular extension 𝑃3 of the 2-category 𝑃∗ freely generated by 𝑃, the
elements of 𝑃3 being referred to as 3-generators. Explicitly, a 3-polygraph
consists of a diagram

𝑃1
𝑠0

~~ 𝑡0
~~

𝑖1

��

𝑃2
𝑠1

~~ 𝑡1
~~

𝑖2

��

𝑃3
𝑠2

~~ 𝑡2
~~

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo

in Set, together with a structure of 2-category on the 2-graph

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo

such that, for 𝑛 ∈ {0, 1, 2},
– 𝑃∗𝑛 is the set of 𝑛-cells of the 𝑛-category freely generated by the underlying
𝑛-polygraph,

– 𝑖𝑛 : 𝑃𝑛 → 𝑃∗𝑛 is the canonical inclusion,
– 𝑠∗𝑛 and 𝑡∗𝑛 are the respective canonical extensions of 𝑠𝑛 and 𝑡𝑛, satisfying

𝑠∗𝑛 ◦ 𝑖𝑛 = 𝑠𝑛 and 𝑡∗𝑛 ◦ 𝑖𝑛 = 𝑡𝑛,

– the globular identities are satisfied:

𝑠∗𝑛 ◦ 𝑠𝑛+1 = 𝑠∗𝑛 ◦ 𝑡𝑛+1 and 𝑡∗𝑛 ◦ 𝑠𝑛+1 = 𝑡∗𝑛 ◦ 𝑡𝑛+1.

We write 𝐴 : 𝜙 ⇛ 𝜓 for a 3-generator 𝐴 ∈ 𝑃3 with 𝑠2 (𝐴) = 𝜙 and 𝑡2 (𝐴) = 𝜓.
A 3-polygraph 𝑃 is often concisely denoted

⟨ 𝑃0 | 𝑃1 | 𝑃2 | 𝑃3 ⟩ .
We write 𝑃⩽2 for the underlying 2-polygraph of a 3-polygraph 𝑃. Contrarily

to previous chapters, we always respectively denote by ∗0 and ∗1 the horizontal
and vertical compositions of a 2-category.
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10.1.2 Example. The 3-polygraph Mon is

Mon = ⟨ ⋆ | 𝑎 | 𝜇 : 𝑎 ∗0 𝑎 ⇒ 𝑎, 𝜂 : 1⋆ ⇒ 𝑎 | 𝐴, 𝐿, 𝑅 ⟩
where the sources and targets of the 3-generators are given by

𝐴 : (𝜇 ∗0 𝑎) ∗1 𝜇 ⇛ (𝑎 ∗0 𝜇) ∗1 𝜇 𝐿 : (𝜂 ∗0 𝑎) ∗1 𝜇 ⇛ 𝑎

𝑅 : (𝑎 ∗0 𝜂) ∗1 𝜇 ⇛ 𝑎

Using string diagrams (see §2.4.8), the 2-generators of Mon are pictured as

𝜇 = 𝜂 =

and its 3-generators 𝐴, 𝐿 and 𝑅 respectively as

: ⇛ : ⇛ : ⇛

Many other examples of 3-polygraphs are given in Appendix C.

10.1.3 Presented 2-category. Let 𝑃 be a 3-polygraph. The 2-category pre-
sented by 𝑃 is the 2-category, denoted by 𝑃, obtained by quotienting the free
2-category over 𝑃⩽2 by the congruence ≈𝑃 generated by 𝑃3 on 2-cells, as
described in §7.1.2:

𝑃 = 𝑃∗⩽2/𝑃3

If 𝐶 is a 2-category, we say that 𝑃 presents 𝐶 if 𝐶 is isomorphic to 𝑃.
In particular, when the set 𝑃0 is reduced to one element, the category pre-

sented by 𝑃 has one 0-cell and is thus a strict monoidal category (see §2.4.10).
Moreover, when both 𝑃0 and 𝑃1 are reduced to one element, the set 𝑃∗1 of
1-cells is the free monoid on one generator, i.e., N, and the presented category
is a PRO (see §2.4.10). This is for instance the case in Example 10.1.2.

Two 3-polygraphs 𝑃 and 𝑄 are said Tietze equivalent when the presented
2-categories are isomorphic: 𝑃 ≃ 𝑄.

10.1.4 Models. Given a 2-category 𝐶, the category of models (or algebras)
of𝐶 in a 2-category 𝑆 is the category Cat2 (𝐶, 𝑆) of 2-functors𝐶 → 𝑆 and oplax
2-natural transformations between those (see §20.2.13 for a general definition).
More explicitly, given a 3-polygraph 𝑃, a model of 𝑃 in a 2-category𝐶 consists
of

– a family
( 𝑓𝑥)𝑥∈𝑃0

of 0-cells of 𝐶 indexed by the 0-generators of 𝑃,
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– a family

( 𝑓𝑎 : 𝑓𝑥 → 𝑓𝑦)𝑎:𝑥→𝑦∈𝑃1

of 1-cells of 𝐶 indexed by the 1-generators of 𝑃; if 𝑢 = 𝑎1 . . . 𝑎𝑛 is a 1-cell
of 𝑃∗, we write 𝑓𝑢 for the 1-cell 𝑓𝑎1 . . . 𝑓𝑎𝑛 ,

– a family

( 𝑓𝛼 : 𝑓𝑢 ⇒ 𝑓𝑣)𝛼:𝑢⇒𝑣∈𝑃2

of 2-cells of 𝐶 indexed by the 2-generators of 𝑃; the notation 𝑓𝜙 is extended
to any 2-cell of 𝑃∗ by 𝑓𝜙∗0𝜓 = 𝑓𝜙 ∗0 𝑓𝜓 , 𝑓𝜙∗1𝜓 = 𝑓𝜙 ∗1 𝑓𝜓 and 𝑓1𝑢 = 1 𝑓𝑢 ,

such that, for every 3-generator 𝐴 : 𝜙 ⇛ 𝜓 of 𝑃, we have

𝑓𝜙 = 𝑓𝜓 .

10.1.5 Example. Let𝐶 be a monoidal category. The models of the 3-polygraph
Mon of Example 10.1.2 in 𝐶 (considered as a 2-category with only one 0-cell)
are precisely monoids in 𝐶 in the following sense. A monoid in a monoidal
category 𝐶 consists an object 𝑥 of 𝐶 and two morphisms

𝑚 : 𝑥 ⊗ 𝑥 → 𝑥 𝑒 : 𝑖 → 𝑥

such that the diagrams

𝑥 ⊗ 𝑥 ⊗ 𝑥
𝑥⊗𝑚
��

𝑚⊗𝑥 // 𝑥 ⊗ 𝑥
𝑚

��
𝑥 ⊗ 𝑥 𝑚

// 𝑥

𝑥 ⊗ 𝑥

𝑚
""

𝑥
𝑒⊗𝑥oo

1𝑥

��

𝑥⊗𝑒 // 𝑥 ⊗ 𝑥

𝑚
||

𝑥

commute. A morphism 𝑓 : (𝑥, 𝑚, 𝑒) → (𝑥′, 𝑚′, 𝑒′) between monoids is a
morphism 𝑓 : 𝑥 → 𝑥 of 𝐶 such that the diagrams

𝑥 ⊗ 𝑥
𝑚

��

𝑓 ⊗ 𝑓
// 𝑥′ ⊗ 𝑥′

𝑚′
��

𝑥
𝑓

// 𝑥′

𝑖

𝑒

��

1𝑖 // 𝑖

𝑒′
��

𝑥
𝑓
//

𝑓
// 𝑥′

commute. In particular, a monoid in Set equipped with cartesian product as
tensor product and terminal set as unit is precisely a monoid in the usual sense
(by Mac Lane’s coherence theorem, Theorem 12.4.4, we can always consider
that it forms a strict monoidal category).

As another application, the algebras of Mon in the 2-category Cat (of cate-
gories, functors and natural transformations) are precisely monads.
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10.1.6 2-categories admitting a presentation. We should first note that, con-
trarily to the case of 1-categories (§2.3.14), not every 2-category admits a
presentation by a 3-polygraph. Namely, any 2-category 𝐶 is presented by a
3-polygraph 𝑃 is a quotient of the free 2-category 𝑃∗⩽2 by the congruence gen-
erated by 𝑃3. Since there is no quotient on 1-cells, the underlying 1-category
of 𝐶 is always free (on the underlying 1-polygraph of 𝑃). Therefore, only
2-categories whose underlying 1-category is free may have a presentation.

For instance, consider the categoryZ corresponding to the additive monoid of
integers is not free, by §2.3.13. Therefore the 2-category with Z as underlying
category and only identity 2-cells admits no presentation by a 3-polygraph.
Extensions of the notion of polygraph aimed at addressing this problem have
been proposed in [101, 119, 286].

10.1.7 The canonical and standard presentations. Any 2-category𝐶 whose
underlying category is freely generated by a 1-polygraph 𝑄 admits a presenta-
tion by a 3-polygraph. The canonical presentation of 𝐶 is the 3-polygraph 𝑃
with

– 𝑄 as underlying 1-polygraph,

– the set 𝑃2 = 𝐶2 of all 2-cells of 𝐶 as 2-generators,

– the subset 𝑃3 of 𝑃∗2 × 𝑃∗2 of pairs of parallel 2-cells whose evaluation as
2-cells of 𝐶 are equal.

An analogous of the standard presentation (§2.3.14) can also be defined for
2-categories, giving rise to slightly smaller presentations.

10.1.8 The category of 3-polygraphs. A morphism 𝑓 : 𝑃 → 𝑄 between
3-polygraphs 𝑃 and 𝑄 consists of a morphism 𝑓 : 𝑃⩽2 → 𝑄⩽2 between the
underlying 2-polygraphs (see §2.2.3) together with a function 𝑓3 : 𝑃3 → 𝑄3
such that 𝑠2 ◦ 𝑓3 = 𝑓2 ◦ 𝑠2 and 𝑡2 ◦ 𝑓3 = 𝑓2 ◦ 𝑡2. These compose in the expected
way, and we write Pol3 for the category of 3-polygraphs and their morphisms.

10.2 Rewriting properties of 3-polygraphs

A 3-polygraph 𝑃 can be seen as a 3-dimensional rewriting system: its underlying
2-polygraph generates a 2-category, whose 2-cells are the “terms” which get
rewritten by the 3-generators. For this reason, the elements of 𝑃3 are sometimes
called rewriting rules. We now formalize this point of view.
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10.2.1 Occurrences of 2-generators. Let 𝑃 be a 2-polygraph. Given a 2-cell
𝜙 in 𝑃∗2 and a 2-generator 𝛼 ∈ 𝑃2, we write |𝜙|𝛼 for the number of occurrences
of 𝛼 in 𝜙. It can be formally defined as follows.

We write 𝑁 for the 2-category with one 0-cell ⋆, one 1-cell 1⋆, N as set of
2-cells, horizontal and vertical compositions being given by addition and the
identity 2-cell by 0. Given a 2-generator 𝛼 ∈ 𝑃2, there exists a unique 2-functor

|−|𝛼 : 𝑃∗2 → 𝑁

such that |𝛼 |𝛼 = 1 and |𝛽 |𝛼 = 0 for every 2-generator 𝛽 ∈ 𝑃2 with 𝛽 ≠ 𝛼. Given
a 2-cell 𝜙 in 𝑃∗2, the natural number |𝜙|𝛼 is called the number of occurrences
of the generator 𝛼 in 𝜙. We also write

|−| : 𝑃∗2 → 𝑁

for the 2-functor such that |𝛼 | = 1 for every generator 𝛼 ∈ 𝑃2. Given a
morphism 𝜙, we have

|𝜙| =
∑︁
𝛼∈𝑃2

|𝜙|𝛼

and this quantity is called the number of generators in 𝜙 or the size of 𝜙.

10.2.2 Contexts. Let 𝑃 be a 2-polygraph and 𝑢, 𝑣 : 𝑥 → 𝑦 be two parallel
1-cells in 𝑃∗1. We write 𝑃[𝑋] for the 2-polygraph with the same 0- and 1-cells
as 𝑃 and with 𝑃2 ⊔ {𝑋} as 2-cells, with 𝑠1 (𝑋) = 𝑢 and 𝑡1 (𝑋) = 𝑣. A context 𝐾
of type (𝑢, 𝑣) in 𝑃 is a cell 𝐾 in 𝑃[𝑋]∗2 in which the generator 𝑋 occurs exactly
once, i.e., such that |𝐾 |𝑋 = 1.

10.2.3 Lemma. Any context 𝐾 of type (𝑢, 𝑣) can be written in the form

𝐾 = 𝜓 ∗1 (𝑤 ∗0 𝑋 ∗0 𝑤′) ∗1 𝜓′

for some 1-cells 𝑤 : 𝑥′ → 𝑥 and 𝑤′ : 𝑦 → 𝑦′ and 2-cells 𝜙 : 𝑢′ ⇒ 𝑤𝑢𝑤′ and
𝜙′ : 𝑤𝑣𝑤′ ⇒ 𝑣′. Graphically, 𝐾 can be depicted as

𝑥′ 𝑤 //

𝑢′

��

𝑣′

BB

𝜓

=⇒

𝜓′

=⇒

𝑥

𝑢

��

𝑣

AA
𝑋

=⇒

𝑦
𝑤′ // 𝑦′.



10.2 Rewriting properties of 3-polygraphs 235

Given a context 𝐾 as in previous lemma and a 2-cell 𝜙 : 𝑢 ⇒ 𝑣 in 𝑃∗2, we
write 𝐶 [𝜙] for the following 2-cell of 𝑃∗2:

𝐾 [𝜙] = 𝜓 ∗1 (𝑤 ∗0 𝜙 ∗0 𝑤′) ∗1 𝜓′.

10.2.4 Rewriting steps. Let 𝑃 be a 3-polygraph. Given a context 𝐾 in 𝑃2 of
type (𝑢, 𝑣) as in Lemma 10.2.3 and a 3-cell

𝐹 : 𝜙 ⇛ 𝜙′ : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦

in 𝑃∗3, we extend the previous notation and write

𝐾 [𝐹] = 𝜓 ∗1 (𝑤 ∗0 𝐹 ∗0 𝑤′) ∗1 𝜓′

Graphically,

𝑥′ 𝑤 //

𝑢′

��

𝑣′

CC

𝜓

=⇒

𝜓′

=⇒

𝑥

𝑢

��

𝑣

AA𝜙

=⇒ 𝐹
⇛

=⇒

𝜙′ 𝑦
𝑤′ // 𝑦′.

A rewriting step is a 3-cell of the form 𝐾 [𝐴] for some context 𝐾 and 3-gene-
rator 𝐴 : 𝜙 ⇛ 𝜙′. The 2-cells 𝐾 [𝜙] and 𝐾 [𝜙′] are respectively called the
source and target of the rewriting step. Using the axioms of 3-categories, one
shows that a every 3-cell of 𝑃∗ is a composite of rewriting steps:

10.2.5 Lemma. Any 3-cell 𝐹 of 𝑃∗ can be decomposed as

𝐹 = 𝐹1 ∗2 𝐹2 ∗2 . . . ∗2 𝐹𝑘
where the 𝐹𝑖’s are rewriting steps. Moreover, the number 𝑘 ∈ N is the same for
all such decompositions.

The number 𝑘 in the previous lemma is called the length of 𝐹.

10.2.6 Termination and confluence. Given a 3-polygraph𝑃, we write here𝑃rs

for its set of rewriting steps and 𝑠2, 𝑡2 : 𝑃rs → 𝑃∗2 for the functions respectively
taking a rewriting step to its source and target. Any 3-polygraph 𝑃 induces an
abstract rewriting system

𝑃∗2 𝑃rs
𝑠2oo

𝑡2
oo
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with 2-cells as vertices and rewriting steps as edges. A 3-polygraph is said to
be terminating, Church-Rosser, confluent, locally confluent, convergent when
the associated abstract rewriting system is, see Section 1.3.

The termination of a 3-polygraph can be shown in a similar way as for
2-polygraphs (Section 4.4) by considering suitable reduction orders: this will
be detailed in Chapter 11. In the next section, we study local confluence through
critical branchings, generalizing the techniques introduced for 2-polygraphs.

10.2.7 Branchings. Let 𝑃 be a 3-polygraph. A branching is a branching of
the underlying abstract rewriting system. It consists of a pair (𝐹1, 𝐹2) of 3-cells
𝐹1 : 𝜙 ⇛ 𝜓1 and 𝐹2 : 𝜙 ⇛ 𝜓2 in 𝑃∗ with the same source. We say that
the 2-cell 𝜙 is the source of (𝐹1, 𝐹2). A branching (𝐹1, 𝐹2) of 𝑃 is local if
both 𝐹1 and 𝐹2 are rewriting steps; it is confluent if there exist cofinal 3-cells
𝐹′1 : 𝜓1 ⇛ 𝜒 and 𝐹′2 : 𝜓2 ⇛ 𝜒 in 𝑃∗.

We say that a local branching (𝐹1, 𝐹2) of 𝑃 is trivial if 𝐹1 = 𝐹2. We say that
the branching (𝐹1, 𝐹2) (resp. (𝐹2, 𝐹1)) is orthogonal if 𝐹1 and 𝐹2 are of the
form

𝐹1 = 𝜓 ∗1 (𝑤1 ∗0 𝐴1 ∗0 𝑤′1) ∗1 𝜓′ ∗1 (𝑤1 ∗0 𝜙2 ∗0 𝑤′2) ∗1 𝜓′′
𝐹2 = 𝜓 ∗1 (𝑤1 ∗0 𝜙1 ∗0 𝑤′1) ∗1 𝜓′ ∗1 (𝑤1 ∗0 𝐴2 ∗0 𝑤′2) ∗1 𝜓′′

where 𝐴1 : 𝜙1 ⇛ 𝜙′1 and 𝐴2 : 𝜙2 ⇛ 𝜙2 are 3-generators, 𝑤1 , 𝑤′1, 𝑤2 and 𝑤′2
are 1-cells of 𝑃∗, and 𝜓, 𝜓′ and 𝜓′′ are 2-cells of 𝑃∗. The orthogonal situation
can be pictured as

𝜓

=⇒

𝑥1

𝑢1
$$

𝑣1

99𝜙1

=⇒ 𝐴1
⇛

=⇒

𝜙′1 𝑦1

𝑤′1 &&
𝑥 𝜓′

=⇒

𝑢

��

𝑣

BB

𝑤1

88

𝑤2

&&

𝑦.

𝜓′′

=⇒

𝑥2

𝑢2
$$

𝑣2

99𝜙2

=⇒ 𝐴2
⇛

=⇒

𝜙′2 𝑦2

𝑤′2
88

Local branchings are ordered by the relation ⊑ generated by

(𝐹1, 𝐹2) ⊑ (𝜙 ∗𝑖 𝐹1, 𝜙 ∗𝑖 𝐹2) and (𝐹1, 𝐹2) ⊑ (𝐹1 ∗𝑖 𝜙, 𝐹2 ∗𝑖 𝜙),

where 𝜙 ranges over the 2-cells of 𝑃∗ and 𝑖 over {0, 1} such that the involved
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composites are defined. A branching of 𝑃 is called critical if it is local, orthog-
onal and minimal for ⊑. We say that 𝑃 is critically confluent if all its critical
branchings are confluent.

As in the case of 2-polygraphs, Lemma 4.3.7, the critical branching lemma
holds for 3-polygraphs:

10.2.8 Lemma. A 3-polygraph is locally confluent if and only if all its critical
branchings are confluent

As a direct corollary of this lemma and Newman’s lemma (Lemma 1.3.21), we
may state the following proposition, which is used to show the convergence of
polygraphs in the vast majority of cases.

10.2.9 Proposition. A 3-polygraph which is terminating and has all its critical
branchings confluent is convergent.

10.2.10 Example. The 3-polygraph Mon of Example 10.1.2 has five critical
branchings. All of them are confluent, as shown by the string diagrams below:

*4

�%

6E

#.

3A
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For instance, the source of the first critical branching is

= (𝜇 ∗0 𝑎 ∗0 𝑎) ∗1 (𝜇 ∗0 𝑎) ∗1 𝜇

which can be rewritten by using the 3-generator

: ⇛

in two ways, yielding the two rewriting steps:

= (𝐴 ∗0 𝑎) ∗1 𝜇 = (𝜇 ∗0 𝑎 ∗0 𝑎) ∗1 𝐴.

We will see in Example 11.2.4 that this polygraph is terminating, based on the
observation that rewriting either removes 2-generators or moves subtrees to the
right. By Proposition 10.2.9, it is thus convergent.

10.2.11 The Knuth-Bendix completion procedure. A Knuth-Bendix com-
pletion procedure can be defined for 3-polygraphs. We do not detail it much,
because it is very similar to the one for 2-polygraphs given in Section 5.2:
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starting with a 3-polygraph 𝑃 and a total reduction order adapted to the poly-
graph (Definition 11.1.1), we compute the critical branchings and, for each of
those branchings, normalize both members, and add a new rule when the normal
forms differ, oriented according to the reduction order. As for 2-polygraphs, this
procedure might not terminate because we keep on adding new rules. However,
there is a new potential source of non-termination for 3-polygraphs: we will see
in Section 10.4 that a finite polygraph might give rise to an infinite number of
critical branchings, and the completion procedure will have to examine each of
them.

10.3 Constructing presentations

When a 3-polygraph 𝑃 is convergent, the normal forms provide canonical rep-
resentatives of equivalence classes of 2-cells in 𝑃∗2 modulo the congruence
generated by 𝑃3. We explain here that this can be exploited to show that 𝑃
presents a given 2-category 𝐶, by showing that the 2-cells of 𝐶 are in bĳec-
tion with the normal forms of the polygraph. The following proposition thus
generalizes the method proposed in Section 4.5 to construct presentations of
categories.

10.3.1 Proposition. Let 𝑃 be a convergent 3-polygraph and 𝐶 a 2-category
whose underlying category is isomorphic to the category freely generated by
the underlying 1-polygraph of 𝑃, i.e., we have isomorphisms 𝑓0 : 𝑃0 → 𝐶0
and 𝑓1 : 𝑃∗1 → 𝐶1. Let moreover 𝑓2 : 𝑃2 → 𝐶2 be a function compatible with
source and target, i.e., 𝑓2 sends a 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2 to a 2-cell
𝑓2 (𝛼) : 𝑓1 (𝑢) ⇒ 𝑓1 (𝑣). We extend 𝑓2 to the 2-cells in 𝑃∗2 by functoriality by

𝑓2 (𝜙 ∗0 𝜓) = 𝑓2 (𝜙) ∗0 𝑓2 (𝜓),
𝑓2 (𝜙 ∗1 𝜓) = 𝑓2 (𝜙) ∗1 𝑓2 (𝜓),

𝑓2 (1𝑢) = 1 𝑓1 (𝑢) .

Suppose finally that

– for any 3-generator 𝐴 : 𝜙 ⇛ 𝜓 in 𝑃3, we have 𝑓2 (𝜙) = 𝑓2 (𝜓),
– the function 𝑓 ∗2 : 𝑃∗2 → 𝐶2 restricts to a bĳection between normal forms in
𝑃∗2 and 𝐶2.

Then 𝑃 is a presentation of 𝐶.

Proof. Let us write 𝑉𝐶 for the 2-polygraph with 𝑃 as underlying 1-polygraph
and whose set of 2-generators is the set 𝐶2 of 2-cells of 𝐶. The triple of
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morphisms ( 𝑓0, 𝑓1, 𝑓2) precisely corresponds to a morphism of 2-polygraphs
𝑓 : 𝑃⩽2 → 𝑉𝐶. This morphism induces a functor 𝑓 ∗ : 𝑃∗⩽2 → 𝐶 from the
freely generated 2-category. The first condition ensures that it induces a quotient
functor 𝑓 : 𝑃 → 𝐶, and the second condition ensures that 𝑓 is a bĳection.
Namely, 𝑓 is a bĳection in dimensions 0 and 1 by hypothesis. Moreover, the
2-cells of 𝑃 are in bĳection with 2-cells of 𝑃∗2 in normal form because the
polygraph is convergent (Proposition 1.3.24), and those are in bĳection with
the 2-cells of 𝐶 by hypothesis. □

10.3.2 A presentation of Δ+. As a detailed example of the above method, we
show here that the 3-polygraph Mon of Example 10.1.2 presents the augmented
simplicial category Δ+. This category was introduced in §4.5.6: its objects are
natural numbers and morphisms are non-decreasing functions. It is moreover
monoidal, with tensor product given on objects by addition (such a monoidal
category is called a PRO, see §2.4.10). As such, it can be considered as a
2-category (see §2.4.10), of which we now make an explicit description.

The 2-category Δ+ has one 0-cell ⋆, the 1-cells are natural numbers and
the 2-cells 𝑓 : 𝑚 → 𝑛 are non-decreasing maps from [𝑚] to [𝑛], where
[𝑛] = {0, . . . , 𝑛 − 1} for 𝑛 ⩾ 0. The vertical composition of 2-cells is the usual
composition of functions, with identities as neutral elements. The horizontal
composition of 1-cells is given by addition, with 0 as neutral element, and the
horizontal composition of 2-cells 𝑓 : 𝑚 → 𝑛 and 𝑓 ′ : 𝑚′ → 𝑛′ is given by

( 𝑓 ∗0 𝑓 ′) (𝑖) =
{
𝑓 (𝑖) if 0 ⩽ 𝑖 < 𝑚,
𝑓 (𝑖 − 𝑚) + 𝑛 if 𝑚 ⩽ 𝑖 < 𝑚 + 𝑚′. (10.1)

We have seen in Example 10.2.10 that the polygraph Mon is convergent. The
normal forms in 𝑃∗2 can be characterized as follows. Given 𝑛 ∈ N, we define
the right comb 𝜇𝑛 : 𝑛⇒ 1 in 𝑃∗2 by induction:

𝜇0 = 𝜂 = 𝜇1 = 𝑎 = 𝜇𝑛+2 = (𝑎 ∗0 𝜇𝑛+1) ∗1 𝜇 =

...
𝜇𝑛+1

.

A right forest is a horizontal composite of right combs, i.e., a morphism of the
form

𝜇𝑛1 ∗0 𝜇𝑛2 ∗0 . . . ∗0 𝜇𝑛𝑘 =
... ... ...
𝜇𝑛1 𝜇𝑛2 ... 𝜇𝑛𝑘

for some 𝑘 ∈ N called the width of the right forest, and (𝑛1, . . . , 𝑛𝑘) ∈ N𝑘 .
10.3.3 Lemma. Given 𝑛, 𝑛′ ∈ N, (𝜇𝑛 ∗0 𝜇𝑛′ ) ∗1 𝜇 rewrites to 𝜇𝑛+𝑛′ .

Proof. By induction on 𝑛. For 𝑛 = 0, we have (𝜇0 ∗0 𝜇𝑛′ ) ∗1 𝜇 = 𝜇𝑛′+1.
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Otherwise, (𝜇𝑛+1 ∗0 𝜇𝑛′ ) ∗1 𝜇 rewrites in one step to (𝜇𝑛 ∗0 𝜇𝑛′+1) ∗1 𝜇 and we
conclude using the induction hypothesis. □

10.3.4 Lemma. The 2-cells of 𝑃∗2 in normal forms are precisely the right
forests.

Proof. The right forests are easily checked to be normal forms. We now show
that, conversely, every normal form is a right forest, by showing that every
2-cell 𝜙 in 𝑃∗2 rewrites to a right forest. The proof is done by induction on the
size of 𝜙. If the size of 𝜙 is 0 then it is an identity, which is a right forest.
Otherwise it can be decomposed as

𝜙 = 𝜓 ∗1 (𝑎𝑖 ∗0 𝜇 ∗0 𝑎 𝑗 ) =
...
𝜓

... ...

(𝑎𝑖 denoting the horizontal composition of 𝑖 instances of 𝑎) where, by induction,
𝜓 is a right forest

𝜓 = 𝜇𝑛1 ∗0 𝜇𝑛2 ∗0 . . . ∗0 𝜇𝑛𝑖+1+ 𝑗 .
By Lemma 10.3.3, 𝜙 rewrites to the right forest

𝜇𝑛1 ∗0 . . . ∗0 𝜇𝑛𝑖−1 ∗0 𝜇𝑛𝑖+𝑛𝑖+1 ∗0 𝜇𝑛𝑖+2 ∗0 . . . ∗0 𝜇𝑛𝑖+1+ 𝑗
which can be graphically depicted as

𝜙 =

... ... ... ...
𝜇𝑛1 ... 𝜇𝑛𝑖 𝜇𝑛𝑖+1 ...

𝜇𝑛𝑖+1+ 𝑗

... ...

=

... ... ...
𝜇𝑛1 ... 𝜇𝑛𝑖+𝑛𝑖+1 ...

𝜇𝑛𝑖+1+ 𝑗

and concludes the proof. □

The underlying 1-category of Δ+ is the additive monoid N, seen as a cat-
egory. It is thus the free category on the 1-polygraph ⟨ ⋆ | 𝑎 ⟩, which is the
underlying 1-polygraph of Mon. We define a function 𝑓2 : Mon2 → (Δ+)2
where 𝑓2 (𝜇) : 2 ⇒ 1 and 𝑓2 (𝜂) : 0 ⇒ 1 are both terminal arrows. Consider
the 3-generator

𝐴 : 𝜙 ⇛ 𝜓 : 𝑎3 ⇒ 𝑎 : ⋆→ ⋆

with 𝜙 = (𝜇∗0 𝑎) ∗1 𝜇 and 𝜓 = (𝑎∗0 𝜇) ∗1 𝜇. We necessarily have 𝑓2 (𝜙) = 𝑓2 (𝜓)
(where 𝑓2 is extended by functoriality, as in Proposition 10.3.1) because both
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2-cells are of type 3⇒ 1 in Δ+, and the object 1 is terminal in this category. A
similar reasoning can be held for the two other 3-generators 𝐿 and 𝑅.

10.3.5 Lemma. The function 𝑓2 induces a bĳection between the normal forms
in 𝑃∗2 and the 2-cells of Δ+.

Proof. Given a 2-cell 𝑔 : 𝑛 → 𝑘 in Δ+, i.e., a non-decreasing function
𝑔 : [𝑛] → [𝑘], and 𝑗 ∈ [𝑘], we write 𝑛 𝑗 for the cardinal of the set 𝑓 −1 ( 𝑗).
Note that the function 𝑔 is entirely determined by the tuple (𝑛1, . . . , 𝑛𝑘) ∈ N𝑘
since, for 𝑖 ∈ [𝑛], 𝑔(𝑖) is the unique element of [𝑘] satisfying∑︁

0⩽ 𝑗<𝑔 (𝑖)
𝑛 𝑗 ⩽ 𝑖 <

∑︁
0⩽ 𝑗⩽𝑔 (𝑖)

𝑛 𝑗

and conversely any 𝑘-tuple of natural numbers (𝑛1, . . . , 𝑛𝑘) determines an in-
creasing function from

∑
𝑗 𝑛 𝑗 to 𝑘 in this way. Given a right forest 𝜇𝑛1∗0. . .∗0𝜇𝑛𝑘 ,

one easily checks that its image under 𝑓 is the non-decreasing function with
associated 𝑘-uple (𝑛1, . . . , 𝑛𝑘), thus establishing a bĳection between forests of
width 𝑘 and non-decreasing functions with codomain 𝑘 . □

In order to illustrate the above proof, consider the function 𝑔 : 5 → 3 whose
graph is depicted on the left below:

0 1 2 3 4

0 1 2

The associated sequence inN3 is (3, 0, 2) and the associated normal form is the
right forest 𝜇3∗0 𝜇0∗0 𝜇2 as pictured on the right. Note the clear correspondence
between the two figures.

Let us sum up the results we have obtained in this section for the augmented
simplicial category Δ+. We have

1. constructed two 1-cells 𝜇 : 2→ 1 and 𝜂 : 0→ 1 in the 2-category Δ+: both
are terminal 2-cells,

2. shown that they generate the 2-category: every morphism of Δ+ can be
written as a (horizontal or vertical) composite of those 2-cells,

3. shown that those two 2-cells satisfy the axioms 𝐴, 𝐿 and 𝑅 of Example 10.1.2
(reading 3-cells are equalities), expressing that 𝜇 is associative and admits 𝜂
as left and right unit,

4. shown that this set of axioms is complete: if two composites of 𝜇 and 𝜂 give
rise to the same 2-cell in Δ+ then one can show that they are equal using
axioms 𝐴, 𝐿, 𝑅, and axioms for 2-categories.
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Since the generators and the relations are precisely those of monoids, we can
deduce that Δ+ impersonates the notion of monoid, in the sense that a 2-func-
tor Δ+ → 𝐶 to some 2-category 𝐶 determines a monoid, as explained in
Example 10.1.5.

10.3.6 Presentations from polygraphs with canonical forms. The obser-
vation made for 2-polygraphs in Remark 4.5.4 generalizes to 3-polygraphs.
Namely, in the proof of Proposition 10.3.1, we did not fully use the convergence
of the polygraph, only the existence of canonical representatives of equivalence
classes provided by normal forms. This suggests the following generalization
of the above method, which applies in cases where, even though it is difficult
to construct a convergent presentation, one can still directly come up with a
notion of canonical form. Many applications of this methodology were studied
by Lafont [235].

10.3.7 Proposition. Suppose given

– a 3-polygraph 𝑃,
– a 2-category𝐶 whose underlying category is isomorphic to the free category

on the underlying 1-polygraph of 𝑃,
– a function 𝑓2 : 𝑃2 → 𝐶2 which is compatible with source and target,
– a set 𝑃∗2 ⊆ 𝑃∗2 of 2-cells called canonical forms,

such that

1. for any 2-generator 𝐴 : 𝜙 ⇛ 𝜓 in 𝑃3, we have 𝑓2 (𝜙) = 𝑓2 (𝜓),
2. every 2-cell in 𝑃∗2 is equivalent, with respect to the congruence≈𝑃 generated

by 𝑃3, to a canonical form,
3. 𝑓2 restricts to a bĳection between canonical forms 𝑢 ⇒ 𝑣 in 𝑃∗2 and 2-cells

𝑓 (𝑢) ⇒ 𝑓 (𝑣) in 𝐶, where 𝑓2 is implicitly extended to 2-cells in 𝑃∗2 by
functoriality.

Then 𝑃 is a presentation of the 2-category 𝐶.

Proof. As in the proof of Proposition 10.3.1, by the first condition, 𝑓2 induces a
2-functor 𝑓 : 𝑃→ 𝐶, which is bĳective on 0- and 1-cells. By surjectivity of 𝑓2
in the third condition, for every 2-cell 𝜙 in 𝐶2, there is a canonical form 𝜙 such
that 𝑓2 (𝜙) = 𝜙. We have 𝑓 (𝜙) = 𝑓2 (𝜙) = 𝜙 and 𝑓 is thus surjective on 2-cells.
Moreover, consider two parallel 2-cells 𝜙 and 𝜓 of 𝑃2, such that 𝑓 (𝜙) = 𝑓 (𝜓).
The second condition ensures that there are canonical forms 𝜙 and 𝜓 such that
𝜙 = 𝜙 and 𝜓 = 𝜓. We have

𝑓2 (𝜙) = 𝑓 (𝜙) = 𝑓 (𝜙) = 𝑓 (𝜓) = 𝑓 (𝜓) = 𝑓2 (𝜓).
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By injectivity of 𝑓2 in the third condition, we have 𝜙 = 𝜓. Thus, 𝜙 = 𝜙 = 𝜓 = 𝜓
and 𝑓 is injective on 2-cells. □

In particular, when 𝑃 is a convergent 3-polygraph, we can take 𝑃∗2 to be the set
of 2-cells in normal form, thus recovering Proposition 10.3.1 as a particular
case of previous proposition.

10.3.8 Example. In order to show that Mon presents Δ+, we could have chosen
the following alternative definition of right combs:

𝜇0 = 𝜂 𝜇𝑛+1 = (𝑎 ∗0 𝜇𝑛) ∗1 𝜇

Right forests are obtained as horizontal composites of such right combs, and we
consider those as canonical forms. The definition is mostly the same as before
except that we have

𝜇1 = (𝑎 ∗0 𝜂) ∗1 𝜇 = .

It can be shown that every 2-cell is equivalent to a canonical form using a
variant of the proof of Lemma 10.3.4, and one can construct a bĳection between
canonical forms and 2-cells in Δ+ using a variant of the proof of Lemma 10.3.5.
We can thus conclude that Mon is a presentation of Δ+ by Proposition 10.3.7.
Note that the canonical form associated to 1𝑎 is 𝜇1, so there is no hope to obtain
canonical forms a as normal forms for some convergent 3-polygraph, because
no terminating polygraph can rewrite identities.

10.3.9 Remark. As a variant of the previous example, consider the cate-
gory Δ2+ = Δ+ × Δ+. The monoidal structure on Δ+ induces one on Δ2+ given on
objects by

(𝑚1, 𝑛1) ⊗ (𝑚2, 𝑛2) = (𝑚1 ⊗ 𝑚2, 𝑛1 ⊗ 𝑛2)

and similarly on morphisms. The underlying monoid of objects of this category
isN×Nwhich is abelian and thus not free (see §2.3.13). Therefore, by §10.1.6,
there is no presentation of it (seen as a 2-category induced by the monoidal
structure, see §2.4.10) by a 2-polygraph. This situation is detailed in [101]. The
same argument applies to most products of 2-categories, but for degenerated
cases.

10.3.10 Presenting categories. Let 𝑃 be a 3-polygraph presenting a monoidal
category 𝐶, seen as a 2-category: this presentation is of the form

𝑃 = ⟨ ⋆ | 𝑃1 | 𝑃2 | 𝑃3 ⟩ .
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The monoidal category 𝐶 has an underlying category, obtained by forgetting
the tensor product and unit object. This category admits, as a category, a
presentation by the following 2-polygraph 𝑄 constructed from 𝑃:

– 𝑄0 = 𝑃∗1 is the set of 1-cells 𝑢 : ⋆→ ⋆ in 𝑃∗1,
– 𝑄1 = 𝑃∗1𝑃2𝑃

∗
2 contains a 1-generator

𝑢𝛼𝑤 : 𝑢𝑣𝑤→ 𝑢𝑣′𝑤

for every 1-cells 𝑢, 𝑤 ∈ 𝑃∗1 and 2-generator 𝛼 : 𝑣⇒ 𝑣′ in 𝑃2,
– 𝑄2 contains a 2-generator

𝑢𝐴𝑤 : 𝑢𝜙𝑤⇒ 𝑢𝜓𝑤

for every 1-cells 𝑢, 𝑤 ∈ 𝑃∗1 and 3-generator 𝐴 : 𝜙 ⇛ 𝜓, where 𝑢𝜙𝑤 and 𝑢𝜓𝑤
are seen as elements of 𝑄∗2 in the expected functorial way, it also contains a
2-generator

𝑋𝑢,𝛼,𝑢′ ,𝛽,𝑢′′ : 𝑢𝛼𝑢′𝑤𝑢′′ ∗ 𝑢𝑣′𝑢′𝛽𝑢′′ ⇒ 𝑢𝑣𝑢′𝛽𝑢′′ ∗ 𝑢𝛼𝑢′𝑤′𝑢′′

for every 1-cells 𝑢, 𝑢′, 𝑢′′ ∈ 𝑃∗1 and 2-generators 𝛼 : 𝑣⇒ 𝑣′ and 𝛽 : 𝑤⇒ 𝑤′

in 𝑃2 (which encodes the exchange law).

10.3.11 Example. We have seen above that the augmented simplicial cat-
egory Δ+ was presented, as a monoidal category, by the 3-polygraph Mon,
defined in Example 10.1.2. We deduce the presentation of Δ+, as a category, by
the 2-polygraph 𝑃 with

– 0-generators: for 𝑖 ∈ N, a generator 𝑎𝑖 ,
– 1-generators: for 𝑖, 𝑗 ∈ N,

𝑎𝑖𝜇𝑎 𝑗 : 𝑎𝑖+2+ 𝑗 → 𝑎𝑖+1+ 𝑗 𝑎𝑖𝜂𝑎 𝑗 : 𝑎𝑖+ 𝑗 → 𝑎𝑖+1+ 𝑗

– 2-generators: for 𝑖, 𝑗 ∈ N,

𝑎𝑖𝐴𝑎 𝑗 : 𝑎𝑖𝜇𝑎 𝑗+1 ∗ 𝑎𝑖𝜇𝑎 𝑗 ⇒ 𝑎𝑖+1𝜇𝑎 𝑗 ∗ 𝑎𝑖𝜇𝑎 𝑗
𝑎𝑖𝐿𝑎 𝑗 : 𝑎𝑖𝜂𝑎 𝑗+1 ∗ 𝑎𝑖𝜇𝑎 𝑗 ⇒ 𝑎𝑖+ 𝑗

𝑎𝑖𝑅𝑎 𝑗 : 𝑎𝑖+1𝜂𝑎 𝑗 ∗ 𝑎𝑖𝜇𝑎 𝑗 ⇒ 𝑎𝑖+ 𝑗

𝑋𝑎𝑖 ,𝜇,𝑎 𝑗 ,𝜇,𝑎𝑘 : 𝑎𝑖𝜇𝑎 𝑗+2+𝑘 ∗ 𝑎𝑖+1+ 𝑗𝜇𝑎𝑘 ⇒ 𝑎𝑖+2+ 𝑗𝜇𝑎𝑘 ∗ 𝑎𝑖𝜇𝑎 𝑗+1+𝑘
𝑋𝑎𝑖 ,𝜇,𝑎 𝑗 ,𝜂,𝑎𝑘 : 𝑎𝑖𝜇𝑎 𝑗+𝑘 ∗ 𝑎𝑖+1+ 𝑗𝜂𝑎𝑘 ⇒ 𝑎𝑖+2+ 𝑗𝜂𝑎𝑘 ∗ 𝑎𝑖𝜇𝑎 𝑗+1+𝑘
𝑋𝑎𝑖 ,𝜂,𝑎 𝑗 ,𝜇,𝑎𝑘 : 𝑎𝑖𝜂𝑎 𝑗+2+𝑘 ∗ 𝑎𝑖+1+ 𝑗𝜇𝑎𝑘 ⇒ 𝑎𝑖+ 𝑗𝜇𝑎𝑘 ∗ 𝑎𝑖𝜂𝑎 𝑗+1+𝑘
𝑋𝑎𝑖 ,𝜂,𝑎 𝑗 ,𝜂,𝑎𝑘 : 𝑎𝑖𝜂𝑎 𝑗+𝑘 ∗ 𝑎𝑖+1+ 𝑗𝜂𝑎𝑘 ⇒ 𝑎𝑖+ 𝑗𝜂𝑎𝑘 ∗ 𝑎𝑖𝜂𝑎 𝑗+1+𝑘

It can be checked that we precisely recover the presentation for the simplicial
category given in §4.5.6, up to renaming the 1-generators 𝑎𝑖𝜇𝑎 𝑗 to 𝑠𝑖+ 𝑗+1𝑖 and
𝑎𝑖𝜂𝑎 𝑗 to 𝑑𝑖+ 𝑗𝑖 .
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10.4 Indexed critical branchings

There is a major difference between rewriting in 3-polygraphs compared to the
case of 2-polygraphs studied in previous chapters: contrarily to presentations
of categories (see Lemma 4.3.10), the number of critical branchings of a finite
3-polygraph can be infinite. We begin with an example of this phenomenon,
originally observed by Lafont [235].

10.4.1 Presenting the theory for symmetries. The category S is the category
whose objects are natural numbers and a morphism 𝑓 : 𝑚 → 𝑛 is a bĳection
(also called a permutation) from [𝑚] to [𝑛], the ordinals with𝑚 and 𝑛 elements
respectively, with usual compositions and identities. Here, all morphisms are
in fact endomorphisms. This category is monoidal with tensor product given
by addition on objects (this is a PRO) and as for Δ+ on morphisms, see (10.1)
in §10.3.2.

Starting from the fact that any bĳection can be decomposed as a composite
of transpositions, we expect that this monoidal category, seen as a 2-category,
admits a presentation by the following 3-polygraph 𝑃:

⟨ ⋆ | 𝑎 | 𝛾 : 𝑎 ∗0 𝑎 → 𝑎 ∗0 𝑎 | 𝐼,𝑌 ⟩
Here, the 2-generator 𝛾 corresponds to the transposition on a set with two
elements and is usually pictured as

The two 3-generators express

– the involutivity of the transposition:

𝐼 : 𝛾 ∗1 𝛾 ⇛ 1𝑎 ∗0 1𝑎

which can be represented as

⇛

– the Yang-Baxter relation 𝑌 of type

(𝛾 ∗0 1𝑎) ∗1 (1𝑎 ∗0 𝛾) ∗1 (𝛾 ∗0 1𝑎) ⇛ (1𝑎 ∗0 𝛾) ∗1 (𝛾 ∗0 1𝑎) ∗1 (1𝑎 ∗0 𝛾)
which can be represented as

⇛
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In this polygraph, it can be noted that, for any 2-cell 𝜙 : 𝑎𝑚+1 ⇒ 𝑎𝑛+1, the
2-cell

(𝛾 ∗0 𝑎𝑚+1) ∗1 (𝑎 ∗0 𝛾 ∗0 𝑎𝑚) ∗1 (𝛾 ∗0 𝜙) ∗1 (𝑎 ∗0 𝛾 ∗0 𝑎𝑛) ∗1 (𝛾 ∗0 𝑎𝑛+1)

of 𝑃∗2 can be rewritten in two ways using the rule 𝑌 :

...

𝜙

...

⇚

...

𝜙

...

⇛

...

𝜙

...

.

This gives rise to a critical branching when 𝜙 is either 1𝑎 or of the form 𝛾𝑛+1

(the vertical composite of 𝑛 + 1 instances of 𝛾). The critical branchings of the
rewriting system are thus

𝛾𝑛+1 .

In the first case, the 2-cell can be rewritten by 𝐼 in two different ways, in the
second and third case, the 2-cells can be rewritten both by 𝐼 and 𝑌 . The fourth
and fifth case can be rewritten by 𝑌 in two ways, as described above. A finite
3-polygraph can thus give rise to an infinite number of critical branchings. Still,
they can be checked to be confluent. In the first four cases, this can be checked
directly:

� ��

�

jt


�

*4


�

*4


�

jt
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�

jt *4


�

*4 jt

In the fifth case, we have, depending on whether 𝑛 is odd or even:

𝛾𝑛+1
∗
⇛ 1𝑎2 or 𝛾𝑛+1

∗
⇛ 𝛾

and in the two cases the local branching is confluent:

– if 𝛾𝑛+1
∗
⇛ 1𝑎2 :

𝛾𝑛+1

∗ 
�

𝛾𝑛+1jt *4 𝛾𝑛+1

∗
�

*4 *4 jt jt

– if 𝛾𝑛+1
∗
⇛ 𝛾:


�

𝛾𝑛+1
∗jt 𝛾𝑛+1jt *4 𝛾𝑛+1 ∗ *4


�

*4 *4 jt jt
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Finally, the rewriting system can be shown to be terminating (Examples 11.2.9
and 11.3.9) and thus convergent.

The normal forms can be characterized as follows. We first define, for every
𝑛 ∈ N, a 2-cell

𝛾𝑛 : 𝑎𝑛+1 → 𝑎𝑛+1

by

𝛾0 = 1𝑎 𝛾𝑛+1 = (𝛾𝑛 ∗0 𝑎) ∗1 (𝑎𝑛 ∗0 𝛾).
This cell can be seen as a generalization of 𝛾 since 𝛾1 = 𝛾, and 𝛾𝑛 is most
naturally pictured as

...

...

i.e., for low values of 𝑛,

𝛾0 = 𝛾1 = 𝛾2 = 𝛾3 = .

The normal forms of the rewriting system can be characterized as follows, from
which we can conclude that this is indeed a presentation of S.

10.4.2 Proposition. A 2-cell 𝜙 is a normal form if and only if it is either

– 𝜙 = 1𝑎0 , or
– there exists a normal form 𝜓 : 𝑛→ 𝑛 and𝑚 ∈ N with 0 ⩽ 𝑚 ⩽ 𝑛 such that 𝜙

is
(𝑎 ∗0 𝜓) ∗1 (𝛾𝑚 ∗0 𝑎𝑛−𝑚) : 𝑚 + 1→ 𝑚 + 1

what we write
𝜙 = Γ𝑚𝜓

i.e., graphically,

𝜙 =

...
𝜓

... ...

.

Proof. We call canonical forms the 2-cells of the above form. Those are in
normal form: this can be checked directly. Conversely, we show that any 2-cell 𝜙
rewrites to a canonical form, by induction on its size. If the size of 𝜙 is 0 then 𝜙
is of the form 1𝑎𝑛 and we have 𝜙 = Γ0 . . . Γ0Γ01𝑎0 (with 𝑛 occurrences of Γ0).
Otherwise, 𝜙 is of the form

𝜙 = 𝜙′ ∗1 (𝑎𝑖 ∗0 𝛾 ∗0 𝑎 𝑗 ) =
...
𝜙′

... ...



250 Three-dimensional polygraphs

where 𝜙′ rewrites to a canonical form Γ𝑚𝜓. Then depending on the respective
values of 𝑚 and 𝑖, four generic situations are possible, and in all of them 𝜙

rewrites to a canonical form (by using the induction hypothesis in the first and
in the last case):

...
𝜓

... ...

... ... ...

⇛

...
𝜓

... ...

... ... ...

...
𝜓

...

... ...

⇛

...
𝜓

...

... ...

...
𝜓

...

... ...

⇛

...
𝜓

...

... ...

...
𝜓

... ... ...

=

...
𝜓

... ... ...

This concludes the proof. □

Given a bĳection 𝑓 : [𝑛] → [𝑛] its Lehmer code is a sequence of 𝑛 natural
numbers (𝑘0, 𝑘1, . . . , 𝑘𝑛−1) such that 0 ⩽ 𝑘𝑖 < 𝑛− 𝑖 for every index 𝑖, where 𝑘𝑖
is the cardinal of the set { 𝑗 > 𝑖 | 𝑓 ( 𝑗) < 𝑓 (𝑖)}. It can be shown that this induces
a bĳection between permutations of [𝑛] and such sequences, see [240, 248].
For instance, consider the permutation of [4] whose images are (2 0 4 3 1),
pictured on the left:

0 1 2 3 4

0 1 2 3 4

(10.2)

The associated Lehmer code is (2, 0, 2, 1, 0). We can finally conclude that the
polygraph 𝑃 defined in 10.4.1 is a presentation of the PRO of symmetries,
see [235] for details.

10.4.3 Theorem. The polygraph 𝑃 is a presentation of S.

Proof. Following the method described in Proposition 10.3.1, we interpret the
morphism 𝛾 : 2→ 2 as the transposition [2] → [2], and this interpretation is
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compatible with the two rules. It is easy to see that the interpretation of a normal
form Γ𝑘0 . . . Γ𝑘𝑛−1 1𝑎0 is the bĳection whose Lehmer code (𝑘0, 𝑘1, . . . , 𝑘𝑛). For
instance, the normal form associated to the bĳection (10.2) is Γ2Γ0Γ2Γ1Γ01𝑎0 ,
which is pictured on the right of (10.2). This clearly establishes a bĳection
between 2-cells in normal form in 𝑃∗⩽2 and 2-cells of S. □

10.4.4 Classification of critical branchings. Critical branchings in 3-poly-
graphs are classified in [161]. This case is more difficult than in dimension 2
mainly because, as initially noted in [235] and observed in previous section, a
finite 3-polygraph may have an infinite number of critical branchings. However,
an analysis of the possible shapes of these critical branchings yields a sufficient
condition for confluence that only requires to consider a finite subset of them.

Assume that 𝑃 is a 3-polygraph. By examination of the different possibilities,
the critical branchings of 𝑃 are classified as follows [161, Section 5.1.1].

1. Inclusion critical branchings, with the following source, if 𝜒 is the source
of a 3-generator of 𝑃, and 𝜙 ∗1 𝑢𝜒𝑣 ∗1 𝜓 is the source of another one:

...
𝜙
...

... 𝜒 ...
...
𝜓
...

2. Regular critical branchings, with the following source, if 𝜙∗1𝑢𝜒 and 𝜒𝑣∗1𝜓
(or 𝜙 ∗1 𝜒𝑣 and 𝑢𝜒 ∗1 𝜓) are the sources of two 3-generators of 𝑃:

...
𝜙

...
... 𝜒 ...

...
𝜓
...

or

...
𝜙

...
... 𝜒 ...

...
𝜓
...

3. Instances of left-indexed critical branchings, with the following source,
if 𝜙 ∗1 𝑢𝜒 and 𝑣𝜒 ∗1 𝜓 are the sources of two 3-generators of 𝑃, and
𝜁 : 𝑤𝑢 → 𝑥𝑣 is a 2-cell of 𝑃∗:

...
... 𝜙

... ...
𝜁 𝜒

... ...
... 𝜓

...

4. Instances of right-indexed critical branchings, with the following source,
if 𝜙 ∗1 𝜒𝑢 and 𝜒𝑣 ∗1 𝜓 are the sources of 3-generators of 𝑃, and 𝜁 : 𝑢𝑤⇒ 𝑣𝑥
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is a 2-cell of 𝑃∗:
...
𝜙 ...

... ...
𝜒 𝜁
... ...

𝜓 ...
...

5. Instances of multi-indexed critical branchings, in all the other cases: one has
a 3-generator with a source of the form

𝜙 ∗1 (𝑢0 ∗0 𝜒1 ∗0 𝑢1 ∗0 𝜒2 ∗0 · · · ∗0 𝑢𝑛−1 ∗0 𝜒𝑛 ∗0 𝑢𝑛)

and another 3-generator with a source of the form

(𝑣0 ∗0 𝜒1 ∗0 𝑣1 ∗0 𝜒2 ∗0 · · · ∗0 𝑣𝑛−1 ∗0 𝜒𝑛 ∗0 𝑣𝑛) ∗1 𝜓

so that the source of the branching is of the form

...
... 𝜙 ...

... ... ... ... ... ... ... ...
𝜁0 𝜒1 𝜁1 𝜒2 ... 𝜒𝑛−1 𝜁𝑛−1 𝜒𝑛 𝜁𝑛

... ... ... ... ... ... ... ...
... 𝜓 ...

...

For example, in the presentation of §10.4.1, the four first branchings are regular
whereas the generic family of branchings is right-indexed (by 𝛾𝑛+1).

An instance of a left- or right-indexed branching, is a left- or right-indexed
branching as above, with a particular value for the 2-cell 𝜁 . It is a normal
instance when 𝜁 is in normal form.

10.4.5 Indexed polygraphs. We say that a 3-polygraph 𝑃 is non-indexed if
it has inclusion or regular critical branchings only, left-indexed (resp. right-
indexed) if it has inclusion, regular or left-indexed (resp. right-indexed) critical
branchings only, and finitely indexed if each of its indexed critical branchings
has a finite number of reduced instances. Then we have the following results,
which apply to the presentation of permutations in §10.4.1.

10.4.6 Proposition ([161, Proposition 5.1.3]). If 𝑃 has a finite number of
3-cells, then it has a finite number of inclusion and regular critical branchings.

10.4.7 Proposition ([161, Proposition 5.3.1]). If 𝑃 is terminating and left-
indexed (resp. right-indexed), then 𝑃 is confluent if and only if all its inclusion
and regular critical branchings, and all the reduced instances of its left-indexed
(resp. right-indexed) critical branchings are confluent.
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10.5 Distributive laws

The notions introduced in Section 3.3 for combining presentations using dis-
tributive laws generalize easily to presentations of monoidal categories as we
now briefly explain, following [230].

10.5.1 Monoidal categories as monads. We have seen in §3.3.13 that a cate-
gory corresponds precisely to a monad in Span(Set), and our aim is to gener-
alize this situation to strict monoidal categories. The main starting point is that,
in a strict monoidal category, the set of objects forms a monoid, with tensor as
product.

The category Mon of monoids and their morphisms has small limits and it
therefore makes sense to consider the bicategory Span(Mon) of spans internals
to Mon as explained in §3.3.11: a 0-cell of this bicategory is a monoid, a 1-cell
from 𝐴 to 𝐵 is a diagram of the form

𝐴 𝐶oo // 𝐵

in Mon and composition is given by pullback. It can then be observed that
a monad in this bicategory (see §3.3.12) is precisely a monoidal category. In
particular, a PRO corresponds to a monad on the monoid (N, +, 0). This point
of view allows us to compose monoidal categories through distributive laws
between the corresponding monads. We briefly present it below.

10.5.2 Distributive laws. Given two monoidal categories 𝐶 and 𝐷 with the
same monoid of objects, a distributive law between them is a distributive law
between the corresponding monads in Span(Mon), in the sense of §3.3.12. It
consists of a distributive law

ℓ : 𝐷 ⊗ 𝐶 → 𝐶 ⊗ 𝐷
in the sense of §3.3.2, between the underlying categories, which is compat-
ible with tensor product in the sense that, for 𝑓1, 𝑓2, 𝑓 ′1 , 𝑓

′
2 and 𝑔1, 𝑔2, 𝑔

′
1, 𝑔
′
2

morphisms of 𝐶 and 𝐷 respectively,

ℓ(𝑔′1, 𝑓 ′1 ) = ( 𝑓1, 𝑔1)
ℓ(𝑔′2, 𝑓 ′2 ) = ( 𝑓2, 𝑔2) implies ℓ(𝑔′1 ⊗ 𝑔′2, 𝑓 ′1 ⊗ 𝑓 ′2 ) = ( 𝑓1 ⊗ 𝑓2, 𝑔1 ⊗ 𝑔2).

10.5.3 Factorization systems. Given monoidal categories 𝐶, 𝐷 and 𝐸 , with
the same monoid of objects, we have𝐶⊗ℓ𝐷 = 𝐸 precisely when𝐶 and𝐷 form a
monoidal factorization system for 𝐸 , i.e., 𝐶 and 𝐷 are monoidal subcategories
of 𝐸 such that every morphism of 𝐸 factorizes uniquely a morphism of 𝐶
followed by a morphism of 𝐷.
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In the case where 𝐶 (resp. 𝐷) admits a presentation by a 3-polygraph 𝑃

(resp. 𝑄), with 𝑃0 = 𝑄0 = {⋆} and 𝑃1 = 𝑄1, the category 𝐸 admits a presenta-
tion by the 3-polygraph 𝑅 with

𝑅0 = {⋆} 𝑅1 = 𝑃1 = 𝑄1 𝑅2 = 𝑃2 ⊔𝑄2 𝑅3 = 𝑃3 ⊔𝑄3 ⊔ 𝑅ℓ3

where 𝑅ℓ3 presents the distributive law similarly to Theorem 3.3.6.

10.5.4 Composing PROPs. Generalized composition of categories, as de-
scribed in §3.3.17, also extends to this setting. A typical situation where this
is useful is the case of PROPs: those are strict symmetric monoidal categories,
with (N, +, 0) as monoid of objects. When composing two PROPs, one would
like to identify the symmetric structures already present in both of them.

The category S of finite cardinals and bĳections is the free PROP (this follows
from the presentation constructed in §10.4.1, see also §C.1.4), and a PROP 𝐶
can thus be seen as a monad on the additive monoidN in Span(Mon) equipped
with a functor S→ 𝐶, i.e., an object on the category on the left of (10.3) below.
As explained in §3.3.20, we have an isomorphism

S/Mon(Span(Mon) (N,N)) ≃Mon(Mod(Span(Mon)) (S, S)) (10.3)

which thus allows one to consider a PROP as a monad on bimodules of spans of
monoids over S, and two PROPs𝐶 and 𝐷 can be composed along a distributive
law

ℓ : 𝐷 ⊗S 𝐶 → 𝐶 ⊗S 𝐷

between the corresponding monads: the composite defined in this way always
gives rise to a PROP, and identifies the symmetry structure in the composed
PROPs as expected [230, 357]. When the two PROPs 𝐶 and 𝐷 are presented,
one can obtain a presentation of their composite using by a direct generalization
of §3.3.21.

Similarly, Lawvere theories can be seen as monads in bimodules of spans
of monoids over F and can be composed along distributive laws [85], see
also §13.1.18.

10.5.5 Example. We write F (resp. F𝜇, resp. F𝜂) for the PROP of finite
cardinals and functions (resp. surjective functions, resp. injective functions),
see §C.2. The PROPs F𝜇 and F𝜂 are subcategories of F, any morphism ℎ ∈ F
factorizes as ℎ = 𝑔 ◦ 𝑓 with 𝑓 ∈ F𝜇 and 𝑔 ∈ F𝜂 , and for any other factorization
ℎ = 𝑔′ ◦ 𝑓 ′ there exists a permutation 𝑤 ∈ S making the following diagram
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commute:

𝑦

𝑤

��

𝑔

��
𝑥

𝑓 >>

𝑓 ′ ��

𝑧

𝑦′
𝑔′

??

i.e., we have F = F𝜇 ⊗ℓ F𝜂 . The categories F𝜇 and F𝜂 respectively admit
presentations by the polygraphs 𝑃 and 𝑄 with generators

𝑃0 = 𝑄0 = {⋆} 𝑃1 = 𝑄1 = {𝑎} 𝑃2 =
{

,
}

𝑄2 =
{

,
}

where the relations in 𝑃3 are

⇛ ⇛ ⇛

⇛ ⇛

and the relations in 𝑄3 are

⇛ ⇛ ⇛

From those, we deduce the presentation of F by the polygraph 𝑅 with

𝑅0 = {⋆} 𝑅1 = {𝑎} 𝑅2 = 𝑃2 ⊔𝑄2 =
{

, ,
}

and the relations are

– the common relation for symmetry:

⇛
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– the relations of 𝑃:

⇛ ⇛

⇛ ⇛

– the relations of 𝑄:

⇛ ⇛

– the relations generated by the distributive law:

⇛ ⇛



11
Termination of 3-polygraphs

This chapter presents techniques for proving the termination of 3-polygraphs,
generalizing those already introduced for 2-polygraphs in Section 4.4. A first
method, described in Section 11.1, is based on a certain type of well-founded
orders called reduction orders. We then turn in Section 11.2 to functorial inter-
pretations: these amount to construct a functor from the underlying category to
another category which already bears a reduction order. This covers quite a few
useful examples. To address more complex cases, we present in Section 11.3
a powerful technique, due to Guiraud [158, 161], based on the construction of
a derivation from the polygraph. Here, termination is obtained by specifying
quantities on 2-cells which decrease during rewriting, based on information
propagated by the 2-cells themselves.

11.1 Reduction and termination orders

We begin by extending the notion of reduction order introduced in Section 4.4,
from 2-polygraphs to 3-polygraphs.

11.1.1 Definition. Given a 2-category 𝐶, a reduction order is a partial order ≽
on pairs of parallel 2-cells which is

– well-founded: every weakly decreasing sequence of 2-cells is eventually
stationary,

– compatible with 0-composition: for every 2-cells

𝜙 : 𝑢 ⇒ 𝑢′ : 𝑥′ → 𝑥 𝜓1, 𝜓2 : 𝑣⇒ 𝑣′ : 𝑥 → 𝑦 𝜙′ : 𝑤⇒ 𝑤′ : 𝑦 → 𝑦′

257
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which can be represented as

𝑥′

𝑢

!!

𝑢′

==

=⇒

𝜙 𝑥

𝑣

  

𝑣′

==𝜓1

=⇒ =⇒

𝜓2 𝑦

𝑤

""

𝑤′

<<

=⇒

𝜙′ 𝑦′

we have that

𝜓1 ≻ 𝜓2 implies 𝜙 ∗0 𝜓1 ∗0 𝜙′ ≻ 𝜙 ∗0 𝜓2 ∗0 𝜙′,

– compatible with 1-composition: for every 2-cells

𝜙 : 𝑢′ ⇒ 𝑢 : 𝑥 → 𝑦 𝜓1, 𝜓2 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦 𝜙′ : 𝑣⇒ 𝑣′ : 𝑥 → 𝑦

which can be represented as

𝑥

𝑢′

��

=⇒

𝜙

𝑢
''

𝑣

77𝜓1

=⇒ =⇒

𝜓2

𝑣′

DD

=⇒

𝜙′

𝑦

we have that

𝜓1 ≻ 𝜓2 implies 𝜙 ∗1 𝜓1 ∗1 𝜙′ ≻ 𝜙 ∗1 𝜓2 ∗1 𝜙′.

Given a 3-polygraph 𝑃, a reduction order ≽ on the 2-category 𝑃∗2 is said to be
compatible with the rules of 𝑃 when 𝜙 ≻ 𝜙′ for every rule 𝐴 : 𝜙 ⇛ 𝜙′ in 𝑃3.
In this case, the order ≽ is called a termination order for 𝑃.

In an arbitrary 3-polygraph 𝑃, we write⇛∗ for the relation on parallel 2-cells
of 𝑃∗2 such that 𝜙 ⇛∗ 𝜓 whenever 𝜙 rewrites to 𝜓, or equivalently whenever
there is a 3-cell 𝐹 : 𝜙 ⇛ 𝜓 in 𝑃∗3.

11.1.2 Proposition. Given a 3-polygraph 𝑃, the following statements are equiv-
alent.

1. The polygraph 𝑃 is terminating.
2. The relation⇛∗ is a termination order.
3. The polygraph 𝑃 admits a termination order.

Proof. Similar to the proof of Proposition 4.4.2. □
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11.2 Functorial interpretations

The main criterion for showing the termination of a 3-polygraph is given by
constructing a suitable interpretation of its 2-cells in 2-categories for which a
reduction order is known. This generalizes the technique of reduction functions
introduced in §4.4.5.

11.2.1 Proposition. Let 𝑃 be a 3-polygraph. The following statements are
equivalent.

1. The 3-polygraph 𝑃 terminates.
2. There exists a 2-category 𝐶, equipped with a reduction order ≽, and a

2-functor [−] : 𝑃∗2 → 𝐶, such that [𝜙] ≻ [𝜓] for every 3-generator
𝐴 : 𝜙⇒ 𝜓 in 𝑃3.

Proof. 1⇒ 2. If the polygraph 𝑃 terminates, we can take𝐶 = 𝑃∗2 and [−] = 1𝑃∗2 .
By Proposition 11.1.2, taking⇛∗ for ≽ gives a termination order for 𝑃, hence
a reduction order on 𝐶 such that [𝜙] ≻ [𝜓] for every 3-generator 𝐴 : 𝜙 ⇒ 𝜓

in 𝑃3.
2 ⇒ 1. Conversely, [−] being a functor, and ≽ being compatible with the

compositions of 𝐶 imply that, for every rewriting step 𝐹 : 𝜙 ⇛ 𝜓, we have
[ 𝑓 ] ≻ [𝑔] in 𝐶. Now, assume that 𝑃 does not terminate. Then there exists
a infinite sequence of composable rewriting steps in 𝑃, yielding a infinite
decreasing sequence for ≽, which is excluded by well-foundedness of ≽. □

11.2.2 The number of generators. A first very simple situation in which a
3-polygraph terminates is when each rewriting rule (and thus each rewriting
step) decreases the number of 2-generators in 2-cells (we recall that the num-
ber |𝜙| of 2-generators in a 2-cell 𝜙 was formally defined in §10.2.1). Namely,
the usual order ⩾ on natural numbers is a reduction order because it is well-
founded and addition is strictly increasing. Thus, the following statement is a
direct application of Proposition 11.2.1.

11.2.3 Proposition. A 3-polygraph 𝑃 such that |𝜙 | > |𝜙′ | for every rewriting
rule 𝐴 : 𝜙 ⇛ 𝜙′ in 𝑃3, is terminating.

11.2.4 Example. Consider the 3-polygraph Mon of monoids described in Ex-
amples 10.1.2 and 10.2.10, and write Mon′ for the polygraph obtained from
Mon by removing the rewriting rule 𝐴 corresponding to associativity. For both
rewriting rules 𝐿 and 𝑅, the number of generators of the source is 2 and the num-
ber of generators of the target is 0. By Proposition 11.2.3, the polygraph Mon′

is thus terminating.
However, in the rule 𝐴, the number of generators in the source and in the
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target are both 2. Therefore the above proposition does not apply to Mon.
We see below a more general method which is able to handle this case, see
Example 11.2.8.

11.2.5 A 2-category of posets. We define a 2-category Ord with one 0-cell ⋆,
1-cells are posets, and 2-cells are weakly increasing functions. The compo-
sition of two 1-cells (𝑋, ⩽𝑋) and (𝑌, ⩽𝑌 ) is given by their cartesian product
(𝑋 ×𝑌, ⩽𝑋×𝑌 ), where the product order is such that (𝑥, 𝑦) ⩽𝑋×𝑌 (𝑥′, 𝑦′) if and
only if 𝑥 ⩽𝑋 𝑥′ and 𝑦 ⩽𝑌 𝑦′. Likewise, the horizontal composition of 2-cells
is given by their cartesian product, and their vertical composition is the usual
composition of functions.

We write ≽ for the pointwise order on 2-cells: given 𝑓 , 𝑔 : 𝑋 ⇒ 𝑌 , we
have 𝑓 ≻ 𝑔 if and only if 𝑓 (𝑥) > 𝑔(𝑥) for every 𝑥 ∈ 𝑋 . This order is always
compatible with horizontal and vertical composition of 2-cells.

11.2.6 Lemma. Given posets 𝑋 and 𝑌 such that 𝑋 is non-empty and 𝑌 is
well-founded, the order ≽ on functions 𝑋 ⇒ 𝑌 is well-founded.

Proof. Fix an arbitrary element 𝑥 in 𝑋 , which is supposed to be non-empty. An
infinite strictly decreasing sequence of functions 𝑓0 ≻ 𝑓1 ≻ . . . would induce
an infinite strictly decreasing sequence 𝑓0 (𝑥) > 𝑓1 (𝑥) > . . . of elements of 𝑌 .
This is excluded by well-foundedness of 𝑌 . □

This provides us with the following technique for showing termination of
polygraphs, first considered in [235]:

11.2.7 Proposition. Let 𝑃 be a 3-polygraph and (𝑋, ⩽) a non-empty well-
founded poset. Suppose that to each 2-generator 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2 whose source
has length𝑚 = |𝑢 | and target has length 𝑛 = |𝑣 | is assigned a strictly increasing
function [𝛼] : 𝑋𝑚 → 𝑋𝑛, and write [−] : 𝑃∗2 → Ord for the induced 2-func-
tor. If, for every rewriting rule 𝐴 : 𝜙 ⇛ 𝜓 in 𝑃3, we have [𝜙] ≻ [𝜓] then the
polygraph 𝑃 terminates.

Proof. Write 𝐶 for the full sub-2-category of Ord whose 1-cells are the pow-
ers 𝑋𝑛 of the poset 𝑋 . The order on 𝑋𝑛 is well-founded as a product of
well-founded orders, and therefore the induced order ≽ on 2-cells 𝑋𝑚 ⇒ 𝑋𝑛 is
also well-founded by Lemma 11.2.6. For every 2-cell 𝜙, we have that [𝜙] is a
strictly increasing function and thus the order is compatible with composition
of 2-cells in the sense of Definition 11.1.1, it is thus a reduction order on 𝐶.
We conclude with Proposition 11.2.1. □

11.2.8 Example. Consider the 3-polygraph Mon of monoids introduced in Ex-
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ample 10.1.5. Graphically, its rules are

𝐴 : ⇛ 𝐿 : ⇛ 𝑅 : ⇛ .

Writing 𝑋 = N \ {0} equipped with the usual order, we define[ ]
(𝑖, 𝑗) = 2𝑖 + 𝑗 and

[ ]
() = 1.

We can then conclude to the termination of the polygraph by Proposition 11.2.7,
after checking the following strict inequalities:[ ]

(𝑖, 𝑗 , 𝑘) = 4𝑖 + 2 𝑗 + 𝑘 > 2𝑖 + 2 𝑗 + 𝑘 =

[ ]
(𝑖, 𝑗 , 𝑘)

[ ]
(𝑖) = 2 + 𝑖 > 𝑖 =

[ ]
(𝑖)

[ ]
(𝑖) = 2𝑖 + 1 > 𝑖 =

[ ]
(𝑖).

11.2.9 Example. Consider the 2-polygraph of permutations introduced in
§10.4.1. It has one 0-generator ⋆, one 1-generator 𝑎, one 2-generator

and its rules are

𝑁 : ⇛ 𝑌 : ⇛ .

We consider the well-founded poset 𝑋 = N\ {0} equipped with the usual order,
and consider the interpretation[ ]

(𝑖, 𝑗) = (𝑖 + 𝑗 , 𝑖).

By Proposition 11.2.7, we ensure that the polygraph is terminating by showing
that the rewriting rules are strictly decreasing:[ ]

(𝑖, 𝑗) = (2𝑖 + 𝑗 , 𝑖 + 𝑗) > (𝑖, 𝑗) =
[ ]

(𝑖, 𝑗)
[ ]

(𝑖, 𝑗 , 𝑘) = (2𝑖 + 𝑗 + 𝑘, 𝑖 + 𝑗 , 𝑖) > (𝑖 + 𝑗 + 𝑘, 𝑖 + 𝑗 , 𝑖) =
[ ]

(𝑖, 𝑗 , 𝑘).



262 Termination of 3-polygraphs

11.2.10 Example. By combining the two previous examples, one can construct
a convergent rewriting system corresponding to the theory of commutative
monoids (see §C.2.5) which is terminating [235].

11.2.11 Remark. Consider a 3-polygraph 𝑃 containing a 3-generator

𝐴 : 𝜙 ⇛ 𝜓 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦

such that |𝑣 | = 0, i.e., 𝑥 = 𝑦 and 𝑣 = 1𝑥 . Then 𝑋0 is reduced to one ele-
ment and we cannot have [𝜙] ≻ [𝜓]. Therefore, in this case, we cannot use
Proposition 11.2.7 to show the termination of the polygraph.

11.2.12 Remark. Proposition 11.2.7 can be generalized by taking a possibly
different well-founded poset 𝑋 (𝑎) for each 1-generator 𝑎 of the 3-polygraph 𝑃.
In that case, the interpretation of each 2-generator 𝛼 : 𝑢 → 𝑣 is replaced by an
increasing map [𝛼] : 𝑋 (𝑢) → 𝑋 (𝑣), where 𝑋 is extended to a 1-functor from
the free 1-category 𝑃∗1 to the underlying 1-category of Ord.

11.3 Termination by derivations

The above technique is often not applicable for rewriting systems such that
some 2-generators have multiple outputs (with the notable exception of Exam-
ple 11.2.9). We present here another technique for showing the termination of
3-polygraphs, which is due to Guiraud [158, 161], and is based on the following
intuition. As suggested by the string diagrammatic representation, we can think
of a 2-cell in a polygraph as some kind of electric circuit, built from basic
components, the 2-generators. For each of those components, we are going to
specify how the current is transmitted from inputs to outputs (in both direc-
tions, from top to bottom and from bottom to top), as well as how much heat
it emits when the current flows through. Finally, if the rewriting rules are such
that rewriting a circuit strictly decreases its heat, and the heats are taken in a
well-founded order, then we will be able to conclude that the rewriting system
is terminating.

11.3.1 The category of contexts. Given a 2-polygraph 𝑃, we writeK𝑃 for the
category of contexts of 𝑃. The objects of this category are the 2-cells of 𝑃∗2 and
a morphism from a 2-cell 𝜙 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦 to a 2-cell 𝜙′ : 𝑢′ ⇒ 𝑣′ : 𝑥′ → 𝑦′

is a context 𝐾 of type (𝑢, 𝑣), as defined in §10.2.2, such that 𝐾 [𝜙] = 𝜙′.

11.3.2 Natural system. A natural system on a 2-polygraph 𝑃 is a functor
𝑁 : K𝑃 → Ab, associating an abelian group 𝑁𝜙 to every 2-cell 𝜙 ∈ 𝑃∗2 and a
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morphism of groups 𝑁𝐾 : 𝑁𝜙 → 𝑁𝜙′ to every context 𝐾 such that 𝐾 [𝜙] = 𝜙′.
This notion is a 2-categorical variant of the one already encountered in §8.3.1.

By abuse of notation, given an element 𝑛 ∈ 𝑁𝜙 and a context 𝐾 of suitable
type, we sometimes write 𝐾 [𝑛] instead of 𝑁𝐾 (𝑛). Moreover, given 𝑖-com-
posable morphisms 𝜙 and 𝜙′, for 𝑖 ∈ {0, 1}, and elements 𝑛 ∈ 𝑁𝜙 and 𝑛′ ∈ 𝑁𝜙′ ,
we often write 𝑛 ∗𝑖 𝜙′ (resp. 𝜙 ∗𝑖 𝑛′) instead of 𝑁𝐾 ′ (𝑛) (resp. 𝑁𝐾 (𝑛′)) where
𝐾 ′ is the context 𝑋 ∗𝑖 𝜙′ (resp. 𝐾 is the context 𝜙 ∗𝑖 𝑋).

11.3.3 Derivation. Given a natural system 𝑁 on a 2-polygraph 𝑃, a deriva-
tion 𝑑 of 𝑃 into 𝑁 is a function which to every 2-cell 𝜙 in 𝑃∗2 associates an
element of the group 𝑁𝜙 , in such a way that

𝑑 (𝜙 ∗𝑖 𝜓) = 𝑑 (𝜙) ∗𝑖 𝜓 + 𝜙 ∗𝑖 𝑑 (𝜓)
for suitably 𝑖-composable 2-cells 𝜙 and 𝜓 in 𝑃∗2, with 𝑖 ∈ {0, 1}. Note that
such a derivation 𝑑 is uniquely determined by the images 𝑑 (𝛼) ∈ 𝑁𝛼 of the
2-generators 𝛼 ∈ 𝑃2.

11.3.4 Lemma. Given a derivation 𝑑 as above and a 1-cell 𝑢 ∈ 𝑃∗1, we have
𝑑 (1𝑢) = 0.

Proof. We have

𝑑 (1𝑢) = 𝑑 (1𝑢 ∗1 1𝑢) = 𝑑 (1𝑢) ∗1 1𝑢 + 1𝑢 ∗1 𝑑 (1𝑢) = 𝑑 (1𝑢) + 𝑑 (1𝑢)
from which we conclude. □

11.3.5 Example. We write 𝑍 : K𝑃 → Z for the trivial natural system which
sends every object to Z and every morphism to the identity on Z. Fix a 2-gene-
rator 𝛼 in 𝑃2. The operation introduced in §10.2.1, which to a 2-cell 𝜙 in 𝑃∗2
associates the number |𝜙|𝛼 of occurrences of 𝛼 in 𝜙, is the derivation of 𝑃 into
the trivial natural system such that |𝛼 |𝛼 = 1 and |𝛽 |𝛼 = 0 for 𝛽 ∈ 𝑃2 such that
𝛽 ≠ 𝛼.

11.3.6 A natural system of interest. Suppose fixed

– a 2-functor 𝑋 : 𝑃∗2 → Ord,
– a 2-functor𝑌 : (𝑃∗2)co → Ord, where (𝑃∗2)co is the 2-category obtained from
𝑃∗2 by formally changing the direction of all 2-cells,

– a commutative monoid (𝑀, +, 0) whose addition is strictly increasing.

We define a natural system 𝑁 : K𝑃 → Ab as follows.

– To every 2-cell 𝜙 : 𝑢 ⇒ 𝑣 in 𝑃∗2, 𝑁 associates the monoid 𝑁𝜙 of functions
𝑋𝑢 × 𝑌𝑣 → 𝑀 with addition being induced pointwise by the one in 𝑀 .
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– For every 2-cell 𝜙 : 𝑢 ⇒ 𝑣 : 𝑥 → 𝑦 in 𝑃∗2, and every pair of 1-cells
𝑤 : 𝑥′ → 𝑥, 𝑤′ : 𝑦 → 𝑦′ as in

𝑥′ 𝑤 // 𝑥

𝑢

��

𝑣

??
𝜙

=⇒

𝑦
𝑤′ // 𝑦′

the image of the context 𝐾 = 𝑤 ∗0 − ∗0 𝑤′ is the group morphism

𝑁𝐾 : 𝑁𝜙 → 𝑁𝑤∗0𝜙∗0𝑤′

which sends a function

𝑓 : 𝑋𝑢 × 𝑌𝑣 → 𝑀

to the function

𝑁𝐾 ( 𝑓 ) : 𝑋𝑤 × 𝑋𝑢 × 𝑋𝑤′ × 𝑌𝑤 × 𝑌𝑣 × 𝑌𝑤′ → 𝑀

obtained by precomposing 𝑓 with the canonical projection

𝑋𝑤 × 𝑋𝑢 × 𝑋𝑤′ × 𝑌𝑤 × 𝑌𝑣 × 𝑌𝑤′ → 𝑋𝑢 × 𝑌𝑣.

– For every 2-cell 𝜙 : 𝑢 ⇒ 𝑣 and 2-cells 𝜓 : 𝑢′ ⇒ 𝑢 and 𝜓′ : 𝑣⇒ 𝑣′ as in

𝑥

𝑢′

��

𝜓

=⇒

𝑢
''

𝜙

=⇒

𝑣

77

𝜓′

=⇒

𝑣′

DD
𝑦

the image of the context 𝐾 = 𝜓 ∗1 − ∗1 𝜓′ is the group morphism

𝑁𝐾 : 𝑁𝜙 → 𝑁𝜓∗1𝜙∗1𝜓′

which sends a function

𝑓 : 𝑋𝑢 × 𝑋𝑣 → 𝑀

to the function

𝑁𝐾 ( 𝑓 ) : 𝑋𝑢′ × 𝑌𝑣′ → 𝑀

defined by

𝑁𝐾 ( 𝑓 ) = 𝑓 ◦ (𝑋𝜓 × 𝑌𝜓′ ).
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The above conditions entirely determine the derivation 𝑁 , which we often
denote by O(𝑋,𝑌, 𝑀) to make clear the dependency on 𝑋 , 𝑌 and 𝑀 . Note that
such a natural system is entirely determined by the data of

– the posets 𝑋𝑎 and 𝑌𝑎 for every 𝑎 in 𝑃2,
– the functions 𝑋𝛼 : 𝑋𝑢 → 𝑋𝑣 and 𝑌𝛼 : 𝑌𝑣 → 𝑌𝑢 for every 2-generator
𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2,

where 𝑋𝑎1...𝑎𝑛 = 𝑋𝑎1 × . . . × 𝑋𝑎𝑛 .

11.3.7 Remark. We could generalize the definition to the case where 𝑋 and 𝑌
are objects in an arbitrary cartesian category and 𝑀 is a commutative monoid
internal to this category.

Given a 2-cell 𝜙 : 𝑢 ⇒ 𝑣 in 𝑃∗2, the monoid 𝑁𝜙 is canonically equipped with
the order such that, for elements 𝑓 , 𝑔 : 𝑋𝑢 × 𝑌𝑣 → 𝑀 of 𝑁𝜙 we have

𝑓 > 𝑔 if and only if 𝑓 (𝑥, 𝑦) > 𝑔(𝑥, 𝑦) for every (𝑥, 𝑦) ∈ 𝑋𝑢 × 𝑌𝑣.

The above construction was introduced by Guiraud [158, 161, 159]. It is the
basis of the following useful termination criterion.

11.3.8 Theorem. Consider a 3-polygraph 𝑃. Suppose given

– two 2-functors 𝑋 : 𝑃∗2 → Ord and 𝑌 : (𝑃∗2)co → Ord such that for every
1-generator 𝑎 ∈ 𝑃1 the posets 𝑋𝑎 and 𝑌𝑎 are non-empty, and 𝑋𝜙 ⩾ 𝑋𝜓 and
𝑌𝜙 ⩾ 𝑌𝜓 for every 3-generator 𝐴 : 𝜙⇒ 𝜓 in 𝑃3,

– a well-founded partially ordered commutative monoid (𝑀, +, 0) such that
addition is strictly increasing,

– a derivation 𝑑 from the underlying 2-polygraph of 𝑃 to O(𝑋,𝑌, 𝑀) such that
𝑑 (𝜙) > 𝑑 (𝜓) for every 3-generator 𝐴 : 𝜙⇒ 𝜓 in 𝑃3.

Then the polygraph 𝑃 is terminating.

Proof. Let𝐾 [𝛼] : 𝜒 ⇛ 𝜒′ be a rewriting step, for some 2-generator𝛼 : 𝜙 ⇛ 𝜙′

in 𝑃2 and context 𝐾 ∈ K𝑃 . By Lemma 10.2.3, the context 𝐾 can be written in
the form

𝐾 = 𝜓 ∗1 (𝑤 ∗0 − ∗0 𝑤′) ∗1 𝜓′

for suitably typed 1-cells 𝑤 and 𝑤′ in 𝑃∗1 and 2-cells 𝜓 and 𝜓′ in 𝑃∗2. Using the
definition of derivations, see §4.4.13, and Lemma 11.3.4, we have that 𝑑 (𝐾 [𝜒])
is equal to

𝑑 (𝜓)∗1 (𝑤∗0 𝜒∗0𝑤′)∗1𝜓′+𝜓∗1 (𝑤∗0𝑑 (𝜒)∗0𝑤′)∗1𝜓′+𝜓∗1 (𝑤∗0 𝜒∗0𝑤′)∗1𝑑 (𝜓′)
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and similarly for 𝑑 (𝐾 [𝜒′]). By hypothesis, we have 𝑑 (𝜒) > 𝑑 (𝜒′), and there-
fore

𝜓 ∗1 (𝑤 ∗0 𝑑 (𝜒) ∗0 𝑤′) ∗1 𝜓′ > 𝜓 ∗1 (𝑤 ∗0 𝑑 (𝜒) ∗0 𝑤′) ∗1 𝜓′.
Moreover, since 𝑋 and 𝑌 are decreasing on generators, by functoriality of 𝑋
and 𝑌 we have 𝑋𝜒 ⩾ 𝑋𝜒′ , and thus

𝑑 (𝜓) ∗1 (𝑤 ∗0 𝜒 ∗0 𝑤′) ∗1 𝜓′ ⩾ 𝑑 (𝜓) ∗1 (𝑤 ∗0 𝜒′ ∗0 𝑤′) ∗1 𝜓′

and similarly

𝜓 ∗1 (𝑤 ∗0 𝜒 ∗0 𝑤′) ∗1 𝑑 (𝜓′) ⩾ 𝜓 ∗1 (𝑤 ∗0 𝜒′ ∗0 𝑤′) ∗1 𝑑 (𝜓′).
Finally, since addition is strictly increasing, we deduce

𝑑 (𝐾 [𝜒]) > 𝑑 (𝐾 [𝜒′]).
An infinite sequence of rewriting steps starting from a 2-cell 𝜙 : 𝑢 ⇒ 𝑣, would
thus induce a strictly decreasing sequence

𝑓0 > 𝑓1 > 𝑓2 > . . .

of elements of 𝑑 (𝜙), i.e., functions 𝑋𝑢×𝑌𝑣 → 𝑀 . Since 𝑋𝑢 and𝑌𝑣 are supposed
to be non-empty, we can pick an element (𝑥, 𝑦) ∈ 𝑋𝑢 × 𝑌𝑣, and we would have
a strictly decreasing sequence

𝑓0 (𝑥, 𝑦) > 𝑓1 (𝑥, 𝑦) > 𝑓2 (𝑥, 𝑦) > . . .
of elements of 𝑀 , which is excluded by hypothesis. The polygraph 𝑃 is thus
terminating. □

In order to give some intuition, let us consider a 3-polygraph 𝑃. A 2-generator

𝛼 : 𝑎1𝑎2 . . . 𝑎𝑚 ⇒ 𝑏1𝑏2 . . . 𝑏𝑛

in 𝑃2, where the 𝑎𝑖 and 𝑏𝑖 are 1-generators in 𝑃1, can be seen as an operation
with 𝑚 inputs and 𝑛 outputs

𝑎1 𝑎2 𝑎𝑚
...

𝛼

...
𝑏1 𝑏2 𝑏𝑛

which, as the figure suggests, can be thought of as a building piece of some
electrical circuit. The poset 𝑋𝑎𝑖 (resp.𝑌𝑎𝑖 , 𝑋𝑏𝑖 ,𝑌𝑏𝑖 ) is the set of possible values
for the currents flowing into 𝑎𝑖 (resp. out from 𝑎𝑖 , out from 𝑏𝑖 , into 𝑏𝑖). The
function

𝑋𝛼 : 𝑋𝑎1 × . . . × 𝑋𝑎𝑚 → 𝑋𝑏1 × . . . × 𝑋𝑏𝑛
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then indicates, given currents flowing into the inputs 𝑎𝑖 , what currents we get
from the outputs 𝑏𝑖 . Similarly, the function

𝑌𝛼 : 𝑌𝑏1 × . . . × 𝑌𝑏𝑛 → 𝑌𝑎1 × . . . × 𝑌𝑎𝑚

indicate the current we obtain from the 𝑎𝑖 if we use the device “upside down”
and flow currents into the 𝑏𝑖 . Finally, the monoid 𝑀 can be thought of as the
possible values for “heat” emitted by our electrical circuit and the function

𝑑 (𝛼) : 𝑋𝑎1 × . . . × 𝑋𝑎𝑚 × 𝑌𝑏1 × . . . × 𝑌𝑏𝑛 → 𝑀

indicates, given currents flowing into the 𝑎𝑖 and into the 𝑏𝑖 , the heat that our
circuit produces. The fact that it is a derivation amounts to impose that the heat
produced by a circuit is the sum of the heat emitted by its components. Finally,
the hypotheses of Theorem 11.3.8 ensure that rewriting a circuit will always
transform it into a “colder” (i.e., less heat-emitting) circuit.

11.3.9 Example. Following [161, Section 5.4], let us apply the above tech-
nique to show that the rewriting system for permutations, already considered
in Example 11.2.9, is terminating. We suppose here that

– the poset 𝑋𝑎 associated to the 1-generator 𝑎 is N equipped with the usual
order, and 𝑋 is defined on the 2-generator by

𝑋
( )

(𝑖, 𝑗) = ( 𝑗 + 1, 𝑖),

– 𝑌𝑎 = {∗} is the terminal poset (reduced to one element ∗), and 𝑌 is defined
on the 2-generator by

𝑌
( )

(∗, ∗) = (∗, ∗),

– the monoid 𝑀 is the additive monoid N,

– the derivation 𝑑 is defined on the 2-generator by

𝑑
( )

(𝑖, 𝑗) = 𝑖

(more precisely, the derivation takes four arguments (𝑖, 𝑗 , 𝑘, 𝑙), but the two
last arguments are necessarily equal to ∗, the only element of 𝑌𝑎, and are
thus omitted).
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The rewriting rules make 𝑋 weakly decrease

𝑋

( )
(𝑖, 𝑗) = (𝑖 + 1, 𝑗 + 1) ⩾ (𝑖, 𝑗) = 𝑋

( )
(𝑖, 𝑗)

𝑋
©«

ª®®¬
(𝑖, 𝑗 , 𝑘) = (𝑘 + 2, 𝑗 + 1, 𝑖) = 𝑋

©«
ª®®¬
(𝑖, 𝑗 , 𝑘)

as well as obviously 𝑌 , and make the derivation strictly decrease

𝑑

( )
(𝑖, 𝑗) = 𝑖 + 𝑗 + 1 > 0 = 𝑑

( )
(𝑖, 𝑗)

𝑑
©«

ª®®¬
(𝑖, 𝑗 , 𝑘) = 2𝑖 + 𝑗 + 1 > 2𝑖 + 𝑗 = 𝑑

©«
ª®®¬
(𝑖, 𝑗 , 𝑘).

By Theorem 11.3.8, the 3-polygraph is thus terminating.

A presentation which cannot be handled with the techniques of Section 11.2,
see Remark 11.2.11, but can be handled with derivations, is given in §12.2.8.



12
Coherent presentations of 2-categories

In this chapter, we generalize the definitions and results of Chapter 7 from
categories to 2-categories, following [161, 162]. In Section 12.1, we introduce
the notion of coherent presentation of a 2-category by a (4, 2)-polygraph,
where the 4-generators encode the relations among relations. We explain in
Section 12.2 that, in the case of convergent polygraphs, we can construct the
Squier completion, which is a coherent completion whose 4-generators come
from confluence diagrams for the critical branchings. We show in §12.2.8 that,
contrarily to the case of categories, a 2-category presented by a finite convergent
3-polygraph is not necessarily of finite derivation type. In Section 12.3, we
develop a 3-dimensional generalization of the notion of PRO, for which coherent
presentations can be given by (4, 2)-polygraphs. This allows us, in Section 12.4,
to use the constructions of coherent presentations to obtain coherence results
such as Mac Lane’s coherence theorem for monoidal categories, as well as
generalizations to symmetric and braided monoidal categories in Section 12.5.

12.1 Coherent presentation of 2-categories

12.1.1 (4, 2)-polygraphs. A (4, 2)-polygraph is a pair (𝑃, 𝑃4) consisting of a
3-polygraph 𝑃, and a cellular extension 𝑃4 of the free 3-category 𝑃⊤ over 𝑃. It
thus consists of a diagram of sets and functions

𝑃1
𝑠0

�� 𝑡0
��

𝑖1

��

𝑃2
𝑠1

�� 𝑡1
��

𝑖2

��

𝑃3
𝑠2

~~ 𝑡2
~~

𝑖3
��

𝑃4
𝑠3

~~ 𝑡3
~~

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo 𝑃⊤3

𝑠∗2oo

𝑡∗2
oo

269
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together with the compositions and identities of the underlying (3, 2)-category

𝑃0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo 𝑃⊤3 ,

𝑠∗2oo

𝑡∗2
oo

whose source and target maps 𝑠𝑖 and 𝑡𝑖 satisfy the globular relations

𝑠∗𝑖 ◦ 𝑠𝑖+1 = 𝑠∗𝑖 ◦ 𝑡𝑖+1 and 𝑡∗𝑖 ◦ 𝑠𝑖+1 = 𝑡∗𝑖 ◦ 𝑡𝑖+1,
for every 0 ⩽ 𝑖 ⩽ 2. The elements of the cellular extension 𝑃4 are called the
4-generators of the polygraph 𝑃. We write Λ : 𝐹 𝐺 for a 4-generator Λ in 𝑃4
such that 𝑠2 (Λ) = 𝐹 and 𝑡2 (Λ) = 𝐺. Given a 4-polygraph 𝑃, we write 𝑃⩽3 for
its underlying 3-polygraph.

12.1.2 Coherence. A (4, 2)-polygraph 𝑃 is coherent when for any parallel
3-cells 𝐹, 𝐺 : 𝜙 ⇛ 𝜓 of 𝑃⊤⩽3, the free (3, 2)-category generated by the un-
derlying 3-polygraph of 𝑃, we have 𝐹 ≃𝑃 𝐺, i.e., 𝐹 and 𝐺 are related by the
congruence generated by the cells in 𝑃4.

Given a (3, 2)-category𝐶 a cellular extension 𝑋 of𝐶 is acyclic when 𝐹 ≃𝑋 𝐺
holds for every pair of parallel 3-cells 𝐹 and 𝐺 of 𝐶. Here ≃𝑋 is the congru-
ence generated by 𝑋 (which is defined in the expected way, generalizing the
definition of §7.1.2). Given a (3, 2)-polygraph 𝑃, a (4, 2)-polygraph (𝑃, 𝑃4) is
thus coherent precisely when 𝑃4 is an acyclic extension of 𝑃⊤.

12.1.3 Polygraphs of finite derivation type. The property of finite derivation
type defined in Chapter 8 for 2-polygraphs is extended to 3-polygraphs as
follows. One says that a 3-polygraph 𝑃 has finite derivation type when it is finite
and when the free (3, 2)-category 𝑃⊤ admits a finite acyclic cellular extension.
As in the case of presentation of 1-categories, given two presentations of the
same 2-category by finite 3-polygraphs, the following result proves that both
have finite derivation type or none at all.

12.1.4 Theorem. Let 𝑃 and𝑄 be two Tietze equivalent 3-polygraphs such that
𝑃2 and𝑄2 are finite. Then 𝑃 has finite derivation type if and only if𝑄 has finite
derivation type.

Proof. The proof is similar to the one given in the case of 1-categories by
Theorem 8.1.2. □

As a consequence of Theorem 12.1.4, one can say that a 2-category has finite
derivation type when it admits a presentation by a 3-polygraph having finite
derivation type. The property of having finite derivation type is invariant by
Tietze equivalence for finite 3-polygraphs. This is not the case for infinite ones
as shown by the following example [161, Section 4.3.10].
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12.1.5 Example. Consider the 3-polygraph 𝑃with one 0-generator, one 1-gene-
rator, three 2-generators , , and the following two 3-generators:

𝐴 : ⇛ , 𝐵 : ⇛ .

We prove that the (3, 2)-category 𝑃⊤ admits an empty acyclic extension and
thus has finite derivation type.

The 3-polygraph 𝑃 is Tietze equivalent to the 3-polygraph 𝑄 defined the
same way as 𝑃 except for the orientation of the 3-cell 𝐴:

𝐴 : ⇛ , 𝐵 : ⇛ .

In this polygraph, we introduce the notation
...

𝑘... for the 2-cell defined by
induction on the natural number 𝑘 by

...

1
...

= ,
...

𝑘+1
...

=

...

𝑘
... .

The polygraph 𝑄 is not convergent, but we can complete it into the infinite
3-polygraph 𝑄∞ = 𝑄 ⊔ {𝐵𝑘 | 𝑘 ⩾ 1}, where 𝐵0 is 𝐵 and 𝐵𝑘 is the following
3-cell:

𝐵𝑘 :
...

𝑘
...

⇛
...

𝑘
...

.

It can be shown that the 3-polygraph𝑄∞ does not have finite derivation type. In
particular the (3, 2)-category𝑄⊤∞ has an infinite acyclic extension {Λ𝑘 | 𝑘 ∈ N}
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with

...

𝑘+1
...

𝐵𝑘+1

�+

Λ𝑘

��

...

𝑘
...

𝐴
...

𝑘
...

0<

𝐵𝑘

".

...

𝑘+1
...

...

𝑘
...

𝐴
...

𝑘
...

3A

which cannot be reduced to a finite one.

12.1.6 Generating confluences. Theorems 2.5.10 and 7.3.5 state that the set
of critical branchings of a convergent 𝑛-polygraph 𝑃 generates an acyclic ex-
tension of the (𝑛, 𝑛−1)-category 𝑃⊤ when 𝑛 ⩽ 2. The proof of this result
can be extended to 3-polygraphs as follows. Given a convergent 3-polygraph
𝑃, a family of generating confluences of 𝑃 is a cellular extension of the free
(3, 2)-category 𝑃⊤ that contains exactly one 4-cell Λ of the form

𝜒 𝐹′

�'
Λ
��

𝜙

𝐹
-7

𝐺 '1

𝜙′,

𝜓 𝐺′

7G

for every critical branching (𝐹, 𝐺) of 𝑃. We define the Squier completion of
the 3-polygraph 𝑃 as the (4, 2)-polygraph denoted by Sq(𝑃) and defined by
Sq(𝑃) = (𝑃, 𝑃4), where 𝑃4 is a chosen family of generating confluences of 𝑃.
As in the case were 𝑛 = 2, see Theorem 7.3.5, we have [161, Proposition 4.3.4]:

12.1.7 Theorem. Given a convergent presentation of a 2-category 𝐶 by a
3-polygraph 𝑃, any Squier completion of 𝑃 is coherent presentation of 𝐶.

As a consequence of Theorem 12.1.7, a finite convergent 3-polygraph with
a finite set of critical branchings has finite derivation type. In particular, a
terminating polygraph with no critical branching has finite derivation type.
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However, this result fails to generalize to 𝑛-categories when 𝑛 ⩾ 2, see Sec-
tion 16.8 and [161]. A counterexample to show this for 𝑛 = 3 is developed
in §12.2.8.

12.2 Squier’s completion of 3-polygraphs

12.2.1 Non-indexed 3-polygraphs. Recall from §10.4.5, that a 3-polygraph
is non-indexed when each of its critical branchings is an inclusion one or a
regular one. It can be proved that a 3-polygraph with a finite set of 3-cells has
a finite number of inclusion and regular critical branchings [161, Proposition
5.1.3]. As a consequence, we have the following finiteness condition in the
non-indexed case [161, Theorem 5.1.4]:

12.2.2 Theorem. A finite, convergent and non-indexed 3-polygraph has finite
derivation type.

12.2.3 Confluence in indexed 3-polygraphs. Now let us consider the prob-
lem of finite-convergence for finitely indexed 3-polygraphs (those for which
each indexed critical branching has a finite number of normal instances). The
situation is more complicated than in the non-indexed case. However, we have
the following confluence result [161, Proposition 5.3.1]:

12.2.4 Proposition. Let 𝑃 be a terminating right-indexed (resp. left-indexed)
3-polygraph. Then 𝑃 is confluent if and only if every inclusion critical branch-
ing, every regular critical branching and every instance of every right-indexed
(resp. left-indexed) critical branching is confluent.

Proof. Suppose that 𝑃 is a terminating right-indexed 3-polygraph (the left-
indexed case is similar) such that all its inclusion critical branchings, regular
critical branchings, and all the normal instances of its right-indexed critical
branchings are confluent. It is sufficient to prove that every non-normal instance
of its right-indexed critical branchings is confluent. Let us consider an instance
of right-indexed critical branching. With the notations of §10.4.4, it is of the
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form
...
𝜙′ ...

...
... 𝜁

...
𝜓 ...
...

...
𝜙 ...

... ...
𝜒 𝜁
... ...

𝜓 ...
...

/;

#/
...
𝜙 ...

...
... 𝜁

...
𝜓′ ...
...

for some 2-cell 𝜁 in 𝑃∗2. If 𝜁 is not a normal form, it admits a normal form 𝜁 ,
because 𝑃 terminates. There is another instance of the above critical branching
with 𝜁 in place of 𝜁 . Since 𝜁 is a normal form, this is a normal instance, so
that, by hypothesis, it is confluent. This ensures the confluence of the original
branching as follows:

...
𝜙′ ...

...
... 𝜁

...
𝜓 ...
...

*4

...
𝜙′ ...

...
... 𝜁

...
𝜓 ...
...

�%
...
𝜙 ...

... ...
𝜒 𝜁
... ...

𝜓 ...
...

9H

�%

*4

...
𝜙 ...

... ...
𝜒 𝜁
... ...

𝜓 ...
...

9H

�%

... ...

... ...

...
𝜙 ...

...
... 𝜁

...
𝜓′ ...
...

*4

...
𝜙 ...

...
... 𝜁

...
𝜓′ ...
...

9H

In this way, we prove that the polygraph 𝑃 is confluent. □

12.2.5 Acyclic extensions of indexed 3-polygraphs. Let 𝑃 be a locally con-
fluent and right-indexed (resp. left-indexed) 3-polygraph. Suppose that a conflu-
ence has been chosen for each inclusion and regular critical branching and each
normal instance of each right-indexed (resp. left-indexed) critical branching.
Let 𝑃4 be the cellular extension of the (3, 2)-category 𝑃⊤ corresponding to these
confluence diagrams. We can prove that if 𝑃 is convergent and right-indexed
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(resp. left-indexed), then 𝑃4 forms an acyclic extension of the (3, 2)-category
𝑃⊤, i.e., the (4, 2)-polygraph (𝑃, 𝑃4) is coherent [161, Proposition 5.3.3]. The
proof follows the same scheme as the proof given for Theorems 7.3.5 and 12.1.7.
It is the same for trivial, inclusion and regular critical branchings. For right-
indexed (resp. left-indexed) critical branchings, we follow a reasoning similar
to the proof of Proposition 12.2.4. We thus have the following result [161,
Theorem 5.3.4]:

12.2.6 Theorem. A finite, convergent and finitely indexed 3-polygraph has
finite derivation type.

In the next section, we present an illustration of this result with a 3-polygraph
which is finite, convergent, right-indexed, and thus has an infinite number of
critical branchings. Yet, the polygraph has finite derivation type thanks to finite
indexation.

12.2.7 Example: the 3-polygraph of permutations. Consider the 3-poly-
graph 𝑃 presenting the PRO S of whose morphisms are permutations, which is
introduced in §10.4.1. This polygraph has one 0-cell, one 1-cell, one 2-cell
and the following two 3-cells:

𝐼 : ⇛ , 𝑌 : ⇛ .

This polygraph was shown to be terminating in Examples 11.2.9 and 11.3.9.
We have seen in §10.4.1 that is has three regular and one right-indexed critical
branchings, with the following sources:

, , ,

...

...

.

From Proposition 12.2.4, we know that, to show the confluence of the polygraph,
it is sufficient to prove that the three regular critical branchings are confluent
and that each normal instance of the right-indexed one is. This is in fact, what
we have been doing in §10.4.1: we only briefly recall here those confluence
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diagrams. First, the three regular critical branchings are confluent:

𝐼

�)

𝐼

5D
Γ�� ,

𝑌 *4

𝐼

�#
𝑌
<J

𝐼
*4

Δ
��

,

𝐼 *4

𝑌 �"

.

𝑌
*4

Θ
�� 𝐼

;J

From the characterization of the set of normal forms given in §10.4.1, we deduce
that there are two normal instances of the right-indexed critical branching: for
𝑘 = and 𝑘 = . We check that both are confluent. For 𝑘 = , we have:

𝐼 *4

𝐼

�,
𝑌

2@

𝑌 �,

.

𝐼
*4

𝐼

2@Λ
��
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For 𝑘 = , we have:

𝑌 *4 𝑌 *4

𝑌

�+
𝑌

3A

𝑌 �+

.

𝑌
*4

𝑌
*4

𝑌

3A
Λ′
��

The 3-polygraph 𝑃 is finite, convergent and finitely indexed, by Theorem 12.2.6,
it follows that it has finite derivation type. More precisely, the five 4-cells Γ, Δ,
Θ, Λ and Λ′ form an acyclic extension of the (3, 2)-category 𝑃⊤.

12.2.8 Main counterexample: the polygraph of pearls. Let us mention a
3-polygraph, studied in [161], which illustrates the fact that, without finite
indexation, finiteness and convergence are not sufficient to ensure finiteness of
derivation type. We consider the 3-polygraph 𝑃 of pearls with one 0-cell ⋆, one
1-cell 𝑎, three 2-cells , and and the following four 3-cells:

𝐴 : ⇛ , 𝐵 : ⇛ , 𝐶 : ⇛ , 𝐷 : ⇛ .

We define by induction on the natural number 𝑘 the 2-cell
𝑘

as follows:

0 = ,
𝑘+1

=
𝑘

.

Let us show that the polygraph is terminating. The rules 𝐶 and 𝐷 make
the number of 2-generators strictly decrease, while this number is invariant
by the rules 𝐴 and 𝐵, so that we only have to show that the rules 𝐴 and 𝐵
are terminating. In order to show this, we apply Theorem 11.3.8, and use the
notations of this theorem in the following. The posets associated to the 1-gene-
rator are 𝑋𝑎 = 𝑌𝑎 = N equipped with the usual order. The interpretations of the
2-generators are

𝑋 ( ) (𝑖) = 𝑖 + 1, 𝑋 ( ) () = (0, 0), 𝑋 ( ) (𝑖, 𝑗) = (),
𝑌 ( ) (𝑖) = 𝑖 + 1, 𝑋 ( ) () = (0, 0), 𝑋 ( ) (𝑖, 𝑗) = ().
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We take 𝑀 to be the monoid (N, +, 0) and define the derivation 𝑑 by

𝑑 ( ) (𝑖, 𝑗) = 0, 𝑑 ( ) (𝑖, 𝑗) = 𝑖, 𝑑 ( ) (𝑖, 𝑗) = 𝑖.

For the rule 𝐴, we have, using the properties of derivation,

𝑑 (𝑠∗2 (𝐴)) = 𝑑 ( ) = 𝑑 ( ) ∗1 + ∗1 𝑑 ( ),
𝑑 (𝑡∗2 (𝐴)) = 𝑑 ( ) = 𝑑 ( ) ∗1 + ∗1 𝑑 ( ),

so that

𝑑 (𝑠∗2 (𝐴)) (𝑖, 𝑗) = 𝑑 ( ) (𝑖 + 1, 𝑗) + 𝑑 ( ) (0, 𝑖)
= (𝑖 + 1) + 0
> 𝑖 + 0
= 𝑑 ( ) (𝑖, 𝑗 + 1) + 𝑑 ( ) (0, 𝑗)
= 𝑑 (𝑡∗2 (𝐴)) (𝑖, 𝑗)

and therefore 𝑑 (𝑠∗2 (𝐴)) > 𝑑 (𝑡∗2 (𝐴)). Similarly, 𝑑 (𝑠∗2 (𝐵)) > 𝑑 (𝑡∗2 (𝐵)). By The-
orem 11.3.8, we thus deduce that the polygraph is terminating.

The 3-polygraph 𝑃 has four regular critical branchings, whose sources are

, , , .

It also has one right-indexed critical branching, generated by the 3-cells 𝐴
and 𝐵, with source

...

...

.

Thus 𝑃 is a terminating and right-indexed 3-polygraph. By application of
Proposition 12.2.4, the confluence of 𝑃 can be shown by proving that its four
regular critical branchings and all normal instances of its right-indexed critical
branchings are confluent. For the regular ones, we have the following confluence
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diagrams:

𝐶

�'

𝐷

7F
,𝐶𝐷

��

𝐷

�'

𝐶

7F
,𝐷𝐶

��

𝐵 *4

𝐶

�"

𝐴

:I

𝐶
*4 ,

𝐴𝐶

� 

𝐴 *4

𝐷

�"

𝐵

:I

𝐷
*4 .

𝐵𝐷

� 

From the characterization of normal forms of the polygraph given in [161,
Section 5.5.2], the normal instances of the right-indexed critical branching
𝐴𝐵

(
...

...

)
are the instances corresponding to the following 2-cells

...

...
= ,

...

...
= ,

...

...
= ,

...

...
= 𝑛 ,

where, in the latter, 𝑛 ∈ N and ranges over the set 𝑁0, the subset of 𝑃∗2
consisting of normal forms of 𝑃 with degenerate source and target, which are
characterized by the following two construction rules:

= or

(on the left, this is the empty diagram). Now we check that, for each one of these
2-cells, the corresponding critical branching 𝐴𝐵

(
...

...

)
is confluent. Let us note

that, for the first three cases, there are several possible confluence diagrams,
because they also contain regular critical branchings of 𝑃.
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– For
...

...
= , we choose the following one:

𝐷 *4 𝐵 *4

𝐶

�&

𝐴
6F

𝐵 �(

.

𝐶
*4

𝐴
*4

𝐷

8G𝐴𝐵
( )
��

– For
...

...
= :

𝐷

#.

𝐴

/:

𝐵 �+

.

𝐴
*4

𝐷
*4

𝐴

5D
𝐴𝐵

( )
��

– For
...

...
= :

𝐵 *4 𝐶 *4

𝐵

�)
𝐴
3A

𝐵 $/

.

𝐶

0;𝐴𝐵
( )
��
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– Finally, for
...

...
= 𝑛 :

𝐴

�)

𝐵

5D

.𝐴𝐵
(

𝑛
)

��

It follows that the 3-polygraph 𝑃 is convergent and right-indexed, and the
following 4-cells form an acyclic extension of 𝑃⊤:

𝐶𝐷, 𝐷𝐶, 𝐴𝐶, 𝐵𝐷, 𝐴𝐵
( )

, 𝐴𝐵
( )

, 𝐴𝐵
( )

, 𝐴𝐵
(

𝑛
)
,

where is in 𝑁0 and 𝑛 is in N. It can be observed that the 4-cells 𝐴𝐵
( )

,
𝐴𝐵

( )
and 𝐴𝐵

( )
are superfluous. Namely, the 3-spheres forming

their boundaries are also the boundaries of 4-cells of 𝑄⊤ where 𝑄 is the
(4, 2)-polygraph obtained from the 3-polygraph 𝑃 by adding the 4-generators
𝐴𝐶 and 𝐵𝐷.

Let us denote by 𝑋0 the family made of the 4-cells 𝐶𝐷, 𝐷𝐶, 𝐴𝐶 and 𝐵𝐷.
Then, for every natural number 𝑛, one defines:

𝑋𝑛+1 = 𝑋𝑛 ⊔
{
𝐴𝐵

(
𝑛

) �� ∈ 𝑁0
}

.

Thus, the following set of 4-cells forms an acyclic extension of the (3, 2)-cate-
gory 𝑃⊤:

𝑋 =
⋃
𝑛∈N

𝑋𝑛.

It can be shown that this infinite number of confluence diagrams cannot be
filled by a finite cellular extension and thus that the 3-polygraph 𝑃 does not
have finite derivation type [161, Theorem 5.5.7]:

12.2.9 Theorem. The above 3-polygraph 𝑃 does not have finite derivation type.

We will see in §16.8.4 a generalization of this result to 𝑛-polygraphs with 𝑛 ⩾ 3.

12.3 (3, 2)-PROs

We generalize, in dimension 3, the notion of PRO introduced in §2.4.10, as well
as introduce symmetric and coherent variants. This will be used in subsequent
sections to show coherence theorems such as Mac Lane’s coherence theorem
for monoidal categories.
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12.3.1 3-PROs. A 3-monoid is a 3-category 𝐶 where there is exactly one
0-cell ⋆. In such a 3-category, the set𝐶1 is canonically a monoid when equipped
with 0-composition as multiplication and 1⋆ as unit. A 3-PRO is a 3-monoid
whose monoid of 1-cells is the additive monoid N. Note that the underlying
2-category of a 3-PRO is always a PRO, as defined in §2.4.10, thus the name.
A 3-PRO which is also a (3, 2)-category is called a (3, 2)-PRO: this is a 3-PRO
in which every 3-cell is invertible with respect to composition ∗2.

12.3.2 3-PROPs. A symmetry on a 3-monoid𝐶 is an invertible transformation

𝛾𝑎,𝑏 : 𝑎 ∗0 𝑏 → 𝑏 ∗0 𝑎,
indexed by 1-cells 𝑎, 𝑏 ∈ 𝐶1, which is natural in both components, and makes
the following diagrams commute:

𝑎 ∗0 1⋆
𝛾𝑎,1⋆ // 1⋆ ∗0 𝑎

𝑎

𝑐 ∗0 𝑎 ∗0 𝑏
𝑐∗0𝛾𝑎,𝑏

((

𝑎 ∗0 𝑏 ∗0 𝑐

𝛾𝑎∗0𝑏,𝑐 66

𝛾𝑎,𝑏∗0𝑐 ((

𝑐 ∗0 𝑏 ∗0 𝑎.

𝑏 ∗0 𝑐 ∗0 𝑎
𝛾𝑏,𝑐∗0𝑎

66

A 3-PROP (resp. (3, 2)-PROP) is a 3-PRO (resp. (3, 2)-PRO) equipped with a
symmetry.

12.3.3 Algebras over 3-PRO(P)s. The 2-category Cat of of categories, func-
tors and natural transformations is monoidal when equipped with the cartesian
product as tensor product. By Mac Lane’s coherence theorem, it can be consid-
ered as a strict monoidal category or, equivalently, as a 3-PRO with categories as
1-cells, functors as 2-cells, natural transformations as 3-cells, cartesian product
as 0-composition, composition of functors as 1-composition, vertical compo-
sition of natural transformations as 2-composition.

If𝐶 is a 3-PRO, a𝐶-algebra is a 3-functor from𝐶 to Cat. If𝐶 is a 3-PROP, we
moreover require that this 3-functor preserves the symmetry. Given a 𝐶-alge-
bra 𝐴, we often write 𝐴⋆ instead 𝐴(⋆). If 𝐴 and 𝐵 are 𝐶-algebras, a morphism
of 𝐶-algebras from 𝐴 to 𝐵 is a natural transformation from 𝐴 to 𝐵, i.e., a pair
(𝐹, 𝜙) where 𝐹 : 𝐴⋆ → 𝐵⋆ is a functor and 𝜙 is a map sending every 2-cell
𝑓 : 𝑚 ⇒ 𝑛 in 𝐶 to a natural isomorphism with the following shape:

𝐵𝑚⋆ 𝐵( 𝑓 )
��

𝜙 𝑓

��
𝐴𝑚⋆

𝐹𝑚 33

𝐴( 𝑓 ) ++

𝐵𝑛⋆

𝐴𝑛⋆ 𝐹𝑛

@@
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such that the following relations hold:

– for every 2-cells 𝑓 : 𝑚 ⇒ 𝑛 and 𝑔 : 𝑝 ⇒ 𝑞 of 𝐶, we have

𝜙 𝑓 ∗0𝑔 = 𝜙 𝑓 × 𝜙𝑔,

i.e., graphically,

𝐵𝑚+𝑝⋆ 𝐵( 𝑓 ∗0𝑔)
��

𝜙 𝑓 ∗0𝑔

��

𝐴𝑚+𝑝⋆

𝐹𝑚+𝑝 66

𝐴( 𝑓 ∗0𝑔) ((

𝐵𝑛+𝑞⋆

𝐴𝑛+𝑞⋆
𝐹𝑛+𝑞

DD
=

𝐵𝑚⋆ × 𝐵𝑝⋆ 𝐵( 𝑓 )×𝐵(𝑔)
!!

𝜙 𝑓 ×𝜙𝑔
��

𝐴𝑚⋆ × 𝐴𝑝⋆

𝐹𝑚×𝐹𝑝 55

𝐴( 𝑓 )×𝐴(𝑔) ))

𝐵𝑛⋆ × 𝐵𝑞⋆ ,

𝐴𝑛⋆ × 𝐴𝑞⋆ 𝐹𝑛×𝐹𝑞

==

– for every 2-cells 𝑓 : 𝑚 ⇒ 𝑛 and 𝑔 : 𝑛⇒ 𝑝 in 𝐶, we have

𝜙 𝑓 ∗1𝑔 = (𝜙 𝑓 ∗1 𝐵(𝑔)) ∗2 (𝐴( 𝑓 ) ∗1 𝜙𝑔),

i.e., graphically,

𝐵𝑚⋆ 𝐵( 𝑓 ∗1𝑔)
��

𝜙 𝑓 ∗1𝑔

��

𝐴𝑚⋆

𝐹𝑚 33

𝐴( 𝑓 ∗1𝑔) ++

𝐵𝑝⋆

𝐴𝑝⋆ 𝐹𝑝

AA
=

𝐵𝑚⋆ 𝐵( 𝑓 )
��

𝜙 𝑓

��
𝐴𝑚⋆

𝐹𝑚 33

𝐴( 𝑓 ) ++

𝐵𝑛⋆ 𝐵(𝑔)
��

𝜙𝑔

��

𝐴𝑛⋆

𝐴(𝑔) ++

𝐹𝑛

99

𝐵𝑝⋆ ,

𝐴𝑝⋆ 𝐹𝑝

@@

– for every 3-cell 𝛼 : 𝑓 ⇛ 𝑔 : 𝑚 ⇒ 𝑛 in 𝐶, we have

𝜙 𝑓 ∗2 (𝐴(𝛼) ∗1 𝐹𝑛) = (𝐹𝑚 ∗1 𝐵(𝛼)) ∗2 𝜙𝑔,

i.e., graphically,

𝐵𝑚⋆ 𝐵( 𝑓 )
��

𝜙 𝑓

��
𝐴𝑚⋆

𝐹𝑚 33

𝐴( 𝑓 )
&&

𝐴(𝑔)

::
𝐴(𝛼)
�	

𝐵𝑛⋆

𝐴𝑛⋆ 𝐹𝑛

@@ =

𝐵𝑚⋆

𝐵( 𝑓 )

��
𝐵(𝑔) &&𝜙𝑔

��

𝐵(𝛼)
�	

𝐴𝑚⋆

𝐹𝑚 33

𝐴(𝑔) ++

𝐵𝑛⋆ .

𝐴𝑛⋆ 𝐹𝑛

@@

The 𝐶-algebras and their morphisms form a category, denoted by Alg(𝐶).
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12.3.4 The coherence problem for algebras over a 3-PRO(P). Let 𝐶 be a
3-PRO(P) and 𝐴 be a 𝐶-algebra. A 𝐶-diagram in 𝐴 is the image 𝐴(Δ) of a
3-sphere Δ in 𝐶, i.e., a pair (𝛼, 𝛽) of 3-cells with the same source, and with the
same target, where 𝛼 (resp. 𝛽) is the source (resp. target) of the 3-sphere and is
denoted by 𝑠 (Δ) (resp. 𝑡 (Δ)). A 𝐶-diagram 𝐴(Δ) in 𝐴 commutes if the relation

𝐴(𝑠 (Δ)) = 𝐴(𝑡 (Δ))

is satisfied in Cat.
The coherence problem for algebras over a 3-PRO(P) is the following ques-

tion:

Given a 3-PRO(P) 𝐶, does every 𝐶-diagram commute in every 𝐶-algebra?

A 3-PRO is aspherical when there is at most one 3-cell between two given
2-cells, i.e., any two parallel 3-cells are equal. As a consequence of this defini-
tion, we have the following sufficient condition for giving a positive answer to
the coherence problem:

12.3.5 Proposition. If 𝐶 is an aspherical 3-PRO(P), then every 𝐶-diagram
commutes in every 𝐶-algebra.

12.3.6 Presentations of (3, 2)-PROs. A presentation of a (3, 2)-PRO 𝐶 is
a (4, 2)-polygraph 𝑃 such that 𝐶 ≃ 𝑃⊤⩽3/𝑃4, i.e., 𝐶 is isomorphic to the
(3, 2)-category generated by the underlying 3-polygraph 𝑃⩽3, quotiented by
the congruence generated by the 4-generators. By definition of a (3, 2)-PRO, in
the case where we have a presentation as above, the 3-polygraph 𝑃 necessarily
has exactly one 0-cell and one 1-cell. A presentation 𝑃 of𝐶 is called coherently
convergent rather than convergent when 𝑃 is a convergent 3-polygraph and 𝑃4
is a cellular extension of generating confluences of 𝑃, see [162, Section 2.1.1].

12.3.7 Example. Consider the (4, 2)-polygraph

𝑃 = ⟨ ⋆ | 𝑎 | 𝜇 : 𝑎𝑎 ⇒ 𝑎 | 𝐴 : (𝜇 ∗0 𝑎) ∗1 𝜇 ⇛ (𝑎 ∗0 𝜇) ∗1 𝜇 | Γ ⟩ .

The 3-generator 𝜇 is often pictured as and 𝐴 as

: ⇛ .
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Similarly, the 4-generator Γ is pictured as and its boundary is given by

*4

�'
2@

&0

.
2?��

Consider the category Δ𝜇 whose objects are natural numbers and morphisms
from 𝑚 to 𝑛 are surjective increasing functions [𝑚] → [𝑛] where [𝑛] denotes
the set {0, . . . , 𝑛 − 1}. This is a monoidal subcategory of the augmented sim-
plicial category Δ+ (see §4.5.6 and §10.3.2), already encountered in Exam-
ple 3.3.10. As a variant of the presentation of Δ+, see §10.3.2, the underlying
3-polygraph of 𝑃 can be shown to present the monoidal category Δ𝜇. More-
over, the rewriting system is convergent and the boundary of the 4-generator Γ
shown above is a confluence diagram for the only critical branching of the
rewriting system so that, by Theorem 12.1.7, 𝑃4 forms an acyclic extension of
the (3, 2)-category 𝑃⊤⩽3, i.e., 𝑃 is a coherent presentation of Δ𝜇.

We write AsCat for the (3, 2)-PRO presented by 𝑃, i.e., AsCat = 𝑃⊤⩽3/𝑃4.
The category of its algebras Alg(AsCat) is isomorphic to the category of as-
sociative categories: we recall that an associative category is a category 𝐶
equipped with a bifunctor ⊗ : 𝐶 × 𝐶 → 𝐶 and a natural transformation
𝛼𝑎,𝑏,𝑐 : (𝑎 ⊗ 𝑏) ⊗ 𝑐 → 𝑎 ⊗ (𝑏 ⊗ 𝑐) satisfying the usual coherence law
(see §12.4.1). Namely, the correspondence between an associative category
(𝐶, ⊗, 𝛼) and a 3-functor 𝐴 : AsCat→ Cat is given by

𝐴
( )

= 𝐶, 𝐴
( )

= ⊗, 𝐴
( )

= 𝛼.

This correspondence is well-defined since the coherence diagram satisfied by
associative categories corresponds to the 4-cell .

Since 𝑃4 = { } is an acyclic extension of As⊤⩽3, we have that AsCat is
an aspherical (3, 2)-PRO. As a consequence, in every associative category 𝐶,
every AsCat-diagram is commutative. This fact can be informally restated as:
every diagram built in 𝐶 from the functor ⊗ and the natural transformation 𝛼
is commutative.

12.3.8 Coherence in algebras over (3, 2)-PROs. By definition, a 3-PRO 𝐶

is aspherical if, for every presentation 𝑃 of 𝐶, the cellular extension 𝑃4 of 𝑃⊤⩽3
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is acyclic. The latter condition is satisfied by any convergent presentation of 𝐶
yielding the following sufficient condition for giving a positive answer to the
coherence problem for 𝐶-algebras [162, Theorem 2.1.2]:

12.3.9 Theorem. If a (3, 2)-PRO 𝐶 admits a convergent presentation then
every 𝐶-diagram commutes in every 𝐶-algebra.

12.4 Coherence in monoidal categories

The coherence problems in monoidal categories can be formulated in terms
of asphericity problems for (3, 2)-categories. This section briefly reviews this
approach in the case of monoidal categories. Symmetric and braided monoidal
categories and handled in the next section.

12.4.1 Monoidal categories. A monoidal category is a category 𝐶, equipped
with two functors

⊗ : 𝐶 × 𝐶 → 𝐶, 𝑒 : 1→ 𝐶,

and three natural isomorphisms

𝛼𝑥,𝑦,𝑧 : (𝑥 ⊗ 𝑦) ⊗ 𝑧 → 𝑥 ⊗ (𝑦 ⊗ 𝑧), 𝜆𝑥 : 𝑒 ⊗ 𝑥 → 𝑥, 𝜌𝑥 : 𝑥 ⊗ 𝑒 → 𝑥,

such that the following two diagrams commute in 𝐶:

(𝑥 ⊗ 𝑦) ⊗ (𝑧 ⊗ 𝑡) 𝛼𝑥,𝑦,𝑧⊗𝑡

))

((𝑥 ⊗ 𝑦) ⊗ 𝑧) ⊗ 𝑡

𝛼𝑥⊗𝑦,𝑧,𝑡 22

𝛼𝑥,𝑦,𝑧⊗𝑡 ''

𝑥 ⊗ (𝑦 ⊗ (𝑧 ⊗ 𝑡))

(𝑥 ⊗ (𝑦 ⊗ 𝑧)) ⊗ 𝑡 𝛼𝑥,𝑦⊗𝑧,𝑡
// 𝑥 ⊗ ((𝑦 ⊗ 𝑧) ⊗ 𝑡,

𝑥⊗𝛼𝑦,𝑧,𝑡

77

(𝑥 ⊗ 𝑒) ⊗ 𝑦
𝛼𝑥,𝑒,𝑦 ''

𝜌𝑥⊗𝑦
// 𝑥 ⊗ (𝑒 ⊗ 𝑦)

𝑥 ⊗ (𝑒 ⊗ 𝑦).
𝑥⊗𝜆𝑦

77

12.4.2 The 3-PRO of monoidal categories. Consider the (4, 2)-polygraph

𝑃 = ⟨ ⋆ | 𝑎 | 𝜇 : 𝑎𝑎 ⇒ 𝑎, 𝜂 : 1⋆ → 𝑎 | 𝐴, 𝐿, 𝑅 | Γ,Δ ⟩ ,
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whose 2-generators 𝜇 and 𝜂 are respectively pictured as and , whose 3-gene-
rators 𝐴, 𝐿 and 𝑅 are respectively pictured as

: ⇛ , : ⇛ , : ⇛ ,

whose 4-generators Γ and Δ are respectively

�*

�)

/:

*4

;I
��

�*

*4

<J

��

We denote by MonCat the (3, 2)-PRO presented by this polygraph. It is easily
seen that the category of small monoidal categories and monoidal functors is
isomorphic to the category Alg(MonCat) [162, Lemma 2.3.2].

Note that the underlying 3-polygraph 𝑃⩽3 of 𝑃 is the polygraph of monoids
defined in Example 10.1.2, which was shown to be terminating in Exam-
ple 11.2.4. Its five critical branchings are computed in Example 10.2.10 and
shown to be confluent. Consider the cellular extension 𝑋 of 𝑃⊤⩽3 with five
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4-cells: the 4-generators Γ and Δ, as well as

��

5C

.8 ,

Λ1��
��

5D

.8 ,

Λ2��

�'

8G
.Λ3��

By Theorem 12.1.7, 𝑋 forms an acyclic extension of 𝑃⊤⩽3 since its elements are
a choice of confluence diagrams for the five critical branchings. It can be shown
that Λ1, Λ2 and Λ3 are superfluous in this cellular extension, i.e., for each 4-cell
Λ𝑖 , we have 𝑠 (Λ𝑖) = 𝑡 (Λ𝑖) in MonCat [162, Section 2.3.3]. Therefore {Γ,Δ}
is still an acyclic extension, i.e., the polygraph 𝑃 is coherent. We have thus
proved [161, Theorem 5.2.2], [162, Proposition 2.3.3]:

12.4.3 Proposition. The above (4, 2)-polygraph 𝑃 is coherent.

Mac Lane’s coherence theorem [261, Theorem VII.2.1] states that, in a
monoidal category, every diagram whose arrows are built up from instances of
⊗, 𝛼, 𝜆 and 𝜌 commute. From Proposition 12.4.3, we can deduce this theorem,
which can be reformulated as follows:

12.4.4 Theorem. The 3-PRO MonCat is aspherical.

12.5 Coherence in symmetric and braided monoidal
categories

12.5.1 Symmetric monoidal categories. A symmetric monoidal category is
a monoidal category (𝐶, ⊗, 𝑒, 𝛼, 𝜆, 𝜌) equipped with a natural isomorphism

𝛾𝑥,𝑦 : 𝑥 ⊗ 𝑦 −→ 𝑦 ⊗ 𝑥,

called the symmetry and such the following two diagrams commute in 𝐶:

𝑦 ⊗ 𝑥
𝛾𝑦,𝑥

��

𝑥 ⊗ 𝑦

𝛾𝑥,𝑦
??

𝑥 ⊗ 𝑦,
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𝑥 ⊗ (𝑦 ⊗ 𝑧) 𝛾𝑥,𝑦⊗𝑧
// (𝑦 ⊗ 𝑧) ⊗ 𝑥

𝛼

''

(𝑥 ⊗ 𝑦) ⊗ 𝑧

𝛼𝑥,𝑦,𝑧

77

𝛾
''

𝑦 ⊗ (𝑧 ⊗ 𝑥).

(𝑦 ⊗ 𝑥) ⊗ 𝑧 𝛼
// 𝑦 ⊗ (𝑥 ⊗ 𝑧)

𝛾

77

12.5.2 PROPs. Recall from §2.4.10 that a PRO is a strict monoidal category
whose monoid of objects is (N, +, 0). We now introduce the following symmet-
ric variant. A PROP is a strict symmetric monoidal category whose monoid
of objects is (N, +, 0). In the following, we consider PROs and PROPs as 2-
categories with one 0-cell. In particular, the underlying 2-category of a 3-PROP,
as defined in §12.3.2, is a PROP.

12.5.3 PROPs as PROs. PROPs can be characterized among PROs as follows,
see §C.1.4 and [157, Proposition A.3 and Corollary A4]. A PRO 𝐶 is a PROP
if and only if it contains a 2-cell 𝛾 : 2 ⇒ 2, represented by , such that the
following relations hold:

– involutivity of the symmetry

𝛾 ∗1 𝛾 = 12,

which can be pictured as

= ,

– the Yang-Baxter relation

(𝛾 ∗0 1) ∗1 (1 ∗0 𝛾) ∗1 (𝛾 ∗0 1) = (1 ∗0 𝛾) ∗1 (𝛾 ∗0 1) ∗1 (1 ∗0 𝛾),

which can be pictured as

= ,

– for every 2-cell 𝜙 : 𝑚 ⇒ 𝑛 of 𝐶, the left and right naturality relations for 𝜙

(𝜙 ∗0 1) ∗1 𝛾𝑛,1 = 𝛾𝑚,1 ∗1 (1 ∗0 𝜙),
(1 ∗0 𝜙) ∗1 𝛾1,𝑛 = 𝛾1,𝑚 ∗1 (𝜙 ∗0 1),
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with the inductively defined notations:

𝛾0,1 = 𝛾1,0 = 11, 𝛾𝑛+1,1 = (𝑛 ∗0 𝛾) ∗1 (𝛾𝑛,1 ∗0 1),
𝛾1,𝑛+1 = (𝛾 ∗0 𝑛) ∗1 (1 ∗0 𝛾1,𝑛).

If we represent 𝜙 by
...
𝜙
... , any 𝛾𝑛,1 by

...

... , and any 𝛾1,𝑛 by
...

... , the
naturality relations for 𝜙 are

...
𝜙
...

...

=

...

...
𝜙
...

,

...
𝜙
...

...

=

...

...
𝜙
...

.

12.5.4 The PROP of permutations. The initial PROP is the PROP of permu-
tations, denoted by S and introduced in §10.4.1, whose 2-cells from 𝑛 to 𝑛 are
the permutations of {0, . . . , 𝑛 − 1} and with no 2-cell from𝑚 to 𝑛 if𝑚 ≠ 𝑛. The
2-PROP S is presented by the 3-polygraph 𝑃 of permutations defined in §10.4.1
whose 3-cells correspond to the involutivity and Yang-Baxter relations:

⇛ , ⇛ . (12.1)

There is an isomorphism between the category of small categories and functors
and the category Alg(Sym).

12.5.5 Presentations of PROPs. Let 𝑃 be a 2-polygraph with one 0-cell and
one 1-cell. We denote by 𝑆𝑃 the 3-polygraph obtained from 𝑃 by adjoining a
2-cell : 2⇒ 2 and the following 3-cells:

– the symmetry 3-cell and the Yang-Baxter 3-cell (12.1),

– two 3-cells for every 2-cell 𝜙 =
...
𝜙
... of 𝑃, corresponding to the naturality

relations for 𝑓 :

...
𝜙
...

...

⇛

...

...
𝜙
...

,

...
𝜙
...

...

⇛

...

...
𝜙
...

.

The free PROP generated by 𝑃 is the 2-category, denoted by 𝑃𝑆 , presented by
the 3-polygraph 𝑆𝑃, see also §C.1.3. We define a presentation of a PROP 𝐶 as
a pair (𝑃, 𝑃3) made of a 2-polygraph 𝑃 with one 0-cell and one 1-cell and a
cellular extension 𝑃3 of the free 2-PROP 𝑃𝑆 , such that 𝐶 ≃ 𝑃𝑆2 /𝑃3.
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12.5.6 Presentations of (3, 2)-PROPs. Let (𝑃, 𝑃3) be a presentation of a
PROP. We denote by𝑄 the (4, 2)-polygraph obtained from the 3-polygraph 𝑆𝑃
by adjoining the 3-cells of 𝑃3 and a cellular extension made of the following two
4-cells for each 3-generator 𝐴 : 𝜙 ⇛ 𝜓 in 𝑃3, corresponding to the naturality
relations for 𝐴:

...
𝜓
...

...

�&

��

...
𝜙
...

...

𝐴 8G

�&

...

...
𝜓
...

...

...
𝜙
...

𝐴

8G

...
𝜓
...

...

�&

��

...
𝜙
...

...

𝐴 8G

�&

...

...
𝜓
...

...

...
𝜙
...

𝐴

8G

The free (3, 2)-PROP generated by 𝑃 is the (3, 2)-category, denoted by 𝑃𝑆 ,
presented by the (4, 2)-polygraph 𝑄 defined above: 𝑃𝑆 = 𝑄⊤⩽3/𝑄4.

We define a presentation of a (3, 2)-PROP 𝐶 as a pair (𝑃, 𝑃4), where 𝑃 is a
presentation of a PROP and 𝑃4 is a cellular extension of the free (3, 2)-PROP
𝑃𝑆 generated by 𝑃, such that 𝐶 ≃ 𝑃𝑆/𝑃4. A presentation 𝑃 of a (3, 2)-PROP
is called convergent when the 3-polygraph 𝑆𝑃 is convergent.

12.5.7 Application to symmetric monoidal categories. Let SCat be the
(3, 2)-PROP presented by the polygraph 𝑃 given as follows.

– 𝑃0 = {⋆}, 𝑃1 = {𝑎},
– 𝑃2 is the 2-polygraph, containing two 2-cells and ,
– 𝑃3 is the cellular extension of the free 2-PROP 𝑃𝑆2 generated by 𝑃2 containing

the three 3-cells

*4 , *4 , *4 ,

plus the following extra 3-cell:

*4 ,
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– 𝑃4 is the cellular extension of the free (3, 2)-PROP 𝑃𝑆3 generated by 𝑃3
containing the two 4-cells

*4

�%

9H

�+

3A��
��

8G

*4
��

plus the following two extra 4-cells:

*4

�!

=K

��

?L

=K

��

��

6F

��

The category of small symmetric monoidal categories and symmetric monoidal
functors is isomorphic to the category Alg(SCat). A convergent presentation
of the (3, 2)-PROP SCat in constructed in [162, Section 3.2]. The coherence
theorem for symmetric monoidal categories [259] can be deduced from this
construction: the (3, 2)-PROP SCat is aspherical [162, Corollary 3.3.6].
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12.5.8 Braided monoidal categories. A braided monoidal category is a mon-
oidal category (𝐶, ⊗, 𝑒, 𝛼, 𝜆, 𝜌) equipped with a natural isomorphism

𝛽𝑥,𝑦 : 𝑥 ⊗ 𝑦 −→ 𝑦 ⊗ 𝑥,

called the braiding and such that the following diagrams commute in 𝐶:

𝑥 ⊗ (𝑦 ⊗ 𝑧) 𝛽𝑥,𝑦⊗𝑧 // (𝑦 ⊗ 𝑧) ⊗ 𝑥
𝛼𝑦,𝑧,𝑥

%%

(𝑥 ⊗ 𝑦) ⊗ 𝑧

𝛼𝑥,𝑦,𝑧

99

𝛽𝑥⊗𝑦,𝑧 %%

𝑦 ⊗ (𝑧 ⊗ 𝑥),

(𝑦 ⊗ 𝑥) ⊗ 𝑧 𝛼𝑦,𝑥,𝑧

// 𝑦 ⊗ (𝑥 ⊗ 𝑧)
𝛽𝑦,𝑥⊗𝑧

99

𝑥 ⊗ (𝑦 ⊗ 𝑧)
𝛽−𝑦⊗𝑧,𝑥

// (𝑦 ⊗ 𝑧) ⊗ 𝑥
𝛼𝑦,𝑧,𝑥

%%

(𝑥 ⊗ 𝑦) ⊗ 𝑧

𝛼𝑥,𝑦,𝑧

99

𝛽−𝑦⊗𝑥,𝑧 %%

𝑦 ⊗ (𝑧 ⊗ 𝑥).

(𝑦 ⊗ 𝑥) ⊗ 𝑧 𝛼𝑦,𝑥,𝑧

// 𝑦 ⊗ (𝑥 ⊗ 𝑧)
𝛽−𝑦,𝑧⊗𝑥

99

12.5.9 Generalized coherence theorems. Contrarily to the case of monoidal
and symmetric monoidal categories, we do not have that every diagram com-
mutes in a braided monoidal category. For instance, the morphisms 𝛽𝑥,𝑦 and
𝛽−𝑦,𝑥 , from 𝑥 ⊗ 𝑦 to 𝑦 ⊗ 𝑥, have no reason to be equal. In fact, they are equal if
and only if 𝛽 is a symmetry, hence if and only if all diagrams commute. As a
consequence, the coherence problem for braided monoidal categories requires
a generalized version of the coherence problem we have considered so far. The
generalized coherence problem is the following one:

Given a (3, 2)-PROP 𝐶, decide, for any 3-sphere 𝛼 of 𝐶,
whether or not the diagram 𝐴(𝛼) commutes in every 𝐶-algebra 𝐴.

A solution for the generalized coherence problem is a decision procedure
for the equality of 3-cells of 𝐶. For the coherence problems considered so far,
this decision procedure answers yes for every 3-sphere. A method to study the
generalized coherence theorem of 3-PROPs is given in [162, Section 4], and
illustrated on the (3, 2)-PROP of braided monoidal categories. In this way, we
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recover the coherence result of Joyal and Street [209]: a diagram Δ commutes
if and only if both 𝑠 (Δ) and 𝑡 (Δ) have the same associated braid.



13
Term rewriting systems

The study of universal algebra, that is, the description of algebraic structures
by means of symbolic expressions subject to equations, dates back to the end
of the 19th century [353]. It was motivated by the large number of fundamental
mathematical structures fitting into this framework: groups, rings, lattices, and
so on. From the 1970s on, the algorithmic aspect became prominent and led
to the notion of term rewriting system. This chapter briefly revisits these ideas
from a polygraphic viewpoint, introducing only what is strictly necessary for
understanding. We refer the reader to standard textbooks such as [20, 342] for
a proper study of this vast topic.

In Section 13.1, we begin by introducing term rewriting systems as presen-
tations of Lawvere theories, which are particular cartesian categories. Some
classical results on Lawvere theories are recalled in Section 13.2. The theory
of rewriting in this context is explored in Section 13.3 by defining rewriting
steps, critical branchings and the original Knuth-Bendix completion proce-
dure [218]. In Section 13.4, we show that a term rewriting system can also
be described by a 3-polygraph in which variables are handled explicitly, i.e.,
by taking into account their duplication and erasure. Finally, in Section 13.5,
we give a precise meaning to the statement that term rewriting systems are
“cartesian polygraphs”.

13.1 Presentations of Lawvere theories

13.1.1 Signatures. In the context of term rewriting systems, a signature 𝑃
consists of

– a set 𝑃0 of sorts,
– a set 𝑃1 of operations together with functions 𝑠0 : 𝑃1 → 𝑃∗0 and 𝑡0 : 𝑃1 → 𝑃0

295
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respectively associating to each operation the sorts of its inputs and of its
output, where 𝑃∗0 denotes the free monoid over 𝑃0.

A morphism 𝑓 : 𝑃→ 𝑄 between signatures 𝑃 and 𝑄 consists of two functions
𝑓0 : 𝑃0 → 𝑄0 and 𝑓1 : 𝑃1 → 𝑄1 such that 𝑠0 ◦ 𝑓1 = 𝑓 ∗0 ◦ 𝑠0 and 𝑡0 ◦ 𝑓1 = 𝑓0 ◦ 𝑡0
(where 𝑓 ∗0 : 𝑃∗0 → 𝑄∗0 is the extension of 𝑓0 as a morphism of monoids).
We write Pol×1 for the resulting category (this notation will be justified in
Section 13.5 below).

Given an operation 𝛼, we write 𝛼 : 𝑎1 . . . 𝑎𝑛 → 𝑎 to indicate that its source
is 𝑠0 (𝛼) = 𝑎1 . . . 𝑎𝑛 and target is 𝑡0 (𝛼) = 𝑎. The natural number 𝑛 is called the
arity of 𝛼. A signature is mono-sorted when 𝑃0 is reduced to one element: in
this case, 𝑃∗0 = N and 𝑡0 is the terminal function.

13.1.2 Terms. Given a signature 𝑃, a variable is a symbol of the form 𝑥𝑢𝑖 with
𝑢 ∈ 𝑃∗0 and 𝑖 ∈ N. A term on a signature 𝑃 is a “well-typed” tree whose nodes
are decorated in operations and leaves are decorated in variables. Formally, the
family of sets 𝑃∗1 (𝑢, 𝑎) of terms from 𝑢 ∈ 𝑃∗0 to 𝑎 ∈ 𝑃0 is the smallest family,
indexed by 𝑢 and 𝑎, such that

– given 𝑎1, . . . , 𝑎𝑛 ∈ 𝑃0 and 1 ⩽ 𝑖 ⩽ 𝑛, we have a variable term

𝑥𝑎1...𝑎𝑛
𝑖 ∈ 𝑃∗1 (𝑎1 . . . 𝑎𝑛, 𝑎𝑖),

– given an operation 𝛼 : 𝑎1 . . . 𝑎𝑛 → 𝑎 in 𝑃1, 𝑢 ∈ 𝑃∗0, and terms 𝜙𝑖 ∈ 𝑃∗1 (𝑢, 𝑎𝑖)
for 1 ⩽ 𝑖 ⩽ 𝑛, we have a composite term

𝛼(𝜙1, . . . , 𝜙𝑛) ∈ 𝑃∗1 (𝑢, 𝑎).

We write 𝜙 : 𝑢 → 𝑎 to indicate that 𝜙 is a term in 𝑃∗1 (𝑢, 𝑎). In the following,
we sometimes omit writing the superscripts from variables.

13.1.3 Substitutions. Given sorts 𝑢 ∈ 𝑃∗0 and 𝑎1, . . . , 𝑎𝑛 ∈ 𝑃0, a substitu-
tion 𝜎 : 𝑢 → 𝑎1 . . . 𝑎𝑛 is an 𝑛-uple of terms 𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩, where the
𝜎𝑖 : 𝑢 → 𝑎𝑖 are terms with 1 ⩽ 𝑖 ⩽ 𝑛. Given a term 𝜙 : 𝑎1 . . . 𝑎𝑛 → 𝑎, we
write

𝜙 · 𝜎 : 𝑢 → 𝑎

for the term obtained from 𝜙 by replacing each variable 𝑥𝑖 by 𝜎𝑖: this term is
defined inductively by

𝑥𝑖 · 𝜎 = 𝜎𝑖 , 𝛼(𝜙1, . . . , 𝜙𝑚) · 𝜎 = 𝛼(𝜙1 · 𝜎, . . . , 𝜙𝑚 · 𝜎).
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13.1.4 The generated category. Given a signature 𝑃, we write 𝑃∗ for the
category with 𝑃∗0 as objects and substitutions 𝜎 : 𝑢 → 𝑣 as morphisms. Given
two substitutions 𝜎 : 𝑢 → 𝑣 and 𝜏 : 𝑣 → 𝑤 with 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩, their
composite is the substitution

𝜏 ◦ 𝜎 = ⟨𝜏1 · 𝜎, . . . , 𝜏𝑛 · 𝜎⟩,

and given an object 𝑢 = 𝑎1 . . . 𝑎𝑛 the identity on 𝑢 is ⟨𝑥𝑢1 , . . . , 𝑥𝑢𝑛⟩. Note that,
given a term 𝜙 : 𝑤→ 𝑎, we have

𝜙 · (𝜏 ◦ 𝜎) = (𝜙 · 𝜏) · 𝜎, 𝜙 · ⟨𝑥𝑢1 , . . . , 𝑥𝑢𝑛⟩ = 𝜙.

We write 𝑃∗1 for the set of all morphisms of 𝑃∗ and 𝑠∗0, 𝑡
∗
0 : 𝑃∗1 → 𝑃0 for the

source and target functions.

13.1.5 Cartesian categories. In a category 𝐶, a cartesian product of two
objects 𝑢 and 𝑣 is an object, usually noted 𝑢 × 𝑣, together with morphisms
𝜋1 : 𝑢 × 𝑣 → 𝑢 and 𝜋2 : 𝑢 × 𝑣 → 𝑣, called projections, such that for every
object 𝑤 and morphisms 𝜙 : 𝑤 → 𝑢 and 𝜓 : 𝑤 → 𝑣, there exists a unique
morphism ⟨𝜙, 𝜓⟩ : 𝑤→ 𝑢 × 𝑣 satisfying 𝜋1 ◦ ⟨𝜙, 𝜓⟩ = 𝜙 and 𝜋2 ◦ ⟨𝜙, 𝜓⟩ = 𝜓:

𝑤

𝜙

��

⟨𝜙,𝜓⟩
�� 𝜓

��

𝑢 × 𝑣
𝜋1||

𝜋2 ##
𝑢 𝑣.

An object 1 is terminal in a category when for every object 𝑢 there exists
a unique morphism 𝑢 → 1. A category is cartesian when it has a terminal
object and every pair of objects admits a cartesian product. In the following, for
simplicity, we suppose fixed a choice of a product for any pair of objects in 𝐶,
which we suppose to be strictly associative and unital by Mac Lane’s coherence
theorem (Theorem 12.4.4).

A morphism 𝑓 : 𝐶 → 𝐷 of cartesian categories, also called a cartesian
functor, is a functor which preserves cartesian products and the terminal object.
Here, we only consider functors for which this preservation is strict, by which
we mean that 𝑓 (𝑢 × 𝑣) = 𝑓 (𝑢) × 𝑓 (𝑣) and 𝑓 (1) = 1. We write Cart, or Cart1,
for the category of cartesian categories.

13.1.6 Lemma. The category 𝑃∗ is cartesian.

Proof. The product of two objects 𝑢 = 𝑎1 . . . 𝑎𝑝 and 𝑣 = 𝑏1 . . . 𝑏𝑞 is given by
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their concatenation 𝑢𝑣, and the canonical projections are

⟨𝑥𝑢𝑣1 , . . . , 𝑥
𝑢𝑣
𝑝 ⟩ : 𝑢𝑣→ 𝑢, ⟨𝑥𝑢𝑣𝑝+1, . . . , 𝑥𝑢𝑣𝑝+𝑞⟩ : 𝑢𝑣→ 𝑣.

Finally, given two morphisms

𝜎 = ⟨𝜎1, . . . , 𝜎𝑝⟩ : 𝑤→ 𝑢, 𝜏 = ⟨𝜏1, . . . , 𝜏𝑞⟩ : 𝑤→ 𝑣,

the associated universal morphism is

⟨𝜎, 𝜏⟩ = ⟨𝜎1, . . . , 𝜎𝑝 , 𝜏1, . . . , 𝜏𝑞⟩ : 𝑤→ 𝑢𝑣. □

Let us describe an important case of the above construction. We write F for
the category whose objects are natural numbers and morphisms 𝑚 → 𝑛 are
functions [𝑚] → [𝑛] where [𝑛] = {0, . . . , 𝑛 − 1} is a set with 𝑛 elements, see
also §C.2. We write 𝐼 : F → Set for the canonical inclusion functor. Given a
set 𝑃0, we (abusively) write F/𝑃0 for the comma category 𝐼 ↓ 𝑃0 of 𝐼 over the
set 𝑃0.

13.1.7 Lemma. Given a signature 𝑃 such that 𝑃1 = ∅, we have 𝑃∗ ≃ (F/𝑃0)op.
In particular, if 𝑃0 = {⋆} then 𝑃∗ ≃ Fop.

We now describe the universal property satisfied by the construction 𝑃∗.

13.1.8 Lawvere theories. Suppose fixed a set 𝑃0 of sorts. A 𝑃0-sorted Law-
vere theory (or algebraic theory) is a cartesian category 𝐶 equipped with
functor

(F/𝑃0)op → 𝐶,

which preserves finite products and is the identity on objects. A morphism
between two Lawvere theories 𝐶 and 𝐷 is a functor 𝑓 : 𝐶 → 𝐷 making the
following diagram commute:

𝐶
𝑓

// 𝐷

(F/𝑃0)op

dd 99

We write Law𝑃0 for the resulting category.

13.1.9 The free Lawvere theory. Consider the subcategory S𝑃0 of the cate-
gory Pol×1 of signatures, where objects are the signatures having 𝑃0 as sorts,
and morphisms are those which are identity on sorts. There is a forgetful functor

𝑊0 : Law𝑃0 → S𝑃0
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sending a Lawvere theory 𝐶 to the signature 𝑃 with

𝑃1 =
∐

𝑢𝑃∗0 ,𝑎∈𝑃0

𝐶 (𝑢, 𝑎)

as operations, with source and target being respectively given by the indices 𝑢
and 𝑎 of the coproduct. The cartesian category generated by a signature intro-
duced in §13.1.4 can be shown to be freely generated in the following sense.

13.1.10 Proposition. The functor𝑊0 admits a left adjoint

𝐿0 : S𝑃0 → Law𝑃0 ,

such that the image of a signature 𝑃 is the Lawvere theory 𝑃∗.

13.1.11 Congruence. A congruence on a Lawvere theory 𝐶 is a relation ≈ on
parallel morphisms, such that

– given morphisms 𝑓 : 𝑢′ → 𝑢, ℎ : 𝑣→ 𝑣′ and 𝑔, 𝑔′ : 𝑢 → 𝑣,

𝑔 ≈ 𝑔′ implies 𝑓 ∗ 𝑔 ∗ ℎ ≈ 𝑓 ∗ 𝑔′ ∗ ℎ,

– given morphisms 𝑓 , 𝑓 ′ : 𝑤→ 𝑢 and 𝑔, 𝑔′ : 𝑤→ 𝑣,

𝑓 ≈ 𝑓 ′ and 𝑔 ≈ 𝑔′ implies ⟨ 𝑓 , 𝑔⟩ ≈ ⟨ 𝑓 ′, 𝑔′⟩.

Given such a congruence, we write 𝐶/≈ for the associated quotient Lawvere
theory, obtained from 𝐶 by quotienting morphisms under ≈.

13.1.12 Term rewriting systems. A term rewriting system 𝑃 consists of a
signature (𝑃0, 𝑠0, 𝑡0, 𝑃1) together with a set 𝑃2 of rewriting rules (or relations)
equipped with source and target functions 𝑠1, 𝑡1 : 𝑃2 → 𝑃∗1 such that the
associated morphisms are parallel, i.e., 𝑠∗0 ◦ 𝑠1 = 𝑠∗0 ◦ 𝑡1 and 𝑡∗0 ◦ 𝑠1 = 𝑡∗0 ◦ 𝑡1. A
rewriting rule 𝐴 with source (resp. target) 𝜙 : 𝑢 → 𝑎 (resp. 𝜓 : 𝑢 → 𝑎) is often
denoted

𝐴 : 𝜙⇒ 𝜓 : 𝑢 → 𝑎.

The Lawvere theory presented by a term rewriting system 𝑃 is 𝑃 = 𝑃∗/𝑃2, i.e.,
the category obtained from 𝑃∗ by quotienting morphisms under the congru-
ence ≈𝑃 generated by 𝑃2, and we say that 𝑃 is a presentation of 𝑃.

A morphism 𝑃→ 𝑄 between term rewriting systems consists of a morphism
between the underlying signatures together with a function 𝑃2 → 𝑄2 which
is compatible with source and target. We write Pol×2 for the category of term
rewriting systems.
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13.1.13 Models. A model of a Lawvere theory 𝐶 is a functor 𝐶 → Set which
preserves finite products. In the case where 𝐶 admits a presentation 𝑃, a model
amounts to the data of

– a set J𝑎K for every sort 𝑎 ∈ 𝑃0,
– a function J𝛼K : J𝑎1K×. . .×J𝑎𝑛K→ J𝑎K for every operation𝛼 : 𝑎1 . . . 𝑎𝑛 → 𝑎

in 𝑃1,

such that J𝜙K = J𝜓K for every relation 𝐴 : 𝜙 ⇒ 𝜓, where J−K is extended to
terms by

J𝛼(𝜙1, . . . , 𝜙𝑛)K = J𝛼K ◦ ⟨J𝜙1K , . . . , J𝜙𝑛K⟩

and
q
𝑥𝑎1...𝑎𝑛
𝑖

y
: J𝑎1K × . . . × J𝑎𝑛K → J𝑎𝑖K is the canonical projection. We

sometimes abusively speak of a model of a signature (resp. term rewriting
system) to mean a model of the generated (resp. presented) Lawvere theory.

13.1.14 Example. The theory of groups is presented by 𝑃 with

𝑃0 = {𝑎} , 𝑃1 = {𝜇 : 2→ 1, 𝜂 : 0→ 1, 𝜄 : 1→ 1} ,

and rewriting rules

𝜇(𝜂, 𝑥1) ⇒ 𝑥1, 𝜇(𝑥1, 𝜂) ⇒ 𝑥1, 𝜇(𝜇(𝑥1, 𝑥2), 𝑥3) ⇒ 𝜇(𝑥1, 𝜇(𝑥2, 𝑥3)),
𝜇(𝜄(𝑥1), 𝑥1) ⇒ 𝜂, 𝜇(𝑥1, 𝜄(𝑥1)) ⇒ 𝜂,

where, given 𝑛 ∈ N, we write 𝑛 instead of 𝑎𝑛 for an element of 𝑃∗0. A model for
this theory is a group.

Of course, as a variation of the previous example, usual algebraic structures
have an associated Lawvere theory: groups, rings, modules, vector spaces,
algebras, lattices, etc. Most are mono-sorted, apart from the theory for modules
(as well as the one of vector spaces) which has two sorts: one corresponding to
the ring of scalars and one to the abelian group. As a notable exception, there
is no Lawvere theory corresponding to fields: intuitively, this is because the
inverse operation is only partially defined (0 is not invertible). Below, we give
an example of a Lawvere theory of more computational nature.

13.1.15 Example. Combinatory logic was introduced by Schönfinkel [321]
and Curry [102] as an algebraic way of capturing binding an substitution. It
can be presented by the mono-sorted term rewriting system 𝑃 with operations

𝛼 : 2→ 1, 𝜎 : 0→ 1, 𝜅 : 0→ 1, 𝜄 : 0→ 1

(𝛼 should be read as an “application” and the constants 𝜎, 𝜅 and 𝜄 are usually
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respectively denoted 𝑆, 𝐾 and 𝐼) and relations

𝛼(𝛼(𝛼(𝜎, 𝑥1), 𝑥2), 𝑥3),⇒ 𝛼(𝛼(𝑥1, 𝑥2), 𝛼(𝑥1, 𝑥3)),
𝛼(𝛼(𝜅, 𝑥1), 𝑥2) ⇒ 𝑥1,

𝛼(𝜄, 𝑥1) ⇒ 𝑥1.

A combinatory term 𝜙 in 𝑃∗1 can be interpreted as a 𝜆-term J𝜙K by

J𝛼(𝜙, 𝜓)K = J𝜙K J𝜓K , J𝜎K = 𝜆𝑥𝑦𝑧.(𝑥𝑧) (𝑦𝑧), J𝜅K = 𝜆𝑥𝑦.𝑥, J𝜄K = 𝜆𝑥.𝑥,

and conversely every 𝜆-term can be interpreted as a combinatory logic term,
giving rise to a correspondence between the morphisms in the presented cate-
gory and 𝜆-terms modulo 𝛽-reduction, although the details are subtle, see [322]
for a survey on the subject. A model of this Lawvere theory is called a combi-
natory algebra.

13.1.16 Tietze transformations. The elementary Tietze transformations con-
sist, starting from a presentation 𝑃, in

(T1) adding a superfluous operation: given a term 𝜙 : 𝑢 → 𝑎 in 𝑃∗1, we
construct the presentation 𝑃′ such that

𝑃′0 = 𝑃0, 𝑃′1 = 𝑃1 ⊔ {𝛼 : 𝑢 ⇒ 𝑎} , 𝑃′2 = 𝑃2 ⊔ {𝐴 : 𝜙⇒ 𝛼} ,

(T2) adding a superfluous relation: given two terms 𝜙 and 𝜓 such that 𝜙 ≈𝑃 𝜓,
we construct the presentation 𝑃′ such that

𝑃′0 = 𝑃0, 𝑃′1 = 𝑃1, 𝑃′2 = 𝑃2 ⊔ {𝐴 : 𝜙⇒ 𝜓} .

The Tietze equivalence is the smallest equivalence relation on presentations such
that 𝑃 is Tietze equivalent to 𝑃′ whenever there exists a Tietze transformation
from 𝑃 to 𝑃′. The proof of the following theorem carries over as in the case of
polygraphs (see Theorem 5.1.2).

13.1.17 Theorem. Two presentations with finite sets of operations and relations
present isomorphic categories if and only if they are Tietze equivalent.

13.1.18 Composing presentations. In Section 3.3, we have seen that we could
compose presented categories, when given a distributive law between them, and
this was extended to presentations of monoidal categories in Section 10.5. We
mention here that this also generalizes to Lawvere theories: the corresponding
notion of distributive law is studied in [85].
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13.2 More on models

In this section, we briefly recall some of the classical theory of Lawvere theories,
as initiated by Lawvere in his PhD thesis [245], see [2, 3] for an in-depth
presentation. For the sake of simplicity, we only handle here the mono-sorted
case.

13.2.1 Models. Given a Lawvere theory 𝐶, we have seen in §13.1.13 that a
model is a functor𝐶 → Set which preserves finite limits. A morphism between
models is a natural transformation and we write Mod(𝐶) for the category of
models.

13.2.2 Free models. Given a Lawvere theory 𝐶, there is a forgetful functor

𝑈 : Mod(𝐶) → Set

which to a model 𝑀 : 𝐶 → Set associates 𝑀 (1).
13.2.3 Theorem. The functor 𝑈 is monadic: it admits a left adjoint and the
category Mod(𝐶) is equivalent to the category of 𝑇-algebras, where 𝑇 is the
monad associated to the adjunction.

13.2.4 Monads. By the above theorem, every Lawvere theory 𝐶 canonically
induces a monad 𝑇 on Set. An explicit description of this monad can be given
by the following coend formula:

𝑇𝑋 =
∫ 𝑛

𝐶 (𝑛, 1) × 𝑋𝑛.

Not every monad arises in this way, and those which do can be characterized as
being finitary, i.e., preserving filtered colimits. Writing Mnd for the category
of monads on Set, we have the following equivalence of categories.

13.2.5 Theorem. The category Law of Lawvere theories is equivalent to the
full subcategory of Mnd whose objects are finitary monads.

We have already explained above how to associate a finitary monad to a Lawvere
theory. Conversely, given such a monad 𝑇 , the opposite category of the Kleisli
category is always a Lawvere theory. These constructions give rise to the
equivalence stated in the theorem.

13.2.6 The Birkhoff theorem. We now turn to a different approach to models
of a Lawvere theory. Fix a signature 𝑃. In the context of model theory, its models
are sometimes called structures. Given a presentation 𝑄 on this signature (i.e.,
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𝑄0 = 𝑃0 and 𝑄1 = 𝑃1), we have a quotient functor

𝑃∗ → 𝑄 = 𝑃∗/𝑄2,

which induces, by precomposition, a functor

Mod(𝑄) →Mod(𝑃)
between the categories of models. The functor 𝑃 → 𝑄 being surjective on
objects and full, the induced functor between models is full and faithful, and we
can thus consider Mod(𝑄) as a full subcategory of Mod(𝑃). Conversely, given
a full subcategory C of Mod(𝑃), one may wonder whether there is a set 𝑃2 of
relations such that C is precisely the category of models of the Lawvere theory
presented by (𝑃, 𝑃2). The following theorem, due to Birkhoff [43], see [3], and
sometimes called the HSP theorem, gives a characterization of those situations.

13.2.7 Theorem. Given a signature 𝑃 and a full subcategory C of Mod(𝑃),
C is the category of models of a term rewriting system 𝑄 on the signature 𝑃 if
and only if it is closed under

(H) homomorphic images: given a regular epimorphism 𝑓 : 𝑀 → 𝑁 in
Mod(𝑃) (i.e., 𝑓 is an epi which can be obtained as a coequalizer) with
𝑀 ∈ C, the object 𝑁 also belongs to C,

(S) subalgebras: given a monomorphism 𝑓 : 𝑀 → 𝑁 in Mod(𝑃) with 𝑁 ∈ C,
the object 𝑀 also belong to C, and

(P) products: given 𝑀, 𝑁 ∈ C, their product 𝑀 × 𝑁 in Mod(𝑃) also belongs
to C.

13.3 Term rewriting

Up to now, we have been using term rewriting systems as a notion of presen-
tation, for which the orientation of the rules does not really matter. We now
introduce the rewriting structure, following what we have done for 1-polygraphs
(Section 1.3), 2-polygraphs (Chapter 4) and 3-polygraphs (Section 10.2).

13.3.1 Occurrences. Given a term 𝑡 : 𝑎1 . . . 𝑎𝑛 → 𝑎 and an index 𝑖, with
1 ⩽ 𝑖 ⩽ 𝑛, the number 𝑜𝑖 (𝑡) of occurrences of the 𝑖-th variable 𝑥𝑖 into 𝑡 is
defined by induction on 𝑡 by

𝑜𝑖 (𝑥𝑖) = 1, 𝑜𝑖 (𝑥 𝑗 ) = 0, 𝑜𝑖 (𝛼(𝜙1, . . . , 𝜙𝑘)) =
𝑘∑︁
𝑖=1

𝑜𝑖 (𝜙𝑖),
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for 𝑗 ≠ 𝑖. A variable 𝑥𝑖 is linear in a term 𝑡 when it occurs exactly once, i.e.,
𝑜𝑖 (𝑡) = 1.

13.3.2 Contexts. A context 𝜅 : 𝑎1 . . . 𝑎𝑛𝑎 → 𝑏 is a term such that the vari-
able 𝑥𝑛+1 (of type 𝑎) is linear in 𝐶. Given a term 𝜙 : 𝑎1 . . . 𝑎𝑛 → 𝑎, we
write

𝜅 · 𝜙 : 𝑎1 . . . 𝑎𝑛 → 𝑏

for the term obtained from 𝜅 by substituting 𝜙 for 𝑥𝑛+1, i.e.,

𝜅 · 𝜙 = 𝜅 · ⟨𝑥1, . . . , 𝑥𝑛, 𝜙⟩,
with the notations of §13.1.3.

Given two contexts 𝜅 : 𝑎1 . . . 𝑎𝑛𝑎 → 𝑏 and 𝜌 : 𝑎1 . . . 𝑎𝑛𝑏 → 𝑐, their
composite is the context

𝜌 ◦ 𝜅 : 𝑎1 . . . 𝑎𝑛𝑎 → 𝑐,

obtained from 𝜌 by replacing the variable 𝑥𝑛+1 (of type 𝑏) by 𝜅, i.e.,

𝜌 ◦ 𝜅 = 𝜌 · 𝜅 = 𝜌 · ⟨𝑥1, . . . , 𝑥𝑛, 𝜅⟩
and the identity context is

𝑥𝑎1...𝑎𝑛𝑎
𝑛+1 : 𝑎1 . . . 𝑎𝑛𝑎 → 𝑎.

Note that given a term 𝜙 : 𝑎1 . . . 𝑎𝑛 → 𝑎, we have

(𝜌 ◦ 𝜅) · 𝜙 = 𝜌 · (𝜅 · 𝜙), 𝑥𝑎1...𝑎𝑛𝑎
𝑛+1 · 𝜙 = 𝜙.

Given a fixed 𝑢 ∈ 𝑃∗0, we can thus build a category with 𝑃0 as set of objects, a
morphism 𝜅 : 𝑎 → 𝑏 being a context 𝜅 : 𝑢𝑎 → 𝑏.

It is also useful to introduce a base change operation on contexts. Given a
context 𝜅 : 𝑎1 . . . 𝑎𝑛𝑎 → 𝑏 and a substitution 𝜎 : 𝑢 → 𝑎1 . . . 𝑎𝑛, we write

𝜎∗ (𝜅) : 𝑢𝑎 → 𝑏

for the context defined by

𝜎∗ (𝜅) = 𝜅 · ⟨𝜎1, . . . , 𝜎𝑛, 𝑥
𝑢𝑎
𝑛+1⟩.

13.3.3 Contexts and substitutions. Given a context 𝜅, a term 𝜙 and a substitu-
tion𝜎 of appropriate type, an expression of the form 𝜅 ·𝜙 ·𝜎 is always implicitly
bracketed as 𝜅 · (𝜙 · 𝜎). These operations are compatible with the categorical
structures in the sense that, for suitably typed contexts and substitutions, we
have

𝜌 · (𝜅 · 𝜙 · 𝜏) · 𝜎 = (𝜌 ◦ 𝜎∗ (𝜅)) · 𝜙 · (𝜏 ◦ 𝜎), 1 · 𝜙 · 1 = 𝜙.
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Graphically, it is sometimes convenient to depict the term 𝜅 · 𝜙 · 𝜎 as

𝜎 .
𝜙

𝜅

13.3.4 𝑘-ary contexts. Generalizing the construction of §13.3.2, a 𝑘-ary con-
text, for 𝑘 ∈ N, is a term

𝜅 : 𝑎1 . . . 𝑎𝑛𝑎
′
1 . . . 𝑎

′
𝑘 → 𝑎,

such that the variables 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘 are linear in 𝜅. Given terms

𝜙𝑖 : 𝑎1 . . . 𝑎𝑛 → 𝑎′𝑖 ,

with 1 ⩽ 𝑖 ⩽ 𝑘 , we write

𝜅 · (𝜙1, . . . , 𝜙𝑘) = 𝜅⟨𝑥1, . . . , 𝑥𝑛, 𝜙1, . . . , 𝜙𝑘⟩.
In the following, we will only use binary contexts, i.e., the case where 𝑘 = 2.

13.3.5 Rewriting steps. A rewriting step

𝜅 · 𝐴 · 𝜎 : 𝜅 · 𝜙 · 𝜎 ⇒ 𝜅 · 𝜓 · 𝜎 : 𝑢′ → 𝑎′

consists of a rewriting rule

𝐴 : 𝜙⇒ 𝜓 : 𝑢 → 𝑎,

together with a substitution and a context

𝜎 : 𝑢′ → 𝑢 and 𝜅 : 𝑢′𝑎 → 𝑎′.

In this case, we say that the term 𝜅 ·𝜙 ·𝜎 rewrites in one step to the term 𝜅 ·𝜓 ·𝜎.
A rewriting path is a sequence of composable rewriting steps.

13.3.6 Rewriting. A term rewriting system 𝑃 induces an abstract rewriting
system with the terms in 𝑃∗1 as vertices and rewriting steps as edges. The
rewriting system is terminating, (locally) confluent, etc. when the associated
abstract rewriting system is.

13.3.7 Critical branchings. A branching is a pair

𝜅1 · 𝜓1 · 𝜎1 𝜅1 · 𝜙1 · 𝜎1 = 𝜅2 · 𝜙2 · 𝜎2
𝜅1 ·𝐴1 ·𝜎1ks 𝜅2 ·𝐴2 ·𝜎2 +3 𝜅2 · 𝜓2 · 𝜎2 (13.1)

of coinitial rewriting steps. We can identify the following families of branchings.
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1. A branching is trivial when it is of the form

𝜓 𝜙
𝜅 ·𝐴·𝜎ks 𝜅 ·𝐴·𝜎 +3 𝜓.

Such a branching is clearly confluent.
2. A branching is parallel orthogonal when it is of the form

𝜙1 𝜙
𝜅 · (𝐴1 ·𝜎1 ,𝜓2 ·𝜎2 )ks 𝜅 · (𝜓1 ·𝜎1 ,𝐴2 ·𝜎2 ) +3 𝜙2,

for some suitably-typed binary context 𝜅, rewriting rules 𝐴1 : 𝜓1 ⇒ 𝜓′1 and
𝐴2 : 𝜓2 ⇒ 𝜓′2, and substitutions 𝜎1 and 𝜎2.

3. A branching is inclusion orthogonal when it is of the form

𝜙1 𝜙
𝜅 ·𝐴1 ·⟨𝜎1 ,...,𝜎𝑛 ⟩ks 𝜅 ·𝜓1 ·⟨𝜎1 ,...,𝜅

′ ·𝐴2 ·𝜎′ ,...,𝜎𝑛 ⟩ +3 𝜙2,

for some suitably-typed contexts 𝜅 and 𝜅′, rewriting rules 𝐴1 : 𝜓1 ⇒ 𝜓′1
and 𝐴2 : 𝜓2 ⇒ 𝜓′2, and substitutions 𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩ and 𝜎′, such that
𝜎𝑖 = 𝜅′ · 𝜓2 · 𝜎′ for some index 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑛.

4. A branching is non-minimal when it is of the form

𝜙1 𝜙
𝜅 · (𝜅1 ·𝐴1 ·𝜎1 ) ·𝜎ks 𝜅 · (𝜅1 ·𝐴1 ·𝜎1 ) ·𝜎 +3 𝜙2,

for some suitably-typed context 𝜅 and substitution 𝜎, not both identities,
and of suitable types.

5. A branching is critical when it is not of any of the above forms.

The above definition of critical branching makes it easy to show the critical
branchings lemma, stated below. Moreover, those can be efficiently computed,
see [20, Section 6.2] for a presentation of the classical algorithms.

13.3.8 Lemma. A term rewriting system is locally confluent if and only if all
its critical branchings are.

13.3.9 Example. The theory of monoids, with 0-generators 𝑃0 = {𝑎}, 1-gene-
rators 𝑃1 = {𝜇 : 2→ 1, 𝜂 : 0→ 1} and 2-generators

𝜇(𝜂, 𝑥1) ⇒ 𝑥1, 𝜇(𝑥1, 𝜂) ⇒ 𝑥1, 𝜇(𝜇(𝑥1, 𝑥2), 𝑥3) ⇒ 𝜇(𝑥1, 𝜇(𝑥2, 𝑥3)),
is locally confluent since its five critical branchings, whose source is shown
below, are confluent:

𝜇(𝜇(𝜇(𝑥1, 𝑥2), 𝑥3), 𝑥4), 𝜇(𝜇(𝜂, 𝑥1), 𝑥2), 𝜇(𝜇(𝑥1, 𝜂), 𝑥2),
𝜇(𝜇(𝑥1, 𝑥2), 𝜂), 𝜇(𝜂, 𝜂).

The rewriting system can be shown to be terminating and is thus convergent.
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13.3.10 Reduction orders. Given a signature 𝑃, a reduction order ≻ is an
order on 𝑃∗1 which is

– well-founded,
– closed under application: for every 𝛼 ∈ 𝑃1 of arity 𝑛 and every terms
𝜙1, . . . , 𝜙𝑛 ∈ 𝑃∗1 and 𝜙′𝑖 ∈ 𝑃∗1, we have that 𝜙𝑖 ≻ 𝜙′𝑖 implies

𝛼(𝜙1, . . . , 𝜙𝑖−1, 𝜙𝑖 , 𝜙𝑖+1, . . . , 𝜙𝑛) ≻ 𝛼(𝜙1, . . . , 𝜙𝑖−1, 𝜙
′
𝑖 , 𝜙𝑖+1, . . . , 𝜙𝑛),

– closed under substitution: given terms 𝜙, 𝜙′ ∈ 𝑃∗1 and substitution 𝜎, we
have 𝜙 ≻ 𝜙′ implies 𝜙 · 𝜎 ≻ 𝜙′ · 𝜎.

Given a rewriting system (𝑃, 𝑃2) on a signature 𝑃, a termination order ≻ is a
reduction order on 𝑃 such that 𝜙 ≻ 𝜓 for every rewriting rule 𝐴 : 𝜙⇒ 𝜓 in 𝑃.
As in the case of 2-polygraphs (Proposition 4.4.2), we have [20, Theorem 5.2.3]:

13.3.11 Proposition. A rewriting system is terminating if and only if it admits
a termination order.

13.3.12 Completion. Given a rewriting system 𝑃 equipped with a termination
order ≻, we can turn it into a convergent rewriting system by the following
Knuth-Bendix completion procedure [218]. It is very similar to the one already
given in Section 5.2 and consist in iteratively applying the following steps.

– For every critical branching 𝜙1 ⇐ 𝜙 ⇒ 𝜙2, compute normal forms 𝜙1 and
𝜙2 for 𝜙1 and 𝜙2 respectively.

– If 𝜙1 = 𝜙2 for every possible branching, the procedure halts.
– Otherwise, there is a critical branching with 𝜙1 ≠ 𝜙2:

– if 𝜙1 ≻ 𝜙2, we add the rule 𝜙1 ⇒ 𝜙2 to 𝑃,
– if 𝜙2 ≻ 𝜙1, we add the rule 𝜙2 ⇒ 𝜙1 to 𝑃.

As in the case of 2-polygraphs, the procedure is not guaranteed to stop. In
the case it does, the resulting rewriting system is a convergent presentation of
the Lawvere theory 𝑃. When the procedure does not terminate, the above steps
produce an infinite sequence of rewriting systems 𝑃𝑖 with 𝑃0 = 𝑃, by iteratively
adding rules, and the inductive limit

⋃
𝑖 𝑃

𝑖 is always a convergent presentation
of 𝑃.

13.3.13 Example. The presentation of groups given in Example 13.1.14 is
not locally confluent. By applying the Knuth-Bendix completion procedure,
one can arrive at the following convergent presentation, with the same 0- and
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1-generators and whose relations are those of Example 13.1.14 together with

𝜇(𝜄(𝑥1, 𝜇(𝑥1, 𝑥2))) ⇒ 𝑥2, 𝜄(𝜂) ⇒ 𝜂, 𝜄(𝜇(𝑥1, 𝑥2)) ⇒ 𝜇(𝜄(𝑥2), 𝜄(𝑥1)),
𝜇(𝑥1, 𝜇(𝜄(𝑥1, 𝑥2))) ⇒ 𝑥2, 𝜄(𝜄(𝑥1)) ⇒ 𝑥1,

see [218, Example 1].

13.3.14 Non-linearity and confluence. Because of the presence of variables
which can potentially duplicate terms when substituted, one should be careful
when the rewriting system is not terminating. For instance, contrarily to the
case of polygraphs studied in previous chapters, it is not true that a rewriting
system without critical branchings is always confluent. Namely, consider the
mono-sorted rewriting system due to Huet [188], with generators

𝜏 : 0→ 1, 𝜙 : 0→ 1, 𝜔 : 0→ 1, 𝜎 : 1→ 1, 𝜀 : 2→ 1,

(which should respectively be read as “true”, “false”, “infinity”, “successor”
and “equality”) and relations

𝜔⇒ 𝜎(𝜔), 𝜀(𝑥1, 𝑥1) ⇒ 𝜏, 𝜀(𝑥1, 𝜎(𝑥1)) ⇒ 𝜙.

The first rule clearly makes the rewriting system non-terminating. There is no
critical branching, yet the system is not confluent:

𝜏 𝜀(𝜔, 𝜔)ks +3 𝜀(𝜔, 𝜎(𝜔)) +3 𝜙.

It can however be shown that a rewriting system which is left-linear (i.e., where
no variable occurs twice in the left member of a rewriting rule) and without
critical branchings is always confluent [20, Section 6.4].

13.4 Term rewriting systems and 3-polygraphs

We now explain that presentations of Lawvere theories can be seen as particular
3-polygraphs [136, 73]. This is based on the idea, familiar to people working
on linear logic, that a cartesian category is a monoidal category in which every
object can be duplicated and erased, see for instance [277, Section 6]. For the
sake of simplicity, we consider only strict monoidal categories here, as justified
by Mac Lane’s coherence theorem (Theorem 12.4.4) although many results
extend seamlessly to the general case.

13.4.1 Underlying monoidal category. Suppose given a cartesian category𝐶.
It can be equipped with a structure of symmetric monoidal category. The unit
object is the terminal object. The tensor product of two objects is their cartesian
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product, and the tensor product of two morphisms 𝜙 : 𝑢 → 𝑢′ and 𝜓 : 𝑣 → 𝑣′

is the morphism
𝜙 × 𝜓 : 𝑢 × 𝑣→ 𝑢′ × 𝑣′,

obtained by the universal property of the product:

𝑢 × 𝑣
𝜋1

zz
𝜙×𝜓

��

𝜋2

%%
𝑢

𝜙

��

𝑣

𝜓

��

𝑢′ × 𝑣′

𝜋′1{{ 𝜋′2 ##
𝑢′ 𝑣′,

where the morphisms 𝜋1, 𝜋2, 𝜋′1, 𝜋′2 are the projections. Finally, the symmetry

𝛾𝑢,𝑣 : 𝑣 × 𝑢 → 𝑢 × 𝑣
is defined by

𝑣 × 𝑢
𝜋2

��

𝛾𝑢,𝑣
�� 𝜋1

��

𝑢 × 𝑣
𝜋1{{ 𝜋2 ##

𝑢 𝑣.

In general, this monoidal structure is not strict, but Mac Lane’s coherence
theorem ensures that there is no harm in considering it to be strict up to
monoidal equivalence of categories.

A cartesian monoidal category is a symmetric monoidal category which is
induced by a cartesian category as above. We now show that those can be
characterized among symmetric monoidal categories as being those in which
every object is equipped with a structure of commutative comonoid in a natural
way.

13.4.2 Comonoids. Suppose given a strict monoidal category (𝐶, ⊗, 𝑖). A
comonoid (𝑢, 𝛿, 𝜀) in 𝐶 consists of an object 𝑢 together with morphisms

𝛿 : 𝑢 → 𝑢 ⊗ 𝑢, 𝜀 : 𝑖 → 𝑢,

satisfying the usual associativity and unitality axioms

(𝛿 ⊗ 1𝑢) ◦ 𝛿 = (1𝑢 ⊗ 𝛿) ◦ 𝛿, (𝜀 ⊗ 1𝑢) ◦ 𝛿 = 1𝑢, (1𝑢 ⊗ 𝜀) ◦ 𝛿 = 1𝑢.

This structure is dual to the one of monoid (see Example 10.1.5). In the
case where the monoidal category is equipped with a symmetry gamma, the
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comonoid is commutative when it satisfies

𝛾𝑢,𝑢 ◦ 𝛿 = 𝛿.

The following theorem is detailed in various places, e.g. [277]:

13.4.3 Theorem. In a symmetric monoidal category (𝐶, ⊗, 𝑖), the tensor prod-
uct is a cartesian product if and only if there are natural transformations of
components

𝛿𝑢 : 𝑢 → 𝑢 ⊗ 𝑢, 𝜀𝑢 : 𝑢 → 𝑖,

which are monoidal, i.e., for every objects 𝑢, 𝑣 ∈ 𝐶 we have

𝑢 ⊗ 𝑣
𝛿𝑢⊗𝛿𝑣 ((

𝛿𝑢⊗𝑣 // 𝑢 ⊗ 𝑣 ⊗ 𝑢 ⊗ 𝑣
𝑢⊗𝛾𝑢,𝑣⊗𝑣uu

𝑢 ⊗ 𝑢 ⊗ 𝑣 ⊗ 𝑣

𝑖

𝜀𝑖
$$

1𝑖

:: 𝑖

and such that (𝑢, 𝛿𝑢, 𝜀𝑢) is a commutative comonoid for every object 𝑢.

Proof. Suppose that𝐶 is a cartesian category. Given an object 𝑢, the comonoid
morphisms 𝛿𝑢 are induced by the universal property of the product:

𝑢

1𝑢

��

𝛿𝑢
�� 1𝑢

��

𝑢 × 𝑢
𝜋1{{ 𝜋2 ##

𝑢 𝑢

and 𝜀𝑢 : 𝑢 → 1 is the terminal morphism. The verification of axioms of
commutative comonoids and naturality is left to the reader.

Conversely, suppose that𝐶 is a symmetric monoidal category equipped with
natural transformations 𝛿 and 𝜀 as in the statement of the theorem. For any pair
of objects 𝑢 and 𝑣, we claim that their cartesian product is 𝑢 ⊗ 𝑣 equipped with
projections

1𝑢 ⊗ 𝜀𝑣 : 𝑢 ⊗ 𝑣→ 𝑢, 𝜀𝑣 ⊗ 1𝑣 : 𝑢 ⊗ 𝑣→ 𝑣.

Given morphisms 𝜙 : 𝑤 → 𝑢 and 𝜓 : 𝑤 → 𝑣, we claim that the universal
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morphism is 𝜒 = (𝜙 ⊗ 𝜓) ◦ 𝛿𝑤:

𝑤

𝜙

��

𝛿𝑤��

𝜓

��

𝑤 ⊗ 𝑤
𝜙⊗𝜓
��

𝑢 ⊗ 𝑣
1𝑢⊗𝜀𝑣vv 𝜀𝑢⊗1𝑣 ((

𝑢 𝑣.

Namely, we have

(1𝑢 ⊗ 𝜀𝑣) ◦ (𝜙 ⊗ 𝜓) ◦ 𝛿𝑤 = (1𝑢 ◦ 𝜙) ⊗ (𝜀𝑣 ◦ 𝜓) ◦ 𝛿𝑤, (interchange law)
= (𝜙 ⊗ 𝜀𝑤) ◦ 𝛿𝑤, (naturality of 𝜀)
= 𝜙 ◦ (1𝑤 ⊗ 𝜀𝑤) ◦ 𝛿𝑤, (interchange law)
= 𝜙, (axiom of comonoids)

so that the triangle on the left commutes, and similarly for the one on the
right. Conversely, given a morphism 𝜒 : 𝑤 → 𝑢 ⊗ 𝑣 such that 𝜋1 ◦ 𝜒 = 𝜙 and
𝜋2 ◦ 𝜒 = 𝜓, we have

𝜒 = (((1𝑢 ⊗ 𝜀𝑢) ◦ 𝛿𝑢) ⊗ ((𝜀𝑣 ⊗ 1𝑣) ◦ 𝛿𝑣)) ◦ 𝜒, (axiom of comonoids)
= (1𝑢 ⊗ 𝜀𝑢 ⊗ 𝜀𝑣 ⊗ 1𝑣) ◦ (𝛿𝑢 ⊗ 𝛿𝑣) ◦ 𝜒, (interchange)
= (1𝑢 ⊗ 𝜀𝑢 ⊗ 𝜀𝑣 ⊗ 1𝑣) ◦ (1𝑢 ⊗ 𝛾𝑢,𝑣 ⊗ 1𝑣) ◦ 𝛿𝑢⊗𝑣 ◦ 𝜒, (𝛿 is monoidal)
= (1𝑢 ⊗ 𝜀𝑣 ⊗ 𝜀𝑢 ⊗ 1𝑣) ◦ 𝛿𝑢⊗𝑣 ◦ 𝜒, (𝛾 natural).

This concludes the proof. □

13.4.4 Remark. In a more general way, it can be shown that the forgetful
functor Cart → MonCat from cartesian categories to monoidal categories
admits a right adjoint

Comon : Cart→MonCat

which associates, to a monoidal category 𝐶, the category of comonoids in 𝐶.
This has been rediscovered many times and can be traced back to Fox [136].

As a consequence of this theorem, the free cartesian category on a presented
symmetric monoidal category can be presented as follows [73]:

13.4.5 Theorem. Let 𝑃 be a 3-polygraph presenting a symmetric monoidal
category 𝑃 (in particular, 𝑃0 = {⋆} is reduced to one element). The free
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cartesian category on 𝑃 is presented by the 3-polygraph 𝑄 such that

𝑄0 = 𝑃0,

𝑄1 = 𝑃1,

𝑄2 = 𝑃2 ⊔ {𝛿𝑎 : 𝑎 → 𝑎𝑎, 𝜀𝑎 : 𝑎 → 1 | 𝑎 ∈ 𝑃1} ,
𝑄3 = 𝑃3 ⊔𝑄′3,

where 𝑄′3 consists of the generators

𝐴𝑎 : 𝛿𝑎 ∗ 𝛿𝑎𝑎 ⇛ 𝛿𝑎 ∗ 𝑎𝛿𝑎, 𝐿𝑎 : 𝛿𝑎 ∗ 𝜀𝑎𝑎 ⇛ 1𝑎, 𝐷𝛼 : 𝛼 ∗ 𝛿𝑣 ⇛ 𝛿𝑢 ∗ 𝛼𝛼,
𝑅𝑎 : 𝛿𝑎 ∗ 𝑎𝜀𝑎 ⇛ 1𝑎, 𝐸𝛼 : 𝛼 ∗ 𝜀𝑣 ⇛ 𝜀𝑢,

indexed by 1-generators 𝑎 in 𝑃1 and 2-generators 𝛼 : 𝑢 ⇒ 𝑣 in 𝑃2. Here, given
𝑢 ∈ 𝑃∗1, the 2-cells 𝛿𝑢 and 𝜀𝑢 are defined by induction on 𝑢 by

𝛿⋆ = 1⋆, 𝛿𝑎𝑢 = 𝛿𝑎𝛿𝑢 ∗ 𝑎𝛾𝑢,𝑎 ∗ 𝑢, 𝜀⋆ = 1⋆, 𝜀𝑎𝑢 = 𝜀𝑎𝜀𝑢.

Graphically, the morphisms 𝛿𝑢 and 𝜀𝑢 can be respectively depicted as

𝑢

𝑢 𝑢

,
𝑢
.

and satisfy

★

★ ★

= ,
𝑎𝑢

𝑎𝑢 𝑎𝑢

=

𝑎 𝑢

𝑎 𝑢 𝑎 𝑢

,
★

= ,
𝑎𝑢

=
𝑎 𝑢

.

The relations are

𝑎

𝑎 𝑎 𝑎

𝐴𝑎
⇛

𝑎

𝑎 𝑎 𝑎

,

𝑎

𝑎

𝐿𝑎
⇛

𝑎

𝑎

,

𝑎

𝛼

𝑎 𝑎

𝐷𝛼
⇛

𝑎

𝛼 𝛼

𝑎 𝑎

,

𝑎

𝑎

𝑅𝑎
⇛

𝑎

𝑎

,

𝑎

𝛼
𝐸𝛼
⇛

𝑎

.

More generally, the free cartesian category on a presented monoidal cat-
egory 𝐶, can be obtained by first presenting the free symmetric monoidal
category on 𝐶, see §12.5.5, and then applying the above construction.
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13.4.6 Presentations of Lawvere theories by polygraphs. The above con-
struction can be used to translate a term rewriting system presenting a Lawvere
theory 𝐶 to a polygraph presenting the underlying monoidal category of 𝐶.
First, we can define a functor

𝑈 : Pol×1 → Pol2,

which to every signature 𝑃 associates the 2-polygraph𝑈𝑃 defined by

(𝑈𝑃)0 = {⋆} , (𝑈𝑃)1 = 𝑃0, (𝑈𝑃)2 = 𝑃1.

This functor induces an isomorphism between Pol×1 and the full subcategory
of Pol2 whose objects are polygraphs with ⋆ as only 0-generator. However
note that, given a signature 𝑃, the categories 𝑃∗ and (𝑈𝑃)∗ are generally
not isomorphic: the former is cartesian whereas the latter is generally only
monoidal. In order to address this discrepancy, Theorem 13.4.3 suggests that we
consider the 2-polygraph obtained from𝑈𝑃 by formally adding a symmetry, see
§12.5.5 and Theorem C.1.5, and a natural structure of commutative comonoid
for every object, see Theorem 13.4.5. We thus define a functor

𝐿 : Pol×1 → Pol3,

where 𝐿𝑃 is the polygraph obtained from 𝑈𝑃 (seen as a 3-polygraph by the
canonical inclusion Pol2 → Pol3 adding an empty set of 3-generators) by
performing those constructions.

13.4.7 Proposition. Given a signature 𝑃 ∈ Pol×1 , the monoidal category 𝐿𝑃
presented 3-polygraph 𝐿𝑃 is the cartesian category 𝑃∗ generated by 𝑃.

As a variant of the above construction, one can show [73]:

13.4.8 Theorem. For every term rewriting system 𝑃, there is a 3-polygraph 𝑄
such that 𝑃 is isomorphic to 𝑄 (as monoidal categories). Moreover, when 𝑃 is
finite, the polygraph 𝑄 can also be chosen finite.

13.4.9 Example. We have described, in Example 13.1.14, a term rewriting
system corresponding to the theory of groups. By applying the above construc-
tion, we obtain the following 3-polygraph 𝑃 which presents the same Lawvere
theory, considered as a monoidal category. We have 𝑃0 = {⋆}, 𝑃1 = {𝑎} (thus
𝑃∗1 ≃ N), the 2-generators are those coming from the original term rewriting
system

𝜇 : 2→ 1, 𝜂 : 0→ 1, 𝜄 : 1→ 1,

respectively pictured as

, , ,
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as well as those corresponding to the cartesian structure

𝛿 : 1→ 2, 𝜀 : 1→ 0, 𝛾 : 2→ 2,

respectively pictured as

, , ,

and the relations are those coming from the term rewriting system

⇛ , ⇛ , ⇛ ,

𝜇𝑎 ∗ 𝜇 ⇛ 1𝑎, 𝑎𝜇 ∗ 𝜇 ⇛ 1𝑎, 𝜇𝑎 ∗ 𝜇 ⇛ 𝑎𝜇 ∗ 𝜇,

⇛ , ⇛ ,

𝛿 ∗ 𝜄𝑎 ∗ 𝜇 ⇛ 𝜀, 𝛿 ∗ 𝑎𝜄 ∗ 𝜇 ⇛ 𝜀,

in addition to those corresponding to the cartesian structure (omitted here). Note
that the use of 𝛿 in the two last relation is due to the fact that the variable 𝑥1 is
used twice in the corresponding relation on terms. It turns out that this is the
polygraph for cocommutative Hopf algebras, see §C.4.6.

13.4.10 Example. The 3-polygraph 𝑃 corresponding to the Lawvere theory
of commutative monoids is the polygraph of bicommutative bialgebras, see
§C.4.3.

13.5 Cartesian polygraphs

As the notations used in Section 13.1 are meant to suggest, term rewriting
systems can be seen as particular instances of a notion of cartesian polygraph,
adapted to presenting cartesian categories [268]. We briefly review this notion
here.

13.5.1 Cartesian 0-polygraphs. The category Pol×0 of cartesian 0-polygraphs
is the category of sets (as for regular polygraphs, see Section 1.1).

13.5.2 Cartesian 1-polygraphs. The category Pol×1 of cartesian 1-polygraphs
is the category of signatures, see §13.1.1.
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13.5.3 Cartesian 2-polygraphs. The category Pol×2 of cartesian 2-polygraphs
is the category of term rewriting systems, see §13.1.12. Given a 2-polygraph 𝑃,
we write 𝑃⩽1 for the underlying 1-polygraph.

13.5.4 Cartesian 2-categories. In order to define cartesian 3-polygraphs, we
first need to introduce the following notion. A 2-category 𝐶 is cartesian if its
underlying category is cartesian and for every pair of 2-cells

𝐹 : 𝜙⇒ 𝜙′ : 𝑤→ 𝑢, 𝐺 : 𝜓 ⇒ 𝜓′ : 𝑤→ 𝑣,

with same 0-source (resp. 0-target), there exists a unique morphism

⟨𝐹, 𝐺⟩ : ⟨𝜙, 𝜙′⟩ : 𝑤→ 𝑢 × 𝑣,
such that ⟨𝐹, 𝐺⟩ ∗0 𝜋1 = 𝐹 and ⟨𝐹, 𝐺⟩ ∗0 𝜋2 = 𝐺. Graphically,

𝑤
𝜙

��

𝐹
=⇒
𝜙′

ww

⟨𝜙,𝜓⟩ ��
⟨𝐹,𝐺⟩
=⇒ ⟨𝜙′ ,𝜓′ ⟩��

𝜓

''

𝐺
=⇒

𝜓

��

𝑢 × 𝑣
𝜋1

ss

𝜋2
++𝑢 𝑣.

We write Cart2 for the category of cartesian 2-categories, morphisms being
2-functors whose underlying functor is cartesian.

13.5.5 Lawvere 2-theories. Given a set 𝑃0, the cartesian category (F/𝑃0)op

can canonically be seen as cartesian 2-category with only identity 2-cells. A
Lawvere 2-theory is a cartesian 2-category equipped with a cartesian 2-functor

(F/𝑃0)op → 𝐶,

which preserves finite products and is the identity on objects [356].

13.5.6 The generated cartesian (2, 1)-category. Given a cartesian 2-poly-
graph 𝑃, we write 𝑃⊤ for the cartesian (2, 1)-category it generates. It has the
category 𝑃∗⩽1 freely generated by the underlying signature (i.e., 1-polygraph)
as underlying category and its 2-cells are generated under composition and
inverses by the elements of 𝑃2, with source and target indicated by 𝑠1 and 𝑡1.
We write 𝑃⊤2 for the set of 2-cells of 𝑃⊤. The cartesian (2, 1)-category 𝑃⊤ is
canonically a Lawvere 2-theory, with 𝑃0 as sorts.

13.5.7 Cartesian (3, 1)-polygraphs. A cartesian (3, 1)-polygraph consists of

– a 2-polygraph 𝑃,
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– a set 𝑃3 of 3-generators together with functions 𝑠2, 𝑡2 : 𝑃3 → 𝑃⊤2 such that
𝑠∗1 ◦ 𝑠2 = 𝑡∗1 ◦ 𝑠2 and 𝑠∗1 ◦ 𝑡2 = 𝑡∗1 ◦ 𝑡2.

A morphism 𝑓 : 𝑃→ 𝑄 of cartesian (3, 1)-polygraphs consists of a morphism
𝑃⩽2 → 𝑄⩽2 between the underlying 2-polygraphs together with a function
𝑃3 → 𝑄3 which commutes with source and with target.

13.5.8 Congruence. A congruence ≈ on a cartesian 2-category 𝐶 is a con-
gruence on the underlying 2-category such that, for every 1-cells

𝐹, 𝐹′ : 𝜙⇒ 𝜙′ : 𝑤→ 𝑢, 𝐺, 𝐺′ : 𝜓 ⇒ 𝜓′ : 𝑤→ 𝑣,

we have that

𝐹 ≈ 𝐹′ and 𝐺 ≈ 𝐺′ implies ⟨𝐹, 𝐺⟩ ≈ ⟨𝐹′, 𝐺′⟩.
Given a 3-polygraph 𝑃, the 𝑃-congruence ≈𝑃 is the smallest congruence such
that 𝐹 ≈𝑃 𝐺, for every 3-generator Λ : 𝐹 ⇛ 𝐺.

13.5.9 Coherent presentation. A (3, 1)-polygraph 𝑃 is a coherent presen-
tation of a cartesian category 𝐶 when 𝐶 is the cartesian category presented
by the underlying 2-polygraph, i.e., 𝑃⩽2 = 𝐶, and for every parallel 2-cells
𝐹, 𝐺 : 𝜙⇒ 𝜓 in 𝑃⊤2 one has 𝐹 ≈𝑃 𝐺.

13.5.10 Cartesian Squier homotopical theorem. An analogous of Squier’s
homotopical theorem (Theorems 7.3.5 and 12.1.7) can be formulated in this
context: the cartesian category presented by a convergent term rewriting sys-
tem 𝑃 admits a coherent presentation by the (3, 1)-polygraph (𝑃, 𝑃3), where 𝑃3
consists of a confluence diagram for every critical branching of 𝑃. This can be
used to recover various coherence results (such as Mac Lane’s coherence theo-
rem for monoidal categories) through term rewriting systems [356, 93, 38, 286].

13.5.11 Homological invariants. Finally, we shall briefly mention that the
homological tools developed for 2-polygraphs in Chapter 9 can be adapted to
term rewriting systems [266, 267]. In particular, the homology of a Lawvere
theory can be used in order to obtain lower bounds on generators and relations
that any presentation should have [267, 195, 196].
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14
Higher categories

The remaining chapters of this book present a general theoretical background
underlying all constructions encountered so far. Thus, from this point on, we
shall assume that the reader is well acquainted with the basics of category
theory, as developed in [261].

Among the many existing notions of higher categories, the notion of strict
globular 𝑛-category that we shall describe is in some sense the most basic
one. The earliest published reference to the concept appears to be [63], where
it is motivated by the study of higher homotopies. Precisely, one looks here
for higher dimensional analogues of the fundamental groupoid of a space.
Grothendieck soon afterwards realized the need for a weak version of infinity-
groupoids to fulfill this purpose, see [153, 270]. The theory has been further
developed in the highly influential paper [334], advocating the use of strict
higher categories as coefficients for non-abelian cohomology. The same paper
introduces the notion of freely generated 𝜔-category over a computad — here
called a polygraph — which is central in the present work, together with the
definition of oriented simplices or orientals. Orientals yield a nerve functor
from strict 𝜔-categories to simplicial sets, turning the former into models of
homotopy types, as developed in [13, 144].

The present work stresses yet another aspect of strict𝜔-categories, especially
the free ones, as higher dimensional rewriting “spaces”, in the spirit of [163].

In this chapter, we set the essential definitions and notations. Starting with a
description of the basic “shapes”, that is, the presheaf category Glob𝜔 of globu-
lar sets, we define a family of operations endowing a globular set with a structure
of 𝜔-category. We then prove that the category Cat𝜔 of strict 𝜔-categories is
exactly the category of algebras of the monad induced by the forgetful func-
tor from Cat𝜔 to Glob𝜔 . We finally define important subcategories of Cat𝜔
obtained by requiring cells to be invertible above a given dimension.

319
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14.1 Globular sets

14.1.1 Globes. We first define the small category O of globes: its objects are
the integers 0, 1, . . . and its morphisms are generated by a double sequence

𝜎𝑛, 𝜏𝑛 : 𝑛→ 𝑛 + 1,

where 𝑛 ∈ N,

0
𝜎0 //

𝜏0
// 1

𝜎1 //

𝜏1
// · · ·

𝜎𝑛−1 //

𝜏𝑛−1
// 𝑛

𝜎𝑛 //

𝜏𝑛
// 𝑛 + 1

𝜎𝑛+1 //
𝜏𝑛+1
// · · · ,

quotiented by the equations

𝜎𝑛+1 ◦ 𝜎𝑛 = 𝜏𝑛+1 ◦ 𝜎𝑛, (14.1)
𝜎𝑛+1 ◦ 𝜏𝑛 = 𝜏𝑛+1 ◦ 𝜏𝑛. (14.2)

As a consequence of these equations, whenever 0 ⩽ 𝑚 < 𝑛, the hom-set
O(𝑚, 𝑛) contains exactly two morphisms:

𝜎𝑛𝑚 = 𝜎𝑛−1 ◦ · · · ◦ 𝜎𝑚,
𝜏𝑛𝑚 = 𝜏𝑛−1 ◦ · · · ◦ 𝜏𝑚.

A globular set is then a presheaf on O, that is, a functor 𝑋 : Oop → Set.
Thus, a globular set 𝑋 amounts to a sequence of sets 𝑋 (𝑛) of 𝑛-dimensional
globes, for each 𝑛 ⩾ 0, together with source and target maps

𝑋 (𝜎𝑛), 𝑋 (𝜏𝑛) : 𝑋 (𝑛 + 1) → 𝑋 (𝑛)
satisfying the globular relations, dual to (14.1) and (14.2). Let us denote 𝑋 (𝜎𝑛)
by 𝑠𝑛 and 𝑋 (𝜏𝑛) by 𝑡𝑛. Whenever 𝑚 ≤ 𝑛, we set

𝑠𝑛𝑚 = 𝑠𝑚 ◦ · · · ◦ 𝑠𝑛−1,

𝑡𝑛𝑚 = 𝑡𝑚 ◦ · · · ◦ 𝑡𝑛−1,

thus 𝑠𝑛𝑚, 𝑡𝑛𝑚 : 𝑋 (𝑛) → 𝑋 (𝑚).
Globular sets and natural transformations between them define a category

denoted by Glob𝜔 . For any globular set 𝑋 and integer 𝑛, we shall denote 𝑋 (𝑛)
by 𝑋𝑛. The elements of 𝑋𝑛 are called 𝑛-cells. For any 𝑛-cell 𝑥 and 𝑚 ≤ 𝑛,
the notations 𝑠𝑚 (𝑥) and 𝑡𝑚 (𝑥) will stand for 𝑠𝑛𝑚 (𝑥) and 𝑡𝑛𝑚 (𝑥) respectively. The
𝑚-cell 𝑠𝑚 (𝑥) will be called the𝑚-source of 𝑥 (or simply the source if𝑚 = 𝑛−1)
and the 𝑚-cell 𝑡𝑚 (𝑥) the 𝑚-target of 𝑥 (or simply the target if 𝑚 = 𝑛 − 1).
Two 𝑛-cells 𝑥, 𝑦 are called parallel if either 𝑛 = 0 or 𝑠𝑛−1 (𝑥) = 𝑠𝑛−1 (𝑦)
and 𝑡𝑛−1 (𝑥) = 𝑡𝑛−1 (𝑦) otherwise.

Let us denote O(𝑛) the full subcategory of O whose objects are 0, . . . , 𝑛.
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Then the category Glob𝑛 of 𝑛-globular sets is by definition the category of
presheaves on O(𝑛) . If 0 ⩽ 𝑚 < 𝑛, the canonical inclusion

O(𝑚) → O(𝑛)

gives rise, by precomposition, to a truncation functor

𝑈𝑛𝑚 : Glob𝑛 → Glob𝑚.

Also, for each 𝑛 ⩾ 0, the canonical inclusionO(𝑛) → O gives rise to a truncation
functor

𝑈𝑛 : Glob𝜔 → Glob𝑛

making all the following triangles commute:

Glob𝜔

𝑈𝑛

��

𝑈𝑚

%%

Glob𝑛
𝑈𝑛

𝑚

// Glob𝑚.

For any 𝑛-globular set 𝑋 , and𝑚 < 𝑛, the notation𝑈𝑚 (𝑋) will stand for𝑈𝑛𝑚 (𝑋).
Remark that Glob𝜔 is the projective limit of the diagram

Glob0 Glob1
𝑈1

0oo · · ·oo Glob𝑛−1oo Glob𝑛
𝑈𝑛

𝑛−1oo · · · .oo

14.1.2 Globes and spheres. As for any presheaf category, we get a Yoneda
embedding

Y : O→ Glob𝜔

defined on objects by 𝑌 (𝑚) (𝑛) = O(𝑚, 𝑛). For each 𝑛 ⩾ 0, we call 𝑛-globe
and denote by O𝑛 the representable globular set Y(𝑛). The 𝑛-globe has exactly
two 𝑖-cells in dimensions 0 ⩽ 𝑖 < 𝑛, one 𝑛-cell, and no 𝑖-cell for 𝑖 > 𝑛. The
sub-globular set of O𝑛 having the same cells as O𝑛 in all dimensions 𝑖 ≠ 𝑛 and
no 𝑛-cell will be called the 𝑛-sphere, and denoted by 𝜕O𝑛. Remark that 𝜕O0
is the initial globular set with no cells at all. Globes and spheres come with a
family of canonical inclusion morphisms

i𝑛 : 𝜕O𝑛 → O𝑛
which we shall encounter in numerous occasions. For example, the case 𝑛 = 2
may be pictured as

{ • $$

:: • } ↩→ { •
$$

::�� • }.
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14.2 Strict 𝑛-categories

14.2.1 Definition. A strict 𝜔-category is given by a globular set 𝐶 together
with a family of partial binary composition operations (∗𝑖)𝑖∈N and identity
operations (1𝑖)𝑖∈N\{0} subject to the following conditions:

– if 0 ⩽ 𝑖 < 𝑘 and 𝑥, 𝑦 are 𝑘-cells such that 𝑡𝑖 (𝑥) = 𝑠𝑖 (𝑦) (in which case we
say that 𝑥 and 𝑦 are 𝑖-composable) there is a 𝑘-cell 𝑥 ∗𝑖 𝑦,

– if 𝑘 > 0 and 𝑥 is a (𝑘 − 1)-cell, there is a 𝑘-cell 1𝑘𝑥 , and more generally,
if 𝑖 ≥ 0 and 𝑥 is an 𝑖-cell, we may define recursively on 𝑘 > 𝑖 a 𝑘-cell 1𝑘𝑥
by 1𝑘𝑥 = 1𝑘

1𝑘−1
𝑥

.

Compositions and units are subject to:

1. positional conditions prescribing the source and target of composites and
units, namely

– if 0 ⩽ 𝑖 < 𝑗 , then 𝑠 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑠 𝑗 (𝑥) ∗𝑖 𝑠 𝑗 (𝑦) and 𝑡 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑡 𝑗 (𝑥) ∗𝑖 𝑡 𝑗 (𝑦),
𝑠 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑠 𝑗 (𝑥) ∗𝑖 𝑠 𝑗 (𝑦) and 𝑡 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑡 𝑗 (𝑥) ∗𝑖 𝑡 𝑗 (𝑦),

– if 0 ⩽ 𝑗 ⩽ 𝑖, then

𝑠 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑠 𝑗 (𝑥) and 𝑡 𝑗 (𝑥 ∗𝑖 𝑦) = 𝑡 𝑗 (𝑦),
– if 0 ⩽ 𝑖 < 𝑘 and 𝑥 is an 𝑖-cell, then

𝑠𝑖 (1𝑘𝑥) = 𝑥 = 𝑡𝑖 (1𝑘𝑥),
2. computational conditions of

– associativity: if 𝑖 < 𝑘 and 𝑥, 𝑦, 𝑧 are 𝑘-cells such that 𝑡𝑖 (𝑥) = 𝑠𝑖 (𝑦) and
𝑡𝑖 (𝑦) = 𝑠𝑖 (𝑧), then

(𝑥 ∗𝑖 𝑦) ∗𝑖 𝑧 = 𝑥 ∗𝑖 (𝑦 ∗𝑖 𝑧),
– neutrality of units: if 0 ⩽ 𝑖 < 𝑘 and 𝑥 is a 𝑘-cell, then

1𝑘𝑠𝑖 (𝑥 ) ∗𝑖 𝑥 = 𝑥 ∗𝑖 1𝑘𝑡𝑖 (𝑥 ) = 𝑥,

– exchange: if 𝑖 < 𝑗 < 𝑘 and 𝑥, 𝑦, 𝑧, 𝑣 are 𝑘-cells such that 𝑡 𝑗 (𝑥) = 𝑠 𝑗 (𝑦),
𝑡 𝑗 (𝑧) = 𝑠 𝑗 (𝑣) and 𝑡𝑖 (𝑥) = 𝑠𝑖 (𝑧), then also 𝑡 𝑗 (𝑦) = 𝑠 𝑗 (𝑣), and

(𝑥 ∗ 𝑗 𝑦) ∗𝑖 (𝑧 ∗ 𝑗 𝑣) = (𝑥 ∗𝑖 𝑧) ∗ 𝑗 (𝑦 ∗𝑖 𝑣),
– compatibility of units: if 0 ⩽ 𝑖 < 𝑗 < 𝑘 and 𝑥, 𝑦 are 𝑖-composable 𝑗-cells,

then

1𝑘𝑥∗𝑖 𝑦 = 1𝑘𝑥 ∗𝑖 1𝑘𝑦 .
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Let𝐶, 𝐷 be two strict𝜔-categories. An𝜔-functor 𝑓 : 𝐶 → 𝐷 is a morphism
of the underlying globular sets which preserves the compositions and units.
Strict 𝜔-categories and strict 𝜔-functors build a (large) category we denote by
Cat𝜔 . If we restrict the above construction to cells of dimension at most 𝑛, we
get the category of strict 𝑛-categories, denoted by Cat𝑛.

From now on we will drop the adjective “strict” and we will speak of
“𝜔-categories” and “𝑛-categories” when we mean “strict 𝜔-categories” and
“strict 𝑛-categories”.

14.2.2 Remark. The structure of 𝑛-category is sometimes presented by the
alternative set of operations and axioms described in Appendix D.

14.2.3 𝜔-categories as models of a projective sketch. The above axioms for
𝜔-categories can be presented in diagrammatic form as follows.

For any globular set 𝑋 and 0 ⩽ 𝑖 < 𝑛, there is a pullback square in Set:

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

l𝑛𝑖
��

r𝑛𝑖 // 𝑋𝑛

𝑠𝑛𝑖

��

𝑋𝑛
𝑡𝑛𝑖

// 𝑋𝑖 .

The operations of compositions and units become maps:

∗𝑖 : 𝑋𝑛 ×
𝑋𝑖

𝑋𝑛 → 𝑋𝑛

and

1𝑛 : 𝑋𝑖 → 𝑋𝑛

for 0 ⩽ 𝑖 < 𝑛.
The positional conditions for compositions amount to the commutation of

the following diagrams:

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

𝑠𝑛𝑗 ×𝑋𝑖
𝑠𝑛𝑗

��

∗𝑖 // 𝑋𝑛

𝑠𝑛𝑗

��

𝑋 𝑗 ×
𝑋𝑖

𝑋 𝑗 ∗𝑖
// 𝑋𝑖

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

𝑡𝑛𝑗 ×𝑋𝑖
𝑡𝑛𝑗

��

∗𝑖 // 𝑋𝑛

𝑡𝑛𝑗

��

𝑋 𝑗 ×
𝑋𝑖

𝑋 𝑗 ∗𝑖
// 𝑋𝑖
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for 0 ⩽ 𝑖 < 𝑗 < 𝑛 and

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

l𝑛𝑖
��

∗𝑖 // 𝑋𝑛

𝑠𝑛𝑗

��

𝑋𝑛
𝑠𝑛𝑗

// 𝑋 𝑗

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

r𝑛𝑖
��

∗𝑖 // 𝑋𝑛

𝑡𝑛𝑗

��

𝑋𝑛
𝑡𝑛𝑗

// 𝑋 𝑗

for 0 ⩽ 𝑗 ⩽ 𝑖 < 𝑛.
As for units, if 0 ⩽ 𝑖 < 𝑛, the positional conditions amount to the commuta-

tions of

𝑋𝑛

𝑠𝑛𝑖   

𝑋𝑖

1
��

1𝑛
oo

1𝑛
// 𝑋𝑛

𝑡𝑛𝑖~~

𝑋𝑖 .

Now, each axiom is expressed by the commutation of a diagram in Set
involving arrows derived from the source, target, compositions and unit arrows
by means of universal constructions.

– Associativity of compositions amounts to the commutation of

𝑋𝑛 ×
𝑋𝑖

(𝑋𝑛 ×
𝑋𝑖

𝑋𝑛)

𝛼

��

𝑋𝑛 ×
𝑋𝑖
(∗𝑖 )

// 𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

∗𝑖

""

𝑋𝑛

(𝑋𝑛 ×
𝑋𝑖

𝑋𝑛) ×
𝑋𝑖

𝑋𝑛 (∗𝑖 ) ×
𝑋𝑖
𝑋𝑛

// 𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

∗𝑖

<<

where 𝛼 is the canonical bĳection between both pullbacks.
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– Let 0 ⩽ 𝑖 < 𝑗 < 𝑛. We build the diagram

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) ×
𝑋𝑖

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) r //

l

��

𝜆

((

𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛

l𝑛𝑗

��

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛
r𝑛𝑖 //

l𝑛𝑖
��

𝑋𝑛

𝑠𝑖𝑛

��

𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛 l𝑛𝑗
// 𝑋𝑛

𝑡𝑖𝑛

// 𝑋𝑖

where both solid squares are pullbacks. There is a unique universal arrow 𝜆

making the whole diagram commute. Similarly, by replacing the left projec-
tion l𝑛𝑗 by the right projection r𝑛𝑗 in the above diagram, we get a universal
arrow

𝜌 : (𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) ×
𝑋𝑖

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) → 𝑋𝑛 ×
𝑋𝑖

𝑋𝑛.

Consider now the diagram

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) ×
𝑋𝑖

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛)
𝜌

//

𝜆

��

𝜃

''

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

∗𝑖
��

𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛
r𝑛𝑗

//

l𝑛𝑗

��

𝑋𝑛

𝑠
𝑗
𝑛

��

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛 ∗𝑖
// 𝑋𝑛

𝑡
𝑗
𝑛

// 𝑋 𝑗 .

The positional conditions on compositions and the globular relations ensure
that the outer square commutes, whereas the small solid square is a pullback
by definition. Therefore, we get a unique universal arrow 𝜃 as shown in the
diagram.

Now the exchange rule amounts to the commutation of

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) ×
𝑋𝑖

(𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛) 𝜃 //

(∗ 𝑗 ) ×
𝑋𝑖
(∗ 𝑗 )

��

𝑋𝑛 ×
𝑋 𝑗

𝑋𝑛

∗ 𝑗
��

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛 ∗𝑖
// 𝑋𝑛.
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– Let 0 ⩽ 𝑖 < 𝑛. The positional conditions on units imply that the following
diagram of solid arrows commutes:

𝑋𝑛

𝑠𝑛𝑖

��

1

))

𝜄
##

𝑋𝑖

1𝑛
##

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛 r𝑛𝑖
//

l𝑛𝑖
��

𝑋𝑛

𝑠𝑛𝑖

��

𝑋𝑛
𝑡𝑛𝑖

// 𝑋𝑖 .

Therefore, there is a unique universal arrow 𝜄 making the whole diagram
commute. Now the first axiom for left units amounts to the fact that 𝜄 equalizes
the pair (r𝑛𝑖 , ∗𝑖), that is, the commutation of

𝑋𝑛
𝜄 // 𝑋𝑛 ×

𝑋𝑖

𝑋𝑛
r𝑛𝑖 //
∗𝑖
// 𝑋𝑛.

The first axiom for right units is treated similarly.
– Finally, the compatibility of compositions with units amounts to the com-

mutation of the following diagram

𝑋𝑚 ×
𝑋𝑖

𝑋𝑚

1𝑛 ×
𝑋𝑖

1𝑛

��

∗𝑖 // 𝑋𝑚

1𝑛

��

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛
∗𝑖 // 𝑋𝑛

whenever 0 ⩽ 𝑖 < 𝑚 < 𝑛.

14.2.4 Proposition. The category Cat𝜔 is a category of models of a projective
sketch.

Proof. The above diagrammatic presentation of the axioms of 𝜔-categories
defines a sketch whose models are actual 𝜔-categories. □

14.2.5 Corollary. The category Cat𝜔 is complete and cocomplete.

Proof. This follows from the previous result by using Proposition G.1.10. □

14.2.6 Truncation functors. As for globular sets, whenever 0 ⩽ 𝑚 < 𝑛, we
get truncation functors

𝑈𝑛𝑚 : Cat𝑛 → Cat𝑚
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and

𝑈𝑛 : Cat𝜔 → Cat𝑛

making all triangles

Cat𝜔

𝑈𝑛

��

𝑈𝑚

##

Cat𝑛
𝑈𝑛

𝑚

// Cat𝑚

commute.
Here again, Cat𝜔 appears as the projective limit of the diagram

Cat0 Cat1
𝑈1

0oo · · ·oo Cat𝑛oo Cat𝑛+1
𝑈𝑛+1

𝑛oo · · · .oo

Remark that, by abuse of language, we use the same notation for truncation
functors among 𝑛-categories and among 𝑛-globular sets.

By construction, 𝜔-categories are globular sets with structure, whence a
forgetful functor

𝑉 : Cat𝜔 → Glob𝜔

which restricts for each 𝑛 ∈ N to

𝑉𝑛 : Cat𝑛 → Glob𝑛.

These forgetful functors commute with the above truncation functors, that is,
the following diagram commutes whenever 0 ⩽ 𝑚 < 𝑛:

Cat𝑛
𝑈𝑛

𝑚 //

𝑉𝑛
��

Cat𝑚

𝑉𝑚

��

Glob𝑛
𝑈𝑛

𝑚

// Glob𝑚.

(14.3)

14.2.7 Proposition. The forgetful functor 𝑉 : Cat𝜔 → Glob𝜔 admits a left
adjoint 𝐹 : Glob𝜔 → Cat𝜔 . Likewise, for each 𝑛 ∈ N, 𝑉𝑛 : Cat𝑛 → Glob𝑛
admits a left adjoint 𝐹𝑛 : Glob𝑛 → Cat𝑛.

Proof. The categories Glob𝜔 and Cat𝜔 are categories of models of projective
sketches 𝑆 and 𝑆′, respectively, whereas the functor 𝑉 is the one induced
on models by the inclusion morphism 𝑆 ↩→ 𝑆′. Therefore 𝑉 admits a left
adjoint (see Theorem G.1.8). The same arguments hold for Glob𝑛 and Cat𝑛,
where 𝑛 ∈ N. □
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14.2.8 Proposition. The forgetful functor 𝑉 : Cat𝜔 → Glob𝜔 preserves
filtered colimits.

Proof. This is a general property of functors induced by a morphism of pro-
jective sketches involving only finite cones (see [26, Chapter 4, Theorem 4.4]).
Concretely, the colimit 𝐶 of a filtered diagram in Cat𝜔 is obtained by taking
the colimit 𝑋 of the underlying diagram in Glob𝜔 and defining a structure of
𝜔-category on 𝑋 in the obvious way, so that 𝑉 (𝐶) = 𝑋 . Thus, the stronger
statement that 𝑉 creates filtered colimits holds. □

14.2.9 Globes and spheres. By abuse of notation, the free 𝜔-category 𝐹 (O𝑛)
generated byO𝑛 will be still denoted byO𝑛 and called the 𝑛-globe. Likewise we
denote by 𝜕O𝑛 the free 𝜔-category 𝐹 (𝜕O𝑛), and call it the 𝑛-sphere. Remark
that, in the case of globes and spheres, the free functor only adds new identity
cells to the ones already present in the globular globes and spheres.

For any 𝜔-category 𝐶, the set of 𝑛-globes of 𝐶 is the hom-set Cat𝜔 (O𝑛, 𝐶),
which amounts to the set 𝐶𝑛 of 𝑛-cells in 𝐶. Likewise, the set of 𝑛-spheres of 𝐶
is the hom-set Cat𝜔 (𝜕O𝑛+1, 𝐶), which amounts to the set of pairs of parallel
𝑛-cells in 𝐶, that is, parallel in the underlying globular set.

14.3 Basic examples

Let us first mention a few immediate examples of 𝜔-categories.

– Sets: as Cat0 = Glob0 = Set and Cat𝑛 naturally embeds in Cat𝜔 (see §14.4.6
below), any set 𝑆 can be viewed as an𝜔-category, precisely the𝜔-category𝐶
whose 0-cells are the elements of 𝑆 and whose 𝑛-cells, 𝑛 > 0, are all of the
form 1𝑛𝑥 for 𝑥 ∈ 𝑆.

– Monoids: any monoid 𝑀 , being a 1-category with a unique object, can be
seen as an 𝜔-category whose 𝑛-cells are identities for all 𝑛 ⩾ 2.

– Commutative monoids: to any commutative monoid (𝐴, +) we may associate
the 𝜔-category 𝐶 defined by 𝐶0 = {⋆}, 𝐶1 =

{
11

⋆

}
, 𝐶2 = 𝐴 and having only

identity cells in higher dimensions. The source and target maps are uniquely
determined, whereas compositions are defined for any pair (𝑢, 𝑣) of 2-cells
by 𝑢 ∗0 𝑣 = 𝑢 ∗1 𝑣 = 𝑢 + 𝑣. The axioms of 𝜔-categories are easily checked.
Conversely, for any 𝜔-category 𝐶 such that 𝐶0 = {⋆}, 𝐶1 =

{
11

⋆

}
and 𝐶𝑛

has only identity cells for 𝑛 > 2, the ∗0 and ∗1 compositions on 𝐶2 coincide
and are commutative operations, so that (𝐶2, ∗0) (or (𝐶2, ∗1)) becomes an
abelian monoid.
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14.4 More properties of Cat𝜔

14.4.1 Local presentability. By definition, the category Glob𝜔 of globular
sets is a category of presheaves, so that limits and colimits are computed
pointwise. On the other hand, we already noticed that Cat𝜔 is the category of
models of a projective sketch and is hence complete and cocomplete (see Corol-
lary 14.2.5). The forgetful functor 𝑉 : Cat𝜔 → Glob𝜔 , being a right adjoint,
preserves limits. Thus limits in Cat𝜔 are computed as in Glob𝜔 . Colimits
however are hard to compute, even in Cat1.

14.4.2 Enrichment. For each 𝑛 ⩾ 0, the category Cat𝑛 has a monoidal struc-
ture defined by its cartesian product and terminal object. Thus, the notion of
Cat𝑛-enriched category makes sense: in fact, Cat𝑛-enriched categories are just
(𝑛 + 1)-categories. As for 𝑛 = 𝜔, it turns out that Cat𝜔 is enriched over itself.

14.4.3 Proposition. The forgetful functor 𝑉 : Cat𝜔 → Glob𝜔 is monadic.

Proof. First remark that, for any 0 ⩽ 𝑖 < 𝑛, the correspondence

𝑋 ↦→ 𝑋𝑛 ×
𝑋𝑖

𝑋𝑛

is functorial from Glob𝜔 to Set. Indeed, the Yoneda embedding yields a pushout

O𝑖
Y(𝜏𝑛𝑖 ) //

Y(𝜎𝑛
𝑖 )
��

O𝑛

��

O𝑛 // O𝑛 +
O𝑖

O𝑛

in Glob𝜔 and we get a natural bĳection

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛 ≃ Glob𝜔 (O𝑛 +
O𝑖

O𝑛, 𝑋)

so that our correspondence is the object part of the (representable) functor

Glob𝜔 (O𝑛 +
O𝑖

O𝑛,−) : Glob𝜔 → Set.

Now, by Proposition 14.2.7, the functor 𝑉 admits a left adjoint 𝐹. By Beck’s
monadicity theorem [261], it is sufficient to prove that 𝑉 creates absolute co-
equalizers. Thus, let 𝐶, 𝐷 be 𝜔-categories, 𝑓 , 𝑔 : 𝐶 → 𝐷 a pair of morphisms,
𝑋 = 𝑉𝐶, 𝑌 = 𝑉𝐷 the underlying globular sets. Suppose 𝑤 : 𝑌 → 𝑍 is an
absolute coequalizer of the pair 𝑢 = 𝑉 𝑓 , 𝑣 = 𝑉𝑔. We must prove the existence
of a unique 𝜔-category 𝐸 , and a unique morphism ℎ : 𝐷 → 𝐸 such that

– 𝑉𝐸 = 𝑍 ,
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– 𝑉ℎ = 𝑤

and check that ℎ is the coequalizer of the pair ( 𝑓 , 𝑔) in Cat𝜔 .
Let us first define a structure of 𝜔-category on the globular set 𝑍 . By hy-

pothesis, the diagram

𝑋
𝑢 //

𝑣
// 𝑌

𝑤 // 𝑍 (14.4)

is an absolute coequalizer. Thus, by applying the functor Glob𝜔 (O𝑛 +
O𝑖

O𝑛,−)
defined in the preliminary remark, we still get a coequalizer, now in Set:

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛
𝑢′ //

𝑣′
// 𝑌𝑛 ×

𝑌𝑖
𝑌𝑛

𝑤′ // 𝑍𝑛 ×
𝑍𝑖
𝑍𝑛.

Likewise by applying the functor Glob𝜔 (O𝑛,−), we get another coequalizer
diagram

𝑋𝑛
𝑢𝑛 //

𝑣𝑛
// 𝑌𝑛

𝑤𝑛 // 𝑍𝑛.

Consider now the following diagram:

𝑋𝑛 ×
𝑋𝑖

𝑋𝑛
𝑢′ //

𝑣′
//

∗𝑖
��

𝑌𝑛 ×
𝑌𝑖
𝑌𝑛

𝑤′ //

∗𝑖
��

𝑍𝑛 ×
𝑍𝑖
𝑍𝑛

?
��

𝑋𝑛
𝑢𝑛 //

𝑣𝑛
// 𝑌𝑛

𝑤𝑛 // 𝑍𝑛.

As 𝑢 and 𝑣 come from morphisms in Cat𝜔 , the squares on 𝑢′, 𝑢𝑛 and 𝑣′, 𝑣𝑛
commute. Therefore, 𝑤𝑛 ◦ (∗𝑖) coequalizes the pair (𝑢′, 𝑣′) and there exists a
unique map from 𝑍𝑛 ×

𝑍𝑖
𝑍𝑛 to 𝑍𝑛 making the right-hand square commute. This

map defines the 𝑖-composition among 𝑛-cells in 𝑍 , still denoted by ∗𝑖 . By a
similar argument we may define the unit map 1𝑛 : 𝑍𝑛−1 → 𝑍𝑛.

It remains to check that the compositions and units just defined on 𝑍 satisfy
the axioms of 𝜔-categories. This amounts to check the commutation of all
diagrams expressing these axioms. We shall treat the axiom of associativity in
detail, and leave the remaining axioms as exercises. By applying appropriate



14.4 More properties of Cat𝜔 331

functors to the coequalizer diagram (14.4), we get the following diagram in Set:

(𝑋𝑛 ×
𝑋𝑖
𝑋𝑛) ×

𝑋𝑖
𝑋𝑛

𝑢′′′ //

𝑣′′′
//

𝑎′

��

(𝑌𝑛 ×
𝑌𝑖
𝑌𝑛) ×

𝑌𝑖
𝑌𝑛 𝑤′′′ //

𝑏′

��

(𝑍𝑛 ×
𝑍𝑖
𝑍𝑛) ×

𝑍𝑖
𝑍𝑛

𝑐′

��

𝑋𝑛 ×
𝑋𝑖
(𝑋𝑛 ×

𝑋𝑖
𝑋𝑛) 𝑢′′ //

𝑣′′
//

𝛼𝑋 88

𝑎

��

𝑌𝑛 ×
𝑌𝑖
(𝑌𝑛 ×

𝑌𝑖
𝑌𝑛) 𝑤′′ //

𝛼𝑌 99

𝑏

��

𝑍𝑛 ×
𝑍𝑖
(𝑍𝑛 ×

𝑍𝑖
𝑍𝑛)

𝛼𝑍 88

𝑐

��

𝑋𝑛 ×
𝑋𝑖
𝑋𝑛

𝑢′ //

𝑣′
//

∗𝑖

��

𝑌𝑛 ×
𝑌𝑖
𝑌𝑛 𝑤′ //

∗𝑖

��

𝑍𝑛 ×
𝑍𝑖
𝑍𝑛

∗𝑖

��

𝑋𝑛 ×
𝑋𝑖
𝑋𝑛

𝑢′ //

𝑣′
//

∗𝑖

��

𝑌𝑛 ×
𝑌𝑖
𝑌𝑛 𝑤′ //

∗𝑖

��

𝑍𝑛 ×
𝑍𝑖
𝑍𝑛

∗𝑖

��
𝑋𝑛

𝑢𝑛 //
𝑣𝑛

// 𝑌𝑛 𝑤𝑛 // 𝑍𝑛

where 𝑎 = 𝑋𝑛 ×
𝑋𝑖

(∗𝑖), 𝑎′ = (∗𝑖) ×
𝑋𝑖

𝑋𝑛 and 𝑏, 𝑏′, 𝑐, 𝑐′ are defined accordingly.
Because the coequalizer (14.4) is absolute, all horizontal lines are also co-

equalizer diagrams. Now 𝑤𝑛 ◦ (∗𝑖) ◦ 𝑏 coequalizes the pair (𝑢′′, 𝑣′′), therefore

(∗𝑖) ◦ 𝑐 ◦ 𝑤′′ = 𝑤𝑛 ◦ (∗𝑖) ◦ 𝑏. (14.5)

On the other hand, by naturality of 𝛼,

(∗𝑖) ◦ 𝑐′ ◦ 𝛼𝑍 ◦ 𝑤′′ = (∗𝑖) ◦ 𝑐′ ◦ 𝑤′′′ ◦ 𝛼𝑌
= (∗𝑖) ◦ 𝑤′ ◦ 𝑏′ ◦ 𝛼𝑌
= 𝑤𝑛 ◦ (∗𝑖) ◦ 𝑏′ ◦ 𝛼𝑌 .

and by the associativity of ∗𝑖 on 𝑌 , the latter expression is equal to 𝑤𝑛 ◦ (∗𝑖) ◦ 𝑏
so that we get

(∗𝑖) ◦ 𝑐′ ◦ 𝛼𝑍 ◦ 𝑤′′ = 𝑤𝑛 ◦ (∗𝑖) ◦ 𝑏. (14.6)

Now as 𝑤′′ is a coequalizer, (14.5) and (14.6) imply

(∗𝑖) ◦ 𝑐′ ◦ 𝛼𝑍 = (∗𝑖) ◦ 𝑐.

This is the commutation of the rightmost pentagon and ∗𝑖 is associative on 𝑍 .
The other axioms are proved in a similar way. Thus we have defined an
𝜔-category 𝐸 with underlying globular set 𝑍 = 𝑉𝐸 .

Now the commutation of the square involving𝑤𝑛 and𝑤′ in the above diagram
expresses the preservation of the composition ∗𝑖 by 𝑤. The preservation of units
holds by a similar argument. Therefore, we get a unique morphism ℎ : 𝐷 → 𝐸

in Cat𝜔 such that 𝑉ℎ = 𝑤.
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Finally, we must show that the diagram

𝐶
𝑓
//

𝑔
// 𝐷

ℎ // 𝐸

is itself a coequalizer in Cat𝜔 . Thus, let 𝐾 be an 𝜔-category and 𝑘 : 𝐷 → 𝐾

a morphism such that 𝑘 𝑓 = 𝑘𝑔. We have to prove the existence of a unique
morphism ℓ : 𝐸 → 𝐾 such that ℓℎ = 𝑘 . Now, if 𝑇 = 𝑉𝐹 and 𝑡 = 𝑉𝑘 , there is a
unique morphism 𝑠 : 𝑍 → 𝑇 such that 𝑠𝑤 = 𝑡:

𝑋
𝑢 //

𝑣
// 𝑌

𝑤 //

𝑡
��

𝑍

𝑠

��

𝑇 .

We look for an ℓ such that𝑉ℓ = 𝑠. Uniqueness is obvious, and existence reduces
to the observation that 𝑠 preserves compositions and units. As for compositions,
consider the following diagram:

𝑌𝑛 ×
𝑌𝑖
𝑌𝑛

𝑤′ //

∗𝑖
��

𝑍𝑛 ×
𝑍𝑖
𝑍𝑛

𝑠′ //

∗𝑖
��

𝑇𝑛 ×
𝑇𝑖
𝑇𝑛

∗𝑖
��

𝑌𝑛 𝑤𝑛

// 𝑍𝑛 𝑠𝑛
// 𝑇𝑛.

The left-hand square commutes because 𝑤 = 𝑉ℎ, and the outer square com-
mutes because 𝑠𝑤 = 𝑡 and 𝑡 = 𝑉𝑘 . But 𝑤′ is a coequalizer map, whence the
right-hand square also commutes: this shows that 𝑠 preserves compositions, as
required. A similar argument proves the preservation of units, and we get the
unique morphism ℓ : 𝐸 → 𝐾 such that 𝑠 = 𝑉ℓ. □

14.4.4 Remark. Instead of using Beck’s criterion to prove the monadicity
of Cat𝜔 over Glob𝜔 , we could have used a less known criterion in terms of
sketches due to Lair. Precisely, globular sets are models of a projective sketch 𝑆
with underlying category Oop and no cones, whereas 𝜔-categories are models
of a projective sketch 𝑆′, with an obvious sketch inclusion 𝑆 ↩→ 𝑆′, inducing the
forgetful functor𝑉 : Cat𝜔 → Glob𝜔 between the corresponding categories of
models. Now (i) the base of each cone of 𝑆′ already belongs to 𝑆 and (ii) each
object of 𝑆′ not in 𝑆 is the tip of at least one cone of 𝑆′. By Theorem G.1.11,
these two conditions ensure the monadicity of 𝑉 .

14.4.5 Remark. Recall that monadicity is not transitive. For example, the
forgetful functor Cat → Graph is monadic, as well as the forgetful functor
Graph → Set2 taking the graph 𝑋0 𝑋1oo

oo to the pair (𝑋0, 𝑋1). However



14.4 More properties of Cat𝜔 333

the composite Cat → Set2 is not monadic. Consider in fact the following
categories:

– the category 𝐶, freely generated on the graph having a set of five vertices
𝑉𝐶 = {0, 1, 2, 3, 4} and a set of two edges 𝐸𝐶 = {𝑎 : 0→ 1; 𝑏 : 3→ 4},

– the subcategory 𝐷 of 𝐶 obtained by removing the isolated vertex 2.

Define two morphisms 𝑢, 𝑣 : 𝐶 → 𝐷 such that 𝑢 and 𝑣 are both retractions of
the inclusion 𝐷 → 𝐶, 𝑢(2) = 1 and 𝑣(2) = 3. We leave it as an exercise to
check that the forgetful functor Cat→ Set2 takes the pair (𝑢, 𝑣) to a pair ( 𝑓 , 𝑔)
whose coequalizer 𝑒 in Set2 is split, but the coequalizer 𝑤 of (𝑢, 𝑣) in Cat is
not sent to 𝑒. The generating graphs for 𝐶, 𝐷 and of the coequalizer 𝐸 of the
pair (𝑢, 𝑣) are represented in the picture below:

•0 → •1

•2

•3 → •4

•0 → •1

•3 → •4
•0 → • → •4

𝑢→→
𝑣

𝑤→

𝐶 𝐷 𝐸

14.4.6 Adjunctions. If 0 ⩽ 𝑚 < 𝑛, there is a canonical inclusion functor

𝐼𝑚𝑛 : Cat𝑚 → Cat𝑛

taking an 𝑚-category 𝐶 to the 𝑛-category 𝐷 = 𝐼𝑚𝑛 (𝐶) such that 𝑈𝑛𝑚 (𝐷) = 𝐶
and all 𝑖-cells of 𝐷 are units for 𝑚 < 𝑖 ⩽ 𝑛. Likewise, we get a canonical
inclusion

𝐼𝑚 : Cat𝑚 → Cat𝜔 .

Therefore, each 𝑚-category may be naturally identified with an 𝑛-category for
any 𝑚 < 𝑛 ⩽ 𝜔.

The functor 𝐼𝑚𝑛 (resp. 𝐼𝑚) has a right adjoint, namely the truncation func-
tor𝑈𝑛𝑚 (resp.𝑈𝑚).

Now 𝐼𝑚𝑛 also admits a left adjoint

𝑈
𝑛
𝑚 : Cat𝑛 → Cat𝑚.

Let 𝐶 be an 𝑛-category and 𝐷 = 𝑈
𝑛
𝑚 (𝐶). Up to dimension 𝑚 − 1, 𝐷 coincides

with 𝑈𝑛𝑚−1 (𝐶), whereas 𝐷𝑚 is the quotient of 𝐶𝑚 modulo the congruence
generated by 𝐶𝑚+1. Precisely, two parallel 𝑚-cells 𝑥, 𝑦 in 𝐶𝑚 are congruent
modulo 𝐶𝑚+1 if and only if there is a sequence 𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑝 = 𝑦 of
𝑚-cells of 𝐶𝑚 and a sequence 𝑧1, . . . , 𝑧𝑝 of (𝑚 + 1)-cells in 𝐶𝑚+1 such that,
for each 𝑖 = 1, . . . , 𝑝, either 𝑧𝑖 = 𝑥𝑖−1 → 𝑥𝑖 or 𝑧𝑖 : 𝑥𝑖 → 𝑥𝑖−1. Note that the
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source and target maps, as well as compositions on 𝐶𝑚 are compatible with the
congruence relation. Therefore, 𝐷 is a well-defined 𝑚-category, as expected.
Also, the action of 𝑈𝑛𝑚 on morphisms is immediate, and clearly functorial.
Likewise, 𝐼𝑚 admits a left adjoint𝑈𝑚 : Cat𝜔 → Cat𝑚.

Let us finally remark that the truncation functor 𝑈𝑛𝑚 (resp. 𝑈𝑛) also admits
a right adjoint 𝐼𝑚𝑛 : Cat𝑚 → Cat𝑛 (resp. 𝐼𝑚 : Cat𝑚 → Cat𝜔): let 𝐶 be
an 𝑚-category, 𝐷 = 𝐼𝑚𝑛 (𝐶) is the 𝑛-category such that (i) 𝑈𝑛𝑚 (𝐷) = 𝐶, (ii)
for each pair 𝑥, 𝑦 of parallel 𝑚-cells in 𝐷𝑚, there is exactly one (𝑚 + 1)-cell
𝑧 : 𝑥 → 𝑦 in 𝐷𝑚+1 and (iii) all 𝑖-cells of 𝐷 are units whenever 𝑖 > 𝑚 + 1. The
𝜔-category 𝐼𝑚 (𝐶) is defined accordingly. To sum up, omitting the indices, we
get a series of adjunctions between inclusions and truncation functors:

𝑈 ⊣ 𝐼 ⊣ 𝑈 ⊣ 𝐼 .

14.5 (𝑛, 𝑝)-categories

14.5.1 Invertible cells. Let 0 ⩽ 𝑖 < 𝑘 ⩽ 𝑛 ⩽ 𝜔. Let 𝐶 be an 𝑛-category
and 𝑢 a 𝑘-cell of 𝐶. A 𝑘-cell 𝑣 of 𝐶 is a ∗𝑖-inverse to 𝑢 if 𝑣 is left and right
𝑖-composable with 𝑢 and 𝑢 ∗𝑖 𝑣 = 1𝑘

𝑠𝑖 (𝑢) and 𝑣 ∗𝑖 𝑢 = 1𝑘
𝑡𝑖 (𝑢) . If such a 𝑘-cell 𝑣

exists, it is necessarily unique. In that case, we call 𝑢 an ∗𝑖-invertible cell. A
𝑘-cell 𝑢 is called simply invertible if it is ∗𝑘−1-invertible.

14.5.2 Lemma. If a 2-cell is ∗0-invertible, then it is also ∗1-invertible.

Proof. Let 𝑢 be a ∗0-invertible 2-cell and 𝑣 its ∗0-inverse, so that 𝑢 ∗0 𝑣 = 12
𝑠0 (𝑢)

and 𝑣∗0𝑢 = 12
𝑡0 (𝑢) . This implies that the 1-cells 𝑠1 (𝑢) and 𝑡1 (𝑢) are ∗0-invertible,

with 𝑠1 (𝑣) and 𝑡1 (𝑣) as respective ∗0-inverses. Let

𝑣′ = 12
𝑡1 (𝑢) ∗0 𝑣 ∗0 12

𝑠1 (𝑢) .

We claim that 𝑣′ is a ∗1-inverse to 𝑢. In fact,

𝑠1 (𝑣′) = 𝑡1 (𝑢) ∗0 𝑠1 (𝑣) ∗0 𝑠1 (𝑢) = 𝑡1 (𝑢)
so that 𝑢 and 𝑣′ are ∗1-composable. Moreover, by using the exchange rule

𝑢 ∗1 𝑣′ = (𝑢 ∗0 12
𝑠1 (𝑣) ∗0 12

𝑠1 (𝑢) ) ∗1 (1
2
𝑡1 (𝑢) ∗0 𝑣 ∗0 12

𝑠1 (𝑢) )
= (𝑢 ∗1 12

𝑡1 (𝑢) ) ∗0 (1
2
𝑠1 (𝑣) ∗1 𝑣) ∗0 12

𝑠1 (𝑢)
= 𝑢 ∗0 𝑣 ∗0 12

𝑠1 (𝑢)
= 12

𝑠1 (𝑢) .

Likewise, one checks that 𝑣′ ∗1 𝑢 = 12
𝑡1 (𝑢) . □
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14.5.3 Corollary. Let 𝑖 ⩽ 𝑗 < 𝑘 . Each ∗𝑖-invertible 𝑘-cell is also ∗ 𝑗 -invertible.

Proof. Let 𝑖 ⩽ 𝑗 < 𝑘 ⩽ 𝑛, and let𝐶 be an 𝑛-category. We define a 2-category𝐷
by 𝐷0 = 𝐶𝑖 , 𝐷1 = 𝐶 𝑗 , 𝐷2 = 𝐶𝑘 with the obvious source and target maps, units
and compositions induced by 𝐶. The statement then immediately follows by
applying Lemma 14.5.2 to the 2-cells of 𝐷. □

14.5.4 Definition. Let 0 ⩽ 𝑝 ⩽ 𝑛 ⩽ 𝜔. The category Cat𝑛,𝑝 is the full
subcategory of Cat𝑛 having as objects the 𝑛-categories whose 𝑘-cells are
invertible for all 𝑘 > 𝑝. These objects are called (𝑛, 𝑝)-categories. In particular,
the objects of Cat𝑛,0 are the 𝑛-groupoids, where 𝑘-cells are invertible for
all 𝑘 > 0. We also denote Cat𝑛,0 by Gpd𝑛.

14.5.5 Proposition. Let 𝑝 ⩽ 𝑖 < 𝑘 ⩽ 𝑛 and let 𝐶 be an (𝑛, 𝑝)-category. Each
𝑘-cell of 𝐶 is ∗𝑖-invertible.

Proof. As in the proof of Corollary 14.5.3, the statement reduces to the fact
that, in each 2-category 𝐶 all whose 1-cells are ∗0-invertible, any 2-cell 𝑢 is
∗1-invertible if and only if is is ∗0-invertible. The “if” direction follows from
Lemma 14.5.2. Conversely, suppose that all 1-cells are invertible, and let 𝑢
be a ∗1-invertible 2-cell, with ∗1-inverse 𝑣. By hypothesis, 𝑠1 (𝑢) and 𝑡1 (𝑢)
have ∗0-inverses 𝑣−1 and 𝑣+1 respectively. One easily checks that the required
∗0-inverse to 𝑢 is given by

𝑣′ = 12
𝑣+1
∗0 𝑣 ∗0 12

𝑣−1

(see also [16, §1.3.]). □

14.5.6 Proposition. For each 𝑛 and 𝑝 such that 0 ⩽ 𝑝 ⩽ 𝑛 ⩽ 𝜔, the cate-
gory Cat𝑛,𝑝 is complete, cocomplete and monadic over Glob𝑛. Moreover, the
inclusion functor Cat𝑛,𝑝 → Cat𝑛 admits a left adjoint.

Proof. Like Cat𝑛, the category Cat𝑛,𝑝 is the category of models of a pro-
jective sketch 𝑆𝑛,𝑝 , hence it is complete and cocomplete. The inclusion func-
tor Cat𝑛,𝑝 → Cat𝑛 is induced by the morphism of corresponding sketches
𝑆𝑛 → 𝑆𝑛,𝑝 , hence admits a left adjoint. Finally the monadicity of Cat𝑛,𝑝
over Glob𝑛 is proved as in Proposition 14.4.3. □



15
Polygraphs

The notion of 2-polygraph, already introduced in Chapter 2, first appears
in [333] under the name of computad, as an essential tool in proving the
existence of limits in 2-categories. Although its relevance to rewriting theory
was recognized by Eilenberg and Street from the very beginning [121], this
point of view is not explicitly mentioned in the literature until early 1990s. The
general notion of 𝑛-computad explicitly appears in [304], and independently
in [72] and [73], under the name of polygraph. We adopt here Burroni’s presen-
tation and terminology. The source of Burroni’s approach can be traced back in
his work on graphical algebras [71], where he presents a “concept of dimension
in formal languages”. Let us mention that [28] introduces a wide generaliza-
tion of the notion of 𝑛-computad attached to a finitary monad 𝑇 on globular
sets, presented in more details in Chapter 18. We deal in this chapter with the
particular case where the monad 𝑇 comes from the adjunction between Cat𝜔
and Glob𝜔 .

15.1 Main definitions

Throughout this section, we denote by 𝑛 a natural number.

15.1.1 Cellular extensions. Given an 𝑛-category 𝐶, a cellular extension of 𝐶
is a family

(𝑋𝑖 : 𝜕O𝑛+1 → 𝐶)𝑖∈𝐼
of 𝑛-spheres in𝐶 indexed by a set 𝐼. This amounts to a family of pairs of parallel
𝑛-cells in 𝐶. Equivalently, it can also be seen as an 𝜔-functor

𝑋 :
∐
𝑖∈𝐼

𝜕O𝑛+1 → 𝐶.

336
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Note that, in order for 𝑋 to make sense, we identify the 𝑛-category 𝐶 with its
image in Cat𝜔 by the inclusion functor defined in §14.4.6. A morphism

𝑓 : (𝐶, (𝑋𝑖)𝑖∈𝐼 ) → (𝐷, (𝑌 𝑗 ) 𝑗∈𝐽 )

between two cellular extensions of 𝑛-categories consists of a pair (𝑔, ℎ), where
𝑔 : 𝐶 → 𝐷 is a morphism in Cat𝑛 and ℎ : 𝐼 → 𝐽 is a map such that, for each
𝑖 ∈ 𝐼, 𝑔 ◦ 𝑋𝑖 = 𝑌ℎ (𝑖) . We write Cat+𝑛 for the resulting category. More abstractly,
the category Cat+𝑛 is the pullback of Cat𝑛 and Glob𝑛+1 over Glob𝑛 in CAT
(which denotes the category of possibly large categories and functors):

Cat+𝑛

��

// Glob𝑛+1

𝑈𝑛+1
𝑛

��

Cat𝑛
𝑉𝑛
// Glob𝑛.

(15.1)

In the above diagram, the forgetful functor 𝑉𝑛 and the truncation functor 𝑈𝑛+1𝑛

are those defined in Chapter 14, and the forgetful functor from Cat+𝑛 to Cat𝑛
takes a cellular extension (𝐶, 𝑋) to the 𝑛-category 𝐶. Finally, the horizon-
tal dotted arrow takes a cellular extension (𝐶, 𝑋) to the (𝑛 + 1)-globular set
extending 𝑉𝑛 (𝐶) with the set of (𝑛 + 1)-cells determined by 𝑋 .

15.1.2 Freely generated category. Consider now the forgetful functor

𝑊𝑛 : Cat𝑛+1 → Cat+𝑛

which to an (𝑛+1)-category𝐶 associates the pair (𝑈𝑛+1𝑛 (𝐶), (𝑋𝑥)𝑥∈𝐶𝑛+1 ) where
for each cell 𝑥 ∈ 𝐶𝑛+1, 𝑋𝑥 is the 𝑛-sphere (𝑠𝑛 (𝑥), 𝑡𝑛 (𝑥)). This functor𝑊𝑛 is in
fact the universal arrow from Cat𝑛+1 to Cat+𝑛 resulting from the commutation
of the diagram

Cat𝑛+1
𝑉𝑛+1 //

𝑈𝑛+1
𝑛

��

Glob𝑛+1

𝑈𝑛+1
𝑛

��

Cat𝑛
𝑉𝑛
// Glob𝑛

and the pullback property of (15.1).
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15.1.3 Proposition. The functor𝑊𝑛 admits a left adjoint 𝐿𝑛:

Cat𝑛+1

))

𝑉𝑛+1

��
𝑊𝑛 --

⊥

Cat+𝑛

𝐿𝑛
kk

��

// Glob𝑛+1

𝑈𝑛+1
𝑛

��

Cat𝑛
𝑉𝑛
// Glob𝑛.

Proof. Let 𝐶 be an 𝑛-category and (𝑋𝑖 : 𝜕O𝑛+1 → 𝐶)𝑖∈𝐼 a cellular extension,
so that (𝐶, 𝑋) is an object of Cat+𝑛. By considering 𝐶, 𝜕O𝑛+1 and O𝑛+1 as
(𝑛 + 1)-categories, and remembering that Cat𝑛+1 is cocomplete, we define
𝐿𝑛 (𝐶, 𝑋) as the pushout given by the following diagram in Cat𝑛+1:

∐
𝑖∈𝐼 𝜕O𝑛+1

𝑋 //

∐
𝑖∈𝐼 i𝑛+1

��

𝐶

��∐
𝑖∈𝐼 O𝑛+1 // 𝐿𝑛 (𝐶, 𝑋).

This construction yields a functor 𝐿𝑛 : Cat+𝑛 → Cat𝑛+1. We claim that 𝐿𝑛 is left
adjoint to𝑊𝑛. Consider in fact (𝐶, 𝑋) an object of Cat+𝑛, 𝐷 an (𝑛+1)-category,
and 𝑓 : (𝐶, 𝑋) → 𝑊𝑛 (𝐷) a morphism in Cat+𝑛. Recall that 𝑓 is a pair (𝑔, ℎ)
where 𝑔 : 𝐶 → 𝑈𝑛 (𝐷) is an 𝑛-functor and ℎ : 𝑋 → 𝐷𝑛+1 is a map preserving
the globular structure. This amounts to a commutative diagram in Cat𝑛+1 of
the form

∐
𝑖∈𝐼 𝜕O𝑛+1

𝑋 //

∐
𝑖∈𝐼 i𝑛+1

��

𝐶

�̃�

��∐
𝑖∈𝐼 O𝑛+1

ℎ̃

// 𝐷,

where �̃� and ℎ̃ are the (𝑛 + 1)-functors built from 𝑔 and ℎ respectively. The
pushout property then gives a unique morphism 𝑓 ∗ : 𝐿𝑛 (𝐶, 𝑋) → 𝐷 making
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the following diagram commutative:
∐
𝑖∈𝐼 𝜕O𝑛+1

𝑋 //

∐
𝑖∈𝐼 i𝑛+1

��

𝐶

�� �̃�

��

∐
𝑖∈𝐼 O𝑛+1 //

ℎ̃ ..

𝐿𝑛 (𝐶, 𝑋)
𝑓 ∗

$$
𝐷.

The correspondence 𝑓 ↦→ 𝑓 ∗ is then a natural isomorphism

Cat+𝑛 ((𝐶, 𝑋),𝑊𝑛 (𝐷)) ≃ // Cat𝑛+1 (𝐿𝑛 (𝐶, 𝑋), 𝐷) ,

which ends the proof. □

15.1.4 Remark. There are several approaches to the construction of the above
functor 𝐿𝑛. On the abstract side, its existence comes from the fact that 𝑊𝑛
is a limit and filtered colimit preserving functor between locally presentable
categories, see [142, 14.6], [26, Theorem 4.1] or [2, 1.66]. More concretely, a
purely syntactic construction of 𝐿𝑛 based on a type system is given in [279].
An alternative construction is given in Appendix D.

Given a cellular extension (𝐶, 𝑋) of an 𝑛-category 𝐶, we call 𝐿𝑛 (𝐶, 𝑋) the
freely generated (𝑛 + 1)-category on this extension, and denote it by 𝐶 [𝑋]. In
practice, the universal property of 𝐶 [𝑋] will be used by applying the following
lemma.

15.1.5 Lemma. Let (𝐶, (𝑋𝑖)𝑖∈𝐼 ) be a cellular extension of an 𝑛-category 𝐶.
For every (𝑛 + 1)-category 𝐷, every morphism 𝑔 : 𝐶 → 𝑈𝑛+1𝑛 (𝐷) of Cat𝑛 and
every map ℎ : 𝐼 → 𝐷𝑛+1 making (𝑔, ℎ) a morphism of cellular extensions, there
exists a unique morphism 𝑔 : 𝐶 [𝑋] → 𝐷 in Cat𝑛+1 such that𝑊𝑛 (𝑔) = (𝑔, ℎ).
Proof. The statement of the lemma is a mere rephrasing of the fact that 𝐿𝑛 is
left adjoint to𝑊𝑛. □

15.1.6 Quotient category. For any cellular extension (𝐶, 𝑋) of an 𝑛-cate-
gory 𝐶, the quotient 𝑛-category 𝐶/𝑋 is the 𝑛-category obtained from 𝐶 by
identifying 𝑛-cells under the smallest congruence (with respect to compositions
and identities) containing all spheres (𝑥, 𝑦) in 𝑋 . More precisely,𝐶/𝑋 is nothing
but𝑈𝑛+1𝑛 (𝐶 [𝑋]) were𝑈 is the truncation functor already described in §14.4.6.

15.1.7 𝑛-polygraphs. We already gave an explicit description of 𝑛-polygraphs
for 0 ⩽ 𝑛 ⩽ 3 in previous chapters. We now turn to the general definition. Thus,
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the category Pol𝑛 of 𝑛-polygraphs is defined by induction on 𝑛, together with a
functor 𝐹𝑛 : Pol𝑛 → Cat𝑛.

– The category Pol0 is Set = Cat0 and 𝐹0 = 1.
– Given Pol𝑛 and 𝐹𝑛 : Pol𝑛 → Cat𝑛, the category Pol𝑛+1 is defined by the

following pullback in CAT

Pol𝑛+1
𝐽𝑛 //

𝑈𝑛+1
𝑛

��

Cat+𝑛

��

Pol𝑛
𝐹𝑛
// Cat𝑛,

whereas 𝐹𝑛+1 is 𝐿𝑛𝐽𝑛:

Pol𝑛+1
𝐽𝑛
//

𝐹𝑛+1
**

Cat+𝑛 𝐿𝑛
// Cat𝑛+1 .

More explicitly, an (𝑛 + 1)-polygraph 𝑃 (𝑛+1) is a pair (𝑃 (𝑛) , 𝑋) where 𝑃 (𝑛) is
an 𝑛-polygraph and 𝑋 is a cellular extension of the 𝑛-category 𝐹𝑛 (𝑃 (𝑛) ). The
first projection of the pullback yields a truncation functor Pol𝑛+1 → Pol𝑛 we
still denote by𝑈𝑛+1𝑛 as in the case of 𝑛-globular sets and 𝑛-categories. Note also
that the following square commutes:

Pol𝑛

𝐹𝑛
��

Pol𝑛+1
𝑈𝑛+1

𝑛oo

𝐹𝑛+1
��

Cat𝑛 Cat𝑛+1.
𝑈𝑛+1

𝑛

oo

For each 𝑛-polygraph 𝑃 and 𝑘 < 𝑛, the polygraph𝑈𝑘+1𝑘 ◦ · · · ◦𝑈𝑛𝑛−1 (𝑃) will be
denoted by 𝑃⩽𝑘 . Thus, the data defining an 𝑛-polygraph 𝑃 may be displayed in
the following diagram in Set:

𝑃0

𝑖0

��

𝑃1
𝑠0

}}
𝑡0

}}

𝑖1

��

𝑃2
𝑠1

}}
𝑡1

}}

𝑖2

��

𝑠2

��
𝑡2

��

. . . 𝑃𝑛−1
𝑠𝑛−2

{{
𝑡𝑛−2

{{

𝑖𝑛−1

��

𝑃𝑛
𝑠𝑛−1

||
𝑡𝑛−1

||
𝑃∗0 𝑃∗1

𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo

𝑠∗2oo

𝑡∗2
oo . . . 𝑃∗𝑛−1

𝑠∗𝑛−2oo

𝑡∗𝑛−2

oo

where, for each 0 ⩽ 𝑘 < 𝑛 − 1, 𝑠∗𝑘 ◦ 𝑖𝑘+1 = 𝑠𝑘 and 𝑡∗𝑘 ◦ 𝑖𝑘+1 = 𝑡𝑘 . Also, at each
level 𝑘 ⩽ 𝑛, 𝑘 > 0, we add a new set 𝑃𝑘 of 𝑘-generators together with source
and target maps

𝑠𝑘−1, 𝑡𝑘−1 : 𝑃𝑘 → 𝑃∗𝑘−1
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such that

𝑠∗𝑘−2 ◦ 𝑠𝑘−1 = 𝑠∗𝑘−2 ◦ 𝑡𝑘−1 𝑡∗𝑘−2 ◦ 𝑡𝑘−1 = 𝑡∗𝑘−2 ◦ 𝑡𝑘−1 (15.2)

for 𝑘 > 2, thus defining a 𝑘-cellular extension of the (𝑘 − 1)-category 𝑃∗⩽𝑘−1

𝑃∗0 𝑃∗1
𝑠∗0oo

𝑡∗0
oo 𝑃∗2

𝑠∗1oo

𝑡∗1
oo

𝑠∗2oo

𝑡∗2
oo . . . 𝑃∗𝑘−1

𝑠∗𝑘−2oo

𝑡∗𝑘−2

oo

already defined at the previous level. The vertical map 𝑖𝑘 is the natural inclusion
of the set 𝑃𝑘 of 𝑘-generators into the set 𝑃∗𝑘 of 𝑘-cells of the free 𝑘-category
on the cellular extension of 𝑃∗⩽𝑘−1 by 𝑠𝑘−1, 𝑡𝑘−1 : 𝑃𝑘 → 𝑃∗𝑘−1. Formally, 𝑖𝑘
is the 𝑘-dimensional component of the unit of the monad 𝑊𝑘−1𝐿𝑘−1 on this
cellular extension. Concretely, the cells in 𝑃∗𝑘 are all formal compositions of
𝑘-generators in 𝑃𝑘 and units on cells in 𝑃∗𝑘−1, quotiented by the axioms of
𝑘-categories.

15.1.8 Proposition. Let 𝑃 be an 𝑛-polygraph and let 0 < 𝑘 < 𝑛. Suppose that
𝐴 ⊆ 𝑃∗𝑘 is a subset of 𝑃∗𝑘 such that

– 𝑖𝑘 (𝑃𝑛) ⊆ 𝐴,
– 𝐴 contains all cells of the form 1𝑘𝑢 for 𝑢 ∈ 𝑃∗𝑘−1,
– for each 𝑖 ∈ {0, ..., 𝑘 − 1} and each pair 𝑢, 𝑣 ∈ 𝐴 of ∗𝑖-composable cells, 𝐴

contains their ∗𝑖-composition 𝑢 ∗𝑖 𝑣.
Then 𝐴 = 𝑃∗𝑘 .

Proof. Let 𝐶 be the 𝑘-category whose (𝑘 − 1)-truncation is 𝑃∗⩽𝑘−1 and such
that 𝐶𝑘 = 𝐴, with source and target maps 𝐴 → 𝑃∗𝑘−1 given by the restriction
of 𝑠𝑘−1, 𝑡𝑘−1 : 𝑃∗𝑘 → 𝑃∗𝑘−1. By hypothesis, 𝐶 is a sub-𝑘-category of 𝑃∗⩽𝑘 , and
there is an inclusion morphism 𝑗 : 𝐶 → 𝑃∗⩽𝑘 . On the other hand, the inclusion
𝑖𝑘 : 𝑃𝑘 → 𝐴 determines a unique morphism 𝑓 : 𝑃∗⩽𝑘 → 𝐶 by Lemma 15.1.5.
Now 𝑗 ◦ 𝑓 : 𝑃∗⩽𝑘 → 𝑃∗⩽𝑘 is the identity on 𝑃∗⩽𝑘 , by the uniqueness property
from Lemma 15.1.5. This implies that 𝑗𝑘 ◦ 𝑓𝑘 : 𝑃∗𝑘 → 𝑃∗𝑘 is the identity on 𝑃∗𝑘 ,
whence 𝑗𝑘 is surjective. Therefore 𝐴 = 𝑃∗𝑘 . □

15.1.9 Structural induction. Proposition 15.1.8 allows reasoning by struc-
tural induction on the cells of freely generated 𝜔-categories. Precisely, in order
to prove that a certain property 𝐴 holds for all cells in 𝑃∗𝑘 , it suffices to check
that

– 𝐴 holds for all units 1𝑣 where 𝑣 ∈ 𝑃∗𝑘−1,
– 𝐴 holds for all generating cells of the form 𝑖𝑘 (𝑎) for 𝑎 ∈ 𝑃𝑘 ,
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– whenever 𝐴 holds for two 𝑖-composable cells 𝑢 and 𝑣, then 𝐴 holds for
𝑤 = 𝑢 ∗𝑖 𝑣.

15.1.10 𝜔-polygraphs. The category Pol𝜔 of 𝜔-polygraphs (or simply poly-
graphs) is the projective limit of the following diagram in CAT:

Pol0 Pol1
𝑈1

0oo · · ·oo Pol𝑛oo Pol𝑛+1
𝑈𝑛+1

𝑛oo · · ·oo .

Thus, as in the case of globular sets and 𝜔-categories, we get a family of
truncation functors 𝑈𝑛 : Pol𝜔 → Pol𝑛. Also, keeping the above notations,
for each 𝜔-polygraph 𝑃 and integer 𝑛, the 𝑛-polygraph 𝑈𝑛 (𝑃) will be denoted
by 𝑃⩽𝑛. Likewise, for each 𝑛, any morphism 𝑓 : 𝑃 → 𝑄 in Pol𝜔 gives rise by
truncation to a morphism 𝑓⩽𝑛 : 𝑃⩽𝑛 → 𝑄⩽𝑛.

15.2 Three adjunctions

This section investigates some fundamental adjunctions between the categories
Pol𝜔 , Cat𝜔 and Glob𝜔 . We have already examined the monadic adjunction
between Cat𝜔 and Glob𝜔 (see Propositions 14.2.7 and 14.4.3). We now turn
to two further important pairs of adjoint functors.

15.2.1 For each 𝑛 ∈ N, we first define a functor 𝐺𝑛 : Cat𝑛 → Pol𝑛 together
with a natural transformation 𝜀 : 𝐹𝑛𝐺𝑛 → 1.

Thus, let 𝐶 be an 𝑛-category. The 𝑛-polygraph 𝑃 = 𝐺𝑛 (𝐶), as well as 𝜀𝐶 ,
are defined dimensionwise as follows:

– The set 𝑃0 = (𝐺𝑛 (𝐶))0 is just 𝐶0 = (𝐹𝑛 (𝑃))0, and (𝜀𝐶 )0 is the identity.
– Suppose 𝑃 and 𝜀𝐶 have been defined up to dimension 𝑘 < 𝑛. The set 𝑃𝑘+1

of (𝑘 + 1)-generators then consists in triples 𝑝 = (𝑧, 𝑥, 𝑦) where 𝑥, 𝑦 are
parallel 𝑘-cells in 𝑃∗𝑘 = (𝐹𝑛𝐺𝑛 (𝐶))𝑘 and 𝑧 is a (𝑘 + 1)-cell in 𝐶𝑘+1 of the
form 𝑧 : 𝜀𝐶 (𝑥) → 𝜀𝐶 (𝑦). The source and target maps

𝑠𝑘 , 𝑡𝑘 : 𝑃𝑘+1 → 𝑃∗𝑘

are given by 𝑠𝑘 (𝑝) = 𝑥 and 𝑡𝑘 (𝑝) = 𝑦, and 𝜀𝐶 extends to 𝑃𝑘+1 by 𝜀𝐶 (𝑝) = 𝑧.
Thus 𝑃 is now defined up to dimension 𝑘 +1 and by applying Lemma 15.1.5,
the map 𝜀𝐶 extends to 𝑃∗𝑘+1, yielding a (𝑘 + 1)-functor.

Likewise, 𝐺𝑛 is defined on morphisms. Functoriality of 𝐺𝑛 and naturality of 𝜀
immediately follow from the construction.

15.2.2 Lemma. For each 𝑛 ∈ N, the functor 𝐺𝑛 is right adjoint to 𝐹𝑛.
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Proof. It is sufficient to check that the natural transformation 𝜀, which becomes
of course the counit of the adjunction, satisfies the following universal property:
for any 𝑛-functor 𝑓 : 𝐹𝑛 (𝑃) → 𝐶, where 𝑃 is an 𝑛-polygraph and 𝐶 an
𝑛-category, there is a unique morphism 𝑔 : 𝑃 → 𝐺𝑛 (𝐶) in Pol𝑛 such that the
following triangle commutes:

𝐹𝑛𝐺𝑛 (𝐶)
𝜀𝐶

��

𝐹𝑛 (𝑃)
𝑓

//

𝐹𝑛 (𝑔)
99

𝐶.

Here again 𝑔 is built by induction on all dimensions 0 ⩽ 𝑘 ⩽ 𝑛. For 𝑘 = 0, we
must have 𝑔0 = 𝑓0. Suppose now that 𝑔 has been defined up to dimension 𝑘 < 𝑛,
satisfying the commutation condition. Let 𝑝 ∈ 𝑃𝑘+1 be a (𝑘 + 1)-generator of
𝑃, 𝑢 = 𝑠𝑘 (𝑝), and 𝑣 = 𝑡𝑘 (𝑝) in 𝑃∗𝑘 . The induction hypothesis and the definition
of 𝜀 imply that 𝑔(𝑝) = ( 𝑓 (𝑝), 𝑢, 𝑣). Now Lemma 15.1.5 applies, and we
may extend 𝐹𝑛 (𝑔) up to a (𝑘 + 1)-functor still satisfying the commutation
condition. □

15.2.3 Consider now the diagram

Pol0

𝐹0
��

Pol1
𝑈1

0oo

𝐹1
��

· · ·oo Pol𝑛oo

𝐹𝑛
��

Pol𝑛+1
𝑈𝑛+1

𝑛oo

𝐹𝑛+1
��

· · ·oo

Cat0

𝐺0

OO

Cat1
𝑈1

0oo

𝐺1

OO

· · ·oo Cat𝑛oo

𝐺𝑛

OO

Cat𝑛+1
𝑈𝑛+1

𝑛oo

𝐺𝑛+1

OO

· · ·oo

where the squares involving 𝐹 and the squares involving 𝐺 commute. The
projective limit of the top row is the category Pol𝜔 and the projective limit
of the bottom row is the category Cat𝜔 . Therefore we get a pair of functors
𝐹 : Pol𝜔 → Cat𝜔 and𝐺 : Cat𝜔 → Pol𝜔 such that, for each 𝑛,𝐹𝑛◦𝑈𝑛 = 𝑈𝑛◦𝐹
and 𝐺𝑛 ◦𝑈𝑛 = 𝑈𝑛 ◦ 𝐺. Moreover 𝐹 is left adjoint to 𝐺. For any polygraph 𝑃,
𝐹 (𝑃) is the freely generated 𝜔-category on 𝑃 and will be denoted by 𝑃∗.

15.2.4 Let us now define a pair of adjoint functors between categories Pol𝜔
and Glob𝜔 . Consider first the functor 𝑁 : Pol𝜔 → Glob𝜔 which takes a poly-
graph 𝑃 to a globular set 𝑋 by keeping only “hereditary globular” generators.
Precisely, let 𝑃 be a polygraph, we define the globular set 𝑋 = 𝑁 (𝑃) dimen-
sionwise, such that for each 𝑛 ∈ N, 𝑋𝑛 ⊆ 𝑃𝑛; recall that 𝑖𝑘 : 𝑃𝑘 → 𝑃∗𝑘 denotes
the canonical insertion of 𝑘-generators into 𝑘-cells:

– For 𝑛 = 0, 𝑋0 = 𝑃0.
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– Let 𝑛 > 0 and suppose we have defined 𝑋𝑘 ⊆ 𝑃𝑘 for all 𝑘 < 𝑛, together
with source and target maps building an (𝑛 − 1)-globular set. Let 𝑋𝑛 ⊆ 𝑃𝑛
be the set of 𝑛-generators 𝑎 of 𝑃 such that 𝑠𝑛−1 (𝑎) and 𝑡𝑛−1 (𝑎) belong to
𝑖𝑛−1 (𝑋𝑛−1) and define source and target maps 𝑠𝑋𝑛−1, 𝑡

𝑋
𝑛−1 : 𝑋𝑛 → 𝑋𝑛−1 as the

unique maps such that 𝑖𝑛−1𝑠
𝑋
𝑛−1 (𝑎) = 𝑠𝑛−1 (𝑎) and 𝑖𝑛−1𝑡

𝑋
𝑛−1 (𝑎) = 𝑡𝑛−1 (𝑎) for

each 𝑎 ∈ 𝑋𝑛. This extends 𝑋 to an 𝑛-globular set, as shown in the following
diagram:

𝑋𝑛

𝑡𝑋𝑛−1
��

𝑠𝑋𝑛−1
��

� � // 𝑃𝑛
𝑡𝑛−1

##𝑠𝑛−1
##

𝑋𝑛−1
� � // 𝑃𝑛−1 𝑖𝑛−1

// 𝑃∗𝑛−1.

The previous construction is clearly functorial and defines the required func-
tor 𝑁 . Remark that 𝑁 admits a left adjoint 𝑀 : Glob𝜔 → Pol𝜔 which takes the
globular set 𝑋 to a polygraph 𝑃 such that 𝑃𝑛 = 𝑋𝑛, in other words 𝑀 defines a
natural inclusion of Glob𝜔 into Pol𝜔 .

15.2.5 Lemma. There is a natural isomorphism 𝜙 : 𝑁𝐺 → 𝑉 , that is, the
diagram

Cat𝜔
𝐺 //

𝑉

��

Pol𝜔

𝑁
zz

Glob𝜔

commutes up to a natural isomorphism.

Proof. Let 𝐶 be an 𝜔-category, and 𝑋 = 𝑁𝐺 (𝐶). For each 𝑛 ∈ N, let
𝜙𝐶𝑛 : 𝑋𝑛 → 𝐶𝑛 be the composition of the following maps

𝑋𝑛
� � // 𝐺 (𝐶)𝑛 𝑖𝑛 // 𝐹𝐺 (𝐶)𝑛

(𝜀𝐶 )𝑛 // 𝐶𝑛.

The family (𝜙𝐶𝑛 )𝑛∈N defines a globular morphism 𝜙𝐶 : 𝑁𝐺 (𝐶) → 𝑉 (𝐶),
natural in 𝐶. Thus we get a natural transformation 𝜙 : 𝑁𝐺 → 𝑉 .

Let us now define 𝜒𝐶𝑛 : 𝐶𝑛 → 𝑋𝑛 by induction on 𝑛 such that 𝜙𝐶𝑛 ◦𝜒𝐶𝑛 = 1𝐶𝑛 :

– For 𝑛 = 0, 𝑋0 = 𝐶0 and 𝜙𝐶0 = 1𝐶0 = 1𝑋0 , so that 𝜒𝐶0 : 𝐶0 → 𝑋0 is also
1𝐶0 = 1𝑋0 .

– Suppose 𝑛 > 0 and 𝜒𝐶𝑘 has been defined up to 𝑘 = 𝑛 − 1, and let 𝑧 ∈ 𝐶𝑛.
Let 𝑢 = 𝑠𝑛−1 (𝑧) and 𝑣 = 𝑡𝑛−1 (𝑧) in 𝐶𝑛−1. By induction hypothesis, 𝜒𝐶𝑛−1 (𝑢)
and 𝜒𝐶𝑛−1 (𝑣) belong to 𝑋𝑛−1. Let 𝑥 = 𝑖𝑛−1𝜒

𝐶
𝑛−1 (𝑢), 𝑦 = 𝑖𝑛−1𝜒

𝐶
𝑛−1 (𝑣) in

𝐹𝐺 (𝐶)𝑛−1 and define 𝑎 = 𝜒𝐶𝑛 (𝑧) = (𝑧, 𝑥, 𝑦). By construction 𝑎 ∈ 𝑋𝑛 and
𝜙𝐶𝑛 (𝑎) = 𝑧.
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It remains to prove that 𝜙𝐶𝑛 is injective. We reason again by induction on 𝑛.

– For 𝑛 = 0, 𝜙𝐶0 is an identity, hence injective.
– Suppose 𝑛 > 0 and 𝜙𝐶𝑛−1 injective. Let 𝑎𝑖 = (𝑧𝑖 , 𝑥𝑖 , 𝑦𝑖) ∈ 𝑋𝑛 for 𝑖 = 0, 1 such

that 𝜙𝐶𝑛 (𝑎0) = 𝜙𝐶𝑛 (𝑎1). Thus 𝑧0 = 𝑧1. Also

𝜙𝐶𝑛−1 (𝑠𝑋𝑛−1 (𝑎0)) = 𝑠𝑛−1 (𝜙𝐶𝑛 (𝑎0))
= 𝑠𝑛−1 (𝜙𝐶𝑛 (𝑎1))
= 𝜙𝐶𝑛−1 (𝑠𝑋𝑛−1 (𝑎1))

and because 𝜙𝐶𝑛−1 is injective,

𝑠𝑋𝑛−1 (𝑎0) = 𝑠𝑋𝑛−1 (𝑎1).
Now

𝑥0 = 𝑠𝑛−1 (𝑎0)
= 𝑖𝑛−1𝑠

𝑋
𝑛−1 (𝑎0)

= 𝑖𝑛−1𝑠
𝑋
𝑛−1 (𝑎1)

= 𝑠𝑛−1 (𝑎1)
= 𝑥1.

Likewise 𝑦0 = 𝑦1, and we get 𝑎0 = 𝑎1. Hence 𝜙𝐶𝑛 is injective and we are
done. □

15.3 (𝑛, 𝑝)-polygraphs

In the same way as an 𝑛-polygraph generates an 𝑛-category, we may define, for
each 𝑛 ⩾ 𝑝, a notion of (𝑛, 𝑝)-polygraph generating an (𝑛, 𝑝)-category. The
particular case where 𝑛 = 3 and 𝑝 = 1 has been already used to define coherent
presentations of categories in Chapter 7. Remark that the construction of the
left adjoint in Proposition 15.1.3 applies to the case where Cat𝑛 is replaced
by Cat𝑛,𝑝 , as in the following diagram:

Cat𝑛+1, 𝑝

))

��
𝑊 ′𝑛 ,,

⊥

Cat+𝑛,𝑝

𝐿′𝑛
kk

��

// Glob𝑛+1

��

Cat𝑛,𝑝 // Glob𝑛.
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Here Cat+𝑛,𝑝 is defined as above by the pullback square of the obvious for-
getful functors. We may now define the category Pol𝑛,𝑝 of (𝑛, 𝑝)-polygraphs,
together with a functor 𝐹′𝑛 : Pol𝑛,𝑝 → Cat𝑛,𝑝 taking an (𝑛, 𝑝)-polygraph to
the (𝑛, 𝑝)-category it generates. The definition is by induction on 𝑛 ⩾ 𝑝.

– For 𝑛 = 𝑝, Pol𝑛,𝑝 is just Pol𝑝 , and 𝐹′𝑛 is 𝐹𝑝 , as Cat𝑛,𝑝 is just Cat𝑝 .
– Given Pol𝑛,𝑝 and 𝐹′𝑛 : Pol𝑛,𝑝 → Cat𝑛,𝑝 , the category Pol𝑛+1, 𝑝 is defined

by the following pullback in CAT:

Pol𝑛+1, 𝑝
𝐽 ′𝑛 //

𝑈′𝑛+1,𝑛
��

Cat+𝑛,𝑝

��

Pol𝑛,𝑝
𝐹′𝑛
// Cat𝑛,𝑝 ,

whereas 𝐹′𝑛+1 is 𝐿′𝑛𝐽′𝑛:

Pol𝑛+1, 𝑝
𝐽 ′𝑛
//

𝐹′𝑛+1
**

Cat+𝑛,𝑝 𝐿′𝑛
// Cat𝑛+1, 𝑝 .

Concretely, let (𝑃𝑘)0⩽𝑘⩽𝑛 the sequence of 𝑘-dimensional generators of an
(𝑛, 𝑝)-polygraph 𝑃, and 𝐶 be the (𝑛, 𝑝)-category generated by 𝑃, we shall
denote 𝐶𝑘 by 𝑃∗𝑘 for 0 ⩽ 𝑘 ⩽ 𝑝 and by 𝑃⊤𝑘 for 𝑝 < 𝑘 ⩽ 𝑛. Note that in the
latter case, 𝑃⊤𝑘 contains all composites and inverses of the generators in 𝑃𝑘 .
As for 𝑛-polygraphs in §15.1.7, the data defining an (𝑛, 𝑝)-polygraph 𝑃 may be
displayed in the following diagram in Set:

𝑃0

𝑖0

��

. . .

�� ��

𝑃𝑝

�� ��

𝑖𝑝

��

𝑃𝑝+1
𝑠𝑝

~~
𝑡𝑝

~~

𝑖𝑝+1
��

𝑃𝑝+2
𝑠𝑝+1

{{
𝑡𝑝+1

{{

. . . 𝑃𝑛−1

{{
{{

𝑖𝑛−1

��

𝑃𝑛
𝑠𝑛−1

}}
𝑡𝑛−1

}}

𝑃∗0 . . .oo
oo 𝑃∗𝑝

oo
oo 𝑃⊤𝑝+1

𝑠∗𝑝
oo

𝑡∗𝑝
oo . . . . . . 𝑃⊤𝑛−1.oo

oo

Finally, as in the case of (plain) polygraphs, we may define a category Pol𝜔,𝑝
of (𝜔, 𝑝)-polygraphs as the projective limit of the system (Pol𝑛,𝑝 ,𝑈𝑛+1,𝑛)𝑛⩾𝑝 .



16
Properties of the category of 𝑛-polygraphs

In this chapter, we establish the main properties of the category Pol𝑛 of
𝑛-polygraphs. We first show how to compute limits and colimits and prove
that Pol𝑛 is complete and cocomplete for any 𝑛 ⩾ 0. The behavior of the carte-
sian product deserves a special attention in that it does not correspond to the
product of generators. The monomorphisms (resp. epimorphisms) in Pol𝑛 are
then characterized as injective (resp. surjective) maps between generators. The
linearization of polygraphic expressions plays a central role in proving these
facts. Whereas Pol𝑛 is a presheaf category for 𝑛 ∈ {0, 1, 2}, it already fails to be
cartesian closed for 𝑛 ⩾ 3, as proved in [265], the culprit for this defect being
as usual the Eckmann-Hilton phenomenon. The categories Pol𝑛 are however
locally presentable for all 𝑛 ∈ N ∪ {𝜔}. We introduce the technical notion of
context, in relation with 𝑛-dimensional rewriting, and use it to prove that if an
𝜔-category is freely generated by a polygraph then this polygraph is unique
up to isomorphism. Finally, we show how to define rewriting properties of
𝑛-polygraphs and to prove coherence results by rewriting on (𝑛− 1)-categories
presented by convergent 𝑛-polygraphs.

16.1 Limits and colimits

16.1.1 Terminal object. The category Pol𝜔 has a terminal object 1pol, de-
fined as the image of the terminal 𝜔-category 1cat by the right adjoint functor
𝐺 : Cat𝜔 → Pol𝜔 . Concretely, (1pol)0 consists in a single 0-cell, whereas for
each 𝑛 > 0, the set (1pol)𝑛 of 𝑛-generators consists in all pairs (𝑢, 𝑣) of paral-
lel cells in (1pol)∗𝑛−1. Thus 1pol has exactly one 0-generator, one 1-generator,
and infinitely many 𝑛-generators for each 𝑛 ⩾ 2. A detailed description in the
case 𝑛 = 2 can be found in [338].

347
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16.1.2 Products. Let 𝑃, 𝑄 be a pair of polygraphs, and !𝑃 : 𝑃 → 1pol,
!𝑄 : 𝑄 → 1pol the canonical morphisms from 𝑃, 𝑄 to the terminal object. We
define a polygraph 𝑅, together with morphisms 𝑝 : 𝑅 → 𝑃, 𝑞 : 𝑅 → 𝑄, by
induction on the dimension.

– For 𝑛 = 0, 𝑅0 = 𝑃0 × 𝑄0 and 𝑝0 : 𝑅0 → 𝑃0, 𝑞0 : 𝑅0 → 𝑄0 are the usual
projection maps.

– Let 𝑛 > 0 and suppose 𝑅, 𝑝, 𝑞 have been defined up to dimension 𝑛− 1. The
set 𝑅𝑛 of 𝑛-generators consists of quadruples

𝑐 = (𝑎, 𝑏, 𝑢, 𝑣) ∈ 𝑃𝑛 ×𝑄𝑛 × 𝑅∗𝑛−1 × 𝑅∗𝑛−1

such that !𝑃𝑛 (𝑎) =!𝑄𝑛 (𝑏) and 𝑢, 𝑣 are parallel cells satisfying the equations
𝑝∗𝑛−1𝑢 = 𝑠𝑛−1 (𝑎), 𝑞∗𝑛−1𝑢 = 𝑠𝑛−1 (𝑏), 𝑝∗𝑛−1𝑣 = 𝑡𝑛−1 (𝑎) and 𝑞∗𝑛−1𝑣 = 𝑡𝑛−1 (𝑏).
The projection maps are defined by 𝑝𝑛𝑐 = 𝑎 and 𝑞𝑛𝑐 = 𝑏. The source and tar-
get maps 𝑠𝑛−1, 𝑡𝑛−1 : 𝑅𝑛 → 𝑅∗𝑛−1 are defined by 𝑠𝑛−1 (𝑟) = 𝑢 and 𝑡𝑛−1 (𝑟) = 𝑣.

Now the following square is a pullback in Pol𝜔:

𝑅
𝑝
//

𝑞

��

𝑃

!𝑃
��

𝑄
!𝑄
// 1pol.

In fact, let 𝑆 be a polygraph and 𝑓 : 𝑆 → 𝑃, 𝑔 : 𝑆 → 𝑄 morphisms such that
the following diagram commutes:

𝑆
𝑓
//

𝑔

��

𝑃

!𝑃
��

𝑄
!𝑄
// 1pol.

(16.1)

We show that there is a unique morphism ℎ : 𝑆 → 𝑅 making the following
diagram commute, for each 𝑛 ⩾ 0:

𝑆⩽𝑛

ℎ⩽𝑛

""

𝑓⩽𝑛

%%

𝑔⩽𝑛

��

𝑅⩽𝑛 𝑝⩽𝑛
//

𝑞⩽𝑛

��

𝑃⩽𝑛

!𝑃⩽𝑛
��

𝑄⩽𝑛
!𝑄⩽𝑛

// 1pol
⩽𝑛.

(16.2)



16.1 Limits and colimits 349

Let us build ℎ and prove its uniqueness by induction on 𝑛.

– If 𝑛 = 0, 𝑅0 = 𝑃0 × 𝑄0, ℎ0 : 𝑆0 → 𝑅0 takes 𝑐 ∈ 𝑆0 to ( 𝑓0𝑐, 𝑔0𝑐) and this
choice is unique.

– Let 𝑛 ⩾ 0 and suppose that ℎ has been defined up to dimension 𝑛 such
that (16.2) commutes. We extend ℎ to dimension 𝑛 + 1 as follows: given
𝑐 ∈ 𝑆𝑛+1, we define ℎ𝑛+1𝑐 = (𝑎, 𝑏, 𝑢, 𝑣) where

𝑎 = 𝑓𝑛+1𝑐, (16.3)
𝑏 = 𝑔𝑛+1𝑐, (16.4)
𝑢 = ℎ∗𝑛𝑠𝑛 (𝑐), (16.5)
𝑣 = ℎ∗𝑛𝑡𝑛 (𝑐). (16.6)

The equations (16.3) to (16.6) ensure that ℎ𝑛+1𝑐 ∈ 𝑅𝑛 and that the globular re-
lations 𝑠𝑛 (ℎ𝑛+1𝑐) = ℎ∗𝑛𝑠𝑛 (𝑐) and 𝑡𝑛 (ℎ𝑛+1𝑐) = ℎ∗𝑛𝑡𝑛 (𝑐) hold, so that ℎ extends
to a morphism up to dimension 𝑛 + 1. Moreover, this extension now satisfies
the required commutation conditions 𝑓 = 𝑝ℎ and 𝑔 = 𝑞ℎ up to dimen-
sion 𝑛 + 1. Conversely, the commutation conditions imply (16.3) and (16.4),
and the requirement that ℎ be a morphism implies (16.5) and (16.6). Hence,
the above choice for ℎ𝑛+1𝑐 is unique and we are done.

Therefore 𝑅 is the cartesian product 𝑃 × 𝑄 in Pol𝜔 . It should be emphasized
that generally, from 𝑛 = 2 on, the map (𝑎, 𝑏, 𝑢, 𝑣) ↦→ (𝑎, 𝑏) from 𝑅𝑛 to 𝑃𝑛×𝑄𝑛
is not surjective, and from 𝑛 = 3 on, not injective either. For example, if

𝑃 = ⟨ ⋆1, ⋆2 | 𝑎, 𝑏 : ⋆1 → ⋆2 | 𝑓 : 𝑎 → 𝑏 ⟩ ,
𝑄 = ⟨ ⋆1, ⋆2, ⋆3 | 𝑎 : ⋆1 → ⋆2, 𝑏 : ⋆2 → ⋆3, 𝑐 : ⋆1 → ⋆3 | 𝑔 : 𝑎 ∗0 𝑏 → 𝑐 ⟩

and 𝑅 = 𝑃 × 𝑄, then 𝑅2 = ∅ and 𝑃2 × 𝑄2 = {( 𝑓 , 𝑔)}, thus showing that
𝑅2 → 𝑃2 × 𝑄2 is not surjective. Another example of non-injectivity is given
in 16.3.2 below. A similar proof shows that Pol𝜔 has all small products

∏
𝑖∈𝐼 𝑃𝑖 .

16.1.3 Equalizers. Let 𝑃, 𝑄 be polygraphs and 𝑓 , 𝑔 : 𝑃 → 𝑄 be two mor-
phisms in Pol𝜔 . For each 𝑛 ∈ N, we define a subset of 𝑃𝑛 by

𝑅𝑛 = {𝑎 ∈ 𝑃𝑛 | 𝑓 (𝑎) = 𝑔(𝑎)} .
As the inclusions 𝑗𝑛 : 𝑅𝑛 → 𝑃𝑛 commute with the source and target maps,
this defines a polygraph 𝑅 together with a morphism 𝑗 : 𝑅 → 𝑃 in Pol𝜔 . Now
𝑗 : 𝑅 → 𝑃 is clearly an equalizer of the pair ( 𝑓 , 𝑔) in Pol𝜔 .

16.1.4 Coproducts. The coproducts in Pol𝜔 are built by taking the coproducts
of the corresponding sets of 𝑛-generators in each dimension 𝑛. Thus, if (𝑃𝑖)𝑖∈𝐼 is
a family of polygraphs, we have for each dimension 𝑛, (∐𝑖∈𝐼 𝑃𝑖)𝑛 =

∐
𝑖∈𝐼 𝑃𝑖𝑛.
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16.1.5 Coequalizers. Let 𝑃, 𝑄 be two polygraphs and 𝑓 , 𝑔 : 𝑃 → 𝑄 be a
pair of morphisms in Pol𝜔 . We first build, for each 𝑛 ∈ N, a coequalizer
𝑘𝑛 : 𝑄𝑛 → 𝑅𝑛 of the pair ( 𝑓𝑛, 𝑔𝑛) in Set:

𝑃𝑛
𝑓𝑛
//

𝑔𝑛
// 𝑄𝑛

𝑘𝑛 // 𝑅𝑛.

Concretely, there is a binary relation on 𝑄𝑛 defined by 𝑏 {𝑛 𝑏
′ if and only

if there is an 𝑎 ∈ 𝑃𝑛 such that 𝑏 = 𝑓𝑛 (𝑎) and 𝑏′ = 𝑔𝑛 (𝑎). If ∼𝑛 is the
smallest equivalence relation on 𝑄𝑛 containing{𝑛, then 𝑅𝑛 is the set 𝑄𝑛/∼𝑛
of equivalence classes of ∼𝑛 and 𝑘𝑛 is the canonical surjection.

We now define, by induction on 𝑛, a polygraph 𝑅 with 𝑅𝑛 as the set
of 𝑛-generators, together with a morphism 𝑘 : 𝑄 → 𝑅 in Pol𝜔 whose
𝑛-dimensional component is the above 𝑘𝑛.

– For 𝑛 = 0, we just take 𝑅0 and 𝑘0 as above, and there is nothing to prove.
– Let 𝑛 > 0 and suppose that the polygraph 𝑅 has been constructed up to

dimension 𝑛 − 1, together with the morphism 𝑘 : 𝑄 → 𝑅 and that, for all
0 ⩽ 𝑖 < 𝑛, 𝑘∗𝑖 𝑓

∗
𝑖 = 𝑘∗𝑖 𝑔

∗
𝑖 . Taking 𝑅𝑛 as above, we have to define source and

target maps 𝑠𝑛−1, 𝑡𝑛−1 : 𝑅𝑛 → 𝑅∗𝑛−1. Consider the following diagram

𝑃𝑛
𝑓𝑛
//

𝑔𝑛
//

𝑠𝑛−1

��

𝑄𝑛
𝑘𝑛 //

𝑠𝑛−1

��

𝑅𝑛

𝑠𝑛−1

��

𝑃∗𝑛−1

𝑓 ∗𝑛−1 //

𝑔∗𝑛−1

// 𝑄∗𝑛−1 𝑘∗𝑛−1

// 𝑅∗𝑛−1

in which all solid arrows are already given, and let 𝑐 ∈ 𝑅𝑛. Let 𝑏 be a represen-
tative of 𝑐 in 𝑄𝑛, that is, 𝑐 = 𝑘𝑛 (𝑏) and set 𝑠𝑛−1 (𝑐) = 𝑘∗𝑛−1𝑠𝑛−1 (𝑏) ∈ 𝑅∗𝑛−1.
We must show that 𝑠𝑛−1 (𝑐) so defined does not depend on the choice of
the representative 𝑏. Thus let 𝑏′ ∈ 𝑄𝑛 such that 𝑘𝑛 (𝑏′) = 𝑐. By definition,
𝑏 ∼𝑛 𝑏′. In order to show that 𝑘∗𝑛−1𝑠𝑛−1 (𝑏) = 𝑘∗𝑛−1𝑠𝑛−1 (𝑏′), it is suffi-
cient to check it in the base case where 𝑏 {𝑛 𝑏

′. In this case, there is a
generator 𝑎 ∈ 𝑃𝑛 such that 𝑓𝑛 (𝑎) = 𝑏 and 𝑔𝑛 (𝑎) = 𝑏′, therefore

𝑘∗𝑛−1𝑠𝑛−1 (𝑏) = 𝑘∗𝑛−1𝑠𝑛−1 𝑓𝑛 (𝑎)
= 𝑘∗𝑛−1 𝑓

∗
𝑛−1𝑠𝑛−1 (𝑎)

= 𝑘∗𝑛−1𝑔
∗
𝑛−1𝑠𝑛−1 (𝑎)

= 𝑘∗𝑛−1𝑠𝑛−1𝑔𝑛 (𝑎)
= 𝑘∗𝑛−1𝑠𝑛−1 (𝑏′)

so that the source map on 𝑅𝑛 is well-defined. Of course the target map 𝑡𝑛−1
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is defined accordingly. As for the globular relations, remark that, if 𝑛 ⩾ 2,
by induction hypothesis,

𝑡𝑛−2𝑠𝑛−1𝑘𝑛 = 𝑡𝑛−2𝑘
∗
𝑛−1𝑠𝑛−1

= 𝑘∗𝑛−2𝑡𝑛−2𝑠𝑛−1

= 𝑘∗𝑛−2𝑡𝑛−2𝑡𝑛−1

= 𝑡𝑛−2𝑘
∗
𝑛−1𝑡𝑛−1

= 𝑡𝑛−2𝑡𝑛−1𝑘𝑛

and because 𝑘𝑛 is surjective, this implies 𝑡𝑛−2𝑠𝑛−1 = 𝑡𝑛−2𝑡𝑛−1. Likewise
𝑠𝑛−2𝑠𝑛−1 = 𝑠𝑛−2𝑡𝑛−1. Thus, the polygraph 𝑅 is now defined up to dimen-
sion 𝑛. By using Lemma 15.1.5, we finally extend 𝑘 to a morphism of
polygraphs up to dimension 𝑛, so that 𝑘∗𝑛 𝑓 ∗𝑛 = 𝑘∗𝑛𝑔∗𝑛.

Having defined 𝑘 : 𝑄 → 𝑅, a similar induction process shows that 𝑘 is indeed
a coequalizer of the pair ( 𝑓 , 𝑔) in Pol𝜔 .

16.1.6 Proposition. The category Pol𝜔 is complete and cocomplete.

Proof. The category Pol𝜔 has all small products and equalizers of all pairs
of morphisms, hence has all small limits (see [261, Chapter V, Theorem 1]).
Dually, Pol𝜔 has coproducts and coequalizers, hence has all small colimits. □

16.1.7 Remark. To each polygraph 𝑃 we may associate a set

|𝑃 | =
∐
𝑘∈N

𝑃𝑘

consisting of all generators of 𝑃. This correspondence is the object part of a
functor |−| : Pol𝜔 → Set. In fact, a morphism 𝑓 : 𝑃 → 𝑄 in Pol𝜔 takes, for
each 𝑘 ∈ N, the set 𝑃𝑘 to the set 𝑄𝑘 , whence a map | 𝑓 | : |𝑃 | → |𝑄 | . Now, the
above construction of the colimits in Pol𝜔 shows that this functor |−| preserves
all small colimits. As a morphism 𝑓 of polygraphs is entirely determined by its
components 𝑓𝑛, the functor |−| is faithful, making Pol𝜔 a concrete category.

16.2 Morphisms in Pol𝜔
We need a few technical preliminaries before characterizing monomorphisms
and epimorphisms in Pol𝜔 . First, let 𝐶 be an 𝜔-category and 𝑋 ⊆ 𝐶𝑛 a set of
𝑛-cells of 𝐶: we say that 𝑋 is closed under divisors if, for any 𝑖-composable
𝑛-cells 𝑢, 𝑣 ∈ 𝐶𝑛 such that 𝑢 ∗𝑖 𝑣 ∈ 𝑋 , then 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑋 . We may then state
the following crucial property of cellular extensions:
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16.2.1 Lemma. Let 𝑛 ∈ N, and 𝑓 : (𝐶, 𝑋) → (𝐷,𝑌 ) a morphism in Cat+𝑛,
where 𝑓 = (𝑔, ℎ), with 𝑔 : 𝐶 → 𝐷 a morphism in Cat𝑛 and ℎ : 𝑋 → 𝑌

a source and target preserving map. Let 𝑓 ∗ : 𝐿𝑛 (𝐶, 𝑋) → 𝐿𝑛 (𝐷,𝑌 ) be the
induced morphism in Cat𝑛+1. Suppose that the maps 𝑔𝑛 : 𝐶𝑛 → 𝐷𝑛 and
ℎ : 𝑋 → 𝑌 are injective and that the image of 𝑔𝑛 is closed under divisors. Then
𝑓 ∗𝑛+1 is injective and its image is closed under divisors.

Proof. We restrict here to the general line of reasoning and refer to [255,
Section 2.3] for a complete proof. Note also that [264] contains a thorough
analysis of the shape of freely generated cells, essentially encompassing the
present material. Thus, let (𝐶, 𝑋) and (𝐷,𝑌 ) as in the above statement. Let𝐶𝑛+1
(resp. 𝐷𝑛+1) the set of (𝑛 + 1)-cells in 𝐿𝑛 (𝐶, 𝑋) (resp. 𝐿𝑛 (𝐷,𝑌 )). According
to [279, Section 4.1], there are sets of well-typed formal expressions 𝐸𝐶 and 𝐸𝐷
endowed with binary relations ∼𝐶 and ∼𝐷 generating congruence relations ≃𝐶
and ≃𝐷 such that 𝐶𝑛+1 = 𝐸𝐶/≃𝐶 and 𝐷𝑛+1 = 𝐸𝐷/≃𝐷 . Moreover, 𝑓 induces
a map 𝑓 : 𝐸𝐶 → 𝐸𝐷 such that the following diagram commutes, the vertical
maps being the canonical surjections:

𝐸𝐶
𝑓
//

��

𝐸𝐷

��

𝐶𝑛+1
𝑓 ∗𝑛+1
// 𝐷𝑛+1.

Then structural induction on formal expressions shows that for each 𝑎, 𝑏 ∈ 𝐸𝐶
such that 𝑓 (𝑎) ∼𝐷 𝑓 (𝑏), then 𝑎 ∼𝐶 𝑏. Thus, whenever 𝑓 (𝑎) ≃𝐷 𝑓 (𝑏),
𝑎 ≃𝐶 𝑏. Therefore 𝑓 ∗𝑛+1 is injective. Moreover, the image of 𝑓 ∗𝑛+1 is still closed
by divisors. □

16.2.2 Proposition. Let 𝑃,𝑄 be polygraphs, 𝑓 : 𝑃→ 𝑄 be a morphism in Pol𝜔
and 𝑛 ∈ N. If for all 𝑘 ⩽ 𝑛, 𝑓𝑘 : 𝑃𝑘 → 𝑄𝑘 is injective, then 𝑓 ∗𝑛 : 𝑃∗𝑛 → 𝑄∗𝑛 is
injective.

Proof. Suppose 𝑓 : 𝑃→ 𝑄 is a morphism in Pol𝜔 such that, for all 𝑘 ⩽ 𝑛, the
map 𝑓𝑘 : 𝑃𝑘 → 𝑄𝑘 is injective. Then, by applying Lemma 16.2.1 dimension-
wise, we check the two following properties by induction on 𝑘 ∈ {0, ..., 𝑛 − 1}.
– The maps 𝑓 ∗𝑘 : 𝑃∗𝑘 → 𝑄∗𝑘 and 𝑓𝑘+1 : 𝑃𝑘+1 → 𝑄𝑘+1 are injective.
– The image of 𝑓 ∗𝑘 is closed by divisors.

Therefore, by applying once more Lemma 16.2.1, 𝑓 ∗𝑛 is injective. □

Let (𝐶, 𝑋) be a cellular extension of an 𝑛-category 𝐶 by 𝑋 and 𝐶 [𝑋] the
freely generated (𝑛 + 1)-category on this extension. As all categories Cat𝑚
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canonically embed into Cat𝜔 , we may view 𝐶 and 𝐶 [𝑋] as 𝜔-categories, and
consider the canonical 𝜔-functor 𝑗 : 𝐶 → 𝐶 [𝑋]. Let us call an 𝜔-functor
injective if its underlying globular map is a monomorphism in Glob𝜔 , that is,
injective in each dimension. Then the following result follows immediately as
a particular case of Lemma 16.2.1.

16.2.3 Proposition. For any cellular extension (𝐶, 𝑋), the canonical𝜔-functor
𝑗 : 𝐶 → 𝐶 [𝑋] is injective.

16.2.4 Remark. In fact, Proposition 16.2.3 holds for a more general interpreta-
tion of the notion of cellular extension, namely one when 𝐶 is any 𝜔-category
and 𝑋 is a set of cells of any dimensions freely attached to 𝐶. We refer to [264,
Section 4, p. 36] for a complete proof of this generalized statement. When trans-
lated in the present language, Makkai’s theorem states precisely the following:
for any 𝜔-category 𝐶 and any set 𝑋 , together with a family of morphisms
𝑓𝑥 : 𝜕O𝑛𝑥 → 𝐶, 𝑥 ∈ 𝑋 , the morphism 𝑗 : 𝐶 → 𝐶 [𝑋] in the pushout square

∐
𝑥∈𝑋 𝜕O𝑛𝑥

[ 𝑓𝑥 ]𝑥∈𝑋
//

∐
𝑥∈𝑋 i𝑛𝑥

��

𝐶

𝑗

��∐
𝑥∈𝑋 O𝑛𝑥 // 𝐶 [𝑋]

is injective. The proof of Makkai goes along the same lines as the one of
Lemma 16.2.1 and involves a precise analysis of the formal expressions denoting
the cells of 𝐶 [𝑋].

16.2.5 Linearization. To each pair (𝑋, 𝑛) such that 𝑋 is a set and 𝑛 ∈ N
we may associate an 𝜔-category 𝐶 (𝑋, 𝑛) whose only non-trivial cells are in
dimension 𝑛, where

– 𝐶 (𝑋, 𝑛)𝑛 = 𝑋 if 𝑛 = 0,
– 𝐶 (𝑋, 𝑛)𝑛 = N[𝑋], the free abelian monoid generated by 𝑋 if 𝑛 > 0.

Note that N[𝑋] consists of linear combinations of the form 𝑢 =
∑
𝑥∈𝑋 𝑛𝑥𝑥

where 𝑛𝑥 ∈ N and 𝑛𝑥 = 0 for all but a finite number of indices 𝑥. Moreover, for
all 𝑖 < 𝑛, the 𝑖-composition of such 𝑛-cells is given by 𝑢∗𝑖 𝑣 = 𝑢+𝑣. Remark that,
except for 𝑛 = 1, the category𝐶 (𝑋, 𝑛) is freely generated by a polygraph𝑃(𝑋, 𝑛)
whose generators are given by 𝑃(𝑋, 𝑛)𝑛 = 𝑋 , 𝑃(𝑋, 𝑛)0 = {∗} if 𝑛 > 0 and
𝑃(𝑋, 𝑛)𝑖 = ∅ otherwise, the source and target maps being uniquely determined
by these data.

Let now 𝑃 be a polygraph and 𝑛 ∈ N. To any 𝑛-generator 𝑎 ∈ 𝑃𝑛 and any
𝑛-cell 𝑢 ∈ 𝑃∗𝑛 we may unambiguously attach a natural number w𝑎 (𝑢), the
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weight of 𝑎 in 𝑢, measuring the number of occurrences of 𝑎 in 𝑢. Consider
indeed the 𝑛-polygraph 𝑃⩽𝑛 which coincides with 𝑃 up to dimension 𝑛, and
let 𝑋 = 𝑃𝑛: the above defined𝜔-category𝐶 (𝑋, 𝑛) can be seen as an 𝑛-category.
Now, by Lemma 15.1.5, the unique morphism in Cat𝑛−1 taking (𝑃⩽𝑛−1)∗ to the
terminal object extends uniquely to a morphism 𝜆 : (𝑃⩽𝑛)∗ → 𝐶 (𝑋, 𝑛) whose
restriction to 𝑃𝑛 is the identity 𝑃𝑛 → 𝑋 . We may therefore define the natural
numbers w𝑎 (𝑢) by

𝜆𝑛 (𝑢) =
∑︁
𝑎∈𝑃𝑛

w𝑎 (𝑢)𝑎

for any 𝑛-cell 𝑢 ∈ 𝑃∗𝑛. Note that 𝜆𝑛 (𝑢) may be seen as a multiset supp♯ (𝑢) on 𝑃𝑛
mapping each generator 𝑎 ∈ 𝑃𝑛 to w𝑎 (𝑢).

16.2.6 Support. The above notion of weight leads to the technical notion of
support. Let 𝑃 be a polygraph and 𝑢 an 𝑛-cell in 𝑃∗𝑛. We first define the set of
𝑛-generators actually occurring in 𝑢 by

supp𝑛 (𝑢) = {𝑎 ∈ 𝑃𝑛 | w𝑎 (𝑢) ≠ 0} .
Now the total support of 𝑢 is defined by induction on the dimension of 𝑢:

– For 𝑛 = 0, 𝑢 ∈ 𝑃∗0 = 𝑃0 and supp (𝑢) = {𝑢}.
– For 𝑛 > 0, supp (𝑢) = 𝑈 ∪ 𝑆 ∪ 𝑇 ∪ 𝑆′ ∪ 𝑇 ′ where

𝑈 = supp𝑛 (𝑢),
𝑆 = supp (𝑠𝑛−1 (𝑢)),
𝑇 = supp (𝑡𝑛−1 (𝑢))
𝑆′ = ∪𝑎∈supp𝑛 (𝑢) supp (𝑠𝑛−1 (𝑎)),
𝑇 ′ = ∪𝑎∈supp𝑛 (𝑢) supp (𝑡𝑛−1 (𝑎)).

In other words, the total support of 𝑢 consists in all generators in ∪0⩽𝑖⩽𝑛𝑃𝑖
needed to express 𝑢. Likewise, for any subset 𝐴 ⊆ ∐

𝑘∈N 𝑃𝑘 of generators of
𝑃, we define the support of 𝐴 by supp (𝐴) = ∪𝑎∈𝐴 supp (𝑎∗).

16.2.7 Subpolygraph. Let 𝑃 be a polygraph and 𝑎 ∈ 𝑃𝑛 an 𝑛-generator. Let 𝑎∗
denote the corresponding 𝑛-cell in 𝑃∗𝑛. The subpolygraph of 𝑃 generated by 𝑎,
denoted𝑄 = ⟨𝑎⟩𝑃 , is defined as follows: for each 𝑘 ⩽ 𝑛, the set of 𝑘-generators
of 𝑄 is 𝑄𝑘 = 𝑃𝑘 ∩ supp (𝑎∗), where supp (𝑎∗) is the total support of 𝑎∗ defined
in §16.2.6, whereas the source and target maps 𝑠𝑘−1, 𝑡𝑘−1 : 𝑄𝑘 → 𝑄∗𝑘−1 are ob-
tained by restriction of 𝑠𝑘−1, 𝑡𝑘−1 : 𝑃𝑘 → 𝑃∗𝑘−1 for 𝑘 > 0. Of course𝑄𝑘 = ∅ for
𝑘 > 𝑛. Thus, we get a canonical morphism 𝑘𝑎 : ⟨𝑎⟩𝑃 → 𝑃 such that 𝑄𝑛 = {𝑎}
and 𝑘𝑎 (𝑎) = 𝑎. More generally, for any subset 𝐴 ⊆ ∐

𝑘∈N 𝑃𝑘 of generators of
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𝑃, the subpolygraph of 𝑃 generated by 𝐴 is the polygraph 𝑄 = ⟨𝐴⟩𝑃 such that,
for each 𝑘 ∈ N, 𝑄𝑘 = 𝑃𝑘 ∩ supp (𝐴), and built dimensionwise, together with
a canonical morphism 𝑘𝐴 : ⟨𝐴⟩𝑃 → 𝑃 by using at each level the appropriate
restriction to 𝑄 of the source and target maps of 𝑃.

16.2.8 Proposition. A morphism 𝑓 : 𝑄 → 𝑃 in Pol𝜔 is a monomorphism if
and only if 𝑓𝑛 : 𝑄𝑛 → 𝑃𝑛 is injective in each dimension 𝑛.

Proof. In one direction, notice that the functor Pol𝜔 → SetN taking a poly-
graph 𝑃 to the sequence (𝑃𝑛)𝑛∈N is faithful by construction, hence reflects
monomorphisms. Therefore, if 𝑓𝑛 is injective for all 𝑛, then 𝑓 is a monomor-
phism.

Conversely, suppose that 𝑓 : 𝑄 → 𝑃 is a monomorphism. Suppose also that
there is a 𝑘 ∈ N such that 𝑓𝑘 is not injective, and let 𝑛 be the smallest such
integer. By hypothesis, there are two distinct 𝑛-generators 𝑎, 𝑎′ ∈ 𝑄𝑛 such that
𝑓𝑛 (𝑎) = 𝑓𝑛 (𝑎′). Hence

𝑓 ∗𝑛−1 (𝑠𝑛−1 (𝑎)) = 𝑠𝑛−1 ( 𝑓𝑛 (𝑎)) = 𝑠𝑛−1 ( 𝑓𝑛 (𝑎′)) = 𝑓 ∗𝑛−1 (𝑠𝑛−1 (𝑎′)).

But as 𝑓𝑛−1 is injective, so is 𝑓 ∗𝑛−1 by Lemma 16.2.2. Hence 𝑠𝑛−1 (𝑎) = 𝑠𝑛−1 (𝑎′).
Likewise 𝑡𝑛−1 (𝑎) = 𝑡𝑛−1 (𝑎′). As a consequence, there is a unique morphism
ℎ : ⟨𝑎⟩𝑄 → ⟨𝑎′⟩𝑄 taking 𝑎 to 𝑎′. Let 𝑘 = 𝑘𝑎 and 𝑘 ′ = 𝑘𝑏 ◦ ℎ. We now have a
diagram

⟨𝑎⟩𝑄 𝑘 //

𝑘′
// 𝑄

𝑓
// 𝑃

such that 𝑓 𝑘 = 𝑓 𝑘 ′ but 𝑘 ≠ 𝑘 ′. This contradicts the hypothesis, and we are
done. □

16.2.9 Corollary. The functor 𝐹 : Pol𝜔 → Cat𝜔 preserves monomorphisms.

Proof. Suppose that 𝑓 : 𝑄 → 𝑃 is a monomorphism in Pol𝜔 . By Proposi-
tion 16.2.8, 𝑓𝑛 is injective in each dimension 𝑛, and by Lemma 16.2.2, so is 𝑓 ∗𝑛 .
Now the functor 𝐶 ↦→ (𝐶𝑛)𝑛∈N from Cat𝜔 to SetN is faithful and reflects
monomorphisms. Hence 𝑓 ∗ : 𝑄∗ → 𝑃∗ is a monomorphism. □

16.2.10 Remark. Proposition 16.2.8 shows that for each subset 𝐴 of generators
of a polygraph 𝑃, the canonical morphism 𝑘𝐴 : ⟨𝐴⟩𝑃 → 𝑃 is a monomorphism.
Conversely, any monomorphism 𝑓 : 𝑄 → 𝑃 in Pol𝜔 factorizes as 𝑓 = 𝑘𝐴 ◦ ℎ,
where 𝐴 = { 𝑓 (𝑞) | 𝑞 ∈ 𝑄𝑘 , 𝑘 ∈ N} and ℎ : 𝑄 → ⟨𝐴⟩𝑃 is an isomorphism.

16.2.11 Proposition. A morphism 𝑓 : 𝑃 → 𝑄 in Pol𝜔 is an epimorphism if
and only if 𝑓𝑛 is surjective in each dimension 𝑛.
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Proof. As above, the functor 𝑃 ↦→ (𝑃𝑛)𝑛∈N is faithful and reflects epimor-
phisms. Therefore if 𝑓𝑛 is surjective in each dimension, then 𝑓 is an epimor-
phism. Conversely, suppose that 𝑓 : 𝑃 → 𝑄 is an epimorphism in Pol𝜔 .
Consider the abelianization functor Ab : Cat𝜔 → ChZ,⩾0 (see Chapter 22).
By Proposition 22.1.2, Ab is a left adjoint. Recall that 𝐹 : Pol𝜔 → Cat𝜔
is also a left adjoint. Therefore the composition Ab ◦𝐹 : Pol𝜔 → ChZ,⩾0
is a left adjoint, and preserves epimorphisms. As a consequence, the map
(Ab( 𝑓 ∗))𝑛 : Z[𝑃𝑛] → Z[𝑄𝑛] is surjective for each 𝑛, but (Ab( 𝑓 ∗))𝑛 is noth-
ing but the linearization of 𝑓𝑛, hence 𝑓𝑛 itself is surjective. □

16.2.12 Proposition. A morphism 𝑓 : 𝑃 → 𝑄 in Pol𝜔 is an isomorphism if
and only if, for each 𝑛 ⩾ 0, it induces a bĳection 𝑓𝑛 : 𝑃𝑛 → 𝑄𝑛.

Proof. In one direction, if 𝑓 is an isomorphism, so is | 𝑓 | by functoriality,
whence also all maps 𝑓𝑛 for 𝑛 ⩾ 0. Conversely, suppose 𝑓𝑛 is a bĳection in all
dimensions 𝑛. We define 𝑔 : 𝑄 → 𝑃 inverse to 𝑓 in Pol𝜔 by induction on the
dimension.

– For 𝑛 = 0, let 𝑔0 : 𝑄0 → 𝑃0 be the inverse map ( 𝑓0)−1 of 𝑓0.

– Let 𝑛 ⩾ 0 and suppose 𝑔 has been defined up to dimension 𝑛 such that
𝑔𝑘 ◦ 𝑓𝑘 = (1𝑃)𝑘 and 𝑓𝑘 ◦ 𝑔𝑘 = (1𝑄)𝑘 for all 0 ⩽ 𝑘 ⩽ 𝑛. Define

𝑔𝑛+1 = ( 𝑓𝑛+1)−1 : 𝑄𝑛+1 → 𝑃𝑛+1.

Let 𝑎 ∈ 𝑄𝑛+1. We have to check that 𝑠𝑛 (𝑔𝑛+1 (𝑎)) = 𝑔∗𝑛 (𝑠𝑛 (𝑎)). Now

𝑓 ∗𝑛 (𝑠𝑛 (𝑔𝑛+1 (𝑎)) = 𝑠𝑛 ( 𝑓𝑛+1𝑔𝑛+1 (𝑎)) = 𝑠𝑛 (𝑎) = 𝑓 ∗𝑛 (𝑔∗𝑛 (𝑠𝑛 (𝑎)).

By induction hypothesis, 𝑓 ∗𝑛 is a bĳection, whence the desired equality.

Likewise 𝑡𝑛 (𝑔𝑛+1 (𝑎)) = 𝑔∗𝑛 (𝑡𝑛 (𝑎)). Therefore, 𝑔 is defined, and is inverse to 𝑓

up to dimension 𝑛 + 1, whence the result. □

16.2.13 Remark. As an immediate consequence of the above results, the
isomorphisms in Pol𝜔 are exactly the morphisms which are monomorphisms
and epimorphisms. Moreover the functor |−| from Remark 16.1.7 preserves
and reflects monomorphisms, epimorphisms and isomorphisms.

16.2.14 Subobject classifier. The category Pol𝜔 has a subobject classifier,
that is, an object Ω together with a monomorphism true : 1pol → Ω such that
for every monomorphism 𝑓 : 𝑃 → 𝑄 in Pol𝜔 , there is a unique morphism
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𝜒 𝑓 : 𝑄 → Ω making the following diagram a pullback square:

𝑃
!𝑃 //

𝑓

��

1pol

true
��

𝑄 𝜒 𝑓

// Ω.

(16.7)

As usual, these conditions determine Ω up to isomorphism. Let us now build
true : 1pol → Ω by induction on the dimension. To avoid overloaded notation,
we denote 1pol by 𝑇 throughout the construction.

– For 𝑛 = 0, 𝑇0 is a singleton, whereas Ω0 = 𝑇0 + 𝑇0 elements and true0 is the
left inclusion 𝑇0 → 𝑇0 + 𝑇0.

– Let 𝑛 ⩾ 0 and suppose Ω and true have been defined up to dimension 𝑛.
Recall from §16.1.1 that the set of (𝑛 + 1)-generators of 𝑇 is

𝑇𝑛+1 =
{(𝑢, 𝑣) �� 𝑢 ∈ 𝑇∗𝑛 , 𝑣 ∈ 𝑇∗𝑛 , 𝑠𝑛−1 (𝑢) = 𝑠𝑛−1 (𝑣), 𝑡𝑛−1 (𝑢) = 𝑡𝑛−1 (𝑣)

}
with source and target maps defined by 𝑠𝑛 (𝑢, 𝑣) = 𝑢 and 𝑡𝑛 (𝑢, 𝑣) = 𝑣.
Consider now the set

𝑆𝑛+1 =
{(𝑢, 𝑣) �� 𝑢 ∈ Ω∗𝑛, 𝑣 ∈ Ω∗𝑛, 𝑠𝑛−1 (𝑢) = 𝑠𝑛−1 (𝑣), 𝑡𝑛−1 (𝑢) = 𝑡𝑛−1 (𝑣)

}
and the following two subsets of 𝑆𝑛+1:

𝑆0
𝑛+1 =

{(true∗𝑛𝑢, true∗𝑛𝑣)
�� (𝑢, 𝑣) ∈ 𝑇𝑛+1} ,

𝑆1
𝑛+1 = 𝑆𝑛+1 \ 𝑆0

𝑛+1.

The set of (𝑛 + 1)-generators of Ω is then

Ω𝑛+1 = 𝑆0
𝑛+1 + 𝑆0

𝑛+1 + 𝑆1
𝑛+1 (16.8)

and true𝑛+1 sends 𝑇𝑛+1 to the first copy of 𝑆0
𝑛+1 by

true𝑛+1 (𝑢, 𝑣) = (true∗𝑛𝑢, true∗𝑛𝑣).
The source and target maps 𝑠𝑛, 𝑡𝑛 : Ω𝑛+1 → Ω∗𝑛 are naturally given by
𝑠𝑛 (𝑢, 𝑣) = 𝑢 and 𝑡𝑛 (𝑢, 𝑣) = 𝑣, making true a morphism of (𝑛+1)-polygraphs.

Suppose now that 𝑓 : 𝑃 → 𝑄 is a monomorphism. We define a morphism
𝜒 𝑓 : 𝑄 → Ω by induction on the dimension.

– If 𝑛 = 0, (𝜒 𝑓 )0 : 𝑄0 → Ω0 = 𝑇0 + 𝑇0 sends a 0-cells 𝑢 of 𝑄 to the left
component if and only if 𝑎 ∈ im 𝑓0.

– Suppose 𝜒 𝑓 has been defined up to dimension 𝑛, and let 𝑎 ∈ 𝑄𝑛+1, with
𝑠𝑛 (𝑎) = 𝑢 and 𝑡𝑛 (𝑎) = 𝑣. The pair 𝑐 = ((𝜒∗𝑓 )𝑛 (𝑢), (𝜒∗𝑓 )𝑛 (𝑣)) is by induction
a pair of parallel 𝑛-cells of Ω∗𝑛 and three cases are possible:
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– If 𝑐 ∈ 𝑆0
𝑛+1 and 𝑎 ∈ im 𝑓𝑛+1, (𝜒 𝑓 )𝑛+1 sends 𝑎 to 𝑐 in the first 𝑆0

𝑛+1
component of (16.8).

– If 𝑐 ∈ 𝑆0
𝑛+1 and 𝑎 ∉ im 𝑓𝑛+1, (𝜒 𝑓 )𝑛+1 sends 𝑎 to 𝑐 in the second 𝑆0

𝑛+1
component of (16.8).

– If 𝑐 ∈ 𝑆1
𝑛+1, (𝜒 𝑓 )𝑛+1 sends 𝑎 to 𝑐 in the 𝑆0

𝑛+1 component of (16.8).

This defines 𝜒 𝑓 as a morphism of (𝑛 + 1)-polygraphs. We easily check that 𝜒 𝑓
so defined is the unique morphism such that (16.7) is a pullback square.

16.2.15 A counterexample. Let us end this review of morphisms in Pol𝜔
by the following small observation. To each 𝜔-category 𝐶 corresponds an
𝜔-groupoid 𝐶 in Gpd𝜔 obtained by formally inverting all 𝑛-cells, 𝑛 > 0, in 𝐶.
The correspondence 𝐶 ↦→ 𝐶 is in fact the object part of the left adjoint to
the inclusion Gpd𝜔 → Cat𝜔 and the unit of the associated monad yields a
morphism 𝜂𝐶 : 𝐶 → 𝐶. In case 𝐶 = 𝑃∗ is freely generated by a polygraph 𝑃,
one could expect 𝜂𝐶 to be injective. However, this is proved wrong by the
following counterexample. Let

𝑃 = ⟨ ⋆ | 𝑥 : ⋆→ ⋆ | 𝑎, 𝑏 : 𝑥 → 1⋆, 𝑐 : 1⋆ → 𝑥 ⟩
and𝐶 = 𝑃∗. Consider the 2-cells 𝑢, 𝑣 ∈ 𝐶2 given by 𝑢 = 𝑎∗1𝑐∗1𝑏, 𝑣 = 𝑏∗1𝑐∗1𝑎
and define 𝑢′ = 𝜂𝐶𝑢, 𝑣′ = 𝜂𝐶𝑣. Whereas 𝑢 ≠ 𝑣 in 𝐶, the presence of a strict
inverse 𝑎−1 for 𝑎 in 𝐶 implies that 𝑢′ = 𝑣′, as

𝑢′ = 𝑎 ∗1 𝑐 ∗1 𝑏 = 𝑎 ∗1 (𝑐 ∗1 𝑎) ∗1 (𝑎−1 ∗1 𝑏)
= 𝑎 ∗1 (𝑎−1 ∗1 𝑏) ∗1 (𝑐 ∗1 𝑎) = 𝑏 ∗1 𝑐 ∗1 𝑎 = 𝑣′.

16.3 Is Pol𝑛 a topos?

As the category of 𝑛-polygraphs is complete and cocomplete and has a subobject
classifier, it is natural to ask if Pol𝑛 is a topos. In fact, Pol0 is the category of
sets and Pol1 is the category of graphs, hence both are presheaf categories and
thus are topoi. As for 𝑛 = 2, Carboni and Johnstone [76] (corrected in [77])
have proved that Pol2 is also a presheaf category and thus a topos. However,
from 𝑛 = 3 on, Pol𝑛 fails to be cartesian closed, as shown by Makkai and
Zawadowski [265] (see also [264, Section 6, p. 57]), and therefore is not even
an elementary topos. Let us finally mention that Batanin [30] defines a notion of
𝑇-computad for each monad 𝑇 on globular sets and gives sufficient conditions
on 𝑇 for the category of 𝑇-computads to be a presheaf category. Of course,
[265] implies that these conditions do not hold when 𝑇 is the monad of strict
𝜔-categories on globular sets.
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16.3.1 The category Pol2 is a presheaf category. The category Pol2 is a
category of presheaves over the small category whose objects are 𝑝0, 𝑝1 and
𝑝𝑚,𝑛 for 𝑚, 𝑛 ∈ N, morphisms are generated by 𝑠 : 𝑝0 → 𝑝1, 𝑡 : 𝑝0 → 𝑝1 and

𝑠𝑖𝑚,𝑛 : 𝑝1 → 𝑝𝑚,𝑛 for 𝑚, 𝑛 ∈ N with 0 ⩽ 𝑖 < 𝑚,
𝑡𝑖𝑚,𝑛 : 𝑝1 → 𝑝𝑚,𝑛 for 𝑚, 𝑛 ∈ N with 0 ⩽ 𝑖 < 𝑛,
𝜎𝑖𝑚,𝑛 : 𝑝0 → 𝑝𝑚,𝑛 for 𝑚, 𝑛 ∈ N with 0 ⩽ 𝑖 ⩽ 𝑚,
𝜏𝑖𝑚,𝑛 : 𝑝0 → 𝑝𝑚,𝑛 for 𝑚, 𝑛 ∈ N with 0 ⩽ 𝑖 ⩽ 𝑛,

subject to the relations

𝜎𝑖𝑚,𝑛 = 𝑠
𝑖
𝑚,𝑛 ◦ 𝑠 𝜎𝑖+1𝑚,𝑛 = 𝑠

𝑖
𝑚,𝑛 ◦ 𝑡 𝜎0

𝑚,𝑛 = 𝜏
0
𝑚,𝑛

𝜏𝑖𝑚,𝑛 = 𝑡
𝑖
𝑚,𝑛 ◦ 𝑠 𝜏𝑖+1𝑚,𝑛 = 𝑡

𝑖
𝑚,𝑛 ◦ 𝑡 𝜎𝑚𝑚,𝑛 = 𝜏

𝑛
𝑚,𝑛

for every indices such that the morphisms are defined. A presheaf 𝑃 over this
category then corresponds to a polygraph with 𝑃(𝑝0) as 0-cells, 𝑃(𝑝1) as
1-cells

𝑎 : 𝑥 → 𝑦

with 𝑥 = 𝑃(𝑠 (𝑎)) and 𝑦 = 𝑃(𝑡 (𝑎)), and 𝑃(𝑝𝑚,𝑛) as 2-cells

𝛼 : 𝑎1 . . . 𝑎𝑚 → 𝑏1 . . . 𝑏𝑛

with 𝑎𝑖 = 𝑃(𝑠𝑖𝑚,𝑛 (𝛼)) and 𝑏𝑖 = 𝑃(𝑡𝑖𝑚,𝑛 (𝛼)).

16.3.2 The category Pol3 is not cartesian closed. The original argument by
Makkai and Zawadowski being quite intricate, we give here the simpler proof
due to Cheng [84], based on an explicit counterexample: we shall describe
3-polygraphs 𝑃, 𝑄, 𝑅 and 𝑆 such that the diagram

𝑃
𝑓1 //

𝑓2
// 𝑄

𝑔
// 𝑅

is a coequalizer in Pol3 not preserved by the functor − × 𝑆 : Pol3 → Pol3.
Therefore − × 𝑆 does not preserve colimits, hence admits no right adjoint and
Pol3 is not cartesian closed. Now 𝑃, 𝑄, 𝑅, 𝑆 are as follows:

– 𝑃0 = {⋆}, 𝑃1 = ∅, 𝑃2 = {𝑎} and 𝑃3 = ∅ so that there is no choice for the
source and target maps,

– 𝑄0 = {⋆}, 𝑄1 = ∅, 𝑄2 = {𝑏1, 𝑏2} where 𝑓𝑖𝑎 = 𝑏𝑖 for 𝑖 ∈ {1, 2} and
𝑄3 = {𝑏3} where 𝑏3 : 𝑏1 ∗1 𝑏2 → 12 (⋆),

– 𝑅0 = {⋆}, 𝑅1 = ∅, 𝑅2 = {𝑐} where 𝑐 = 𝑔𝑏1 = 𝑔𝑏2 and 𝑅3 = {𝑑} where
𝑔𝑏3 = 𝑑 and 𝑑 : 𝑐 ∗1 𝑐 → 12 (⋆),

– 𝑆 = 𝑄.
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Let 𝑃′ = 𝑃 × 𝑆, 𝑄′ = 𝑄 × 𝑆 and 𝑅′ = 𝑅 × 𝑆. By the construction of products
described in §16.1.2, 𝑃′, 𝑄′ and 𝑅′ have a single 0-generator ⋆′ = (⋆, ⋆) and
no 1-generator. As for generators in dimension 2 and 3,

– 𝑃′2 has two elements 𝑎′𝑖 = (𝑎, 𝑏𝑖 , 11 (⋆′), 11 (⋆′)) for 𝑖 ∈ {1, 2} and 𝑃′3 = ∅,
– 𝑄′2 has four elements 𝑏′𝑖 𝑗 = (𝑏𝑖 , 𝑏 𝑗 , 11 (⋆′), 11 (⋆′)) for (𝑖, 𝑗) ∈ {1, 2}×{1, 2},
– 𝑄′3 has two elements

𝑏′31 = (𝑏3, 𝑏3, 𝑏
′
12 ∗1 𝑏′21, 12 (⋆′)),

𝑏′32 = (𝑏3, 𝑏3, 𝑏
′
11 ∗1 𝑏′22, 12 (⋆′)),

– 𝑅′2 has two elements 𝑐′𝑖 = (𝑐, 𝑏𝑖 , 11 (⋆′), 11 (⋆′)) for 𝑖 ∈ {1, 2},
– 𝑅′3 has a single element 𝑑′ = (𝑑, 𝑏3, 𝑐

′
1 ∗1 𝑐′2, 12 (⋆′)).

Consider now the coequalizer diagram

𝑃′
𝑓 ′1 //

𝑓 ′2
// 𝑄′

𝑔′
// 𝑅′′

where 𝑓 ′𝑖 = 𝑓𝑖 × 1𝑆 . As 𝑃′3 = ∅ and 𝑄′3 has two elements, 𝑅′′3 also has two
elements, whereas 𝑅′3 only has one. Therefore 𝑅′ is not isomorphic to 𝑅′′ and
we are done. Note that the key of the above argument is the Eckmann-Hilton
phenomenon, according to which 𝑏1 ∗1 𝑏2 = 𝑏2 ∗1 𝑏1: this in turn implies
that 𝑏′31 and 𝑏′32 are defined in such a way that both projections of 𝑏′12 ∗1 𝑏′21
and 𝑏′11 ∗1 𝑏′22 match the actual source of 𝑏3.

16.3.3 Presheaf subcategories of polygraphs. Although Pol𝜔 is not a pre-
sheaf category, there are several interesting full subcategories of Pol𝜔 which are
presheaf categories, as shown in [177, 176]. The general principle is to restrict
the shape of generators to sufficiently “regular” ones. Important examples are
many-to-one polygraphs, where the target of each generator is a generator, or
non-unital polygraphs, where the source and target of each generator cannot be
identities. An alternative approach is taken in [170, 171, 169], where a category
of regular polygraphs is defined as the presheaf category on a small category
of certain globular shapes, then shown to be equivalent to a full subcategory
of Pol𝜔 .

16.4 Local presentability

This section closely follows [264, Section 5]. Appendix G recalls everything
we need about locally presentable categories in the present section. Let us call a
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polygraph 𝑃 finite when |𝑃 | = ∐
𝑘 𝑃𝑘 is a finite set. Given any polygraph𝑄, we

may then consider the set of finite subpolygraphs of 𝑄, in the sense of §16.2.7.
Let 𝐼𝑄 be the subcategory of Pol𝜔 whose objects are the finite subpolygraphs
of𝑄, the morphisms are the canonical inclusions 𝑃→ 𝑃′ for all 𝑃, 𝑃′ such that
|𝑃 | ⊆ |𝑃′ | and 𝐷 : 𝐼𝑄 → Pol𝜔 the corresponding inclusion functor. Let 𝑃, 𝑃′
be objects in 𝐼𝑄, together with their canonical inclusion morphisms 𝑓 : 𝑃→ 𝑄

and 𝑓 ′ : 𝑃′ → 𝑄. Consider the finite subpolygraph 𝑃′′ of 𝑄 generated by
|𝑃 | ∪ |𝑃′ | and ℎ : 𝑃′′ → 𝑄 the corresponding inclusion morphism. Clearly 𝑓

and 𝑓 ′ factor through 𝑓 ′′ as in the diagram

𝑃

&&

𝑓

&&
𝑃′′ 𝑓 ′′ // 𝑄

𝑃′

88

𝑓 ′

88

so that 𝐼𝑄 is a directed poset. Now, by taking the colimit of the sets |𝑃 |
for 𝑃 ∈ 𝐼𝑄 in Set, we get

lim−−→
𝑃∈𝐼𝑄

|𝐷 (𝑃) | =
⋃
𝐹∈𝐼𝑄

|𝑃 | = |𝑄 |

but the functor |−| preserves small colimits, as remarked in Remark 16.1.7, so
that

| lim−−→
𝑃∈𝐼𝑄

𝐷 (𝑃) | = |𝑄 | .

Therefore the canonical map 𝑗 : lim−−→𝑃∈𝐼𝑄
𝐷 (𝑃) → 𝑄 is such that | 𝑗 | is an

identity. By Remark 16.2.13, the functor |−| reflects isomorphisms, hence 𝑗 is
an isomorphism in Pol𝜔 . Thus we have proved the following statement:

16.4.1 Proposition. Any polygraph is a canonical colimit of its finite sub-
polygraphs.

Let now 𝑃 be a finite polygraph and (𝑄 (𝑖) , 𝑓𝑖 𝑗 ) a filtered system in Pol𝜔
indexed by a small category 𝐼, with colimit 𝑄 = lim−−→𝑖

𝑄 (𝑖) and 𝑓𝑖 : 𝑄 (𝑖) → 𝑄

the canonical morphisms for 𝑖 ∈ 𝐼. Let 𝑓 : 𝑃 → 𝑄 be a morphism in Pol𝜔 .
Because the functor |−| preserves colimits and |𝑃 | is finite, there is an 𝑖 ∈ 𝐼
and a map ℎ : |𝑃 | → |𝑄 (𝑖) | such that
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– | 𝑓 | factors as in the following diagram

|𝑄 (𝑖) |
| 𝑓𝑖 |
��

|𝑃 | | 𝑓 |
//

ℎ

<<

|𝑄 | ,

– for all 𝑎 ∈ |𝑃 | , 𝑏 ∈ |𝑄 (𝑖) | and 𝑏′ ∈ |𝑄 (𝑖) | such that

| 𝑓𝑖 | (𝑏) = | 𝑓𝑖 | (𝑏′) = | 𝑓 | (𝑎),
we have 𝑏 = 𝑏′.

A double induction on the pair (𝑛, 𝑝), where 𝑛 is the highest dimension 𝑘 such
that 𝑃𝑘 ≠ ∅ and 𝑝 is the cardinal of 𝑃𝑛, shows with the help of Lemma 15.1.5
that there is a morphism 𝑔 : 𝑃→ 𝑄 (𝑖) is Pol𝜔 factoring 𝑓 as in the diagram

𝑄 (𝑖)

𝑓𝑖

��

𝑃
𝑓
//

𝑔
>>

𝑄.

Thus
Pol𝜔 (𝑃, lim−−→

𝑖

𝑄 (𝑖) ) ≃ lim−−→
𝑖

Pol𝜔 (𝑃,𝑄 (𝑖) )

and we have proved the following result:

16.4.2 Proposition. A finite polygraph is a finitely presentable object in Pol𝜔 .

One easily checks that the isomorphism classes of finite polygraphs form a
set. As a consequence of Propositions 16.4.1 and 16.4.2 we get the following
theorem:

16.4.3 Theorem. The category Pol𝜔 is locally finitely presentable.

16.5 Contexts

We recall here very briefly the notion of context, based on the presentation
of [279, Section 5, p. 191], and refer to this article for detailed proofs. Let 𝑛 ⩾ 1,
𝑃 a polygraph and 𝑥 = (𝑢, 𝑣) an ordered pair of parallel (𝑛 − 1)-cells in 𝑃∗.
We call here such a pair 𝑥 an 𝑛-type (a convenient alternative terminology
for “𝑛-sphere” as defined in §15.1.1). The polygraph 𝑃 may be extended to
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a polygraph 𝑃[𝑥] by adjoining a new generator 𝑥 in dimension 𝑛, such that
𝑠𝑛−1𝑥 = 𝑢 and 𝑡𝑛−1𝑥 = 𝑣. We call the 𝑛-cell x = 𝑥∗ (where 𝑥∗ is short for 𝑖𝑛 (𝑥))
of 𝑃[𝑥]∗ an 𝑛-indeterminate of type 𝑥 over 𝑃.

16.5.1 Definition. Let 𝑛 ⩾ 1, 𝑃 a polygraph and 𝑥 an 𝑛-type of 𝑃. An 𝑛-cell
𝑢 ∈ 𝑃[𝑥]∗ is a context of type 𝑥 if w𝑥 (𝑢) = 1.

A context 𝑢 of type 𝑥 will be denoted 𝑢 = 𝑐[x], where x = 𝑥∗. An 𝑛-con-
text 𝑢 = 𝑐[x] of type 𝑥 is thin whenever w𝑎 (𝑢) = 0 for all 𝑛-generators
𝑎 ∈ 𝑃[𝑥]𝑛 \ {𝑥}, that is, all generators in supp (𝑢) are of dimension < 𝑛 but
𝑥 itself, and 𝑐[x] is trivial if 𝑐[x] = x. There is a well-defined operation of
substitution in 𝑛-contexts: let 𝑧 be an 𝑛-cell of 𝑃∗ of type 𝑥 = (𝑢, 𝑣), that is,
such that 𝑠𝑛−1𝑧 = 𝑢 and 𝑡𝑛−1𝑧 = 𝑣, and 𝑐[x] an 𝑛-context of type 𝑥 over 𝑃.
From Lemma 15.1.5, we get a morphism

sub𝑧 : 𝑃[𝑥]∗ → 𝑃∗

in Cat𝜔 taking x to 𝑧 and leaving other generators unchanged. Then the sub-
stitution of x by 𝑧 in 𝑐, noted 𝑐[𝑧] may be defined as sub𝑧 (𝑐[x]).

Recall from [279] that thin 𝑛-contexts can always be expressed in the (non-
unique) form:

𝑐[x] = 𝑢𝑛−1 ∗𝑛−2 (... ∗1 (𝑢1 ∗0 x ∗0 𝑣1) ∗1 ...) ∗𝑛−2 𝑣𝑛−1 (16.9)

where 𝑢𝑖 and 𝑣𝑖 are identities over 𝑖-dimensional cells. This remark leads to the
following technical result:

16.5.2 Lemma. For each 𝑛 > 1 there is a map 𝜕 taking each thin 𝑛-context 𝑐[x]
to an (𝑛 − 1)-context 𝜕𝑐[x′] of type 𝑥′ = (𝑠𝑛−2x, 𝑡𝑛−2x) such that

– for each 𝑛-cell 𝑧 of type 𝑥, 𝑠𝑛−1𝑐[𝑧] = 𝜕𝑐[𝑠𝑛−1𝑧] and 𝑡𝑛−1𝑐[𝑧] = 𝜕𝑐[𝑡𝑛−1𝑧],
– if 𝜕𝑐[x′] is trivial, then so is 𝑐[x].
Proof. See [279, p. 193]. □

16.5.3 Remark. Conversely, let 𝑐[y] be an (𝑛 − 1)-context of type 𝑦 = (𝑢, 𝑣),
where 𝑢, 𝑣 are parallel (𝑛 − 2)-cells, and x be an 𝑛-indeterminate such that
𝑠𝑛−2 (x) = 𝑢 and 𝑡𝑛−2 (x) = 𝑣, there is a unique thin 𝑛-context 𝑐[x] such
that 𝜕𝑐[y] = 𝑐[y].

16.5.4 Composition. Let now 𝑢 = 𝑐[x] be an 𝑛-context of type 𝑥 over 𝑃, and
𝑑 [y] be an 𝑛-context of type 𝑦 = (𝑠𝑛−1𝑢, 𝑡𝑛−1𝑢) over 𝑃[𝑥]. The previously
defined substitution process yields an 𝑛-context 𝑑 [𝑐[x]] of type 𝑥 over 𝑃.

16.5.5 Remark. Let 𝑢 = 𝑐[x] be an (𝑛 − 1)-context of type 𝑥, 𝑑 [y] be an
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(𝑛 − 1)-context of type 𝑦 = (𝑠𝑛−2𝑢, 𝑡𝑛−2𝑢), and 𝑒[x] = 𝑑 [𝑐[x]] the composed
context as above. For each 𝑛-indeterminate x such that

(𝑠𝑛−2x, 𝑡𝑛−2x) = (𝑠𝑛−2𝑢, 𝑡𝑛−2𝑢),
the thin 𝑛-context defined in Remark 16.5.3 satisfies the equation

𝑒[x] = 𝑑 [𝑐[x]] . (16.10)

16.5.6 Lemma. For any 𝑛-cell 𝑧 of type 𝑥, if 𝑑 [𝑐[𝑧]] = 𝑧 then both contexts
𝑐[x] and 𝑑 [y] are trivial.

Proof. We reason by induction on 𝑛. If 𝑛 = 1, by computing the weights on
both sides of the equality 𝑑 [𝑐[𝑧]] = 𝑧, we see that 𝑐[x] and 𝑑 [y] are thin,
but thin 1-contexts are trivial. Let 𝑛 > 1 and suppose that the result holds
in dimension 𝑛 − 1. Let 𝑐[x] and 𝑑 [y] be 𝑛-contexts and 𝑧 an 𝑛-cell as in the
statement, such that 𝑑 [𝑐[𝑧]] = 𝑧. By computing the weights on both sides of this
equality, we see that 𝑐[x] and 𝑑 [y] are thin contexts. Thus, Lemma 16.5.2 yields
(𝑛 − 1)-contexts 𝜕𝑐[x′] and 𝜕𝑑 [y′] such that, for 𝑧′ = 𝑠𝑛−1𝑧, 𝑧′ = 𝜕𝑑 [𝜕𝑐[𝑧′]].
By induction hypothesis, 𝜕𝑐[x′] and 𝜕𝑑 [y′] are trivial, and so are 𝑐[x] and 𝑑 [y]
by Lemma 16.5.2. □

16.6 Basis uniqueness

Let 𝑃 be a polygraph and 𝐶 = 𝑃∗ the free 𝜔-category it generates. We shall
prove that the generators of 𝑃 are entirely determined by 𝐶 (see also [264,
Section 4.(8.3)]).

16.6.1 Definition. Let 𝑃 be a polygraph and 𝑛 > 0. An 𝑛-cell 𝑢 ∈ 𝑃∗𝑛 is
irreducible if it is not a unit and whenever 𝑢 = 𝑣 ∗𝑖 𝑤, then either 𝑢 = 𝑣

and 𝑤 = 1𝑛
𝑡𝑖 (𝑣) or 𝑢 = 𝑤 and 𝑣 = 1𝑛

𝑠𝑖 (𝑤) .

16.6.2 Lemma. An 𝑛-cell 𝑢 ∈ 𝑃∗𝑛 is irreducible if and only if it is a generating
cell of the form 𝑢 = 𝑎∗ for 𝑎 ∈ 𝑃𝑛.
Proof. Suppose that 𝑢 is irreducible. By structural induction on 𝑢 (see §15.1.9),
either 𝑢 = 1𝑛𝑣 , which contradicts the hypothesis, or 𝑢 = 𝑎∗ with 𝑎 ∈ 𝑃∗𝑛, in which
case we get the result, or 𝑢 = 𝑣 ∗𝑖 𝑤. By definition, 𝑢 = 𝑣 or 𝑢 = 𝑤, so that the
induction hypothesis applies and 𝑢 is a generating cell.

Conversely, suppose that 𝑢 = 𝑎∗ and 𝑢 = 𝑣 ∗𝑖 𝑤. By computing the weights
on both sides, we may suppose without loss of generality that w𝑎 (𝑣) = 1
and w𝑎 (𝑤) = 0. Then, there is a context 𝑐[x] of type 𝑥 = (𝑠𝑛−1𝑎

∗, 𝑡𝑛−1𝑎
∗) such

that 𝑣 = 𝑐[𝑎∗]. Let 𝑦 = (𝑠𝑛−1𝑣, 𝑡𝑛−1𝑣) and denote by 𝑑 [y] the context y ∗𝑖 𝑤 of



16.7 Rewriting properties of 𝑛-polygraphs 365

type 𝑦. By substitution, 𝑑 [𝑐[𝑎∗]] = 𝑢 = 𝑎∗. By Lemma 16.5.6, both contexts
𝑐[x] and 𝑑 [y] are trivial. In particular, y ∗𝑖 𝑤 = y. By repeated applications
of Lemma 16.5.2, we see that 𝑠𝑘 (𝑤) must be a unit cell for all 𝑘 > 𝑖, which
implies 𝑤 = 1𝑛

𝑡𝑖 (y) = 1𝑛
𝑡𝑖 (𝑣) . Therefore 𝑢 = 𝑣 ∗𝑖 𝑤 = 𝑣 and we are done. □

We may now state the main result of this section:

16.6.3 Proposition. Let 𝑃,𝑄 two polygraphs such that there is an isomorphism
𝑓 : 𝑃∗ → 𝑄∗ in Cat𝜔 . Then there is a morphism 𝑔 : 𝑃→ 𝑄 in Pol𝜔 such that,
for each 𝑛 ∈ N, 𝑔𝑛 : 𝑃𝑛 → 𝑄𝑛 is a bĳection, and 𝑓 = 𝑔∗.

Proof. Let 𝑎 ∈ 𝑃𝑛 be an 𝑛-generator. By Lemma 16.6.2, 𝑎∗ is irreducible, and
as 𝑓 : 𝑃∗ → 𝑄∗ is an isomorphism, so is 𝑓 (𝑎∗). Therefore, by Lemma 16.6.2
again, there is a 𝑏 = 𝑔𝑛 (𝑎) ∈ 𝑄𝑛 such that 𝑓 (𝑎∗) = 𝑏∗. This defines the required
map 𝑔𝑛 : 𝑃𝑛 → 𝑄𝑛. By construction, 𝑓 = 𝑔∗. □

16.7 Rewriting properties of 𝑛-polygraphs

The theory of rewriting developed in Chapters 1, 4 and 10 extends to 𝑛-poly-
graphs in a seamless way. Throughout this section, we fix an 𝑛-polygraph 𝑃,
with 𝑛 ⩾ 2. Recall from §15.1.7, that, for any 𝑘 ⩽ 𝑛, we denote by 𝑃⩽𝑘 the
𝑘-polygraph obtained by truncating 𝑃 to dimension 𝑘 . By definition, the set 𝑃𝑛
of 𝑛-generators is a cellular extension of the category 𝑃∗⩽𝑛−1 freely generated
by the (𝑛 − 1)-polygraph 𝑃⩽𝑛−1 and we think of 𝑃 as a presentation of the
(𝑛 − 1)-category

𝑃 = 𝑃∗⩽𝑛−1/𝑃𝑛
defined as the quotient (𝑛− 1)-category, in the sense of §15.1.6. In this setting,
the elements of 𝑃𝑛 are called rewriting rules of 𝑃.

16.7.1 Rewriting step. Let 𝑥, 𝑦 be two parallel (𝑛 − 1)-cells in 𝑃∗⩽𝑛−1. A re-
writing step of 𝑃 from 𝑥 to 𝑦 is an 𝑛-cell 𝑤 ∈ 𝑃∗𝑛 with source 𝑥 and target 𝑦 of
the form 𝑤 = 𝑐[𝑎] where 𝑎 is a rewriting rule of 𝑃 and 𝑐[w] is a thin 𝑛-context
of type (𝑠𝑛−1 (𝑎), 𝑡𝑛−1 (𝑎)). From (16.9), each rewriting step can be expressed
in a (non-unique) form as

𝑐[𝑎] = 𝑢𝑛−1 ∗𝑛−2 (... ∗1 (𝑢1 ∗0 𝑎 ∗0 𝑣1) ∗1 ...) ∗𝑛−2 𝑣𝑛−1

where 𝑢𝑖 and 𝑣𝑖 are identities over 𝑖-dimensional cells, for every 1 ⩽ 𝑖 ⩽ 𝑛 − 1.
We denote by 𝑃steps

𝑛 the set of rewriting steps of the polygraph 𝑃.
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16.7.2 Rewriting path. A rewriting path of 𝑃 is a sequence

𝜙 = 𝑤1, ..., 𝑤𝑘 (16.11)

of rewriting steps of 𝑃 such that 𝑡𝑛−1 (𝑤𝑖) = 𝑠𝑛−1 (𝑤𝑖+1), for every 1 ⩽ 𝑖 ⩽ 𝑘−1.
Therefore, a rewriting path 𝜙 of type (16.11) yields an 𝑛-cell of 𝑃∗𝑛

𝜙 = 𝑤1 ∗𝑛−1 ... ∗𝑛−1 𝑤𝑘 . (16.12)

In the case where 𝑘 = 0, the rewriting path 𝜙 is said to be empty, and the
corresponding 𝑛-cell 𝜙 is of the form 1𝑢 for some 𝑢 ∈ 𝑃∗𝑛−1. Note that for any
rewriting path 𝜙 = 𝑤1, ..., 𝑤𝑘 , the (𝑛 − 1)-cells 𝑥 = 𝑠𝑛−1 (𝑤1) and 𝑦 = 𝑡𝑛−1 (𝑤𝑘)
are respectively the source and target of 𝜙, so that there is no ambiguity in
writing 𝜙 : 𝑥 → 𝑦. As in §4.1.3, if 𝜙 : 𝑥 → 𝑦 and 𝜓 : 𝑦 → 𝑧 are rewriting
paths, we denote their concatenation by 𝜙∗𝜓. In particular, the sequence (16.11)
may be denoted

𝜙 = 𝑤1 ∗ ... ∗ 𝑤𝑘 . (16.13)

The following result is now an easy consequence of Proposition 15.1.8.

16.7.3 Proposition. For each 𝑛-cell 𝑧 in 𝑃∗𝑛, there is a rewriting path 𝜙 of 𝑃
such that 𝑧 = 𝜙.

16.7.4 Remark. In Proposition 16.7.3, the rewriting path 𝜙 is not uniquely
determined by 𝑧. However, if 𝜙 = 𝑤1 ∗ ... ∗ 𝑤𝑘 and 𝜙′ = 𝑤′1 ∗ ... ∗ 𝑤′𝑘′ are
two rewriting paths such that 𝜙 = 𝜙′, then 𝑘 ′ = 𝑘 . Therefore, the length of a
rewriting path 𝜙 only depends on 𝜙. Moreover, given 𝜙 and 𝜙′ as above, there is
a permutation 𝜎 of {1, ..., 𝑘} such that for each 𝑖 ∈ {1, ..., 𝑘}, 𝑤𝑖 and 𝑤′

𝜎 (𝑖) are
thin contexts 𝑤𝑖 = 𝑐[𝑎] and 𝑤′

𝜎 (𝑖) = 𝑐
′ [𝑎] over the same generator 𝑎 ∈ 𝑃𝑛−1.

16.7.5 Rewriting properties. Let 𝑃 be an 𝑛-polygraph 𝑃. Its two top di-
mensions build a 1-polygraph (𝑃∗𝑛−1, 𝑃

steps
𝑛 ), i.e., an abstract rewriting system,

whose 0-generators are the (𝑛−1)-cells of 𝑃∗𝑛−1 and 1-generators are rewriting
steps of 𝑃. We thus extend the rewriting notions defined on 1-polygraphs in
Section 1.3 to 𝑛-polygraphs as follows. We say that the 𝑛-polygraph 𝑃 is

terminating / quasi-terminating / Church-Rosser /
confluent / locally confluent / decreasing

convergent / quasi-convergent

when the 1-polygraph (𝑃∗𝑛−1, 𝑃
steps
𝑛 ) is. In particular, the following general

result still applies here, see Lemma 1.3.21:

16.7.6 Proposition. A terminating polygraph 𝑃 is confluent if and only if it is
locally confluent.
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The above proposition naturally leads us to investigate local branchings.

16.7.7 Classification of local branchings. A branching of 𝑃 is a pair (𝜙, 𝜓)
of rewriting paths 𝜙 : 𝑥 → 𝑦, 𝜓 : 𝑥 → 𝑧 of 𝑃 with common source 𝑥. Such a
branching is local if both 𝜙 and 𝜓 are of length 1, that is, are rewriting steps
of 𝑃. A local branching (𝜙, 𝜓) is

– trivial if 𝜓 = 𝜙,
– orthogonal if there are rewriting steps 𝑤 : 𝑢 → 𝑣 and 𝑤′ : 𝑢′ → 𝑣′ such that
𝜙 = 𝑤 ∗𝑛−2 1𝑢′ and 𝜓 = 1𝑢 ∗𝑛−2 𝑤

′ (or 𝜙 = 1𝑢′ ∗𝑛−2 𝑤 and 𝜓 = 𝑤′ ∗𝑛−2 1𝑢),
– overlapping if it is neither trivial nor orthogonal.

16.7.8 Minimal branching. The notion of minimal branching extends in ar-
bitrary dimension 𝑛 ⩾ 2 as follows. There is a binary relation ⊑ on the
set of local branchings defined by (𝜙, 𝜓) ⊑ (𝜙′, 𝜓′) if and only if there is
an (𝑛 − 1)-context 𝑐[y] of type (𝑠𝑛−2 (𝜙), 𝑡𝑛−2 (𝜙)) (which is the same as
(𝑠𝑛−2 (𝜓), 𝑡𝑛−2 (𝜓))) such that 𝜙′ = 𝑐[𝜙] and 𝜓′ = 𝑐[𝜓], where 𝑐[x] is the
thin 𝑛-context defined in Remark 16.5.3. The relation ⊑ is clearly reflexive.
Antisymmetry follows from Lemma 16.5.6, whereas transitivity is a conse-
quence of (16.10). Therefore ⊑ is a partial order and we may define a minimal
branching as a minimal element of the set of local branchings with respect to
this order.

16.7.9 Critical branching. A branching is critical when it is overlapping and
minimal.

16.7.10 Lemma. Given 𝑛 ⩾ 2, an 𝑛-polygraph is locally confluent if and only
if all its critical branchings are confluent.

Proof. Same proof as for Lemma 4.3.7. □

16.8 Polygraphs with finite derivation type

The property of finite derivation type has been studied in Chapter 8 for
2-polygraphs and in Chapter 12 for 3-polygraphs. It can be extended to any
𝑛-polygraphs as follows. An 𝑛-polygraph 𝑃 has finite derivation type if it is
finite and if the free (𝑛, 𝑛 − 1)-category 𝑃⊤ admits a finite acyclic cellular
extension, that is, a finite cellular extension generating all 𝑛-spheres of 𝑃⊤. An
(𝑛 − 1)-category has finite derivation type when it admits a presentation by an
𝑛-polygraph with finite derivation type. As in the case of 1- and 2-categories,
given two presentations of the same (𝑛−1)-category by finite 𝑛-polygraphs, both
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are of finite derivation type or neither is. The proof of this result given in [161,
Proposition 3.3.4] is similar to the proof in the case of 1- and 2-categories given
in Theorem 8.1.2 and Theorem 12.1.4 respectively.

16.8.1 Proposition. Let 𝑃 and𝑄 be Tietze equivalent finite 𝑛-polygraphs. Then
the polygraph 𝑃 has finite derivation type if and only if 𝑄 has.

16.8.2 Squier’s coherence theorem. For 𝑛 ⩽ 3, we have shown that, for a
convergent 𝑛-polygraph 𝑃, the set of critical branchings generate a homotopy
basis of the (𝑛, 𝑛−1)-category 𝑃⊤, see Theorems 2.5.10, 7.3.5 and 12.1.7. The
proofs of these results extends to higher-dimensional polygraphs as follows,
see [161, Proposition 4.3.4].

16.8.3 Theorem. Let 𝑃 be a convergent 𝑛-polygraph, and 𝑃𝑛+1 be a cellular
extension of the free (𝑛, 𝑛− 1)-category 𝑃⊤. If 𝑃𝑛+1 contains, for every critical
branching (𝜙, 𝜓) of 𝑃, one (𝑛 + 1)-generator of the form

𝑢
𝜙

{�

𝜓

�#
𝑣

𝜙′ �#

𝐴 *4 𝑤

𝜓′{�
𝑢′

where 𝜙′ and 𝜓′ are 𝑛-cells in 𝑃∗𝑛, then the (𝑛 + 1, 𝑛 − 1)-polygraph (𝑃, 𝑃𝑛+1)
is coherent.

Following Theorem 16.8.3, for every 𝑛 ⩾ 1, a finite convergent 𝑛-polygraph
with a finite set of critical branchings has finite derivation type. A 1-category
having a finite convergent presentation therefore has finite derivation type, see
Theorem 8.2.1. Note, however, that this result fails to generalize to 𝑛-categories
for 𝑛 ⩾ 2 as shown with the following counterexample.

16.8.4 A counterexample. We have constructed in §12.2.8 a finite convergent
3-polygraph Pearl3 which does not have finite derivation type. By shifting
dimensions on the polygraph Pearl3, we obtain an 𝑛-polygraph Pearl𝑛, for any
𝑛 ⩾ 3. It has exactly the same cells and compositions in dimensions 𝑛 − 3,
𝑛 − 2, 𝑛 − 1 and 𝑛 as Pearl3 has in dimensions 0, 1, 2 and 3; on top of that, it
has one cell in each dimension up to 𝑛 − 4 and no other possible compositions,
except with degenerate cells. By construction, the polygraph Pearl𝑛 is finite and
convergent, yet it still fails to have finite derivation type. We have thus proved
that, for every natural number 𝑛 ⩾ 2, there exists an 𝑛-category which does
not have finite derivation type and admits a presentation by a finite convergent
(𝑛 + 1)-polygraph. We refer the reader to [161] for more details on this result.



17
A catalogue of 𝑛-polygraphs

We have already presented a wealth of low-dimensional examples of 𝑛-poly-
graphs in Parts I, II and III, and many more will be found in Appendix A and C.
The present chapter concentrates on some useful families of 𝑛-polygraphs based
on familiar shapes: cylinders, cubes and simplices, namely Street’s orientals
defined in the seminal paper [334]. These families are crucial in the development
of a homotopy theory of 𝜔-categories.

We shall explain two methods for generating the above families. The first
one is based on a direct definition of the cylinder polygraph O1 ⊗ 𝑃 of a
polygraph 𝑃. The second is based on Steiner’s theory of augmented directed
complexes [330], which is a very powerful tool to build polygraphs using chain
complexes. In particular, it allows to define a tensor product for polygraphs (or
even 𝜔-categories) from which we can recover the cylinder polygraph, but also
a join operation.

17.1 First examples of 𝑛-polygraphs

17.1.1 Monoids. Of particular importance is the 2-polygraph associated to
a presentation of a monoid by generators and rewriting rules (see Chapter 4
and Appendix A). Recall that given 𝑀 a monoid presented by a set of genera-
tors 𝑃1 and a set 𝑃2 of rewriting rules of the form 𝛼 : 𝑤⇒ 𝑤′ where 𝑤, 𝑤′ ∈ 𝑃∗1,
we get a 2-polygraph 𝑃 = ⟨ 𝑃0 | 𝑃1 | 𝑃2 ⟩, where 𝑃0 = {⋆}. The source and
target maps are defined by 𝑠0 (𝑎) = 𝑡0 (𝑎) = ⋆ for each 𝑎 ∈ 𝑃1, and 𝑠1 (𝛼) = 𝑤,

369



370 A catalogue of 𝑛-polygraphs

𝑡1 (𝛼) = 𝑤′ for each rewrite rule 𝛼 : 𝑤⇒ 𝑤′.

𝑃0

𝑖0

��

𝑃1
𝑠0

��
𝑡0

��

𝑖1

��

𝑃2
𝑠1

��
𝑡1

��
𝑃∗0 𝑃∗1

𝑠∗0oo

𝑡∗0
oo

Remark that in this case we recover 𝑀 as the quotient category 𝐶/𝑋 where 𝐶
is the free category 𝑃∗0 𝑃∗1oo

oo and 𝑋 = 𝑃2.

17.1.2 Terminal polygraph. The functor 𝐺 : Cat𝜔 → Pol𝜔 from 15.1.10
also provides many natural examples of polygraphs. In particular 1pol = 𝐺 (1cat)
where 1cat is the terminal 𝜔-category has infinitely many generators in all
dimensions 𝑘 ⩾ 2. It is in fact a terminal object in the category Pol𝜔 , as
immediately implied by the adjunction.

17.1.3 Globular sets. Each 𝑛-globular set 𝑋 may be seen as an 𝑛-polygraph.
Precisely, for each 𝑛 ∈ N there is a natural inclusion functor Glob𝑛 → Pol𝑛
taking the globular set 𝑋 to the polygraph 𝑃 whose set of 𝑘-generators is just
𝑃𝑘 = 𝑋𝑘 for 0 ⩽ 𝑘 ⩽ 𝑛. For example, the 𝑛-globe O𝑛 is a polygraph with
exactly two generators in dimensions 0 ⩽ 𝑘 < 𝑛 and a unique generator in
dimension 𝑛. Likewise, the 𝑛-spheres 𝜕O𝑛 provide another example of a series
of 𝑛-polygraphs.

17.2 Tensoring polygraphs by O1

17.2.1 Before we turn to more complex examples of polygraphs, we need to
describe a useful general construction, namely the tensor product of a poly-
graph by the 1-globe O1. In order to check the coherence of the following
construction, we shall rely on the existence and the properties of the functor
Γ : Cat𝜔 → Cat𝜔 taking an 𝜔-category 𝐶 to the 𝜔-category Γ𝐶 of “small
cylinders internal to 𝐶”. We refer to Chapter 20 for a detailed account of this
functor Γ. As for the present argument, we just need to know that Γ comes
equipped with natural transformations

𝜋, 𝜋 : Γ→ 1Cat𝜔

and maps | − | : (Γ𝐶)𝑛 → 𝐶𝑛+1 taking an 𝑛-cylinder 𝑢 ∈ (Γ𝐶)𝑛 to its principal
cell |𝑢 | ∈ 𝐶𝑛+1, such that, for any 𝑛-cylinder 𝑢 ∈ (Γ𝐶)𝑛, the source and target
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of |𝑢 | are given by

|𝑢 | : 𝜋𝐶 (𝑢)∗0 |𝑡0 (𝑢) |∗1· · ·∗𝑛−1 |𝑡𝑛−1 (𝑢) | → |𝑠𝑛−1 (𝑢) |∗𝑛−1· · ·∗1 |𝑠0 (𝑢) |∗0𝜋𝐶 (𝑢).

Let us first introduce a few notations to be used throughout the construction.

– The 0-generators of O1 will be denoted by 0− and 0+.
– The 1-generator of O1 will be denoted by 1, so that 1 : 0−→ 0+.
– For any set 𝐴 of symbols, we denote by 0−⊗ 𝐴 (resp. 0+⊗ 𝐴, 1 ⊗ 𝐴) the set

of all symbols of the form 0−⊗ 𝑎 (resp. 0+⊗ 𝑎, 1 ⊗ 𝑎), where 𝑎 ∈ 𝐴.
– Given a symbol 𝑎, we define the following formal expressions:

S0 (𝑎) = 0−⊗ 𝑎,
T0 (𝑎) = 0+⊗ 𝑎,
S1 (𝑎) = (0−⊗ 𝑎) ∗0 (1 ⊗ 𝑡0 (𝑎)),
T1 (𝑎) = (1 ⊗ 𝑠0 (𝑎)) ∗0 (0+⊗ 𝑎);

and more generally, for each integer 𝑖 > 1:

S𝑖 (𝑎) = (0−⊗ 𝑎) ∗0 (1 ⊗ 𝑡0 (𝑎)) ∗1 · · · ∗𝑖−1 (1 ⊗ 𝑡𝑖−1 (𝑎)),
T𝑖 (𝑎) = (1 ⊗ 𝑠𝑖−1 (𝑎)) ∗𝑖−1 · · · ∗1 (1 ⊗ 𝑠0 (𝑎)) ∗0 (0+⊗ 𝑎).

These expressions will eventually denote actual cells whenever the indeter-
minate 𝑎 is interpreted appropriately.

17.2.2 Let now 𝑃 be a polygraph. We shall build a new polygraph 𝑄 = O1 ⊗ 𝑃
endowed with a morphism ℎ : 𝑃∗ → Γ𝑄∗ giving rise to the following families
of maps:

– morphisms top, bot : 𝑃 → 𝑄 in Pol𝜔 respectively taking an 𝑛-cell 𝑢 ∈ 𝑃∗𝑛
to top(𝑢) = 0−⊗ 𝑢 = 𝜋𝑄∗ (ℎ(𝑢)) and bot(𝑢) = 0+⊗ 𝑢 = 𝜋𝑄∗ (ℎ(𝑢)),

– maps 1 ⊗ − : 𝑃∗𝑛 → 𝑄∗𝑛+1 defined as the composite

𝑃∗𝑛
ℎ𝑛 // Γ𝑄∗𝑛

|− |
// 𝑄∗𝑛+1

such that

1 ⊗ 𝑢 : S𝑛 (𝑢) → T𝑛 (𝑢) (17.1)

for any 𝑛-cell 𝑢 ∈ 𝑃∗𝑛.
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17.2.3 We now define 𝑄, bot, top and 1 ⊗ − by simultaneous induction on the
dimension.

– For 𝑛 = 0, the set of 0-generators of 𝑄 is defined by 𝑄0 = 0−⊗ 𝑃0 ⊔ 0+⊗ 𝑃0
whereas top0 an bot0 are given by top0 (𝑎) = 0− ⊗ 𝑎 and bot0 (𝑎) = 0+⊗ 𝑎
for 𝑎 ∈ 𝑃0.

– The set of 1-generators of 𝑄 is defined by 𝑄1 = 0−⊗ 𝑃1 ⊔ 0+⊗ 𝑃1 ⊔ 1 ⊗ 𝑃0,
whereas top1, bot1 : 𝑃1 → 𝑄1 and 1⊗− : 𝑃0 → 𝑄1 are given by the obvious
canonical inclusions. The source and target maps 𝑠𝑄0 , 𝑡

𝑄
0 : 𝑄1 → 𝑄∗0 are

given, for each 𝑎 ∈ 𝑃1 by 𝑠𝑄0 (0−⊗ 𝑎) = 0−⊗ 𝑠𝑃0 (𝑎), 𝑠
𝑄
0 (0+⊗ 𝑎) = 0+⊗ 𝑠𝑃0 (𝑎),

𝑡𝑄0 (0−⊗ 𝑎) = 0−⊗ 𝑡𝑃0 (𝑎) and 𝑡𝑄0 (0+⊗ 𝑎) = 0+⊗ 𝑡𝑃0 (𝑎), so that top and bot
are as expected morphisms up to dimension 1. As for 𝑎 ∈ 𝑃0, we define
𝑠𝑄0 (1⊗ 𝑎) = 0−⊗ 𝑎 and 𝑡𝑄0 (1⊗ 𝑎) = 0+⊗ 𝑎. Because 𝑃∗0 = 𝑃0 there is nothing
more to verify here, and (17.1) holds.

– Suppose now 𝑄 has been defined up to dimension 𝑛, as well as morphisms
top, bot : 𝑃 → 𝑄 in Pol𝜔 up to dimension 𝑛, a morphism ℎ : 𝑃∗ → Γ𝑄∗

in Cat𝜔 up to dimension 𝑛 − 1 and corresponding maps 1 ⊗ − : 𝑃∗𝑘 → 𝑄∗𝑘+1
satisfying equations (17.1) for all 𝑘 ∈ {0, ..., 𝑛 − 1}. The set of (𝑛+1)-gener-
ators of 𝑄 is defined by 𝑄𝑛+1 = 0− ⊗ 𝑃𝑛+1 ⊔ 0+⊗ 𝑃𝑛+1 ⊔ 1 ⊗ 𝑃𝑛 whereas
top𝑛+1, bot𝑛+1 : 𝑃𝑛+1 → 𝑄𝑛+1 and 1 ⊗ − : 𝑃𝑛 → 𝑄𝑛+1 are given by the
obvious canonical inclusions. The source and target maps are defined as
above for the generators of the form 0−⊗ 𝑎 and 0+⊗ 𝑎, namely:

𝑠𝑄𝑛 (0−⊗ 𝑎) = 0−⊗ 𝑠𝑃𝑛 (𝑎),
𝑠𝑄𝑛 (0+⊗ 𝑎) = 0+⊗ 𝑠𝑃𝑛 (𝑎),
𝑡𝑄𝑛 (0−⊗ 𝑎) = 0−⊗ 𝑡𝑃𝑛 (𝑎),
𝑡𝑄𝑛 (0+⊗ 𝑎) = 0+⊗ 𝑡𝑃𝑛 (𝑎).

As for generators of the form 1 ⊗ 𝑎, with 𝑎 ∈ 𝑃𝑛, the induction hypothesis
implies that S𝑛 (𝑎) and T𝑛 (𝑎) denote well-defined cells in 𝑄∗𝑛 and moreover
that these two cells are parallel. Hence, the 𝑛-source and 𝑛-target of 1 ⊗ 𝑎
may be defined by 𝑠𝑄𝑛 (1 ⊗ 𝑎) = S𝑛 (𝑎) and 𝑡𝑄𝑛 (1 ⊗ 𝑎) = T𝑛 (𝑎), whence
1 ⊗ 𝑎 : S𝑛 (𝑎) → T𝑛 (𝑎). It follows that the polygraph 𝑄 is now defined up
to dimension 𝑛 + 1, together with the morphisms top, bot : 𝑃 → 𝑄, and
that (17.1) holds for the (𝑛 + 1)-generators of 𝑃. This implies that the mor-
phism ℎ can be extended in dimension 𝑛 by a map ℎ𝑛 : 𝑃𝑛 → (Γ𝑄∗)𝑛 com-
muting to source and target maps. By the universal property of polygraphs
(Lemma 15.1.5), ℎ extends as a morphism 𝑃∗ → Γ𝑄∗ up to dimension 𝑛,
and by composing with the principal cell map | − | : (Γ𝑄∗)𝑛 → 𝑄∗𝑛+1, we
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get a map
1 ⊗ − : 𝑃∗𝑛 → 𝑄∗𝑛+1

satisfying (17.1) for all cells 𝑢 ∈ 𝑃∗𝑛. Thus, the induction is complete.

17.3 Families of polygraphs

17.3.1 Cylinders. Let 𝑛 ⩾ 0. The free-standing 𝑛-cylinder is by definition the
polygraph

Cyl𝑛 = O1 ⊗ O𝑛.
Now recall that the 𝑛-globe O𝑛 has 2𝑛 + 1 generators, namely the only 𝑛-gener-
ator n together with the 2𝑛 generators of the form i− = 𝑠𝑖 (n) and i+ = 𝑡𝑖 (n)
for 𝑖 ∈ {0, ..., 𝑛 − 1}. Thus, Cyl0 is just O1, whereas for 𝑛 > 0 the generators
of Cyl𝑛 are listed below.

– There are four 0-generators, namely 0−⊗ 0− , 0−⊗ 0+, 0+⊗ 0− and 0+⊗ 0+.
– For 0 < 𝑖 ⩽ 𝑛− 1, there are six 𝑖-generators, namely 0−⊗ i− , 0−⊗ i+, 0+⊗ i− ,

0+⊗ i− , 1 ⊗ (i−1)− and 1 ⊗ (i−1)− .
– There are four 𝑛-generators, namely 0−⊗n, 0−⊗n, 1⊗(n−1)− and 0−⊗(n−1)+.
– There is only one (𝑛 + 1)-generator 1 ⊗ n.

Therefore Cyl𝑛 has exactly 6𝑛 + 3 generators. Moreover, the source and target
of these generators are given by the formulas (17.1). Here are pictures of Cyl0,
Cyl1 and Cyl2:

0−

1

��

0+,

0− ⊗ 0− 0−⊗1 //

1⊗0−

��

0− ⊗ 0+

1⊗0+

��

0+ ⊗ 0−𝑦
0+⊗1

// 0+ ⊗ 0+,

1⊗1
v~

0− ⊗ 0−
0−⊗1−

))

0−⊗1+
55

1⊗0−

��

0−⊗2
��

0− ⊗ 0+

1⊗0+

��

0+ ⊗ 0−
0+⊗1−

))

0+⊗1+
55

0+⊗2
��

0+ ⊗ 0+.

1⊗1−

�

1⊗1+mu

1⊗2Uc



374 A catalogue of 𝑛-polygraphs

17.3.2 Cubes. The tensor product construction above also leads to the defini-
tion of the polygraphic 𝑛-cubes. Precisely, this family (Cub𝑛)𝑛∈N of polygraphs
is defined by

– Cub0 = O0,
– Cub𝑛+1 = O1 ⊗ Cub𝑛.

It follows from the above construction that, for each 𝑖 ∈ {0, ..., 𝑛}, the set of
𝑖-generators of Cub𝑛 has

(𝑛
𝑖

)
2𝑛−𝑖 elements, and therefore the total number of

generators in Cub𝑛 is
𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
2𝑛−𝑖 = 3𝑛.

A convenient way to encode these generators is by labeling them by words on
the alphabet {−, 1, +}, the 𝑖-generators being those with exactly 𝑖 occurrences
of the letter 1. For example, Cub2 looks like

[−−]
[−1]
//

[1−]
��

[−+]

[1+]
��

[11]
w�

[+−] [+1]
// [++],

whereas Cub3 looks like

[−−−] [−−1] //

[−1−]

  
[1−−]

��

[−−+]

�

[−11]

{�

[−1+]

��

[1−+]

��

[−+−]

[11−]

z�

[−+1] //

[1+−]

��

[−++]

{�

[1+1]

qy

[1++]

��

[+−−]

[+1−]

  

[+−1] // [+−+]

[111]

Xg

{�

[+1+]

��
[++−] [++1] // [+++],

where the 3-cell [111] goes from the composition of the front faces

𝑠2 [111] = ( [−11] ∗0 [1++]) ∗1 ( [−1−] ∗0 [1+1]) ∗1 ( [11−] ∗0 [++1])
to the composition of the back faces

𝑡2 [111] = ( [−−1] ∗0 [11+]) ∗1 ( [1−1] ∗0 [+1+]) ∗1 ( [1−−] ∗0 [+11]).
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17.3.3 Simplices. The correspondence 𝑃 ↦→ O1 ⊗ 𝑃 from Pol𝜔 to Pol𝜔 is
easily seen to be functorial. Now, for each polygraph 𝑃, we can form the
following pushout in Cat𝜔:

𝑃∗

!
��

top
// (O1 ⊗ 𝑃)∗

��

1cat // 𝐶 (𝑃).

This defines a functor 𝑃 ↦→ 𝐶 (𝑃) from Pol𝜔 to Cat𝜔 . Because top is a
cofibration of Cat𝜔 (see §19.2.1), 1cat → 𝐶 (𝑃) is also a cofibration and as 1cat

is cofibrant, so is 𝐶 (𝑃). By Theorem 21.1.6, there is a polygraph 𝑆(𝑃) such
that𝐶 (𝑃) = 𝑆(𝑃)∗. It is now possible to define a family (O𝑛)𝑛∈N of polygraphs
by

– O0 = O0,

– O𝑛+1 = 𝑆(O𝑛).

It turns out that O𝑛 is precisely the polygraphic 𝑛-th simplex, or 𝑛-th ori-
ental, first introduced in [334]. For each 0 ⩽ 𝑖 ⩽ 𝑛 the set of 𝑖-generators
(“𝑖-faces”) of O𝑛 has

(𝑛+1
𝑖+1

)
elements. The 𝑖-generators of O𝑛 may be conve-

niently encoded by strictly increasing sequences of integers ⟨𝑛0, ..., 𝑛𝑖⟩, where
0 ⩽ 𝑛0 < 𝑛1 < ... < 𝑛𝑖 ⩽ 𝑛. For example, O2 and O3 may be pictured as
follows:

⟨0⟩·

⟨0,1⟩

��

⟨0,2⟩

��
⟨0,1,2⟩
y�·

⟨1⟩ ⟨1,2⟩
// ·
⟨2⟩

⟨0⟩·

⟨0,1⟩

��

⟨0,3⟩

""

⟨0,2⟩

��

⟨0,1,3⟩
w� ⟨0,2,3⟩

��

⟨0,1,2,3⟩
jt ·⟨3⟩

⟨1⟩·

⟨1,2⟩
''

⟨1,3⟩
33

⟨1,2,3⟩
��

⟨0,1,2⟩ks

·
⟨2⟩

⟨2,3⟩

DD
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17.4 Construction of polygraphs via Steiner’s theory

We shall now present Steiner’s theory of augmented directed complexes [330]
and use it to construct some polygraphs. Other similar formalisms include
Street’s parity complexes [335, 336] and Johnson’s pasting schemes [206].

17.4.1 Augmented directed complexes. In this section, by “chain complex”
we will always mean “chain complex of abelian groups in non-negative degree”
(see §E.2.1). Recall that an augmented chain complex (𝐾, 𝑑, 𝑒) is a chain
complex (𝐾, 𝑑) endowed with an augmentation 𝑒, that is, with a map of abelian
groups 𝑒 : 𝐾0 → Z such that 𝑒𝑑1 = 0. A morphism from an augmented chain
complex (𝐾, 𝑑𝐾 , 𝑒𝐾 ) to a second augmented chain complex (𝐿, 𝑑𝐿 , 𝑒𝐿) is a
morphism of chain complex 𝑓 from (𝐾, 𝑑𝐾 ) to (𝐿, 𝑑𝐿) such that 𝑒𝐿 𝑓0 = 𝑒𝐾 .

An augmented directed complex is an augmented chain complex (𝐾, 𝑑, 𝑒)
equipped with, for every 𝑛 ≥ 0, a submonoid𝐾+𝑛 of positive chains of the abelian
group𝐾𝑛. A morphism 𝑓 : 𝐾 → 𝐿 between two augmented directed complexes
consists of a morphism of the underlying augmented chain complexes that
respects the positive chains in the sense that 𝑓 (𝐾+𝑛) ⊆ 𝐿+𝑛 for every 𝑛 ≥ 0. We
will denote by ADC the resulting category.

17.4.2 From 𝜔-categories to augmented directed complexes. We define a
functor 𝜆 : Cat𝜔 → ADC by sending an 𝜔-category 𝐶 to the following
augmented directed complex 𝜆(𝐶):

– For every 𝑛 ≥ 0, the abelian group (𝜆(𝐶))𝑛 is generated by elements [𝑥], for
𝑥 an 𝑛-cell of 𝐶, subject to the relations

[𝑥 ∗𝑖 𝑦] = [𝑥] + [𝑦]

for pairs of 𝑖-composable 𝑛-cells 𝑥 and 𝑦.
– For every 𝑛 ≥ 1 and every 𝑛-cell 𝑥 of 𝐶, we set

𝑑𝑛 ( [𝑥]) = [𝑡𝑛−1 (𝑥)] − [𝑠𝑛−1 (𝑥)] .

– If 𝑥 is a 0-cell of 𝐶, we set

𝑒( [𝑥]) = 1.

– Finally, for every 𝑛 ≥ 0, the submonoid (𝜆(𝐶))+𝑛 is the submonoid of (𝜆(𝐶))𝑛
generated by the elements [𝑥] for 𝑥 ∈ 𝐶𝑛.

The globular relations easily imply that 𝑑 is indeed a differential so that 𝜆(𝐶)
is indeed an augmented directed complex.

Given an 𝜔-functor 𝑓 : 𝐶 → 𝐷, the morphism of augmented directed
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complexes 𝜆( 𝑓 ) : 𝜆(𝐶) → 𝜆(𝐷) is defined on generators by

(𝜆( 𝑓 )) ( [𝑥]) = [ 𝑓 (𝑥)] .

17.4.3 From chain complexes to 𝜔-categories. We now define a functor
𝜇 : ChZ,⩾0 → Cat𝜔 , where ChZ,⩾0 denotes the category of chain complexes.
Given a chain complex𝐾 , the associated𝜔-category 𝜇(𝐾) is defined as follows:

– For 𝑛 ≥ 0, an 𝑛-cell of 𝜇(𝐾) consists of a table

𝑥 =

(
𝑥−0 · · · 𝑥−𝑛
𝑥+0 · · · 𝑥+𝑛

)
,

where

– 𝑥𝜀𝑖 , for 0 ≤ 𝑖 ≤ 𝑛 and 𝜀 = ±, belongs to 𝐾𝑖 ,
– 𝑥−𝑛 = 𝑥+𝑛,
– 𝑑 (𝑥𝜀𝑖 ) = 𝑥+𝑖−1 − 𝑥−𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛 and 𝜀 = ±.

– For 𝑛 ≥ 1, the source and target of such a cell 𝑥 are given by

𝑠 (𝑥) =
(
𝑥−0 · · · 𝑥−𝑛−1

𝑥+0 · · · 𝑥−𝑛−1

)
and 𝑡 (𝑥) =

(
𝑥−0 · · · 𝑥+𝑛−1

𝑥+0 · · · 𝑥+𝑛−1

)
.

– For 𝑛 ≥ 0, the unit cell of such a cell 𝑥 is given by

1𝑥 =

(
𝑥−0 · · · 𝑥−𝑛 0
𝑥+0 · · · 𝑥+𝑛 0

)
.

– Finally, if

𝑥 =

(
𝑥−0 · · · 𝑥−𝑛
𝑥+0 · · · 𝑥+𝑛

)
and 𝑦 =

(
𝑦−0 · · · 𝑦−𝑛
𝑦+0 · · · 𝑦+𝑛

)

are two 𝑛-cells of 𝜇(𝐾) such that the 𝑡𝑖 (𝑥) = 𝑠𝑖 (𝑦) for some 0 ≤ 𝑖 < 𝑛, then

𝑥 ∗𝑖 𝑦 =
(
𝑥−0 · · · 𝑥−𝑖 𝑥−𝑖+1 + 𝑦−𝑖+1 · · · 𝑥−𝑛 + 𝑦−𝑛
𝑦+0 · · · 𝑦+𝑖 𝑥−𝑖+1 + 𝑦−𝑖+1 · · · 𝑥−𝑛 + 𝑦−𝑛

)
.

One checks that 𝜇(𝐾) is indeed an 𝜔-category.
If 𝑓 : 𝐾 → 𝐿 is a morphism of chain complexes, then the action on 𝑛-cells

of the 𝜔-functor 𝜇( 𝑓 ) is defined by(
𝑥−0 · · · 𝑥−𝑛
𝑥+0 · · · 𝑥+𝑛

)
↦→

(
𝑓 (𝑥−0 ) · · · 𝑓 (𝑥−𝑛 )
𝑓 (𝑥+0 ) · · · 𝑓 (𝑥+𝑛)

)
.
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17.4.4 Remark. The construction 𝜇 of the previous paragraph actually lands
into the category Cat𝜔 (Ab) of 𝜔-categories internal to abelian groups, that is,
of 𝜔-categories whose set of 𝑛-cells is endowed with a structure of abelian
group, and whose operations (sources, target, units and compositions) are
compatible with these structures of abelian groups on cells. More precisely,
the functor 𝜇 naturally lift to a functor ChZ,⩾0 → Cat𝜔 (Ab). A theorem
of Bourn [54] states that this functor is an equivalence of categories. This is
sometimes called the globular Dold-Kan correspondence.

17.4.5 From augmented directed complexes to 𝜔-categories. We now de-
fine a functor 𝜈 : ADC→ Cat𝜔 as a subfunctor of the functor

ADC 𝑈−→ ChZ,⩾0
𝜇−→ Cat𝜔 ,

where 𝑈 denotes the obvious forgetful functor. If 𝐾 is an augmented directed
complex, an 𝑛-cell (

𝑥−0 · · · 𝑥−𝑛
𝑥+0 · · · 𝑥+𝑛

)

of 𝜇(𝐾) belongs to the sub-𝜔-category 𝜈(𝐾) if

– 𝑥𝜀𝑖 , for 0 ≤ 𝑖 ≤ 𝑛 and 𝜀 = ±, is a positive chain (that is, is in 𝐾+𝑖 ),
– 𝑒(𝑥𝜀0 ) = 1 for 𝜀 = ±.

One checks that the operations of the 𝜔-category 𝜇(𝐾) restricts to 𝜈(𝐾) and
that if 𝑓 : 𝐾 → 𝐿 is a morphism of augmented directed complexes, then the
𝜔-functor 𝜇( 𝑓 ) : 𝜇(𝐾) → 𝜇(𝐿) restricts to an𝜔-functor 𝜈( 𝑓 ) : 𝜈(𝐾) → 𝜈(𝐿).
17.4.6 Proposition. The functors

𝜆 : Cat𝜔 → ADC 𝜈 : ADC→ Cat𝜔

define a pair of adjoint functors.

Proof. We will only define the components of the adjunction morphisms and
leave the verification to the reader. If 𝐶 is an 𝜔-category, the unit of the
adjunction at 𝐶 is the 𝜔-functor 𝜂𝐶 : 𝐶 → 𝜈(𝜆(𝐶)) defined on 𝑛-cells by

𝑥 ↦→
(
[𝑠0 (𝑥)] · · · [𝑠𝑛 (𝑥)]
[𝑡0 (𝑥)] · · · [𝑡𝑛 (𝑥)]

)
.

If 𝐾 is an augmented chain complex, the counit of the adjunction 𝐾 is the
morphism 𝜀𝐾 : 𝜆(𝜈(𝐾)) → 𝐾 defined on generating 𝑛-chains by[(

𝑥−0 · · · 𝑥−𝑛
𝑥+0 · · · 𝑥+𝑛

)]
↦→ 𝑥𝑛,



17.4 Construction of polygraphs via Steiner’s theory 379

where 𝑥𝑛 denotes the 𝑛-chain 𝑥−𝑛 = 𝑥+𝑛. □

17.4.7 Remark. Similarly, the functors

𝑈𝜆 : Cat𝜔 → ChZ,⩾0 𝜇 : ChZ,⩾0 → Cat𝜔 ,

where 𝑈 : ADC → ChZ,⩾0 denotes the forgetful functor, define a pair of
adjoint functors.

17.4.8 Augmented directed complexes with basis. A basis 𝐵 of an aug-
mented directed complex is a sequence of subsets 𝐵𝑛 ⊆ 𝐾𝑛, indexed by 𝑛 ≥ 0,
such that

– 𝐵𝑛 is a basis of the Z-module 𝐾𝑛,
– 𝐵𝑛 generates 𝐾+𝑛 as a submonoid of 𝐾𝑛.

The data of such a basis gives, for every 𝑛 ≥ 0, an isomorphism of abelian
groups between 𝐾𝑛 and Z(𝐵𝑛 ) restricting to an isomorphism of monoids be-
tween 𝐾+𝑛 and N(𝐵𝑛 ) . The elements of 𝐵𝑛 can be recovered as the minimal
non-zero elements of 𝐾+𝑛 for the order on 𝐾𝑛 defined by 𝑥 ≤ 𝑦 if 𝑦 − 𝑥 ∈ 𝐾+𝑛 .
This shows that if such a basis exists it is unique.

17.4.9 Proposition. Let 𝑃 be a polygraph. Then, for each 𝑛 ⩾ 0, the family
( [𝑥])𝑥∈𝑃𝑛 forms a basis of 𝜆(𝑃∗).

Proof. As any 𝑛-cell of 𝑃∗ can be expressed as a composition of units and
𝑛-generators (see Proposition 15.1.8), the set 𝑃𝑛 generates the monoid 𝜆(𝑃∗)+𝑛.
Let us show that it is a Z-basis of 𝜆(𝑃∗)𝑛. We have to prove that the morphism
𝛽 : Z[𝑃𝑛] → 𝜆(𝑃∗)𝑛 which, given 𝑥 in 𝑃𝑛, sends [𝑥] in Z[𝑃𝑛] to [𝑥] in 𝜆(𝑃∗)𝑛
is an isomorphism. By 16.2.5, we have a map 𝛾 : 𝑃∗𝑛 → Z[𝑃𝑛] sending an
𝑛-generator 𝑥 of 𝑃 to [𝑥] and compositions to sums. We thus get a morphism
�̄� : 𝜆(𝑃∗)𝑛 → Z[𝑃𝑛]. We claim that �̄� is an inverse of 𝛽. As Z[𝑃𝑛] is generated
by the [𝑥], it suffices to check equality �̄� ◦ 𝛽 = 1 on these elements, which
is true by definition. As 𝜆(𝑃∗)𝑛 is generated by the [𝑥], we similarly get the
equality 𝛽 ◦ �̄� = 1. □

17.4.10 Let 𝐾 be an augmented directed complex with a basis 𝐵. Let 𝑛 ≥ 0
and let 𝑥 be an 𝑛-chain of 𝐾 . We can write

𝑥 =
∑︁
𝑏∈𝐵𝑛

𝑛𝑏𝑏,

where the 𝑛𝑏 are integers, in a unique way. The support supp (𝑥) of 𝑥 is the
set of 𝑏 such that 𝑛𝑏 is non-null. The negative support supp− (𝑥) and positive
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support supp+ (𝑥) of 𝑥 are the sets

supp− (𝑥) = {𝑏 | 𝑛𝑏 < 0} and supp+ (𝑥) = {𝑏 | 𝑛𝑏 > 0} .
We define

𝑥− =
∑︁

𝑏∈supp− (𝑥 )
(−𝑛𝑏)𝑏 and 𝑥+ =

∑︁
𝑏∈supp+ (𝑥 )

𝑛𝑏𝑏.

We have
𝑥 = 𝑥+ − 𝑥− .

Actually, 𝑥− and 𝑥+ are the only positive 𝑛-chains 𝑦 and 𝑧 with disjoint support
such that 𝑥 = 𝑧 − 𝑦.

If now 𝑛 ≥ 1 and 𝑥 is still an 𝑛-chain, we define the positive (𝑛 − 1)-chains
𝑑− (𝑥) and 𝑑+ (𝑥) to be

𝑑− (𝑥) = (𝑑 (𝑥))− and 𝑑+ (𝑥) = (𝑑 (𝑥))+.
More generally, if 0 ≤ 𝑖 ≤ 𝑛, we define two positive 𝑖-chains 𝑑−𝑖 (𝑥) and 𝑑+𝑖 (𝑥)
by

𝑑−𝑖 (𝑥) = (𝑑−)𝑛−𝑖 (𝑥) and 𝑑+𝑖 (𝑥) = (𝑑+)𝑛−𝑖 (𝑥).

17.4.11 Unital augmented directed complexes. Let 𝐾 be an augmented di-
rected complex with basis 𝐵. For every element of the basis 𝐵, we define a
table

⟨𝑥⟩ =
(
𝑑−0 (𝑥) · · · 𝑑−𝑛−1 (𝑥) 𝑥

𝑑+0 (𝑥) · · · 𝑑+𝑛−1 (𝑥) 𝑥

)
.

This table defines an 𝑛-cell of 𝜈(𝐾) if and only if 𝑒(𝑑 𝜀0 (𝑥)) = 1 for 𝜀 = ±.
This motivates the following definition. An augmented directed complex

with basis is said to be unital if for every 𝑛 ≥ 0 and every 𝑛-chain 𝑥 of the basis,
we have 𝑒(𝑑−0 (𝑥)) = 1 and 𝑒(𝑑+0 (𝑥)) = 1. If 𝐾 is a unital augmented directed
complex, the cells of the form ⟨𝑥⟩, for 𝑥 in the basis of 𝐾 , are called atoms.

17.4.12 Loop-free augmented directed complexes. Let 𝐾 be an augmented
directed complex 𝐾 with basis 𝐵. We say that 𝐾 is loop-free if there exists a
partial order on

∐
𝑛≥0 𝐵𝑛 such that, for every 𝑛 ≥ 1, every 𝑥 in 𝐵𝑛 and every

0 ≤ 𝑖 < 𝑛, any element of the support of 𝑑−𝑖 (𝑥) is smaller than any element of
the support of 𝑑+𝑖 (𝑥).

Similarly, we say that 𝐾 is strongly loop-free if there exists a partial order ≼
on

∐
𝑛≥0 𝐵𝑛 such that, for every 𝑛 ≥ 1, every 𝑥 in 𝐵𝑛, every 𝑦 in the support

of 𝑑−𝑥 and every 𝑧 in the support of 𝑑+𝑥, one has

𝑦 ≼ 𝑥 ≼ 𝑧.
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As the terminology suggests, one can show that a strongly loop-free augmented
directed complex is loop-free.

17.4.13 Remark. The definition of “loop-free” given in the previous paragraph
is not the one from [330] but the one used in [331]. The two definitions can be
shown to be equivalent.

17.4.14 Steiner complexes. We will say that an augmented directed complex
is a Steiner complex if is unital and loop-free. Similarly, we will say that it is a
strong Steiner complex if it is unital and strongly loop-free.

17.4.15 Loop-free polygraphs. Let 𝑃 be a polygraph. We say that 𝑃 is loop-
free if there exists a partial order on the set

∐
𝑛≥0 𝑃𝑛 such that, for every 𝑛 ≥ 1,

every 𝑥 in 𝑃𝑛 and every 0 ≤ 𝑖 < 𝑛, any element of the support of 𝑠𝑖 (𝑥) is strictly
smaller than any element of the support of 𝑡𝑖 (𝑥).

Similarly, we will say that 𝑃 is strongly loop-free if there exists a par-
tial order ≼ on

∐
𝑛≥0 𝑃𝑛 such that, for every 𝑛 ≥ 1, every 𝑥 in 𝑃𝑛, every

0 ≤ 𝑖 < 𝑛, every 𝑦 in the support of 𝑠𝑖 (𝑥) and every 𝑧 in the support of 𝑡𝑖 (𝑥),
one has 𝑦 ≼ 𝑥 ≼ 𝑧.

We will say that an𝜔-category is a Steiner𝜔-category (resp. a strong Steiner
𝜔-category) if it is generated by loop-free polygraph (resp. by a strongly loop-
free polygraph).

We can now state a reformulation of the main theorems of [330]:

17.4.16 Theorem. The adjunction

Cat𝜔
𝜆
,,

⊥ ADC
𝜈
ll

restricts to an equivalence of categories between

– the full subcategory of Cat𝜔 spanned by Steiner’s 𝜔-categories (resp. by
strong Steiner’s 𝜔-categories),

– the full subcategory of ADC on Steiner complexes (resp. by strong Steiner
complexes).

Moreover, if 𝐾 is a Steiner complex, the 𝜔-category 𝜈(𝐾) is freely generated
in the sense of polygraphs by its atoms.

17.4.17 Remark. The description of the full subcategories of Cat𝜔 appearing
in the previous theorem is different in [330]. Nevertheless, it is shown in [11]
that they are equivalent.
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We will now use Steiner’s theory to construct some polygraphs and in par-
ticular recover the ones defined in the previous section.

17.4.18 Orientals. Consider the functor

𝑐 : Δ̂→ ChZ,⩾0

sending a simplicial set (see §F.1.1) to its normalized chain complex (see §F.1.2).
This functor naturally lifts to a functor

𝑐ad : Δ̂→ ADC.

Indeed, if 𝑋 is a simplicial set, then the chain complex 𝑐(𝑋) can be equipped
with the following structure of augmented directed complex.

– The augmentation 𝑒 : Z[𝑋0] → Z sends [𝑥], for 𝑥 a 0-simplex, to 1.
– The submonoid 𝑐(𝑋)+𝑛, for 𝑛 ≥ 0, is generated by canonical basis of 𝑐(𝑋)𝑛.
Steiner showed that the composite

Δ ↩→ Δ̂
𝑐ad−−→ ADC,

where the first functor denotes the Yoneda embedding, lands into strong Steiner
complexes. In particular, by post-composing by 𝜈 : ADC → Cat𝜔 , we get a
functor

O : Δ→ Cat𝜔

landing into𝜔-categories generated by polygraphs. This functor is the so-called
cosimplicial object of orientals. In particular, for 𝑛 ≥ 0, we recover the 𝑛-th
oriental O𝑛 as defined in §17.3.3.

More generally, it is shown in [14] that if the simplicial set 𝑋 is a simplicial
complex (this means, first, that the (𝑛 + 1)-faces of any 𝑛-simplex are distinct
and, second, that for any set 𝐸 of 𝑛 + 1 0-simplices, there is at most one non-
degenerate 𝑛-simplex whose set of 0-simplices is 𝐸), then 𝑐ad (𝑋) is a strong
Steiner complex. Under this condition, we thus get an 𝜔-category 𝜈(𝑐ad (𝑋))
generated by a polygraph, which deserves to be called the oriental associated
to 𝑋 .

17.4.19 Globes. The 𝑛-category O𝑛 is freely generated by a globular set. In
particular, it is generated by a polygraph 𝑃 whose generators are the cells of
this globular set. If we denote by 𝑥 the principal 𝑛-cell of O𝑛, then

𝑠0 (𝑥) ≼ · · · ≼ 𝑠𝑛−1 (𝑥) ≼ 𝑠𝑛 (𝑥) = 𝑥 = 𝑡𝑛 (𝑥) ≼ 𝑡𝑛−1 (𝑥) ≼ · · · ≼ 𝑡0 (𝑥)
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is a total order on generators of 𝑃 showing that 𝑃 is strongly loop-free. This
shows that O𝑛 is a strong Steiner 𝜔-category, so that we have

O𝑛 ≃ 𝜈(𝜆(O𝑛)).
Let us describe explicitly the augmented directed complex 𝜆(O𝑛).

– The chains are defined by

𝜆(O𝑛)𝑖 =


Z[{𝑠𝑖 (𝑥), 𝑡𝑖 (𝑥)}] if 0 ≤ 𝑖 < 𝑛,
Z[{𝑥}] if 𝑖 = 𝑛,
0 if 𝑖 > 𝑛.

– If 0 < 𝑖 < 𝑛, then

𝑑 (𝑠𝑖 (𝑥)) = 𝑡𝑖−1 (𝑥) − 𝑠𝑖−1 (𝑥) and 𝑑 (𝑡𝑖 (𝑥)) = 𝑡𝑖−1 (𝑥) − 𝑠𝑖−1 (𝑥),
and

𝑑 (𝑥) = 𝑡𝑛−1 (𝑥) − 𝑠𝑛−1 (𝑥).
– The augmentation is defined by

𝑒(𝑠0 (𝑥)) = 1 and 𝑒(𝑡0 (𝑥)) = 1.

– The monoids of positive chains are given by

𝜆(O𝑛)+𝑖 =



N[{𝑠𝑖 (𝑥), 𝑡𝑖 (𝑥)}] if 0 ≤ 𝑖 < 𝑛,
N[{𝑥}] if 𝑖 = 𝑛,
0 if 𝑖 > 𝑛.

One can easily check that 𝜈(𝜆(O𝑛)) is indeed isomorphic to O𝑛 without
invoking Steiner’s theorem.

17.4.20 Tensor product of augmented directed complexes. Let 𝐾 and 𝐿 be
two augmented directed complexes. We define their tensor product 𝐾 ⊗ 𝐿 in
the following way:

– For 𝑛 ≥ 0,
(𝐾 ⊗ 𝐿)𝑛 =

⊕
𝑖+ 𝑗=𝑛
𝑖≥0, 𝑗≥0

𝐾𝑖 ⊗ 𝐿 𝑗 .

– If 𝑥 is in 𝐾𝑖 and 𝑦 is in 𝐾 𝑗 with 𝑖 + 𝑗 > 0, then

𝑑 (𝑥 ⊗ 𝑦) = 𝑑 (𝑥) ⊗ 𝑦 + (−1)𝑖𝑥 ⊗ 𝑑 (𝑦),
where by convention 𝑑 (𝑧) = 0 is 𝑧 is in 𝐾0 or 𝐿0.
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– If 𝑥 is in 𝐾0 and 𝑦 is in 𝐿0, then

𝑒(𝑥 ⊗ 𝑦) = 𝑒(𝑥)𝑒(𝑦).
– For 𝑛 ≥ 0, the submonoid (𝐾 ⊗ 𝐿)+𝑛 is generated by the chains of the form
𝑥 ⊗ 𝑦 with 𝑥 in 𝐾+𝑖 and 𝑦 in 𝐿+𝑗 with 𝑖 + 𝑗 = 𝑛.
This tensor product defines a (non-symmetric) monoidal structure on ADC

which is biclosed in the sense that, for 𝑋 an object, the functors 𝑋 ⊗– and –⊗ 𝑋
both admit a right adjoint. The unit of this tensor product is 𝜆(O0).
17.4.21 Proposition. The tensor product of two strong Steiner complexes is a
strong Steiner complex.

Proof. This is [330, Example 3.10]. □

17.4.22 Tensor product of strong Steiner𝜔-categories. Let𝐶 and 𝐷 be two
strong Steiner 𝜔-categories. We define their tensor product by

𝐶 ⊗ 𝐷 = 𝜈(𝜆(𝐶) ⊗ 𝜆(𝐷)).
Steiner’s theory and the previous proposition imply that 𝐶 ⊗ 𝐷 is still a strong
Steiner 𝜔-category. Moreover, if𝐶 is generated by a polygraph 𝑃 and 𝐷 is gen-
erated by a polygraph𝑄, the𝜔-category𝐶⊗𝐷 is generated by a polygraph 𝑃⊗𝑄
whose 𝑛-generators are given by the formula

(𝑃 ⊗ 𝑄)𝑛 =
∐
𝑖+ 𝑗=𝑛

𝑃𝑖 ×𝑄 𝑗 .

17.4.23 Theorem. There exists a unique (up to unique isomorphism) biclosed
monoidal structure on Cat𝜔 that extends the monoidal structure given by the
tensor product of Steiner 𝜔-categories.

Proof. This is stated in [330, Section 7]. A detailed proof can be found in [15,
Appendix A] □

17.4.24 Remark. The tensor product given by the previous theorem is called
the Gray tensor product. It was defined for 2-categories by Gray in [151]. It
was first extended to 𝜔-categories by Al-Agl and Steiner [5]. Crans then gave
alternate descriptions [97].

17.4.25 Proposition. The tensor product of two 𝜔-categories generated by
polygraphs is generated by a polygraph.

Proof. See [168, Theorem 1.35] or [256, Proposition 5.1.2.7]. □

17.4.26 Remark. This proposition shows that it makes sense to talk of the ten-
sor product of two polygraphs. In particular, identifying O1 with its generating
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polygraph, for any polygraph 𝑃, we get a polygraph O1 ⊗ 𝑃. One can show that
this polygraph is the same as the one defined in Section 17.2.

17.4.27 Cylinders and cubes. It follows from the previous remark than one
has

(Cyl𝑛)∗ ≃ O1 ⊗ O𝑛 ≃ 𝜈(𝜆(O1) ⊗ 𝜆(O𝑛))

and

(Cub𝑛)∗ ≃ O1 ⊗ · · · ⊗ O1 ≃ 𝜈(𝜆(O1) ⊗ · · · ⊗ 𝜆(O1)),

where O1 and 𝜆(O1) both appear 𝑛 times.

17.4.28 Join of augmented directed complexes. Let 𝐾 and 𝐿 be two aug-
mented directed complexes. We define their join 𝐾 ⋆ 𝐿 in the following way:

– For 𝑛 ≥ 0,

(𝐾 ⋆ 𝐿)𝑛 =
⊕
𝑖+1+ 𝑗=𝑛

𝑖≥−1, 𝑗≥−1

𝐾𝑖 ⊗ 𝐿 𝑗 ,

where by convention 𝐾−1 = Z and 𝐿−1 = Z.
– If 𝑥 is in 𝐾𝑖 and 𝑦 is in 𝐾 𝑗 with 𝑖 + 1 + 𝑗 > 0, then

𝑑 (𝑥 ⊗ 𝑦) = 𝑑 (𝑥) ⊗ 𝑦 + (−1)𝑖+1𝑥 ⊗ 𝑑 (𝑦),

where by convention 𝑑 (𝑧) = 𝑒(𝑧) if 𝑧 is in 𝐾0 or 𝐿0, and 𝑑 (𝑛) = 0 for 𝑛
in 𝐾−1 or 𝐿−1.

– If 𝑥 is in 𝐾0 and 𝑦 is in 𝐿0, then

𝑒(𝑥 ⊗ 1) = 𝑒(𝑥) and 𝑒(1 ⊗ 𝑦) = 𝑒(𝑦).

– For 𝑛 ≥ 0, the submonoid (𝐾 ⋆ 𝐿)+𝑛 is generated by the chains of the form
𝑥 ⊗ 𝑦 with 𝑥 in 𝐾+𝑖 and 𝑦 in 𝐿+𝑗 with 𝑖 + 1 + 𝑗 = 𝑛.
The join defines a (non-symmetric) monoidal structure on ADC. The unit

is the initial augmented directed complex, the null complex. This monoidal
structure is not biclosed but only locally biclosed in some appropriate sense
(see [15, pargraph 5.7]). This locally biclosedness is equivalent to the fact that
the joint commutes with (non-empty) connected colimits in each variable.

17.4.29 Proposition. The join of two strong Steiner complexes is a strong
Steiner complex.

Proof. This is [15, Corollary 6.21]. □
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17.4.30 Join of strong Steiner 𝜔-categories. Let 𝐶 and 𝐷 be two strong
Steiner 𝜔-categories. We define their join by

𝐶 ⋆ 𝐷 = 𝜈(𝜆(𝐶) ⋆ 𝜆(𝐷)).
Steiner’s theory and the previous proposition imply that 𝐶 ⋆ 𝐷 is still a strong
Steiner 𝜔-category. Moreover, if𝐶 is generated by a polygraph 𝑃 and 𝐷 is gen-
erated by a polygraph𝑄, the𝜔-category𝐶⋆𝐷 is generated by a polygraph 𝑃⋆𝑄

whose 𝑛-generators are given by the formula

(𝑃 ⋆𝑄)𝑛 =
∐

𝑖+1+ 𝑗=𝑛
𝑖≥−1, 𝑗≥−1

𝑃𝑖 ×𝑄 𝑗 ,

where by convention 𝑃−1 and 𝑄−1 are both singletons.

17.4.31 Theorem. There exists a unique (up to unique isomorphism) monoidal
structure on Cat𝜔 , called the join, that extends the monoidal structure given by
the join of Steiner 𝜔-categories and whose monoidal product commutes with
(non-empty) connected colimits in each variable.

Proof. This is [15, Theorem 6.29]. □

17.4.32 Proposition. The join of two 𝜔-categories generated by polygraphs is
generated by a polygraph.

Proof. This is [12, Corollary 7.6]. □

17.4.33 Remark. This proposition shows that it makes sense to talk of the join
of two polygraphs. In particular, identifying O0 with its generating polygraph,
for any polygraph 𝑃, we get a polygraph O0 ⋆ 𝑃. One can show that it is
canonically isomorphic to the polygraph 𝑆(𝑃) defined in §17.3.3.

17.4.34 Orientals. It follows from the previous paragraph that one has

(O𝑛)∗ ≃ O0 ⋆ · · · ⋆ O0 ≃ 𝜈(𝜆(O0) ⋆ · · · ⋆ 𝜆(O0)),
where O0 and 𝜆(O0) both appear 𝑛 times. Note that the full cosimplicial
object O : Δ → Cat𝜔 can be recovered from this definition of the orientals.
Indeed, as O0 is a terminal object in Cat𝜔 , it is canonically endowed with
a monoid structure for the monoidal structure given by the join on Cat𝜔 .
By the universal property of the augmented simplicial category Δ+ (see [261,
Chapter VII, Section 5, Proposition 1]), this monoid structure induces a functor
Δ+ → Cat𝜔 , whose restriction to Δ gives back the cosimplicial object of
orientals.
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Generalized polygraphs

For each 𝑛 ∈ N∪{𝜔}, strict 𝑛-categories are the algebras of the monad𝑇 = 𝑉𝑛𝐹𝑛
induced by the forgetful functor 𝑉𝑛 : Cat𝑛 → Glob𝑛 and its left adjoint 𝐹𝑛,
as shown in Chapter 14. However, the notion of strict 𝑛-category is sometimes
too restrictive, whence the need for a notion of weak 𝑛-category. One proposal,
due to Penon [296], defines weak 𝑛-categories as algebras of another monad 𝑃
on Glob𝑛, which in some sense “relaxes” the above monad 𝑇 . In the same vein,
Batanin [31] describes a general process consisting in replacing equalities by
coherence cells, of which Penon’s construction is a typical instance. In [28],
Batanin generalizes the notion of polygraph to a notion of 𝑇-polygraph (that he
calls 𝑇-computad), where 𝑇 is any finitary monad on globular sets.

This chapter starts with our presentation of Batanin’s ideas, the main point
being the fairly general adjunction result of §18.1.5. This immediately applies
to (𝑛, 𝑝)-polygraphs, as a straightforward generalization of 𝑛-polygraphs.

We then turn to two key examples of this general setting: the monad of
weak 𝑛-categories (Section 18.2), which was the initial motivation for the
general construction, and the monad associated to linear polygraphs (§18.3.1),
of special interest in the present book.

18.1 𝑇-polygraphs

The definition of polygraphs presented in Chapter 15 strongly relies on Propo-
sition 15.1.3, which asserts the existence of a left adjoint to a certain functor

𝑊𝑛 : Cat𝑛+1 → Cat+𝑛.

This functor𝑊𝑛 is in turn based on the monad of strict𝜔-categories on globular
sets. Following Batanin’s original idea [30], we shall briefly explain how this

387
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construction adapts to an arbitrary finitary monad 𝑇 on globular sets, giving
rise to the general notion of “𝑇-polygraph”.

18.1.1 Globular algebras. Let 𝑚 ∈ N ∪ {𝜔} and 𝑇𝑚 be a finitary monad
on Glob𝑚, that is, a monad whose underlying endofunctor preserves filtered
colimits. Let Glob𝑇𝑚 denote the category of 𝑇𝑚-algebras. The category Glob𝑇𝑚
comes with a forgetful functor𝑉𝑚 : Glob𝑇𝑚 → Glob𝑚, right adjoint to a functor
𝐸𝑚 : Glob𝑚 → Glob𝑇𝑚. Now for each 𝑛 < 𝑚, there is a truncation functor

𝑈𝑚𝑛 : Glob𝑚 → Glob𝑛

right adjoint to the canonical inclusion

𝐼𝑚𝑛 : Glob𝑛 → Glob𝑚.

Therefore, we get a pair of adjoint functors 𝑈𝑚𝑛 𝑉𝑚 : Glob𝑇𝑚 → Glob𝑛 and
𝐸𝑚𝐼

𝑚
𝑛 : Glob𝑛 → Glob𝑇𝑚 whose composition gives a monad𝑇𝑛 = 𝑈𝑚𝑛 𝑉𝑚𝐸𝑚𝐼𝑚𝑛

on Glob𝑛. Let again Glob𝑇𝑛 denote the category of 𝑇𝑛-algebras and 𝑉𝑛, 𝐸𝑛 the
corresponding adjoint functors. There is then a unique comparison functor
𝐾 : Glob𝑇𝑚 → Glob𝑇𝑛 making the following diagrams commute:

Glob𝑇𝑚
𝑉𝑚 //

𝐾
��

Glob𝑚

𝑈𝑚
𝑛

��

Glob𝑇𝑛 𝑉𝑛
// Glob𝑛,

Glob𝑚
𝐸𝑚 // Glob𝑇𝑚

𝐾
��

Glob𝑛
𝐸𝑛

//

𝐼𝑚𝑛

OO

Glob𝑇𝑛 .

Thinking of 𝐾 as a truncation functor, we shall denote it from now on by the
same letter𝑈𝑚𝑛 as the corresponding truncation between globular sets.

18.1.2 Freely adjoining cells. Following the pattern of Chapter 15, we turn
to the special case of the above situation where 𝑚 = 𝑛 + 1, and consider the
category Glob𝑇+𝑛 defined by the following pullback square in CAT:

Glob𝑇+𝑛 //

��

Glob𝑛+1

𝑈𝑛+1
𝑛

��

Glob𝑇𝑛 𝑉𝑛
// Glob𝑛.
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As the square

Glob𝑇𝑛+1
𝑉𝑛+1 //

𝑈𝑛+1
𝑛

��

Glob𝑛+1

𝑈𝑛+1
𝑛

��

Glob𝑇𝑛 𝑉𝑛
// Glob𝑛

commutes, there is a unique functor 𝑊𝑛 : Glob𝑇𝑛+1 → Glob𝑇+𝑛 such that the
following diagram commutes:

Glob𝑇𝑛+1

𝑊𝑛

$$

𝑉𝑛+1

''

𝑈𝑛+1
𝑛

  

Glob𝑇+𝑛 //

��

Glob𝑛+1

𝑈𝑛+1
𝑛

��

Glob𝑇𝑛 𝑉𝑛
// Glob𝑛.

(18.1)

As in the definition of “ordinary” polygraphs, the crucial step will be the
construction of a left adjoint 𝐿𝑛 for𝑊𝑛. Before proving this fact, we shall need
a few preliminary results on pullbacks in CAT.

18.1.3 Remark. Pullbacks in CAT, sometimes called strict pullbacks, are gen-
erally badly behaved and do not preserve equivalences of categories. Therefore,
given categories A, B, C and functors 𝑈 : A → C, 𝑉 : B → C, one usually
defines the pseudo-pullback

P //

��

A

𝑈
��

B
𝑉
// C

by taking for objects of P the triples (𝑎, 𝑏, 𝜙) where 𝑎 is an object of A, 𝑏
an object of B and 𝜙 an isomorphism from 𝑈𝑎 to 𝑉𝑏. Note that the above
square only commutes up to a canonical isomorphism. However, in case 𝑈 is
an isofibration, that is, if for any object 𝑎 in A and any isomorphism 𝑔 : 𝑈𝑎 → 𝑐

in C there is an isomorphism 𝑓 : 𝑎 → 𝑎′ such that 𝑈 𝑓 = 𝑔, it turns out that
such a P is equivalent to the strict pullback (exercise!).

18.1.4 Definition of Glob𝑇+𝑛 . In the present setting, the truncation functor
𝑈𝑛+1𝑛 : Glob𝑛+1 → Glob𝑛 is in fact an isofibration, and we shall slightly depart
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here from Batanin’s presentation by defining Glob𝑇+𝑛 as the strict pullback of
𝑈𝑛+1𝑛 and 𝑉𝑛. Thus, Glob𝑇+𝑛 has objects pairs (𝑋, 𝐴) where 𝑋 is an (𝑛 + 1)-
globular set and 𝐴 a𝑇𝑛-algebra such that𝑈𝑛+1𝑛 𝑋 = 𝑉𝑛𝐴. Morphisms are defined
accordingly.

18.1.5 Pullbacks of monadic functors. Let 𝑈 : A → C and 𝑉 : B → C be
two functors, and consider their strict pullback in CAT:

P 𝑉 //

𝑈
��

A

𝑈
��

B
𝑉
// C.

Suppose in addition that

– 𝑉 is strictly monadic, with left adjoint 𝐸 , meaning that B is isomorphic to
the category of algebras of the associated monad 𝑉𝐸 ,

– A is cocomplete,
– 𝑈 is an isofibration,
– 𝑈 admits a left adjoint 𝐼 such that 𝑈𝐼 = 1C and for each object 𝑐, the unit
𝜂𝑐 : 𝑐 → 𝑈𝐼𝑐 is 1𝑐, whence also, for each object 𝑎 in A,𝑈 (𝜀𝑎) = 1𝑎,

– 𝑈 has a right adjoint.

Then the functor 𝑉 is also monadic. We shall denote by 𝜂′ and 𝜀′ the unit and
counit of the adjunction between 𝑉 and 𝐸 .

Before proving the statement, let us point out that the above hypotheses are
immediately satisfied in case 𝑉 = 𝑉𝑛 and𝑈 = 𝑈𝑛+1𝑛 as defined in 18.1.2.

As for the existence of a left adjoint for 𝑉 , let 𝑎 be an object of A and define
a pair 𝑝 = (𝑎+, 𝑏), where 𝑎+ is an object of A and 𝑏 an object of B as follows:
taking first 𝑏 = 𝐸𝑈𝑎, in order for 𝑝 to be an object of P, we need to define 𝑎+
such that 𝑈𝑎+ = 𝑉𝑏. Consider first the following pushout square in A, which
exists because of the cocompleteness assumption:

𝐼𝑈𝑎
𝜀𝑎 //

𝐼 (𝜂′𝑈𝑎 )
��

𝑎

��

𝐼𝑉𝐸𝑈𝑎 // 𝑎′.

(18.2)

Now 𝑈 being left adjoint, it preserves pushouts and moreover 𝑈 (𝜀𝑎) = 1𝑎.
Therefore, by applying 𝑈 to the above square, the bottom arrow becomes an
isomorphism 𝜙 : 𝑉𝑏 → 𝑈𝑎′. Now 𝑈 being an isofibration, we may chose an
object 𝑎+ and an isomorphism 𝜓 : 𝑎+ → 𝑎′ such that 𝑈𝜓 = 𝜙. We therefore
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get a pushout square

𝐼𝑈𝑎
𝜀𝑎 //

𝐼 (𝜂′𝑈𝑎 )
��

𝑎

��

𝐼𝑉𝐸𝑈𝑎 // 𝑎+

(18.3)

whose top and bottom arrows are taken to identities by 𝑈. The construction
𝐸 : 𝑎 ↦→ (𝑎+, 𝐸𝑈𝑎) is clearly functorial.

It remains to show that 𝐸 is in fact left adjoint to𝑉 . Let us define two natural
transformations

𝜂 : 1A → 𝑉𝐸

and

𝜀 : 𝐸𝑉 → 1P

as follows.
For an object 𝑎 in A, as 𝑉𝐸𝑎 = 𝑎+ we may define 𝜂𝑎 as the right vertical

arrow in the pushout square (18.3). This clearly defines a natural transformation
from 1A to 𝑉𝐸 .

Let now 𝑝 = (𝑎, 𝑏) be an object of P, that is, 𝑈𝑎 = 𝑉𝑏. By definition,
𝐸𝑉𝑝 = (𝑎+, 𝐸𝑉𝑏) and we thus look for a morphism

𝜀𝑝 : (𝑎+, 𝐸𝑉𝑏) → (𝑎, 𝑏).
The second component is immediately given by the counit 𝜀′𝑏 : 𝐸𝑉𝑏 → 𝑏. As
for the first component, we need to build a morphism

𝑡𝑎 : 𝑎+ → 𝑎

in A. Note first that the following triangle

𝑈𝑎

𝜂′𝑈𝑎

��

1𝑈𝑎

##

𝑉𝐸𝑈𝑎
𝑉 (𝜀′𝑏 )

// 𝑈𝑎

commutes because 𝑈𝑎 = 𝑉𝑏 and the triangular identity between 𝜂′ and 𝜀′. By
applying the functor 𝐼 to the above triangle, we get the commutation of

𝐼𝑈𝑎

𝐼 (𝜂′𝑈𝑎 )
��

1𝐼𝑈𝑎

$$

𝐼𝑉𝐸𝑈𝑎
𝐼𝑉 (𝜀′𝑏 )

// 𝐼𝑈𝑎,
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therefore also the commutation of

𝐼𝑈𝑎

𝐼 (𝜂′𝑈𝑎 )
��

1𝐼𝑈𝑎

$$

𝜀𝑎 // 𝑎

1𝑎
��

𝐼𝑉𝐸𝑈𝑎
𝐼𝑉 (𝜀′𝑏 )

// 𝐼𝑈𝑎 𝜀𝑎
// 𝑎.

As the outer square above commutes, the universal property of the pushout
yields a unique morphism 𝑡𝑎 : 𝑎+ → 𝑎 such that the following diagram
commutes:

𝐼𝑈𝑎
𝜀𝑎 //

𝐼 (𝜂′𝑈𝑎 )
��

𝑎

�̃�𝑎
�� 1𝑎

��

𝐼𝑉𝐸𝑈𝑎 //

𝜀𝑎◦𝐼𝑉 (𝜀′𝑏 ) ,,

𝑎+

𝑡𝑎

  
𝑎.

(18.4)

Now, by applying 𝑈 to the above diagram, one gets 𝑈 (𝑡𝑎) = 𝑉 (𝜀′𝑏), whence
𝜀𝑝 is indeed a morphism in P. The naturality of the construction is immediate.
It remains to establish the triangular identities between 𝜂 and 𝜀 . Let first
𝑝 = (𝑎, 𝑏) be an object of P, so that 𝑎 = 𝑉𝑝. The commutation of the right
triangle in (18.4) reads

𝑉 (𝜀𝑝) ◦ 𝜂𝑉 𝑝 = 1𝑉 𝑝

which gives the first identity. Finally, let 𝑎 be an object of A and apply 𝐸 to the
right triangle in (18.4), one obtains

𝐸 (𝑡𝑎) ◦ 𝐸 (𝜂𝑎) = 1𝐸𝑎

and we have to show that

𝐸 (𝑡𝑎) = 𝜀𝐸𝑎
which reduces to the equality between both components:

𝑈𝐸 (𝑡𝑎) = 𝑈 (𝜀𝐸𝑎) and 𝑉𝐸 (𝑡𝑎) = 𝑉 (𝜀𝐸𝑎).
The first one comes from the fact that 𝑈𝐸 = 𝐸𝑈 and by applying this last
functor to the bottom triangle in (18.4), and the second from the definition of 𝐸
and 𝜀 according to which 𝑉𝐸 (𝑡𝑎) = 𝑡𝑎+ = 𝑉 (𝜀𝐸𝑎). Therefore

𝜀𝐸𝑎 ◦ 𝐸 (𝜂𝑎) = 1𝐸𝑎

and the second triangular identity is proved. Thus 𝐸 is left adjoint to 𝑉 .
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The monadicity of 𝑉 now follows from Beck’s criterion. Let 𝑝 = (𝑎, 𝑏),
𝑝′ = (𝑎′, 𝑏′) in P and 𝑢, 𝑣 : 𝑝 → 𝑝′ be a pair of parallel morphisms such that

𝑉𝑝
𝑉𝑢 //

𝑉𝑣

// 𝑉𝑝′ 𝑒 // 𝑎′′ (18.5)

is an absolute coequalizer in A. It follows that

𝑉𝑏
𝑈𝑉𝑢 //

𝑈𝑉𝑣

// 𝑉𝑏′ 𝑈𝑒 // 𝑈𝑎′′ (18.6)

is also an absolute coequalizer in C. As 𝑉 is strictly monadic, it creates such
coequalizers. There is therefore a unique morphism 𝑓 : 𝑏′ → 𝑏′′ in B such that
𝑉 𝑓 = 𝑈𝑒 and

𝑏
𝑈𝑢 //

𝑈𝑣

// 𝑏′
𝑓
// 𝑏′′

is a coequalizer in B. Clearly (𝑎′′, 𝑏′′) is in P and the morphism

(𝑒, 𝑓 ) : (𝑎′, 𝑏′) → (𝑎′′, 𝑏′′)
is the coequalizer of 𝑢 and 𝑣 we are looking for.

The existence of a left adjoint for the functor 𝑊𝑛 of (18.1) is then a conse-
quence of the following result in general category theory:

18.1.6 Proposition. Let 𝑋 : A → B and 𝑌 : B → C be two functors and
𝑍 = 𝑌𝑋 , and suppose that

– A is cocomplete,
– 𝑍 has a left adjoint,
– 𝑌 is monadic.

Then the functor 𝑋 admits a left adjoint.

Proof. This is essentially a simpler, less general version of Dubuc’s adjoint
triangle theorem [117]. □

18.1.7 Existence of the functor 𝐿𝑛. This above statement immediately applies
to the triangle

Glob𝑇𝑛+1
𝑉𝑛+1

**
𝑊𝑛 $$

Glob𝑇+𝑛
𝑉𝑛

// Glob𝑛+1.
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In fact, the cocompleteness of Glob𝑇𝑛+1 comes from the finitary assumption on
the monad 𝑇 , the functor𝑉𝑛+1, being the forgetful functor from (𝑛+1)-globular
algebras to (𝑛 + 1)-globular sets admits a left adjoint, and we have just shown
that 𝑉𝑛 is monadic. Therefore𝑊𝑛 admits a left adjoint 𝐿𝑛.

18.1.8 Definition of𝑇-polygraphs. We may now define by induction on 𝑛 ⩾ 0
a category Pol𝑇𝑛 , together with a functor

𝐹𝑛 : Pol𝑇𝑛 → Glob𝑇𝑛 ,

following the pattern of Section 15.1.7.

– For 𝑛 = 0, Pol𝑇0 = Glob0 = Set = Glob𝑇0 and 𝐹0 is the identity functor.
– Let 𝑛 ⩾ 0 and suppose we have defined

𝐹𝑛 : Pol𝑇𝑛 → Glob𝑇𝑛 .

The category Pol𝑇𝑛+1 is then given by the following pullback square in CAT:

Pol𝑇𝑛+1
𝐽𝑛 //

��

Glob𝑇+𝑛

��

Pol𝑇𝑛 𝐹𝑛
// Glob𝑇𝑛 ;

and the functor 𝐹𝑛+1 is the composite

𝐿𝑛𝐽𝑛 : Pol𝑇𝑛+1 → Glob𝑇𝑛+1
where 𝐿𝑛 is the above defined left adjoint to𝑊𝑛.

If we start with a finitary monad𝑇 on Glob𝜔 , we get by construction a sequence
of canonical functors in CAT

Pol𝑇0 Pol𝑇1oo Pol𝑇2oo · · ·oo

whose projective limit Pol𝑇𝜔 is by definition the category of 𝜔-polygraphs with
respect to the monad 𝑇 .

Finally, for each 𝑛 ⩾ 0, there is a functor

𝐺𝑛 : Glob𝑇𝑛 → Pol𝑇𝑛

and a natural transformation

𝜀 : 𝐹𝑛𝐺𝑛 → 1

such that 𝐹𝑛 is left adjoint to 𝐺𝑛 and 𝜀 is the counit of this adjunction.
The construction of 𝐺𝑛 in the general case being essentially the same as the
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one explained in Section 15.2 for the particular case where Glob𝑇𝑛 = Cat𝑛, we
shall only very briefly sketch the induction step yielding 𝐺𝑛+1 from 𝐺𝑛.

Thus, suppose we have defined 𝐺𝑛 as a right adjoint to 𝐹𝑛, with counit 𝜀,
and let 𝐶 be an object of Glob𝑇𝑛+1, with underlying (𝑛 + 1)-globular set 𝑋 . Let
𝐶′ = 𝑈𝑛+1𝑛 (𝐶). We define 𝐺𝑛+1 (𝐶) as a pair (𝑃, 𝐷+) where 𝑃 is in Pol𝑇𝑛 and
𝐷+ in Glob𝑇+𝑛 by taking 𝑃 = 𝐺𝑛 (𝐶′) and 𝐷+ = (𝐷, 𝑍), with 𝐷 = 𝐹𝑛 (𝑃) and
𝑍 the (𝑛 + 1)-globular set defined as follows. Up to dimension 𝑛, 𝑍 coincides
with the underlying 𝑛-globular set of 𝐹𝑛 (𝑃), whereas 𝑍𝑛+1 consists of triples
(𝑧, 𝑥, 𝑦) ∈ 𝑋𝑛+1 × 𝑍𝑛 × 𝑍𝑛 such that 𝑧 : 𝜀𝐶′𝑛 (𝑥) → 𝜀𝐶

′
𝑛 (𝑦).

Now 𝜀𝐶
′ : 𝐹𝑛𝐺𝑛 (𝐶′) → 𝐶′ extends to a natural transformation

𝜃 : 𝐷+ → 𝑊𝑛 (𝐶)

by sending the generator (𝑧, 𝑥, 𝑦) to 𝑧.
Thus, by adjunction, we get 𝜃∗ : 𝐿𝑛 (𝐷+) → 𝐶, but 𝐿𝑛 (𝐷+) is precisely

𝐹𝑛+1𝐺𝑛+1 (𝐶), so that 𝜃∗ defines the counit 𝜀𝐶 : 𝐹𝑛+1𝐺𝑛+1 (𝐶) → 𝐶.

18.1.9 Basic examples. Besides the basic case of strict 𝜔-categories, an im-
mediate example of the above construction is given by (𝑛, 𝑝)-polygraphs intro-
duced in Section 15.3. We just remark here that, again, these polygraphs are
particular instances of 𝑇-polygraphs, where the monad 𝑇 is the one induced by
the forgetful functor

𝑉 : Cat𝑛,𝑝 → Glob𝑛.

18.2 Polygraphs for weak 𝑛-categories

The general construction of Section 18.1 applies to Penon’s monad on 𝑛-globular
sets, from [296]. This section basically follows Penon’s approach, but for a cor-
rection pointed out by Cheng and Makkai in [86]: whereas Penon works over
reflexive globular sets, it turns out that the category of plain globular sets, that
is our category Glob𝑛, yield more examples of weak 𝑛-categories. In particular,
braided monoidal categories fit in the latter setting, but not in the former.

Given 𝑛 ∈ N∪{𝜔}, we first consider the category Mag𝑛 of 𝑛-magmas, whose
objects are 𝑛-globular sets endowed with the same family of binary composition
operations as (strict) 𝑛-categories, satisfying the same “positional” conditions
with respect to source and target maps, but without requiring identities, associa-
tivity and exchange. The morphisms of Mag𝑛 are the globular maps preserving
all compositions. Of course any 𝑛-category is a particular 𝑛-magma. Let now
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𝑀 be an 𝑛-magma, and 𝐶 be an 𝑛-category seen as an 𝑛-magma, a morphism

𝑓 : 𝑀 → 𝐶

in Mag𝑛 is called a categorical stretching — “étirement catégorique” in Penon’s
terminology, or “trivial fibration” in Batanin’s — if for any 𝑘 < 𝑛 and any pair
(𝑎, 𝑏) of parallel 𝑘-cells in 𝑀 such that 𝑓 (𝑎) = 𝑓 (𝑏), there is a (𝑘 + 1)-cell 𝑐
in 𝑀 such that 𝑓 (𝑐) = 1𝑘+1

𝑓 (𝑎) , and if moreover, in case 𝑛 ≠ 𝜔, 𝑓𝑛 is injective.
A trivialization of a categorical stretching 𝑓 is a map [, ] 𝑓 choosing a cell
𝑐 = [𝑎, 𝑏] 𝑓 with 𝑓 (𝑐) = 1𝑘+1

𝑓 (𝑎) for each pair (𝑎, 𝑏) as above. There is now a
category Q whose objects are pairs ( 𝑓 , [, ] 𝑓 ), where 𝑓 is a categorical stretching
and [, ] 𝑓 a trivialization of 𝑓 , and whose morphisms are commutative squares

𝑀
𝑢 //

𝑓

��

𝑀 ′

𝑓 ′

��

𝐶 𝑣
// 𝐶′

in Mag𝑛 such that 𝑢[𝑎, 𝑏] 𝑓 = [𝑣𝑎, 𝑣𝑏] 𝑓 ′ for all parallel 𝑘-cells 𝑎, 𝑏, such
that 𝑓 (𝑎) = 𝑓 (𝑏). As each 𝑛-magma 𝑀 has an underlying 𝑛-globular set, the
correspondence taking 𝑓 : 𝑀 → 𝐶 to 𝑀 induces a forgetful functor

𝑈 : Q→ Glob𝑛.

Now, as shown in [296], this functor 𝑈 admits a left adjoint 𝐹, thus defining a
monad 𝑃 = 𝑈𝐹 on Glob𝑛. The algebras of this monad 𝑃 are precisely the weak
𝑛-categories we were looking for.

Finally, this monad 𝑃 satisfies the hypotheses of Section 18.1, and therefore
produces an appropriate notion of 𝑃-polygraphs.

18.3 Linear polygraphs

18.3.1 Linear polygraphs as 𝑇-polygraphs. In Chapter 6 we introduced the
notion of one-dimensional linear polygraphs as rewriting systems for associa-
tive unital algebras over a field k. These are again special cases of the general
construction 18.1, for a certain monad on 𝑛-globular sets we now briefly de-
scribe. Let 𝑛 ∈ N∪{𝜔} and k be a field. We denote by Alg the category of unital
and associative k-algebras. The category Alg𝑛 of 𝑛-algebras is the category of
𝑛-categories internal to Alg. Consider the forgetful functor

𝑈 : Alg𝑛 → Glob𝑛
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obtained by composing both functors Alg𝑛 → Cat𝑛 and Cat𝑛 → Glob𝑛. The
categories Glob𝑛, Cat𝑛, Set and Alg are models of projective sketches 𝑆, 𝑆′,
𝑇 and 𝑇 ′ respectively, where 𝑇 is of course the trivial sketch on the terminal
category. Moreover, there are inclusion morphisms of sketches 𝑖 : 𝑆 → 𝑆′ and
𝑗 : 𝑇 → 𝑇 ′, and both of them satisfy Lair’s conditions of Theorem G.1.11.
These induce a morphism

𝑖 ⊗ 𝑗 : 𝑆 ⊗ 𝑇 → 𝑆′ ⊗ 𝑇 ′

still satisfying Lair’s conditions (see [4, p. 18] about tensoring sketches). Now
the models of 𝑆′ ⊗ 𝑇 ′ in Set are also the models of 𝑆′ in Mod(𝑇 ′) = Alg, in
other words

Mod(𝑆′ ⊗ 𝑇 ′) = Alg𝑛

whereas 𝑆 ⊗ 𝑇 ≃ 𝑆. Therefore our functor 𝑈 is precisely the one induced by
𝑖 ⊗ 𝑗 on models:

𝑈 = Mod(𝑖 ⊗ 𝑗) : Mod(𝑆′ ⊗ 𝑇 ′) → Mod(𝑆).
As a consequence of Theorem G.1.11, the functor 𝑈 is monadic. It is also
easily seen to preserve filtered colimits, whence inducing a finitary monad 𝐿
on Glob𝑛. Thus the machinery of 18.1 applies, and produces the category of
𝐿-polygraphs, that is the linear polygraphs we wanted.

18.3.2 Bimodules. The description of 𝑛-algebras and linear 𝑛-polygraphs can
be made more explicit by introducing the following notion of globular bimod-
ules. For an algebra 𝐴, we denote by Bimod(𝐴) the category of bimodules
over 𝐴 and their morphisms. We consider the category Glob(Bimod) (𝐴) of
globular 𝐴-bimodules, that is, functors

𝑋 : Oop → Bimod(𝐴),
and their morphisms. Let us define the category Bimod𝐺 whose objects are
pairs (𝐴, 𝑀) made of an algebra 𝐴 and a globular 𝐴-bimodule 𝑀 , and whose
morphisms from (𝐴, 𝑀) to (𝐵, 𝑁) are pairs (𝐹, 𝐺) made of a morphism
𝐹 : 𝐴 → 𝐵 of algebras and a morphism 𝐺 : 𝑀 → 𝑁 of bimodules, that
is,

𝐺 (𝑎𝑚𝑎′) = 𝐹 (𝑎)𝐺 (𝑚)𝐹 (𝑎′)
holds for all 𝑎 and 𝑎′ in 𝐴 and 𝑚 in 𝑀 .

The following result gives a characterization of the category of 𝜔-algebras.

18.3.3 Theorem ([160, Theorem 1.3.3]). The category Alg𝜔 is isomorphic
to the full subcategory of Bimod𝐺 whose objects are the pairs (𝐴, 𝑀) such
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that 𝑀0 is equal to 𝐴, with its canonical 𝐴-bimodule structure, and that satisfy,
for all 𝑛-cells 𝑎 and 𝑏 of 𝑀 , the relation

𝑎𝑠0 (𝑏) + 𝑡0 (𝑎)𝑏 − 𝑡0 (𝑎)𝑠0 (𝑏) = 𝑠0 (𝑎)𝑏 + 𝑎𝑡0 (𝑏) − 𝑠0 (𝑎)𝑡0 (𝑏). (18.7)

18.3.4 Explicit construction. The key step in the explicit inductive construc-
tion of 𝑇-polygraphs at level 𝑛 is the concrete description of the left adjoint 𝐿𝑛
to the forgetful functor𝑊𝑛 : Glob𝑇𝑛+1 → Glob𝑇+𝑛 of (18.1). In the present case
of linear polygraphs, this forgetful functor is

𝑊𝑛 : Alg𝑛+1 → Alg+𝑛

and its left adjoint 𝐿𝑛 takes an extended 𝑛-algebra (𝐴, 𝑋) to the (𝑛+ 1)-algebra
𝐴[𝑋] constructed as follows. First, we consider the 𝐴0-bimodule

𝑀 =
(
𝐴0 ⊗ k[𝑋] ⊗ 𝐴0

) ⊕ 𝐴𝑛
obtained by the direct sum of the free 𝐴0-bimodule with basis 𝑋 and of a copy
of 𝐴𝑛, equipped with its canonical 𝐴0-bimodule structure. Thus 𝑀 contains
linear combinations of elements 𝑎𝑥𝑏, for 𝑎 and 𝑏 in 𝐴0 and 𝑥 in 𝑋 , and of an
𝑛-cell 𝑐 of 𝐴. We define the source, target and identity maps

𝑀
𝑠
//

𝑡
// 𝐴𝑛

𝑖

��

by

𝑠 (𝑎𝑥𝑏) = 𝑎𝑠 (𝑥)𝑏, 𝑠 (𝑐) = 𝑐, 𝑖(𝑐) = 𝑐,
𝑡 (𝑎𝑥𝑏) = 𝑎𝑡 (𝑥)𝑏, 𝑡 (𝑐) = 𝑐,

for all 𝑥 in 𝑋 , 𝑎 and 𝑏 in 𝐴0, and 𝑐 in 𝐴𝑛−1. Then we define the 𝐴0-bimodule
𝐴[𝑋]𝑛+1 as the quotient of 𝑀 by the 𝐴0-bimodule ideal generated by all the
elements(

𝑎𝑠0 (𝑏) + 𝑡0 (𝑎)𝑏 − 𝑡0 (𝑎)𝑠0 (𝑏)
) − (

𝑠0 (𝑎)𝑏 + 𝑎𝑡0 (𝑏) − 𝑠0 (𝑎)𝑡0 (𝑏)
)
,

where 𝑎 and 𝑏 range over 𝐴0⊗k𝑋⊗𝐴0. We prove that the source and target maps
are compatible with the quotient, so that, by Theorem 18.3.3, the 𝐴0-bimodule
𝐴[𝑋]𝑛+1 extends 𝐴 into a uniquely defined (𝑛 + 1)-algebra 𝐴[𝑋].
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19
Polygraphic resolutions

The purpose of this chapter is to introduce the notion of a polygraphic resolu-
tion of an 𝜔-category. This notion was introduced by Métayer [278] to define
a homology theory for 𝜔-categories, that is now known as the polygraphic
homology. It was then showed by himself and Lafont [236] that this homol-
ogy recovers the classical homology of monoids for 𝜔-categories coming from
monoids. It is now known by work of Lafont, Métayer and Worytkiewicz [237]
that these polygraphic resolutions are resolutions in the sense of a model cate-
gory structure on Cat𝜔 , the so-called folk model structure, that we will present
in the next chapters.

Roughly speaking, a polygraphic resolution is a non-abelian version of a
resolution of a module, in the sense of homological algebra. More precisely,
if 𝐶 is an 𝜔-category, a polygraphic resolution of 𝐶 is a polygraph 𝑃 endowed
with an 𝜔-functor 𝑃∗ → 𝐶 that is a trivial fibration, meaning in a nutshell
that it is surjective with source and target fixed at all levels. Technically, we
will define these trivial fibrations by a right lifting property with respect to
inclusions of spheres into disks, in a very similar way as trivial fibrations of
topological spaces are defined.

The chapter is organized as follows. In a first section, we introduce the
notion of a weak factorization system in a general category. We explain the
small object argument. In the second section, we define cofibrations and trivial
cofibrations of 𝜔-categories as the classes appearing in the weak factorization
system generated by the set I of inclusions of spheres into disks. We also
introduce the class of relative polygraphs, which are cell complexes generated
by I, and we explain why polygraphs almost tautologically correspond to
relative polygraphs of the form ∅ → 𝐶. In the third section, we introduce the
notion of a polygraphic resolution. We show that every 𝜔-category admits such
a resolution and we give the example of the so-called canonical resolution.
Finally, in a last section, we study uniqueness of these resolutions, showing that

401
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there is always a map between two such resolutions and postponing to a later
chapter the fact that two such maps are homotopic in some appropriate sense.

19.1 Weak factorization systems

The purpose of this section is to introduce some basic results on weak fac-
torization systems, which will be applied in the next section to a factorization
system giving rise to “polygraphic resolutions”. This factorization system has
the additional property of being generated by morphisms between finitely pre-
sentable objects. This additional hypothesis will allow us to avoid the use of
ordinals and cardinals.

In the section, we fix a category C. Our case of interest is C = Cat𝜔 .

19.1.1 Lifting properties. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑇 be two morphisms
of C. One says that 𝑓 has the left lifting property with respect to 𝑔 or that 𝑔 has
the right lifting property with respect to 𝑓 if for every commutative square

𝑋

𝑓

��

// 𝑍

𝑔

��

𝑌 // 𝑇

there exists a lift, that is, a morphism ℎ : 𝑌 → 𝑍 making the two triangles

𝑋

𝑓

��

// 𝑍

𝑔

��

𝑌 //

ℎ

??

𝑇

commute. More generally, one says that 𝑓 has the left lifting property with
respect to a class of maps I if it has the left lifting property with respect to
every morphism inI, and similarly for the right lifting property. We will denote
by 𝑙 (I) and 𝑟 (I) the class of maps having the left or right lifting property with
respect to a class I.

19.1.2 Stability properties of 𝑙 (I). Suppose C is cocomplete and let I be a
class of morphisms of C. One checks that 𝑙 (I) contains the class of isomor-
phisms and is stable under

1. sums: if (𝑖𝑘 : 𝑋𝑘 → 𝑌𝑘)𝑘∈𝐾 is a (small) family of elements of 𝑙 (I), then
the sum ∐

𝑘∈𝐾
𝑖𝑘 :

∐
𝑘∈𝐾

𝑋𝑘 →
∐
𝑘∈𝐾

𝑌𝑘
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belongs to 𝑙 (I),
2. pushouts: if

𝑋

𝑖
��

// 𝑍

𝑗

��

𝑌 // 𝑇

is a pushout square and 𝑖 belongs to 𝑙 (I), then so does 𝑗 ,
3. countable compositions: if

𝑋0
𝑖1 // 𝑋1

𝑖2 // · · · 𝑖𝑛 // 𝑋𝑛
𝑖𝑛+1 // · · ·

is a diagram of elements of 𝑙 (I), then the morphism

𝑋0 → lim−−→
𝑛≥0

𝑋𝑛

belongs to 𝑙 (I),
4. retracts: if

𝑋

𝑖
��

//

1𝑋
%%

𝑍

𝑗

��

// 𝑋

𝑖
��

𝑌 //

1𝑌

99𝑇 // 𝑌

is a commutative diagram and 𝑗 belongs to 𝑙 (I), then so does 𝑖.

19.1.3 Remark. More generally, under the same assumption and with the same
notation as in the paragraph above, the class 𝑙 (I) is stable under transfinite
compositions (see [187, Definition 2.1.1]). Note that being stable by transfinite
compositions and pushouts implies being stable by sums.

19.1.4 Weak factorization systems. A weak factorization system on C is a
pair (L,R) of classes of morphisms of C satisfying the following conditions:

1. Every morphism 𝑓 of C factors as 𝑓 = 𝑝𝑖, where 𝑝 is in R and 𝑖 is in L.
2. We have

L = 𝑙 (R) and R = 𝑟 (L).

Recall that an object 𝐴 of a category is finitely presentable when the functor
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C(𝐴,−) : C → Set preserves filtered colimits. In practice, we are mostly
interested in preservation of colimits of diagrams in C of the form

𝑋0 // 𝑋1 // 𝑋2 // · · ·

In this case, the fact that the canonical arrow lim−−→𝑛
C(𝐴, 𝑋𝑛) → C(𝐴, lim−−→𝑛

𝑋𝑛)
is an isomorphism means in particular that any morphism 𝑓 : 𝐴 → lim−−→𝑛

𝑋𝑛
factors through some 𝑋𝑛. For instance, the finitely presentable sets are the finite
sets.

19.1.5 Proposition (Small object argument: first version). SupposeC is cocom-
plete and let 𝐼 be a set of morphisms of C whose sources are finitely presentable
objects. Then (𝑙𝑟 (𝐼), 𝑟 (𝐼)) is a weak factorization system on C.

Proof. The second condition of the definition of a weak factorization system
follows from the general equality 𝑟𝑙𝑟 (𝐼) = 𝑟 (𝐼). Let us sketch a proof for the
first one. Let 𝑓 : 𝑋 → 𝑌 be a morphism of C. Let 𝑆 be the set of commutative
squares of the form

𝐴𝑠 //

𝑖𝑠

��

𝑋

𝑓

��

𝐵𝑠 // 𝑌 ,

where 𝑖𝑠 is an element of 𝐼. Summing all these squares, we get a commutative
square ∐

𝑠∈𝑆 𝐴𝑠 //

∐
𝑠∈𝑆 𝑖𝑠

��

𝑋

𝑓

��∐
𝑠∈𝑆 𝐵𝑠 // 𝑌 .

Taking the pushout of the top left corner, we get a factorization of 𝑓 :
∐
𝑠∈𝑆 𝐴𝑠 //

∐
𝑠∈𝑆 𝑖𝑠

��

𝑋

𝑓

��

𝑗1

��∐
𝑠∈𝑆 𝐵𝑠 //

00

𝑋1
𝑝1

  

𝑌 .

By §19.1.2, the morphism 𝑗1 belongs to 𝑙𝑟 (𝐼), but there is no reason for 𝑝1 to
belong to 𝑟 (𝐼): we thus apply the same procedure to 𝑝1, obtaining a factorization
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𝑝1 = 𝑝2 𝑗2, where 𝑗2 : 𝑋1 → 𝑋2 belongs to 𝑙𝑟 (𝐼). Going on by induction, we
get a sequence of morphisms

𝑋
𝑗1 // 𝑋1

𝑗2 // · · · 𝑗𝑛
// 𝑋𝑛

𝑗𝑛+1 // · · ·
belonging to 𝑙𝑟 (𝐼) and hence a morphism

𝑗∞ : 𝑋 −→ 𝑋∞ = lim−−→
𝑛

𝑋𝑛

in 𝑙𝑟 (𝐼) giving rise to a factorization

𝑓 = 𝑝∞ 𝑗∞,

where 𝑝∞ is the morphisms induced by the 𝑝𝑛’s. To conclude the proof, it
suffices to show that 𝑝∞ belongs to 𝑟 (𝐼). Consider a commutative square

𝐴
𝑘 //

𝑖

��

𝑋∞

𝑝∞
��

𝐵
𝑙
// 𝑌 ,

where 𝑖 is in 𝐼. Since by our additional assumption, the object 𝐴 is finitely
presentable, the morphism 𝑘 factors through some 𝑋𝑛 and the diagram factors
as

𝐴 //

𝑖

��

𝑋𝑛 // 𝑋∞

𝑝∞
��

𝐵
𝑙

// 𝑌 ,

where 𝑋𝑛 → 𝑋∞ is the canonical morphism. The composite from 𝑋𝑛 to𝑌 is 𝑝𝑛
and this diagram defines a square appearing in the definition of 𝑋𝑛+1. This
means that there exists a lift

𝐴 //

𝑖

��

𝑋𝑛
𝑗𝑛+1 // 𝑋𝑛+1 // 𝑋∞

𝑝∞
��

𝐵
𝑙

//

66

𝑌 ,

thereby proving the result. □

19.1.6 Remark. The same conclusion holds with the weaker hypothesis that
there exists a regular cardinal 𝜅 such that the sources of the morphisms in 𝐼 are
𝜅-presentable (see Section G.2), the above statement being the case 𝜅 = ℵ0. This
condition is automatic if C is locally presentable. See also [184, Section 10.5]
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for weaker assumptions for the small object argument. The proof of these more
general results is basically the same except that one has to proceed by transfinite
induction.

19.1.7 I-cells. Suppose C is cocomplete and let I be a class of morphisms
of C. The class cell𝜔 (I) of countableI-cellular extensions is the smallest class
of morphisms of C containing I and stable under sums, pushouts and count-
able compositions. Every element of cell𝜔 (I) can be obtained as a countable
composition of pushouts of sums of elements of I.

19.1.8 Remark. WhenI is a set and the source of the elements ofI are finitely
presentable, by [270, Proposition A.6], the class cell𝜔 (I) is equal to the more
classical class cell(I) of I-cellular extensions, which is defined as cell𝜔 (I)
but asking also for stability under transfinite compositions.

19.1.9 Proposition (Small object argument: refined version). Suppose C is
cocomplete and let 𝐼 be a set of morphisms of C whose sources are finitely
presentable. Then every morphism of C factors as 𝑓 = 𝑝𝑖, where 𝑝 is in 𝑟 (𝐼)
and 𝑖 is in cell𝜔 (𝐼). Moreover, every element of 𝑙𝑟 (𝐼) is a retract of an element
of cell𝜔 (𝐼).
Proof. The first point was actually proven in the proof of Proposition 19.1.5.
The second point follows from the following lemma, the so-called “retract
lemma”. □

19.1.10 Lemma (Retract lemma). Suppose we have a factorization 𝑓 = 𝑝𝑖, in
a category C, where 𝑓 has the left lifting property with respect to 𝑝. Then 𝑓 is
a retract of 𝑖.

Proof. Denote 𝑖 : 𝑋 → 𝑌 and 𝑝 : 𝑌 → 𝑍 . By hypothesis, there exists
ℎ : 𝑍 → 𝑌 making the square

𝑋

𝑓

��

𝑖 // 𝑌

𝑝

��

𝑍

ℎ

??

𝑍

commute. The commutative diagram

𝑋

𝑓

��

𝑋

𝑖
��

𝑋

𝑓

��

𝑍
ℎ
// 𝑌 𝑝

// 𝑍

proves the result. □



19.2 Cofibrations and trivial fibrations 407

19.1.11 Remark. Proposition 19.1.9 holds under the weaker hypothesis de-
scribed in Remark 19.1.6 if one replaces cell𝜔 (𝐼) by cell(𝐼).

19.2 Cofibrations and trivial fibrations

We will now apply the theory of weak factorization systems described in the
previous section to the category Cat𝜔 and the set of inclusions of boundaries
of globes. This will lead to a notion of cofibrations and trivial fibrations of
𝜔-categories.

19.2.1 Cofibrations, trivial fibrations and relative polygraphs. Recall that
for every 𝑛 ≥ 0 we denote by i𝑛 : 𝜕O𝑛 → O𝑛 the inclusion of the (𝑛−1)-sphere
into the 𝑛-globe. We set

I = {i𝑛 | 𝑛 ≥ 0} .

From this set I, we obtain three classes of 𝜔-functors:

– the class 𝑙𝑟 (I) of cofibrations,
– the class 𝑟 (I) of trivial fibrations,
– the class cell𝜔 (I) of relative polygraphs.

The category Cat𝜔 being locally presentable (see §14.4.1) and the spheres
being finitely presentable𝜔-categories, we can apply the small object argument
(Propositions 19.1.5 and 19.1.9) and we obtain:

19.2.2 Proposition. The following assertions hold:

1. The pair ({cofibrations}, {trivial fibrations}) is a weak factorization system
on Cat𝜔 .

2. Every 𝜔-functor 𝑓 factors as 𝑓 = 𝑝𝑖, where 𝑖 is a relative polygraph and
𝑝 is a trivial fibration.

3. The cofibrations are the retracts of relative polygraphs.

We will now describe more concretely trivial fibrations and relative poly-
graphs.

19.2.3 Trivial fibrations. By definition, an 𝜔-functor 𝑓 : 𝐶 → 𝐷 is a trivial
fibration if for every 𝑛 ≥ 0 it has the right lifting property with respect to
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i𝑛 : 𝜕O𝑛 → O𝑛. The data of a commutative diagram

𝜕O𝑛

i𝑛
��

// 𝐶

𝑓

��

O𝑛 // 𝐷

is equivalent to the data of a pair (𝑥, 𝑦) of parallel (𝑛 − 1)-cells of 𝐶 and of an
𝑛-cell 𝑏 : 𝑓 (𝑥) → 𝑓 (𝑦) in 𝐷. (To make sense of this when 𝑛 = 0, one has to
consider that every 𝜔-category has a unique cell of dimension −1.) A lift for
such a square is given by an 𝑛-cell 𝑎 : 𝑥 → 𝑦 such that 𝑓 (𝑎) = 𝑏.

In other words, 𝑓 : 𝐶 → 𝐷 is a trivial fibration if and only if the following
conditions hold:

1. 𝑓 is surjective on objects,

2. for every 𝑛 ≥ 0, every pair 𝑥, 𝑦 of parallel 𝑛-cells of𝐶 and every (𝑛+1)-cells
𝑏 : 𝑓 (𝑥) → 𝑓 (𝑦) in 𝐷, there exists an (𝑛 + 1)-cell 𝑎 : 𝑥 → 𝑦 in 𝐶 such that
𝑓 (𝑎) = 𝑏.

19.2.4 Relative polygraphs. By definition, an 𝜔-functor 𝑓 : 𝐶 → 𝐷 is a
relative polygraph if 𝑓 can be obtained as a countable composition

𝐶 = 𝐶0
𝑖1 // 𝐶1

𝑖2 // · · · 𝑖𝑛 // 𝐶𝑛
𝑖𝑛+1 // · · · ,

i.e., if 𝑓 is the canonical morphism 𝐶0 → lim−−→𝑛
𝐶𝑛, where 𝑖𝑛, for 𝑛 ≥ 1, is part

of a pushout square

∐
𝑘≥0 𝐸𝑘 × 𝜕O𝑘 //

∐
𝑘≥0 𝐸𝑘×i𝑛

��

𝐶𝑛−1

𝑖𝑛

��∐
𝑘≥0 𝐸𝑘 × O𝑘 // 𝐶𝑛,

the 𝐸𝑘’s being sets (depending on 𝑛). In other words, 𝐶𝑛 is obtained from 𝐶𝑛−1
by freely adding cells (of any dimension) and 𝑖𝑛 : 𝐶𝑛−1 → 𝐶𝑛 is the canonical
𝜔-functor. This means that 𝐷 is obtained from 𝐶 by adding cells (in any order)
in several steps. Using the fact that the forgetful functor from Cat𝑚 to Cat𝑛,
when 𝑚 > 𝑛, respects colimits (see §14.4.6) and in particular pushouts, one
gets that the new cells can always be attached dimension by dimension. This
means that can suppose that 𝑖𝑛, for 𝑛 ≥ 1, is part of a pushout square of the
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simpler form ∐
𝐹𝑛 𝜕O𝑛

//

∐
𝐹𝑛 i𝑛
��

𝐶𝑛−1

𝑖𝑛

��∐
𝐹𝑛 O𝑛

// 𝐶𝑛,

where 𝐹𝑛 is any set. In other words, 𝑖𝑛 is the canonical 𝜔-functor associated to
the cellular extension (𝐶𝑛−1, 𝐹𝑛). In particular, we get:

19.2.5 Proposition. An 𝜔-category 𝐶 is generated by a polygraph if and only
if the unique functor from the initial 𝜔-category to 𝐶 is a relative polygraph.

19.2.6 Remark. We will see in Chapter 21 that the previous proposition can
be strengthened by saying that 𝐶 is generated by a polygraph if and only
if the unique 𝜔-functor from the initial 𝜔-category to 𝐶 is a cofibration. In
other words, the “cofibrant objects” are exactly the 𝜔-categories generated by
polygraphs.

19.2.7 Proposition. Every cofibration is a monomorphism.

Proof. Cofibrations are retracts of countable compositions of canonical𝜔-func-
tors associated to cellular extensions. As retracts and countable compositions of
monomorphic 𝜔-functors are monomorphisms, the result follows from the fact
that the canonical 𝜔-functor associated to a cellular extension is a monomor-
phism (Proposition 16.2.3). □

19.3 Polygraphic resolutions

Polygraphic resolutions are the 𝜔-categorical version of the free resolutions
of homological algebra, see Section E.3.1. We will see shortly that every
𝜔-category admits a polygraphic resolution and that such a resolution is in
some sense unique up to homotopy.

19.3.1 Polygraphic resolutions. A polygraphic resolution of an𝜔-category𝐶
is a pair (𝑃, 𝑝), where 𝑃 is a polygraph and 𝑝 : 𝑃∗ → 𝐶 is a trivial fibration.

19.3.2 Proposition. Every 𝜔-category admits a polygraphic resolution.

Proof. Let 𝐶 be an 𝜔-category. Consider the unique 𝜔-functor ∅𝐶 : ∅ → 𝐶

from the initial𝜔-category∅ to𝐶. By Proposition 19.2.2, this𝜔-functor factors
as 𝑝 ◦∅𝑃∗ , where 𝑃 is a polygraph,∅𝑃∗ : ∅ → 𝑃∗ is the unique such morphism
and 𝑝 is a trivial fibration, thereby proving the result. □
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The previous proposition shows the existence of a polygraphic resolution for
any 𝜔-category by abstract non-sense. Here is a canonical choice of such a
resolution:

19.3.3 The canonical resolution. Let 𝐶 be an 𝜔-category. The counit of
the adjunction between the categories of polygraphs and 𝜔-categories gives
an 𝜔-functor 𝜀𝐶 : 𝐺 (𝐶)∗ → 𝐶, where 𝐺 : Cat𝜔 → Pol𝜔 denotes the
functor described in §15.1.10. This 𝜔-functor is a trivial fibration, essentially
by definition. Indeed, it is bĳective on objects by definition and, if 𝑥 and 𝑦

are two parallel 𝑘-cells of 𝐺 (𝐶)∗, for some 𝑘 ≥ 0, and 𝑧 is a (𝑘 + 1)-cell
of𝐺 (𝐶)∗ from 𝜀𝐶 (𝑥) to 𝜀𝐶 (𝑦), then, by definition of𝐺 (𝐶), there is a generating
(𝑘 + 1)-cell 𝑝 = (𝑧, 𝑥, 𝑦) in 𝐺 (𝐶) from 𝑥 to 𝑦 such that 𝜀𝐶 (𝑝) = 𝑧. This means
that (𝐺 (𝐶), 𝜀𝐶 ) is a polygraphic resolution of 𝐶. This polygraphic resolution
is called the canonical resolution of 𝐶. Note that it is functorial in 𝐶.

19.4 Uniqueness of polygraphic resolutions

In this section, we prove that polygraphic resolutions are unique up to a non
canonical homotopy in an appropriate sense.

19.4.1 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor, let (𝑃, 𝑝) and (𝑄, 𝑞) two
polygraphic resolutions of𝐶 and𝐷, respectively. There exists a (non canonical)
𝜔-functor 𝑔 : 𝑃∗ → 𝑄∗ making the square

𝑃∗

𝑝

��

𝑔
// 𝑄∗

𝑞

��

𝐶
𝑓
// 𝐷

commute.

Proof. Consider the commutative square

∅

��

// 𝑄∗

𝑞

��

𝑃∗ 𝑝
// 𝐶

𝑓
// 𝐷,

where the unlabeled arrows are the unique such 𝜔-functors. By Proposi-
tion 19.3.2, the 𝜔-functor ∅ → 𝑃∗ is a cofibration. Since by definition, the
𝜔-functor 𝑞 is a trivial fibration, the square admits a lift 𝑓 , thereby proving the
result. □
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19.4.2 Remark. In the particular case where 𝐶 = 𝐷 and 𝑓 is the identity
𝜔-functor, we get the existence of an 𝜔-functor

𝑃∗

𝑝
��

𝑔
// 𝑄∗

𝑞
��

𝐶

between any two polygraphic resolutions of 𝐶.

19.4.3 Remark. We will prove in Chapter 21, using the “folk model structure”
on Cat𝜔 , that the 𝜔-functor 𝑔 of the previous proposition is unique up to some
appropriate notion of homotopy (see Proposition 21.2.9).



20
Towards the folk model structure:

𝜔-equivalences

In this chapter, we introduce all the notions and tools that will allow us to
define and establish the existence, in the next chapter, of the folk model category
structure on Cat𝜔 . We particularly focus on the concept of𝜔-equivalences, that
will be the weak equivalences of this model structure. Essentially all the material
of this chapter is extracted from Lafont, Métayer and Worytkiewicz [237],
although cylinders first appeared in work by Métayer [279].

The class of𝜔-equivalences is the appropriate generalization to𝜔-categories
of the class of equivalences of ordinary categories. In particular, an 𝜔-equiv-
alence between 1-categories is nothing but an equivalence of categories. To
define this notion, we need to generalize the concept of an invertible cell (or
isomorphism). This leads to the notion of a reversible cell, which is, in intuitive
terms, a cell admitting an inverse up to cells admitting inverses, up to cells
admitting inverses, etc. Another fundamental tool is the 𝜔-category Γ̃(𝐶) of
reversible cylinders in an 𝜔-category 𝐶 that we will lead to a sensible notion
of homotopy.

The first section is devoted to 𝜔-equivalences. We start by defining the no-
tion of a reversible cell in an 𝜔-category. Following [237], we define it by
coinduction. We then introduce the class of 𝜔-equivalences. We prove some
basic stability properties of this class. We observe that trivial fibrations in the
sense of the previous chapter are 𝜔-equivalences. In the second section, we
introduce the 𝜔-category Γ(𝐶) of cylinders in an 𝜔-category 𝐶. The purpose
of this 𝜔-category is to allow the definition of 𝜔-functors playing the role of
homotopies. This leads to the definition of an oplax transformations, gener-
alizing the 1-categorical natural transformations and the 2-categorical oplax
transformations. The third section is about the sub-𝜔-category Γ̃(𝐶) ⊆ Γ(𝐶)
of reversible cylinders. This is a fundamental tool to establish properties of
𝜔-equivalences. We show that this 𝜔-category behaves as a homotopical path
objects and we use its properties to show that the class of 𝜔-equivalences sat-

412
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isfies the 2-out-of-3 property, a result that turns out to be non trivial. In the
fourth section, we introduce a “coherent” version of reversible cells leading to
the notion of a fibration of 𝜔-categories. We show that an 𝜔-functor is a trivial
fibration if and only if it is both an 𝜔-equivalence and a fibration. Finally, in the
last section, we study the class of 𝜔-functors having the left lifting properties
with respect to fibrations (that could be called trivial cofibrations). We show
that it consists of 𝜔-functors being both an 𝜔-equivalence and a cofibration.
To do so, we introduce the notion of an immersion, which is a kind of strong
deformation retract, with respect to the “path object” of reversible cylinders.

20.1 𝜔-equivalences

The notion of an 𝜔-equivalence is the higher dimensional generalization of the
notion of an equivalence of categories. In particular,𝜔-equivalent𝜔-categories
can be considered as being close to be equal. The definition is a bit involved
and requires the introduction of the auxiliary concept of a reversible cell.

20.1.1 Reversible cells. Given an 𝜔-category 𝐶, the notion of a reversible
cell of 𝐶 is defined by coinduction in the following way. An 𝑛-cell 𝑢 : 𝑥 → 𝑦

of 𝐶, for some 𝑛 > 0, is reversible if there exists an 𝑛-cell 𝑢 : 𝑦 → 𝑥 in 𝐶 and
(𝑛 + 1)-cells

𝛼 : 1𝑥 → 𝑢 ∗𝑛−1 𝑢 and 𝛽 : 𝑢 ∗𝑛−1 𝑢 → 1𝑦

in 𝐶 that are both reversible.
Concretely, this means that an 𝑛-cell 𝑢 : 𝑥 → 𝑦 of𝐶 is reversible if and only if

it belongs to a set 𝑋 of cells of𝐶 having the following property: for every 𝑛′ > 0
and every 𝑛′-cell 𝑢′ : 𝑥′ → 𝑦′ in 𝑋 , there exists an 𝑛′-cell 𝑢′ : 𝑦′ → 𝑥′ and
(𝑛′ + 1)-cells 𝛼′ : 1𝑥′ → 𝑢′ ∗𝑛′−1 𝑢′ and 𝛽′ : 𝑢′ ∗𝑛′−1 𝑢

′ → 1𝑦′ in 𝑋 .

20.1.2 Remark. Strictly speaking, coinduction allows to define algebraic struc-
tures. What we have really defined in the previous paragraph is a “reversibility
structure”, where all the “there exists” are replaced by actual choices. This
structure can somehow be flattened to a kind of tree. Then one can define a
reversible cell as a cell that can be endowed with a reversibility structure.

We will often say that “we reason by coinduction”. This basically means
that we are defining a “reversibility structure” according to its actual definition,
producing choices of 𝑢, 𝛼 et 𝛽 as in the definition. In particular, if 𝑅 is a set of
cells of an𝜔-category𝐶, “proving by coinduction” that cells of 𝑅 are reversible
will consist in producing, for every 𝑛-cell 𝑢 of 𝑅, a formula giving 𝑢, 𝛼 and 𝛽
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as in the definition of a reversible cell assuming that the (𝑛 + 1)-cells of 𝑅 are
reversible.

20.1.3 Weak inverses. Let 𝑛 ≥ 0. If an 𝑛-cell 𝑢 : 𝑥 → 𝑦 in some 𝜔-category
is reversible, then any 𝑢 : 𝑦 → 𝑥 as in the definition will be called a weak
inverse of 𝑢.

If 𝐶 is a 1-category, a reversible 1-cell of 𝐶 is the same thing as an iso-
morphism of 𝐶 and a weak inverse is an inverse. This follows from the fact
that units are reversible (see the next lemma). Similarly, if 𝐶 is a 2-category, a
1-cell 𝑢 : 𝑥 → 𝑦 of 𝐶 is reversible if and only if it is an equivalence, that is,
if and only if there exists a 1-cell 𝑢 : 𝑦 → 𝑥 and 2-cells 𝛼 : 1𝑥 → 𝑢 ∗0 𝑢 and
𝛽 : 𝑢 ∗0 𝑢 → 1𝑦 that are isomorphisms.

20.1.4 Lemma. Let 𝐶 be an 𝜔-category.

1. If 𝑥 is a cell of 𝐶, then 1𝑥 is reversible.
2. If 𝑢 : 𝑥 → 𝑦 is a reversible cell of 𝐶, then any weak inverse 𝑢 : 𝑦 → 𝑥 of 𝑢

is reversible and has 𝑢 as a weak inverse.
3. If 𝑢 : 𝑥 → 𝑦 and 𝑣 : 𝑦 → 𝑧 are two reversible 𝑛-cells of 𝐶 for an 𝑛 > 0, then
𝑢 ∗𝑛−1 𝑣 is reversible.

4. More generally, if 𝑢 and 𝑣 are two reversible 𝑛-cells of 𝐶 such that the
composition 𝑢 ∗𝑖 𝑣 is defined for some 0 ≤ 𝑖 < 𝑛, then this composition is
reversible.

Proof. We proceed by coinduction.

1. Let 𝑥 be an 𝑛-cell of 𝐶. Set 𝑢 = 𝑢 = 1𝑥 . Then 𝑢 ∗𝑛 𝑢 = 𝑢 ∗𝑛 𝑢 = 11𝑥 is
reversible by coinduction, and so is 1𝑥 by definition.

2. This is immediate by the symmetry in the definition of a reversible cell.
3. By definition, there exist cells 𝑢 : 𝑦 → 𝑥, 𝑣 : 𝑧 → 𝑦 and reversible cells
𝛼 : 1𝑥 → 𝑢 ∗𝑛−1 𝑢, 𝛽 : 𝑢 ∗𝑛−1 𝑢 → 1𝑦 , 𝛾 : 1𝑦 → 𝑣 ∗𝑛−1 𝑣, 𝛿 : 𝑣 ∗𝑛−1 𝑣→ 1𝑧 .
We get cells

𝛼 ∗𝑛 (𝑢 ∗𝑛−1 𝛾 ∗𝑛−1 𝑢) : 1𝑥 → 𝑢 ∗𝑛−1 𝑣 ∗𝑛−1 𝑣 ∗𝑛−1 𝑢

(𝑣 ∗𝑛−1 𝛽 ∗𝑛−1 𝑣) ∗𝑛 𝛿 : 𝑣 ∗𝑛−1 𝑢 ∗𝑛−1 𝑢 ∗𝑛−1 𝑣→ 1𝑧 .

By coinduction, it suffices to show that the cells 𝛼 ∗𝑛 (𝑢 ∗𝑛−1 𝛾 ∗𝑛−1 𝑢)
and (𝑣 ∗𝑛−1 𝛽 ∗𝑛−1 𝑣) ∗𝑛 𝛿 are reversible. It thus suffices to show that the
whiskering of a reversible cell by any cell is reversible. This can be shown
by a new coinduction but also follows from the next proposition.

4. The case where 𝑖 = 𝑛 − 1 is the previous assertion. If 𝑖 < 𝑛 − 1, then, using
the exchange law, this follows from the case 𝑖 = 𝑛 − 1 and the case of a
whiskering (see the proof of the previous assertion). □
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20.1.5 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor. If 𝑢 is a reversible cell
of 𝐶, then 𝑓 (𝑢) is a reversible cell of 𝐷.

Proof. Let 𝑢 : 𝑥 → 𝑦 be a reversible 𝑛-cell of 𝐶. By definition, there ex-
ists a cell 𝑢 : 𝑦 → 𝑥 and two reversible cells 𝛼 : 1𝑥 → 𝑢 ∗𝑛−1 𝑢 and
𝛽 : 𝑢 ∗𝑛−1 𝑢 → 1𝑥 . By coinduction, the cells 𝑓 (𝛼) : 1 𝑓 (𝑥 ) → 𝑓 (𝑢) ∗𝑛−1 𝑓 (𝑢)
and 𝑓 (𝛽) : 𝑓 (𝑢) ∗𝑛−1 𝑓 (𝑢) → 1 𝑓 (𝑦) are reversible. This means that 𝑓 (𝑢) is
indeed reversible. □

20.1.6 𝜔-equivalent cells. Let 𝑛 ≥ 0. Two 𝑛-cells 𝑥 and 𝑦 of an 𝜔-category 𝐶
are 𝜔-equivalent if there exists a reversible cell 𝑢 : 𝑥 → 𝑦 in 𝐶. We denote this
relation by 𝑥 ∼ 𝑦.

We chose to define the notion of being 𝜔-equivalent in terms of the notion of
a reversible cell but we could also have defined this notion directly using coin-
duction: two parallel 𝑛-cells 𝑥 and 𝑦 are𝜔-equivalent if there exists (𝑛+1)-cells
𝑢 : 𝑥 → 𝑦 and 𝑢 : 𝑦 → 𝑥 such that 1𝑥 and 𝑢 ∗𝑛 𝑢 are 𝜔-equivalent, and 𝑢 ∗𝑛 𝑢
and 1𝑦 are 𝜔-equivalent.

If follows from §20.1.3 that 𝜔-equivalent objects in a 1-category are iso-
morphic objects and that 𝜔-equivalent objects in a 2-category are equivalent
objects.

20.1.7 Proposition. Let𝐶 be an𝜔-category. The relation “being𝜔-equivalent”
is a congruence relation on the set of cells of 𝐶 in the sense that:

1. This relation is an equivalence relation.
2. This equivalence relation is compatible with compositions: if 𝑢 and 𝑢′, and
𝑣 and 𝑣′ are 𝜔-equivalent cells, then 𝑢 ∗𝑖 𝑣 is 𝜔-equivalent to 𝑢′ ∗𝑖 𝑣′ when
these compositions make sense.

Proof. This is a direct consequence of Lemma 20.1.4. □

20.1.8 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor. If two cells 𝑥 and 𝑦 of 𝐶
are 𝜔-equivalent, then so are 𝑓 (𝑥) and 𝑓 (𝑦).
Proof. This follows from Proposition 20.1.5 □

20.1.9 We now turn to a result of paramount importance in the construction of
the folk model structure, namely the “division Lemma” ([237, Lemma 4.6]).
As the proof is quite intricate, it will be convenient to introduce the following
terminology: for any property P applying to 𝑛-cells, we say that there is a
weakly unique 𝑛-cell satisfying P whenever any two 𝑛-cells satisfying P are
𝜔-equivalent.
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20.1.10 Lemma (Division lemma). Any reversible 1-cell 𝑢 : 𝑥 → 𝑦 satisfies
the following left division property:

– For any 1-cell 𝑤 : 𝑥 → 𝑧, there is a weakly unique 1-cell 𝑣 : 𝑦 → 𝑧 such that
𝑢 ∗0 𝑣 ∼ 𝑤.

– For any pair of parallel 1-cells 𝑎, 𝑏 : 𝑦 → 𝑧 and any 2-cell𝑤 : 𝑢∗0𝑎 → 𝑢∗0𝑏,
there is a weakly unique 2-cell 𝑣 : 𝑎 → 𝑏 such that 𝑢 ∗0 𝑣 ∼ 𝑤.

– More generally, for any 𝑛 > 0, any pair of parallel 𝑛-cells 𝑎, 𝑏 such that
𝑠0 (𝑎) = 𝑠0 (𝑏) = 𝑦, 𝑡0 (𝑎) = 𝑡0 (𝑏) = 𝑧 and any (𝑛+1)-cell 𝑤 : 𝑢∗0𝑎 → 𝑢∗0 𝑏,
there is a weakly unique (𝑛 + 1)-cell 𝑣 : 𝑎 → 𝑏 such that 𝑢 ∗0 𝑣 ∼ 𝑤.

Likewise, reversible 1-cells satisfy the corresponding right division property.

Proof. Let 𝑢 : 𝑥 → 𝑦 be a reversible 1-cell. By definition there is a weak
inverse 𝑢 : 𝑦 → 𝑥 together with a reversible 2-cell 𝛽 : 𝑢 ∗0 𝑢 → 1𝑦 , as well as
a reversible 2-cell 𝛽 : 1𝑦 → 𝑢 ∗0 𝑢 such that 𝛽 ∗1 𝛽 ∼ 1𝑢∗0𝑢.

– In the first case, define 𝑣 = 𝑢∗0𝑤 : 𝑦 → 𝑧. Then 𝑢∗0𝑣 = 𝑢∗0𝑢∗0𝑤 ∼ 𝑤. More-
over, for any 𝑣′ : 𝑦 → 𝑧 such that 𝑢 ∗0 𝑣′ ∼ 𝑤, we get 𝑢 ∗0 𝑢 ∗0 𝑣′ ∼ 𝑢 ∗0 𝑤 = 𝑣,
whence 𝑣′ ∼ 𝑣 and weak uniqueness holds. Likewise, the right division
property holds in the first case.

– Let 𝑎, 𝑏 : 𝑦 → 𝑧 be 1-cells and 𝑤 : 𝑢 ∗0 𝑎 → 𝑢 ∗0 𝑏. Suppose there is a
2-cell 𝑣 : 𝑎 → 𝑏 such that 𝑢 ∗0 𝑣 ∼ 𝑤. Then, by applying exchange and
compatibility of 𝜔-equivalence with compositions, one gets

(𝛽 ∗0 𝑎) ∗1 (𝛽 ∗0 𝑤) ∗1 (𝛽 ∗0 𝑏) ∼ (𝛽 ∗0 𝑎) ∗1 (𝑢 ∗0 𝑣) ∗1 (𝛽 ∗0 𝑏)
∼ (𝛽 ∗1 𝛽) ∗0 𝑣
∼ 𝑣,

which implies weak uniqueness for 𝑣. As for existence, define

𝑣 = (𝛽 ∗0 𝑎) ∗1 (𝛽 ∗0 𝑤) ∗1 (𝛽 ∗0 𝑏).
By definition, 𝑣 : 𝑎 → 𝑏. Consider now

𝑣′ = (𝛽 ∗0 𝑎) ∗1 𝑣 ∗1 (𝛽 ∗0 𝑏).
Again, exchange and compatibility yield

𝑣′ ∼ 𝑢 ∗0 𝑤
but also

𝑣′ ∼ 𝑢 ∗0 (𝑢 ∗0 𝑣).
By applying weak uniqueness to left division by 𝑢, one gets 𝑤 ∼ 𝑢 ∗0 𝑣,
whence the result. Right division is proved accordingly in this case.
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– The general case is proved by induction on 𝑛. The case 𝑛 = 1 has been
just proved above. Let now 𝑛 > 1 and suppose that the property of left
and right division holds for any reversible 1-cell in any 𝜔-category 𝐶 up to
dimension 𝑛 − 1. Let 𝑎, 𝑏 be parallel 𝑛-cells such that 𝑠0 (𝑎) = 𝑠0 (𝑏) = 𝑦,
𝑡0 (𝑎) = 𝑡0 (𝑏) = 𝑧 and 𝑤 : 𝑢 ∗0 𝑎 → 𝑢 ∗0 𝑏 an (𝑛 + 1)-cell in 𝐶. Consider

𝑤′ = (𝑢 ∗0 𝑤) ∗1 (𝛽 ∗0 𝑡1 (𝑎)).
We have

𝑠𝑛 (𝑤′) = (𝛽 ∗0 𝑠1 (𝑎)) ∗1 𝑎 and 𝑡𝑛 (𝑤′) = (𝛽 ∗0 𝑠1 (𝑎)) ∗1 𝑏.
Now 𝛽∗0𝑠1 (𝑎)may be seen as a reversible 1-cell in the𝜔-category𝐶 (𝑦, 𝑧), so
that the induction hypothesis applies and yields a weakly unique (𝑛 + 1)-cell
𝑣 : 𝑎 → 𝑏 such that

(𝛽 ∗0 𝑠1 (𝑎)) ∗1 𝑣 ∼ 𝑤′. (20.1)

One then shows that any (𝑛+1)-cell 𝑣′ : 𝑎 → 𝑏 such that 𝑢 ∗0 𝑣′ ∼ 𝑤 satisfies
the equation (20.1). Therefore, by induction, 𝑣′ ∼ 𝑣 and weak uniqueness is
proved. It remains to check that the above (𝑛 + 1)-cell 𝑣 satisfies 𝑢 ∗0 𝑣 ∼ 𝑤.
Rewriting (20.1) using the exchange law, we get

(𝑢 ∗0 𝑢 ∗0 𝑣) ∗1 (𝛽 ∗0 𝑡1 (𝑎)) ∼ (𝑢 ∗0 𝑤) ∗1 (𝛽 ∗0 𝑡1 (𝑎)).
By induction applied to the reversible 1-cell 𝛽 ∗0 𝑡1 (𝑎) of 𝐶 (𝑦, 𝑧), weak
uniqueness for right division implies

𝑢 ∗0 𝑢 ∗0 𝑣 ∼ 𝑢 ∗0 𝑤,
and finally, by weak uniqueness applied to 𝑢, 𝑢 ∗0 𝑣 ∼ 𝑤, as required. □

20.1.11 𝜔-equivalences. An 𝜔-functor 𝑓 : 𝐶 → 𝐷 is an 𝜔-equivalence if the
following conditions are satisfied:

1. For every object 𝑦 of 𝐷, there exists an object 𝑥 of 𝐶 such that 𝑓 (𝑥) is
𝜔-equivalent to 𝑦.

2. For every 𝑛 ≥ 0, every pair of parallel 𝑛-cells 𝑥 and 𝑦 of 𝐶 and every
(𝑛 + 1)-cells 𝑣 : 𝑓 (𝑥) → 𝑓 (𝑦), there exists an (𝑛 + 1)-cells 𝑢 : 𝑥 → 𝑦 such
that 𝑓 (𝑢) is 𝜔-equivalent to 𝑣.

If 𝑓 : 𝐶 → 𝐷 is a 1-functor between 1-categories, then 𝑓 is an𝜔-equivalence
if and only if it is a equivalence of categories. Similarly, if 𝑓 : 𝐶 → 𝐷 is a
2-functor, then 𝑓 is an 𝜔-equivalence if and only if 𝑓 is a biequivalence.
Note that an 𝜔-equivalence between two 2-categories is not the same thing
as a biequivalence as an 𝜔-equivalence is required to be a strict 2-functor as
opposed to a bifunctor.
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20.1.12 Remark. In general, an 𝜔-equivalence does not admit an inverse, in
any reasonable sense, that is a strict 𝜔-equivalence. Morally, it admits a weak
𝜔-functor as a weak inverse in some sense. For instance, the obvious 𝜔-functor
from the “pseudo-2-triangle”

·

· //

??

·,

OO

𝛼

�#

where 𝛼 is a reversible cell, to the commutative triangle, is easily seen to be an
𝜔-equivalence, but there is no 𝜔-equivalence from the commutative triangle to
the pseudo-2-triangle.

20.1.13 Proposition. Trivial fibrations are 𝜔-equivalences.

Proof. This follows immediately from the characterization of trivial fibrations
given at the end of §19.2.3 and the fact that identities are reversible cells. □

An 𝜔-equivalence is injective up to 𝜔-equivalence of cells in the following
sense:

20.1.14 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-equivalence and let 𝑥 and 𝑦 be
two parallel cells of 𝐶. If 𝑓 (𝑥) and 𝑓 (𝑦) are 𝜔-equivalent, then 𝑥 and 𝑦 are
𝜔-equivalent.

Proof. By definition, there exists a cell 𝑣 : 𝑓 (𝑦) → 𝑓 (𝑥) such that 1 𝑓 (𝑥 ) and
𝑓 (𝑢) ∗𝑛−1 𝑣, and 𝑣 ∗𝑛−1 𝑓 (𝑢) and 1 𝑓 (𝑦) are 𝜔-equivalent cells. Since 𝑓 is an
𝜔-equivalence, there exists a cell 𝑢 : 𝑦 → 𝑥 such that 𝑓 (𝑢) is 𝜔-equivalent to 𝑣.
Using Proposition 20.1.7, we get that 𝑓 (1𝑥) and 𝑓 (𝑢 ∗𝑛−1 𝑢), and 𝑓 (𝑢 ∗𝑛−1 𝑢)
and 𝑓 (1𝑦) are 𝜔-equivalent cells. The result thus follows by coinduction. □

20.1.15 Proposition. The composition of two 𝜔-equivalences is an 𝜔-equiv-
alence.

Proof. Let 𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐸 be two 𝜔-equivalences. Let us prove
that 𝑔 𝑓 : 𝐶 → 𝐸 is an 𝜔-equivalence.

1. Let 𝑧 be an object of 𝐸 . Since 𝑔 is an 𝜔-equivalence, there exists an ob-
ject 𝑦 of 𝐷 such that 𝑔(𝑦) and 𝑧 are 𝜔-equivalent. Similarly, since 𝑓 is
an 𝜔-equivalence, there exists an object 𝑥 of 𝐶 such that 𝑓 (𝑥) and 𝑦 are
𝜔-equivalent. It follows from Proposition 20.1.5 that 𝑔( 𝑓 (𝑥)) and 𝑔(𝑦) are
𝜔-equivalent. Hence, by transitivity of the relation of 𝜔-equivalence, 𝑔 𝑓 (𝑥)
and 𝑧 are 𝜔-equivalent.
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2. Let 𝑛 ≥ 0, let 𝑥 and 𝑦 be two parallel 𝑛-cells of𝐶 and let 𝑤 : 𝑔 𝑓 (𝑥) → 𝑔 𝑓 (𝑦)
be an (𝑛+1)-cell of 𝐸 . Since 𝑔 is an𝜔-equivalence, there exists an (𝑛+1)-cell
𝑣 : 𝑓 (𝑥) → 𝑓 (𝑦) of 𝐷 such that 𝑔(𝑣) and 𝑤 are 𝜔-equivalent. Similarly,
since 𝑓 is an 𝜔-equivalence, there exists an (𝑛 + 1)-cell 𝑢 : 𝑥 → 𝑦 such that
𝑓 (𝑢) and 𝑣 are 𝜔-equivalent. It follows from Proposition 20.1.8 that 𝑔 𝑓 (𝑢)
and 𝑔(𝑣) are 𝜔-equivalent, and hence that 𝑔 𝑓 (𝑢) and 𝑤 are 𝜔-equivalent,
thereby proving the result. □

20.1.16 2-out-of-3 property. Recall that a class of mapsW in a category C
is said to satisfy the 2-out-of-3 property if for any commutative triangle

𝑋
𝑓

//

ℎ
��

𝑌

𝑔
��

𝑍

in C, if two morphisms among 𝑓 , 𝑔 and ℎ are inW, then so is the third one.
For instance, isomorphisms in a category satisfy the 2-out-of-3 property. More
generally, any reasonable notion of “equivalence” in a category should satisfy
this property.

The 2-out-of-3 property is made of three different properties, depending on
which of two morphisms among 𝑓 , 𝑔 and ℎ are assumed to be in W. If W
is the class of 𝜔-equivalences, the previous proposition gives the case where
these two morphisms are 𝑓 and 𝑔. The following proposition is the case where
they are 𝑔 and ℎ:

20.1.17 Proposition. Let 𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐸 be two 𝜔-functors. If 𝑔
and 𝑔 𝑓 are 𝜔-equivalences, then so is 𝑓 .

Proof. Let us prove that 𝑓 is an 𝜔-equivalence.

1. Let 𝑦 be an object of 𝐷. Consider the object 𝑔(𝑦) of 𝐸 . Since 𝑔 𝑓 is an
𝜔-equivalence, there exists an object 𝑥 of 𝐶 such that 𝑔 𝑓 (𝑥) is 𝜔-equivalent
to 𝑔(𝑦). By Proposition 20.1.14, this implies that 𝑓 (𝑥) and 𝑦 are𝜔-equivalent.

2. Let 𝑛 ≥ 0, let 𝑥 and 𝑦 be two parallel 𝑛-cells of𝐶 and let 𝑣 : 𝑓 (𝑥) → 𝑓 (𝑦) be
an (𝑛 + 1)-cell of 𝐷. Consider the (𝑛 + 1)-cell 𝑔(𝑣) : 𝑔 𝑓 (𝑥) → 𝑔 𝑓 (𝑦) of 𝐸 .
Since 𝑔 𝑓 is an 𝜔-equivalence, there exists an (𝑛 + 1)-cell 𝑢 : 𝑥 → 𝑦 such
that 𝑔 𝑓 (𝑢) and 𝑔(𝑣) are 𝜔-equivalent. By Proposition 20.1.14, this implies
that 𝑓 (𝑢) and 𝑣 are 𝜔-equivalent. □

The remaining case of the 2-out-of-3 property is much harder to prove and
requires the introduction of the 𝜔-category of cylinders, which is the topic of
the next section.
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We end the section by two easy stability conditions of the class of 𝜔-equiv-
alences.

20.1.18 Proposition. A retract of an 𝜔-equivalence is an 𝜔-equivalence.

Proof. Consider a commutative diagram

𝐶

𝑓

��

𝑖
//

1𝐶

&&
𝐶′

𝑓 ′

��

𝑝
// 𝐶

𝑓

��

𝐷
𝑗
//

1𝐷

88𝐷′
𝑞
// 𝐷

where 𝑓 ′ is an 𝜔-equivalence. Let us prove that 𝑓 is an 𝜔-equivalence.

1. Let 𝑦 be an object of 𝐷. Since 𝑓 is an 𝜔-equivalence, the exists a cell 𝑥′
in 𝐶′ such that 𝑓 ′ (𝑥′) = 𝑦′, where 𝑦′ = 𝑗 (𝑦). We thus get an object
𝑥 = 𝑝(𝑥′) in 𝐶. As 𝑓 (𝑥) = 𝑓 𝑝(𝑥′) = 𝑞 𝑓 ′ (𝑥), the cell 𝑓 (𝑥) is 𝜔-equivalent
to 𝑞𝑦′ = 𝑞 𝑗 (𝑦) = 𝑦.

2. Let 𝑥 and 𝑦 be parallel cells of 𝐶 and let 𝑣 : 𝑓 (𝑥) → 𝑓 (𝑦) be a cell of 𝐷.
Consider the cell 𝑣′ = 𝑗 (𝑣) : 𝑗 𝑓 (𝑥) → 𝑗 𝑓 (𝑦). We have 𝑣′ : 𝑓 ′𝑖(𝑥) → 𝑓 ′𝑖(𝑦)
and, since 𝑓 ′ is an 𝜔-equivalence, there exists a cell 𝑢′ : 𝑖(𝑥) → 𝑖(𝑦) such
that 𝑓 (𝑢′) is𝜔-equivalent to 𝑣′. Setting 𝑢 = 𝑝 𝑓 (𝑢′), we get as in the previous
point that 𝑓 (𝑢) is 𝜔-equivalent to 𝑣. □

20.1.19 Proposition. A filtered colimit of 𝜔-equivalences is an 𝜔-equivalence.
In particular, a countable composition (or more generally a transfinite compo-
sition) of 𝜔-equivalences is an 𝜔-equivalence.

Proof. Let 𝐼 be a filtered category, let 𝐹, 𝐺 : 𝐼 → Cat𝜔 be two functors and let
𝑓 : 𝐹 → 𝐺 a natural transformation such that for every 𝑖 in 𝐼, 𝑓𝑖 : 𝐹 (𝑖) → 𝐺 (𝑖)
is an 𝜔-equivalence. Let us prove that 𝑓∞ = lim−−→ 𝑓 : lim−−→ 𝐹 → lim−−→𝐺 is an
𝜔-equivalence. Recall (see Proposition 14.2.8) that the forgetful functor from
𝜔-categories to globular sets respects filtered colimits. This means that for
every 𝑛 ≥ 0, the set of 𝑛-cells of lim−−→ 𝐹 is the colimit of the sets of 𝑛-cells of
the 𝐹 (𝑖). If 𝑥 is an 𝑛-cell of 𝐹 (𝑖), we will denote by [𝑥] the corresponding
𝑛-cell of lim−−→ 𝐹.

1. Let [𝑦] be an object of lim−−→𝐺 coming from an object 𝑦 of𝐺 (𝑖) for some 𝑖 in 𝐼.
Since 𝑓𝑖 : 𝐹 (𝑖) → 𝐺 (𝑖) is an 𝜔-equivalence, there exists an object 𝑥 of 𝐹 (𝑖)
such that 𝛼𝑖 (𝑥) is𝜔-equivalence to 𝑦. By definition, we have 𝑓∞ ( [𝑥]) = [𝑦].
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Moreover, since the canonical 𝜔-functor 𝐺 (𝑖) → lim−−→𝐺, as any 𝜔-functor,
sends𝜔-equivalent cells to𝜔-equivalent cells, [𝑥] and [𝑦] are𝜔-equivalent.

2. Let 𝑛 ≥ 0 and let [𝑥] and [𝑦] be two parallel 𝑛-cells of lim−−→ 𝐹, where 𝑥 is an
𝑛-cell of 𝐹 (𝑖) and 𝑦 is an 𝑛-cell of 𝐹 ( 𝑗). Let [𝑢] : 𝑓∞ ( [𝑥]) → 𝑓∞ ( [𝑦]) be an
(𝑛 + 1)-cell of lim−−→𝐺, where 𝑢 is an (𝑛 + 1)-cell of 𝐺 (𝑘). Using the fact that
𝐼 is filtered, one can suppose that 𝑖 = 𝑗 = 𝑘 and 𝑢 : 𝑓𝑖 (𝑥) → 𝑓𝑖 (𝑦). Since 𝑓𝑖
is an 𝜔-equivalence, there exists 𝑣 : 𝑥 → 𝑦 such that 𝑓𝑖 (𝑢) is 𝜔-equivalent
to 𝑢. This implies that [𝑢] : [𝑥] → [𝑦] and that 𝑓∞ ( [𝑢]) is 𝜔-equivalent
to [𝑣]. □

20.2 The 𝜔-category of cylinders

In this section, we fix an 𝜔-category 𝐶.

20.2.1 Cylinders. For 𝑛 ≥ 0, an 𝑛-cylinder in 𝐶 is given by two 𝑛-cells 𝑥
and 𝑦 of 𝐶, and a sequence

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−1, 𝛼

+
𝑛−1, 𝛼

−
𝑛 = 𝛼𝑛 = 𝛼

+
𝑛

where 𝛼𝜀𝑗 , for 0 ≤ 𝑗 ≤ 𝑛 and 𝜀 = ±, is a ( 𝑗 + 1)-cell whose source and target
are

𝛼−𝑗 : 𝑠 𝑗 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗ 𝑗−1 𝛼
+
𝑗−1 → 𝛼−𝑗−1 ∗ 𝑗−1 · · · ∗1 𝛼−0 ∗0 𝑠 𝑗 (𝑦),

𝛼+𝑗 : 𝑡 𝑗 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗ 𝑗−1 𝛼
+
𝑗−1 → 𝛼−𝑗−1 ∗ 𝑗−1 · · · ∗1 𝛼−0 ∗0 𝑡 𝑗 (𝑦).

Note that for 𝑛 = 𝑗 , we get

𝛼𝑛 : 𝑥 ∗0 𝛼+0 ∗1 · · · ∗𝑛−1 𝛼
+
𝑛−1 → 𝛼−𝑛−1 ∗𝑛−1 · · · ∗1 𝛼−0 ∗0 𝑦.

We say that such a cylinder is a cylinder from 𝑥 to 𝑦 and we write 𝛼 : 𝑥 ↷ 𝑦.
Here are pictures of a 0-cylinder, a 1-cylinder and a 2-cylinder in 𝐶:

𝑥

𝛼0

��
𝑦

𝑠0 (𝑥) 𝑥 //

𝛼−0

��

𝑡0 (𝑥)

𝛼+0

��

𝑠0 (𝑦) 𝑦
// 𝑡0 (𝑦)

𝛼1

x�

𝑠0 (𝑥)
𝑠1 (𝑥 )
**

𝑡1 (𝑥 )
44

𝛼−0

��

𝑥 �� 𝑡0 (𝑥)

𝛼+0

��

𝑠0 (𝑦)
𝑠1 (𝑦)

**

𝑡1 (𝑦)
44

𝑦 �� 𝑡0 (𝑦)

𝛼−1
��

𝛼+1
ks
𝛼Ud



422 Towards the folk model structure

20.2.2 Inductive definition of cylinders. Alternatively, the notion of an 𝑛-cyl-
inder 𝛼 : 𝑥 ↷ 𝑦, where 𝑥 and 𝑦 are 𝑛-cells of 𝐶, can defined inductively in the
following way. A 0-cylinder 𝛼 : 𝑥 → 𝑦 is a 1-cell 𝛼0 : 𝑥 → 𝑦. For 𝑛 > 0, an
𝑛-cylinder 𝛼 : 𝑥 ↷ 𝑦 consists of two 1-cells

𝛼−0 : 𝑠0 (𝑥) → 𝑡0 (𝑥) and 𝛼+0 : 𝑡0 (𝑥) → 𝑡0 (𝑥)
and an (𝑛 − 1)-cylinder

[𝛼] : [𝑥 ∗0 𝛼+0 ] ↷ [𝛼−0 ∗0 𝑦]
in the 𝜔-category 𝐶 (𝑠0 (𝑥), 𝑡0 (𝑦)), where [𝑥 ∗0 𝛼+0 ] and [𝛼−0 ∗0 𝑦] denote the
𝑛-cells 𝑥 ∗0 𝛼+0 and 𝛼−0 ∗0 𝑦 of 𝐶 seen as (𝑛 − 1)-cells of 𝐶 (𝑠0 (𝑥), 𝑡0 (𝑦)).

The equivalence between the two definitions easily follows by induction.
This second definition is the one used [237]. Its main advantage is to allow
inductive arguments on cylinders.

We will see that the cylinders in 𝐶 organize themselves in an 𝜔-category.
We now define the associated operations.

20.2.3 Source and target of a cylinder. Let 𝑥 and 𝑦 be two 𝑛-cells for
some 𝑛 > 0 and let 𝛼 : 𝑥 ↷ 𝑦 be an 𝑛-cylinder. We define the source of
this cylinder to be the (𝑛 − 1)-cylinder

𝑠𝑛−1 (𝛼) : 𝑠𝑛−1 (𝑥) ↷ 𝑠𝑛−1 (𝑦)
given by the cells

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−2, 𝛼

+
𝑛−2, 𝛼

−
𝑛−1.

Similarly, the target of such a cylinder is the (𝑛 − 1)-cylinder

𝑡𝑛−1 (𝛼) : 𝑡𝑛−1 (𝑥) ↷ 𝑡𝑛−1 (𝑦)
defined by the cells

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−2, 𝛼

+
𝑛−2, 𝛼

+
𝑛−1.

Geometrically, the source of a cylinder is the “back face” of this cylinder and
the target is the “front face”. For instance, the source and target of a 2-cylinder

𝑠0 (𝑥)
𝑠1 (𝑥 )
**

𝑡1 (𝑥 )
44

𝛼−0

��

𝑥 �� 𝑡0 (𝑥)

𝛼+0

��

𝑠0 (𝑦)
𝑠1 (𝑦)

**

𝑡1 (𝑦)
44

𝑦 �� 𝑡0 (𝑦)

𝛼−1
��

𝛼+1
ks
𝛼Ud
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are the 1-cylinders

𝑠0 (𝑥)
𝑠1 (𝑥 ) //

𝛼−0
��

𝑡0 (𝑥)
𝛼+0
��

𝑠0 (𝑦)
𝑠1 (𝑦)

// 𝑡0 (𝑦)

𝛼−1
w� and

𝑠0 (𝑥)
𝑡1 (𝑥 ) //

𝛼−0
��

𝑡0 (𝑥)
𝛼+0
��

𝑠0 (𝑦)
𝑡1 (𝑦)

// 𝑡0 (𝑦).

𝛼+1
w�

20.2.4 Unit of a cylinder. Let 𝛼 : 𝑥 ↷ 𝑦 be an 𝑛-cylinder in 𝐶. We define the
unit of this cylinder to be the (𝑛 + 1)-cylinder

1𝛼 : 1𝑥 ↷ 1𝑦

defined by the cells

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−1, 𝛼

+
𝑛−1, 𝛼𝑛, 𝛼𝑛, 1𝛼𝑛 .

Geometrically, this cylinder is obtained by gluing two copies of 𝛼 and putting
a trivial cell in the middle. For instance, the unit of the 1-cylinder

𝑠0 (𝑥) 𝑥 //

𝛼−0
��

𝑡0 (𝑥)
𝛼+0
��

𝑠0 (𝑦) 𝑦
// 𝑡0 (𝑦)

𝛼1
w�

is the 2-cylinder

𝑠0 (𝑥)
𝑥
**

𝑥
44

𝛼−0

��

1𝑥 �� 𝑡0 (𝑥)

𝛼+0

��

𝑠0 (𝑦)
𝑦

**

𝑦
44

1𝑦 �� 𝑡0 (𝑦).

𝛼1
��

𝛼1ks

1𝛼1Ud

20.2.5 Composition of cylinders. Let 𝛼 : 𝑥 ↷ 𝑦 and 𝛽 : 𝑧 ↷ 𝑡 be two
𝑛-cylinders in 𝐶 for some 𝑛 > 0. Let 0 ≤ 𝑖 < 𝑛 and suppose that 𝛼 and 𝛽 are
composable in dimension 𝑖, that is, that we have

𝑡𝑖 (𝛼) : 𝑡𝑖 (𝑥) ↷ 𝑡𝑖 (𝑦) = 𝑠𝑖 (𝛽) : 𝑠𝑖 (𝑥) ↷ 𝑠𝑖 (𝑦).

We define the composition in dimension 𝑖 of these two 𝑛-cylinders to be the
𝑛-cylinder

𝛾 = 𝛼 ∗𝑖 𝛽 : 𝑥 ∗𝑖 𝑧↷ 𝑦 ∗𝑖 𝑡
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defined by, for 𝑗 < 𝑖,

𝛾𝜀𝑗 = 𝛼
𝜀
𝑗 = 𝛽

𝜀
𝑗

𝛾−𝑖 = 𝛼−𝑖
𝛾+𝑖 = 𝛽+𝑖
𝛾−𝑖+1 =

(
𝑠𝑖+1 (𝑥) ∗0 𝛽+0 ∗1 · · · ∗𝑖−1 𝛽

+
𝑖−1 ∗𝑖 𝛽𝜀𝑖+1

)
∗𝑖+1

(
𝛼𝜀𝑖+1 ∗𝑖 𝛼−𝑖−1 ∗𝑖−1 · · · ∗1 𝛼−0 ∗0 𝑠𝑖+1 (𝑡)

)
𝛾+𝑖+1 =

(
𝑡𝑖+1 (𝑥) ∗0 𝛽+0 ∗1 · · · ∗𝑖−1 𝛽

+
𝑖−1 ∗𝑖 𝛽𝜀𝑖+1

)
∗𝑖+1

(
𝛼𝜀𝑖+1 ∗𝑖 𝛼−𝑖−1 ∗𝑖−1 · · · ∗1 𝛼−0 ∗0 𝑡𝑖+1 (𝑡)

)
if 𝑖 + 1 < 𝑛, and

𝛾𝜀𝑗 =
(
𝑠𝑖+1 (𝑥) ∗0 𝛽+0 ∗1 · · ·∗𝑖−1 𝛽

+
𝑖−1∗𝑖 𝛽𝜀𝑗

) ∗𝑖+1 (
𝛼𝜀𝑗 ∗𝑖𝛼−𝑖−1∗𝑖−1 · · ·∗1𝛼−0 ∗0 𝑡𝑖+1 (𝑡)

)
for 𝑖 + 1 < 𝑗 ≤ 𝑛. In particular, for 𝑗 = 𝑛, we have

𝛾𝜀𝑛 =
(
𝑠𝑖+1 (𝑥) ∗0 𝛽+0 ∗1 · · ·∗𝑖−1 𝛽

+
𝑖−1∗𝑖 𝛽𝑛

) ∗𝑖+1 (
𝛼𝑛∗𝑖𝛼−𝑖−1∗𝑖−1 · · ·∗1𝛼−0 ∗0 𝑡𝑖+1 (𝑡)

)
.

Here are some pictures of composable cylinders in low dimension:

· 𝑥 //

𝛼−0
��

·

��

𝑧
// ·
𝛽+0
��· 𝑦

// ·
𝑡
//

𝛼1
{�

·

𝛽1
{�

· $$
::

𝛼−0

��

𝑥 �� · $$
::𝑧 ��

��

·

𝛽+0

��· $$
::𝑦 �� ·

𝛼−1 ��

𝛼+1
ks
𝛼Wg

$$
::𝑡 �� ·

𝛽−1 ��

𝛽+1
ks

𝛽Wg

· ""
//
<<

𝛼−0

��

𝑥 ��
𝑧 ��

·

𝛼+0

��· ""
//
<<

𝑦 ��
𝑡 ��

·

𝛼−1
��
[c

𝛽+1ow

𝛼2Wg
𝛽2Wg

20.2.6 The𝜔-category of cylinders. We define the𝜔-category Γ(𝐶) of cylin-
ders in 𝐶 to be the 𝜔-category whose 𝑛-cells are 𝑛-cylinders in 𝐶 and whose
sources, targets, units and compositions are given according to the formulas
given in the previous paragraphs. Tedious calculations show that:

20.2.7 Theorem. If 𝐶 is an 𝜔-category, then Γ(𝐶) is indeed an 𝜔-category.

Proof. See [278, Appendix A]. □
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20.2.8 The free-standing 𝑛-cylinder. Theorem 20.2.7 is a key ingredient in
the construction O1 ⊗ (−) presented in Section 17.2. In particular, we get for
each 𝑛 ≥ 0 a polygraph Cyl𝑛 = O1 ⊗ O𝑛. The associated 𝜔-category Cyl∗𝑛 is
the free-standing 𝑛-cylinder, and by construction, for any 𝜔-category 𝐶, the set
of 𝑛-cylinders in 𝐶 is just Cat𝜔 (Cyl∗𝑛, 𝐶).
20.2.9 Remark. The𝜔-category Γ(𝐶) can be defined more conceptually using
the Gray tensor product of 𝜔-categories. Indeed, the Gray tensor product is a
biclosed monoidal structure on 𝜔-category. This means that we have functors

Homoplax : Catop
𝜔 × Cat𝜔 → Cat𝜔 and Homlax : Catop

𝜔 × Cat𝜔 → Cat𝜔

and isomorphisms

Cat𝜔 (𝐶 ⊗ 𝐷, 𝐸) ≃ Cat𝜔 (𝐶,Homoplax (𝐷, 𝐸))

and

Cat𝜔 (𝐶 ⊗ 𝐷, 𝐸) ≃ Cat𝜔 (𝐷,Homlax (𝐶, 𝐸)),

natural in 𝐶, 𝐷 and 𝐸 in Cat𝜔 . (See for instance [15, Appendix A] for defi-
nitions.) It can be shown that the 𝜔-category Γ(𝐶) is canonically isomorphic
to Homlax (O1, 𝐶) (see [15, Section B.1]).

20.2.10 Functoriality of the cylinder 𝜔-category. Let 𝑓 : 𝐶 → 𝐷 be an
𝜔-functor. If 𝛼 : 𝑥 ↷ 𝑦 is an 𝑛-cylinder in 𝐶, we define an 𝑛-cylinder
𝑓 (𝛼) : 𝑓 (𝑥) ↷ 𝑓 (𝑦) in 𝐷 by applying 𝑓 to the components of 𝛼, that is,
by the cells

𝑓 (𝛼−0 ), 𝑓 (𝛼+0 ), · · · 𝑓 (𝛼−𝑛 ), 𝑓 (𝛼+𝑛), 𝑓 (𝛼𝑛+1).

One checks that this assignment defines an 𝜔-functor Γ( 𝑓 ) : Γ(𝐶) → Γ(𝐷).
Moreover, this assignment is functorial in 𝑓 . In other words, we have defined
an endofunctor

Γ : Cat𝜔 → Cat𝜔 .

20.2.11 Projections. Let 𝛼 : 𝑥 ↷ 𝑦 be a cylinder in 𝐶. We set

𝜋(𝛼) = 𝑥 and 𝜋(𝛼) = 𝑦.

Geometrically, 𝜋(𝛼) and 𝜋(𝛼) are respectively the top face and the bottom face
of the cylinder 𝛼. The formulas defining the structure of the 𝜔-category Γ(𝐶)
make transparent the fact that these assignments define 𝜔-functors

𝜋𝐶 , 𝜋𝐶 : Γ(𝐶) → 𝐶.
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Moreover, these 𝜔-functors are natural in 𝐶 and we have defined natural trans-
formations

𝜋, 𝜋 : Γ→ 1Cat𝜔 .

20.2.12 Trivial cylinders. Let 𝑥 be an 𝑛-cell of 𝐶. The trivial cylinder on 𝑥 is
the 𝑛-cylinder 𝜄(𝑥) : 𝑥 ↷ 𝑥 defined by the cells

1𝑠0 (𝑥 ) , 1𝑡0 (𝑥 ) , . . . , 1𝑠𝑛−1 (𝑥 ) , 1𝑡𝑛−1 (𝑥 ) , 1𝑥 .

For instance, the trivial cylinder on a 2-cell

𝑎

𝑢
&&

𝑣

88𝑥 �� 𝑏

can be pictured as

𝑎

𝑢
&&

𝑣

88

1𝑎

��

𝑥 �� 𝑏

1𝑏

��

𝑎

𝑢
''

𝑣

77𝑥 �� 𝑏.

1𝑢 
�

1𝑣lt

1𝑥Wg

One checks that this assignment defines an 𝜔-functor 𝜄𝐶 : 𝐶 → Γ(𝐶) and this
𝜔-functor is natural in 𝐶. In other words, we have defined a natural transfor-
mation

𝜄 : 1Cat𝜔 → Γ.

20.2.13 Oplax transformations. If 𝐶 is an 𝜔-category, then the diagonal
𝜔-functor 𝐶 → 𝐶 × 𝐶 factors as

𝐶
𝜄𝐶 // Γ(𝐶) (𝜋𝐶 , 𝜋𝐶 ) // 𝐶 × 𝐶.

As every factorization of the diagonal, this factorization induces some kind of
notion of homotopies. These homotopies will be called oplax transformations.
In other words, if 𝑓 , 𝑔 : 𝐶 → 𝐷 are two 𝜔-functors, an oplax transformation 𝛼
from 𝑓 to 𝑔, denoted by 𝛼 : 𝑓 ⇒ 𝑔, is an 𝜔-functor 𝛼 : 𝐶 → Γ(𝐷) making the
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diagram

𝐷

𝐶
𝛼 //

𝑓 ,,

𝑔
22

Γ(𝐷) 𝜋𝐷

88

𝜋𝐷

&&
𝐷

commute.

20.2.14 Algebraic description of oplax transformations. Let 𝛼 : 𝑓 ⇒ 𝑔

be an oplax transformation. If 𝑥 is an 𝑛-cell of 𝐶, we will denote by 𝛼𝑥 the
principal cell of the 𝑛-cylinder 𝛼(𝑥). Thus, 𝛼𝑥 is an (𝑛 + 1)-cell of 𝐷. One
can show that the cells 𝛼𝑥 of 𝐷, where 𝑥 varies among the cells of 𝐶, fully
determine 𝛼. Better, an oplax transformation can be fully defined in terms of
these 𝛼𝑥 .

More precisely, if 𝑓 , 𝑔 : 𝐶 → 𝐷 are two 𝜔-functors, the data of an oplax
transformation 𝛼 : 𝑓 ⇒ 𝑔 is equivalent to the data of, for every 𝑛-cell 𝑥 of 𝐶,
an (𝑛 + 1)-cell

𝛼𝑥 : 𝑓 (𝑥) ∗0 𝛼𝑡0 (𝑥 ) ∗1 · · · ∗𝑛−1 𝛼𝑡𝑛−1 (𝑥 ) → 𝛼𝑠𝑛−1 (𝑥 ) ∗𝑛−1 · · · ∗1 𝛼𝑠0 (𝑥 ) ∗0 𝑔(𝑥)

such that the following relations are satisfied:

– for every cell 𝑥 of 𝐶, we have

𝛼1𝑥 = 1𝛼𝑥 ,

– for every 𝑛 > 𝑖 ≥ 0 and every pair of 𝑛-cells 𝑥 and 𝑦 such that 𝑥 ∗𝑖 𝑦 is
well-defined, we have

𝛼𝑥∗𝑖 𝑦 =
(
𝑓 (𝑠𝑖+1 (𝑥)) ∗0 𝛼𝑡0 (𝑦) ∗1 · · · ∗𝑖−1 𝛼𝑡𝑖−1 (𝑦) ∗𝑖 𝛼𝑦

)∗𝑖+1(
𝛼𝑥 ∗𝑖 𝛼𝑠𝑖−1 (𝑥 ) ∗𝑖−1 · · · ∗1 𝛼𝑠0 (𝑥 ) ∗0 𝑔(𝑡𝑖+1 (𝑦))

)
.

20.2.15 Some operations on oplax transformations. Let 𝑓 : 𝐶 → 𝐶 be an
𝜔-functor. The 𝜔-functor 𝜄𝐶 : 𝐶 → Γ(𝐶) defines an oplax transformation
from 𝑓 to 𝑓 that we will call the unit oplax transformation of 𝑓 and that we
will denote by 1 𝑓 : 𝑓 ⇒ 𝑓 . If 𝑥 is a cell of 𝐶, we have

(1 𝑓 )𝑥 = 1𝑥 .

If𝛼 : 𝑓 ⇒ 𝑓 ′ is an oplax transformation between𝜔-functors from𝐶 to𝐷 and
𝑔 : 𝐷 → 𝐸 is an 𝜔-functor, we define an oplax transformation 𝑔𝛼 : 𝑔 𝑓 ⇒ 𝑔 𝑓 ′
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by the composition

𝐶
𝛼 // Γ(𝐷) Γ (𝑔)

// Γ(𝐸).
If 𝑥 is a cell of 𝐶, we have

(𝑔𝛼)𝑥 = 𝑔(𝛼𝑥).
Similarly, if 𝑓 : 𝐶 → 𝐷 is an 𝜔-functor and 𝛼 : 𝑔 ⇒ 𝑔′ is an oplax trans-

formation between 𝜔-functors from 𝐷 to 𝐸 , we define an oplax transformation
𝛼 𝑓 : 𝑔 𝑓 ⇒ 𝑔′ 𝑓 by the composition

𝐶
𝑓
// 𝐷

𝛼 // Γ(𝐸)
and, for 𝑥 a cell of 𝐶, we have

(𝛼 𝑓 )𝑥 = 𝛼 𝑓 (𝑥 ) .
20.2.16 Remark. If 𝑓 , 𝑔, ℎ : 𝐶 → 𝐷 are three 𝜔-functors and 𝛼 : 𝑓 ⇒ 𝑔 and
𝛽 : 𝑔 ⇒ ℎ are oplax transformations, one can define in a natural way a com-
posite 𝛽 ◦ 𝛼 : 𝑓 ⇒ ℎ. We will only need the existence of this composition and
therefore we do not give its precise definition. One can show that 𝜔-categories,
𝜔-functors and oplax transformations, with the operations defined in the pre-
vious paragraph and this operation ◦, form a sesquicategory (see §4.1.5 for
a definition). However, this sesquicategory is not a 2-category. We refer the
reader to [15, Appendix C] for more details.

20.3 The 𝜔-category of reversible cylinders

20.3.1 Reversible cylinders. Let𝐶 be an𝜔-category. An 𝑛-cylinder𝛼 : 𝑥 ↷ 𝑦

is said to be reversible if the cells

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−1, 𝛼

+
𝑛−1, 𝛼𝑛

are reversible (see §20.1.1).

20.3.2 The 𝜔-category of reversible cylinders. Let 𝐶 be an 𝜔-category and
let Γ̃(𝐶)𝑛, for 𝑛 ≥ 0, be the set of reversible 𝑛-cylinders in 𝐶. By definition, we
have an inclusion Γ̃(𝐶)𝑛 ⊆ Γ(𝐶)𝑛. One immediately checks that these Γ̃(𝐶)𝑛
define a subcategory Γ̃(𝐶) of Γ(𝐶). Moreover, as the image of a reversible cell
by an 𝜔-functor is reversible, the functor Γ : Cat𝜔 → Cat𝜔 induces a functor

Γ̃ : Cat𝜔 → Cat𝜔 .
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Since units are reversible cells, the trivial cylinder on a cell is reversible and
the natural transformation 𝜄 : 1Cat𝜔 → Γ factors by a natural transformation

𝜄 : 1Cat𝜔 → Γ̃.

Finally, by restriction, the natural transformations 𝜋, 𝜋 : Γ → 1Cat𝜔 define
natural transformations

𝜋, 𝜋 : Γ̃→ 1Cat𝜔 .

20.3.3 Reversible oplax transformations. Let 𝑓 , 𝑔 : 𝐶 → 𝐷 be two 𝜔-func-
tors. We say that an oplax transformation 𝛼 : 𝑓 ⇒ 𝑔 is reversible if the
𝜔-functor 𝛼 : 𝐶 → Γ(𝐷) factors through the inclusion Γ̃(𝐷) ⊆ Γ(𝐷). In
others words, we have a factorization

𝐷
𝜄𝐷 // Γ̃(𝐷) (𝜋𝐷 , 𝜋𝐷 ) // 𝐷 × 𝐷

of the diagonal of 𝐷 and a reversible oplax transformation from 𝑓 to 𝑔 is an
𝜔-functor 𝛼 : 𝐶 → Γ̃(𝐷) making the diagram

𝐷

𝐶
𝛼 //

𝑓 ,,

𝑔
22

Γ̃(𝐷) 𝜋𝐷

88

𝜋𝐷

&&
𝐷

commute.
In the algebraic definition of an oplax transformation given in §20.2.14, an

oplax transformation 𝛼 is reversible if and only if 𝛼𝑥 is reversible for every
cell 𝑥.

One immediately checks that the various operations on oplax transforma-
tions defined in §20.2.15 restrict to reversible oplax transformations. In other
words, the unit oplax transformation of an 𝜔-functor is reversible and if we can
compose horizontally a reversible oplax transformation and an 𝜔-functor (in
both directions) we get a reversible oplax transformation.

We now introduce some terminology to state the “transport lemma” which
is of crucial importance to prove the existence of the folk model structure.

20.3.4 Incomplete cylinders. Let 𝐶 be an 𝜔-category. For 𝑛 ≥ 0, a bottom-
incomplete 𝑛-cylinder in𝐶 consists of the same data as an 𝑛-cylinder 𝛼 : 𝑥 ↷ 𝑦

except that 𝑦 and 𝛼𝑛 are not given. More formally, it consists of an object 𝑥
of 𝐶 if 𝑛 = 0 and, if 𝑛 > 0, of an 𝑛-cell 𝑥, two parallel (𝑛 − 1)-cells 𝑦− and 𝑦+
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and a sequence

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−1, 𝛼

+
𝑛−1

where 𝛼𝜀𝑗 is a ( 𝑗 + 1)-cell whose source and target are

𝛼−𝑗 : 𝑠 𝑗 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗ 𝑗−1 𝛼
+
𝑗−1 → 𝛼−𝑗−1 ∗ 𝑗−1 · · · ∗1 𝛼−0 ∗0 𝑠 𝑗 (𝑦−),

𝛼+𝑗 : 𝑡 𝑗 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗ 𝑗−1 𝛼
+
𝑗−1 → 𝛼−𝑗−1 ∗ 𝑗−1 · · · ∗1 𝛼−0 ∗0 𝑡 𝑗 (𝑦+).

Here are pictures of bottom-incomplete cylinders in dimension 0, 1 and 2:

𝑥 · 𝑠0 (𝑥) 𝑥 //

𝛼−0

��

𝑡0 (𝑥)

𝛼+0

��

𝑦− 𝑦+

· %%
99

𝛼−0

��

𝑥 �� ·

𝛼+0

��·
𝑦−

%%

𝑦+
99 ·

𝛼−1 	�

𝛼+1
ks

We say that such a bottom-incomplete 𝑛-cylinder is reversible if the cells

𝛼−0 , 𝛼
+
0 , . . . , 𝛼

−
𝑛−2, 𝛼

+
𝑛−2, 𝛼

−
𝑛−1

are reversible.
We define similarly the notion of a top-incomplete 𝑛-cylinder and of re-

versible top-incomplete 𝑛-cylinder.

20.3.5 Lemma (Transport lemma). Let 𝐶 be an 𝜔-category.

1. Any reversible bottom-incomplete 𝑛-cylinder extends (non-uniquely) to a
reversible 𝑛-cylinder.

2. Consider a reversible bottom-incomplete 𝑛-cylinder.

a.b If 𝛼 : 𝑥 ↷ 𝑦 and 𝛼′ : 𝑥 ↷ 𝑦′ are two extensions as in 1, then 𝑦 and 𝑦′

are 𝜔-equivalent.
b.b If 𝛼 : 𝑥 ↷ 𝑦 is an extension as in 1 and 𝑦′ is an 𝑛-cell 𝜔-equivalent to 𝑦,

then there exists an extension 𝛼 : 𝑥 ↷ 𝑦′ as in 1.

Proof. The case 𝑛 = 0 is obvious. For 𝑛 = 1, consider the incomplete 1-cylinder
defined by (𝑥, 𝑦− , 𝑦+, 𝛼−0 , 𝛼+0 ) and let 𝛼−0 be a weak inverse of 𝛼−0 . The 1-cell

𝑦 = 𝛼−0 ∗0 𝑥 ∗0 𝛼+0
satisfies the relation 𝑥∗0𝛼+0 ∼ 𝛼−0 ∗0 𝑦where∼ denotes𝜔-equivalence as defined
in §20.1.6. This is witnessed by a reversible 2-cell 𝛼1 : 𝑥 ∗0 𝛼+0 → 𝛼−0 ∗0 𝑦,
which gives the desired extension. Conditions 2(a) and 2(b) immediately follow
from the remark that 𝑦 ∼ 𝑦′ if and only if 𝛼−0 ∗0 𝑦 ∼ 𝛼−0 ∗0 𝑦′.
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Let us now suppose 𝑛 > 1 and let

(𝑥, 𝑦− , 𝑦+, 𝛼−0 , 𝛼+0 , . . . , 𝛼−𝑛−2, 𝛼
+
𝑛−2, 𝛼

−
𝑛−1)

be a reversible bottom-incomplete 𝑛-cylinder. We have to prove that there is a
weakly unique 𝑛-cell 𝑦 such that

𝑥 ∗0 𝛼+0 ∗1 · · · ∗𝑛−1 𝛼
+
𝑛−1 ∼ 𝛼−𝑛−1 ∗𝑛−1 · · · ∗1 𝛼−0 ∗0 𝑦, (20.2)

where 𝑦 : 𝑦− → 𝑦+. Let 𝑤 = 𝑥 ∗0 𝛼+0 ∗1 · · · ∗𝑛−1 𝛼
+
𝑛−1 denote the left member

of (20.2). We prove by induction on 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 that there is a weakly
unique 𝑛-cell 𝑣𝑘 in 𝐶 such that

𝑤 ∼ 𝛼−𝑛−1 ∗𝑛−1 · · · ∗1 𝛼−𝑛−𝑘 ∗𝑛−𝑘 𝑣𝑘 . (20.3)

For 𝑘 = 1, this equation reads

𝑤 ∼ 𝛼−𝑛−1 ∗𝑛−1 𝑣
1. (20.4)

It can be seen as an equation on 1-cells in the𝜔-category𝐶′ of (𝑛−2)-cells of𝐶.
Therefore the division lemma (Lemma 20.1.10) applies and yields a weakly
unique 1-cell 𝑣1 of 𝐶′, which is also an 𝑛-cell of 𝐶 satisfying (20.4). Let 𝑘 such
that 1 ≤ 𝑘 < 𝑛 and suppose that (20.3) has a weakly unique solution 𝑣𝑘 . By
applying again the division lemma, there is a weakly unique 𝑛-cell 𝑣𝑘+1 solution
of

𝑣𝑘 ∼ 𝛼−𝑛−𝑘−1 ∗𝑛−𝑘−1 𝑣
𝑘+1. (20.5)

Therefore, substituting 𝑣𝑘 by the second member of (20.5) in (20.3) one gets

𝑤 ∼ 𝛼−𝑛−1 ∗𝑛−1 · · · ∗1 𝛼−𝑛−𝑘−1 ∗𝑛−𝑘−1 𝑣
𝑘+1,

which completes the induction. Now 𝑣𝑛 = 𝑦 provides a weakly unique solution
of (20.2), as required. □

20.3.6 Remark. A similar result holds for reversible top-incomplete cylinders.

20.3.7 Alternative description of the transport lemma. In practice, the
transport lemma will be used in the following way. Let𝛼 : 𝑥0 ↷ 𝑥1, 𝛽 : 𝑦0 ↷ 𝑦1
be two parallel 𝑛-cylinders and let 𝑢 : 𝑥0 → 𝑥1 be an (𝑛 + 1)-cell in an
𝜔-category 𝐶. The data of 𝛼, 𝛽 and 𝑢 is equivalent to the data of a bottom-
incomplete (𝑛 + 1)-cylinder (informally, 𝛼, 𝛽 and 𝑢 corresponds respectively
to the back face, the front face and the top face of the bottom-incomplete
cylinder). Moreover, this bottom-incomplete cylinder is reversible if and only
if the cylinders 𝛼 and 𝛽 are reversible. In this case, an extension, as in the
transport lemma, corresponds to an (𝑛 + 1)-cell 𝑣 : 𝑦0 → 𝑦1 and a reversible
(𝑛 + 1)-cylinder Λ : 𝑢 ↷ 𝑣, whose source and target cylinders are 𝛼 and 𝛽.
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We will often write Λ : 𝑢 ↷ 𝑣 : 𝛼 → 𝛽 in such a situation. The existence and
uniqueness properties of the second part of the transport lemma apply to 𝑣.

20.3.8 Proposition. Let 𝐶 be an 𝜔-category.

1. The projections 𝜋𝐶 , 𝜋𝐶 : Γ̃(𝐶) → 𝐶 are trivial fibrations.
2. The 𝜔-functor 𝜄𝐶 : 𝐶 → Γ̃(𝐶) is an 𝜔-equivalence.

Proof. 1. Let us prove the result for 𝜋, the other proof being analogous. The
surjectivity on objects is clear. Let 𝑛 ≥ 0 and let 𝛼 : 𝑥 ↷ 𝑦 and 𝛽 : 𝑧 ↷ 𝑡

be two parallel reversible 𝑛-cylinders. Suppose we have an 𝑛-cell between
their images by the 𝜔-functor 𝜋, i.e., an 𝑛-cell 𝑢 : 𝑥 → 𝑧. We are precisely
in the situation of the previous paragraph and the transport lemma gives a
reversible (𝑛 + 1)-cylinder Λ : 𝛼 → 𝛽 : 𝑢 ↷ 𝑣, showing that 𝜋 is indeed a
trivial fibration.

2. Since the composite

𝐶
𝜄𝐶 // Γ̃(𝐶) 𝜋𝐶 // 𝐶

is the identity and hence an 𝜔-equivalence, and that the trivial fibration 𝜋𝐶
is an 𝜔-equivalence (see Proposition 20.1.13), it follows from one of the
known cases of the 2-out-of-3 property (Proposition 20.1.17) that 𝜄𝐶 is an
𝜔-equivalence. □

20.3.9 Mapping path space factorization. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor.
We define an 𝜔-category Γ̃ 𝑓 by the pullback square

Γ̃ 𝑓

𝜋1

��

𝜋2 // Γ̃(𝐷)
𝜋

��

𝐶
𝑓
// 𝐷.

Explicitly, an 𝑛-cell of Γ̃ 𝑓 is a pair (𝑥, 𝛾 : 𝑓 (𝑥) ↷ 𝑦), where 𝑥 and 𝑦 are 𝑛-cells
of𝐶 and 𝐷, and 𝛾 is a reversible 𝑛-cylinder. Note that since trivial fibrations are
stable under pullback, by the previous proposition, the projection 𝜋1 : Γ̃ 𝑓 → 𝐶

is a trivial fibration.
The 𝜔-functor 𝑓 : 𝐶 → 𝐷 factors as

𝐶
𝑖 𝑓
// Γ̃ 𝑓

𝑝 𝑓
// 𝐷,

where 𝑖 𝑓 is defined by

𝑖 𝑓 (𝑥) = (𝑥, 𝜄( 𝑓 (𝑥)) : 𝑓 (𝑥) ↷ 𝑓 (𝑥))
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and 𝑝 𝑓 by
𝑝 𝑓 (𝑥, 𝛼 : 𝑓 (𝑥) ↷ 𝑦) = 𝑦.

As the triangle

𝐶

1𝐶
��

𝑖 𝑓
// Γ̃ 𝑓

𝜋1

��

𝐶

is commutative and 𝜋1 is a trivial fibration, by one of the known case of the
2-out-of-3 property (Proposition 20.1.17), 𝑖 𝑓 is an 𝜔-equivalence.

20.3.10 Proposition. An 𝜔-functor 𝑓 : 𝐶 → 𝐷 is an 𝜔-equivalence if and
only if the 𝑝 𝑓 : Γ̃ 𝑓 → 𝐷 is a trivial fibration.

Proof. If 𝑝 𝑓 is a trivial fibration and hence an 𝜔-equivalence, then, since 𝑖 𝑓 is
always an 𝜔-equivalence, so is 𝑓 = 𝑝 𝑓 𝑖 𝑓 .

Suppose conversely that 𝑓 is an 𝜔-equivalence.

1. Let 𝑦 be an object of 𝐷. As 𝑓 is an 𝜔-equivalence, there exists an object 𝑥
of 𝐶 and a reversible 1-cell 𝑢 : 𝑓 (𝑥) → 𝑦. This 1-cell defines a reversible
0-cylinder 𝑢 : 𝑓 (𝑥) ↷ 𝑦 sent to 𝑦 by 𝑝 𝑓 .

2. Let 𝑛 > 0 and let (𝑥, 𝛼 : 𝑓 (𝑥) ↷ 𝑦) and (𝑥′, 𝛼′ : 𝑓 (𝑥′) ↷ 𝑦′) be two
parallel 𝑛-cells of Γ̃ 𝑓 . Suppose that we have a cell between their image
by 𝑝 𝑓 , i.e., an 𝑛-cell 𝑣 : 𝑦 → 𝑦′. By the transport lemma (Lemma 20.3.5),
there exist an (𝑛 + 1)-cell 𝑣′ : 𝑓 (𝑥) → 𝑓 (𝑥′) and an (𝑛 + 1)-cylinder
Λ : 𝑣′ ↷ 𝑣 : 𝛼 → 𝛼′. Since 𝑓 is an 𝜔-equivalence, there exists 𝑢 : 𝑥 → 𝑥′

such that 𝑓 (𝑢) is 𝜔-equivalent to 𝑣′. Using the transport lemma again, we
get a reversible (𝑛 + 1)-cylinder Λ′ : 𝑓 (𝑢) ↷ 𝑣 : 𝛼 → 𝛼′. This means that
(𝑢,Λ′ : 𝑓 (𝑢) ↷ 𝑣) is an (𝑛 + 1)-cell of Γ̃ 𝑓 sent to 𝑣 by 𝑝 𝑓 , thereby proving
the result. □

20.3.11 Theorem. The class of 𝜔-equivalences satisfies the 2-out-of-3 prop-
erty.

Proof. The only remaining case is the following one (see Propositions 20.1.15
and 20.1.17 for the other ones). Let 𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐸 be two
𝜔-functors. Suppose 𝑓 and 𝑔 𝑓 are 𝜔-equivalences. Let us prove that 𝑔 is an
𝜔-equivalence.

1. Let 𝑧 be an object of 𝐸 . Since 𝑔 𝑓 is an 𝜔-equivalence, we get an object 𝑥
of 𝐶 such that 𝑔 𝑓 (𝑥) and 𝑧 are 𝜔-equivalent and 𝑦 = 𝑓 (𝑥) shows that 𝑔 is
surjective up to 𝜔-equivalence.
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2. Let 𝑦0 and 𝑦1 be two parallel 𝑛-cells of 𝐷 and let 𝑤 : 𝑔(𝑦0) → 𝑔(𝑦1) be
an (𝑛 + 1)-cell. By the previous proposition, since 𝑓 is an 𝜔-equivalence,
𝑝 𝑓 : Γ̃ 𝑓 → 𝐷 is a trivial fibration. We can thus lift the pair of parallel
cells 𝑦0, 𝑦1 to a pair of parallel cells

(𝑥0, 𝛼 : 𝑓 (𝑥0) ↷ 𝑦0) and (𝑥1, 𝛽 : 𝑓 (𝑥1) ↷ 𝑦1)
of Γ̃ 𝑓 . By applying 𝑔, we get a pair of parallel cells

(𝑥0, 𝑔(𝛼) : 𝑔 𝑓 (𝑥0) ↷ 𝑔(𝑦0)) and (𝑥1, 𝑔(𝛽) : 𝑔 𝑓 (𝑥1) ↷ 𝑔(𝑦1))
of Γ̃𝑔 𝑓 . Since 𝑔 𝑓 is an 𝜔-equivalence, by the previous proposition, the
projection 𝑝𝑔 𝑓 : Γ̃𝑔 𝑓 → 𝐸 is a trivial fibration. We can thus lift the cell
𝑤 : 𝑔(𝑦0) → 𝑔(𝑦1) to a cell

(𝑢 : 𝑥0 → 𝑥1,Λ : 𝑔 𝑓 (𝑢) ↷ 𝑤 : 𝑔(𝛼) → 𝑔(𝛽))
of Γ̃𝑔 𝑓 . Consider the bottom-incomplete cylinder defined by𝛼 : 𝑓 (𝑥0) ↷ 𝑦0,
𝛽 : 𝑓 (𝑥1) ↷ 𝑦1 and 𝑓 (𝑢) : 𝑓 (𝑥0) → 𝑓 (𝑥1). By the transport lemma
(Lemma 20.3.5), it can be extended and we get a cell 𝑣 : 𝑦0 → 𝑦1 and
a cylinder Δ : 𝑓 (𝑢) ↷ 𝑣 : 𝛼 → 𝛽. Applying the uniqueness part of the
transport lemma to the cylinders

𝑔(Δ) : 𝑔 𝑓 (𝑢) ↷ 𝑔(𝑣) : 𝑔(𝛼) → 𝑔(𝛽)
and

Λ : 𝑔 𝑓 (𝑢) ↷ 𝑤 : 𝑔(𝛼) → 𝑔(𝛽),
we get that 𝑔(𝑣) is 𝜔-equivalent to 𝑤, thereby proving the result. □

20.4 Coherent reversible cells and fibrations

20.4.1 The free-standing reversible cell. We define an 𝜔-category 𝑅1 gener-
ated by a polygraph in the following way. The 𝜔-category 𝑅1 has two objects,
0 and 1. There are two generating 1-cells

𝑟 : 0→ 1 and 𝑟 : 1→ 0

and four generating 2-cells

𝑟− : 10 → 𝑟 ∗0 𝑟, 𝑟− : 𝑟 ∗0 𝑟 → 10, 𝑟+ : 𝑟 ∗0 𝑟 → 11, 𝑟+ : 11 → 𝑟 ∗0 𝑟.
More generally, for 𝑗 ≥ 2, there are 2 𝑗 generating 𝑗-cells

𝑟𝑙1 ,...,𝑙 𝑗−1 and 𝑟 𝑙1 ,...,𝑙 𝑗−1 ,
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where for 1 ≤ 𝑘 ≤ 𝑗 − 1, 𝑙𝑘 = ±. The source and target of the generators are
given by

𝑟𝑙1 ,...,𝑙 𝑗−2 ,− : 1𝑠 𝑗−2 (𝑟𝑙1 ,...,𝑙 𝑗−2 ) → 𝑟𝑙1 ,...,𝑙 𝑗−2 ∗ 𝑗−2 𝑟 𝑙1 ,...,𝑙 𝑗−2 ,

𝑟 𝑙1 ,...,𝑙 𝑗−2 ,− : 𝑟𝑙1 ,...,𝑙 𝑗−2 ∗ 𝑗−2 𝑟 𝑙1 ,...,𝑙 𝑗−2 → 1𝑠 𝑗−2 (𝑟𝑙1 ,...,𝑙 𝑗−2 ) ,

𝑟𝑙1 ,...,𝑙 𝑗−2 ,+ : 𝑟 𝑙1 ,...,𝑙 𝑗−2 ∗ 𝑗−2 𝑟𝑙1 ,...,𝑙 𝑗−2 → 1𝑡 𝑗−2 (𝑟𝑙1 ,...,𝑙 𝑗−2 ) ,

𝑟 𝑙1 ,...,𝑙 𝑗−2 ,+ : 1𝑡 𝑗−2 (𝑟𝑙1 ,...,𝑙 𝑗−2 ) → 𝑟 𝑙1 ,...,𝑙 𝑗−2 ∗ 𝑗−2 𝑟𝑙1 ,...,𝑙 𝑗−2 .

This definition was made so that 𝑅1 is, in some sense, freely generated
by a reversible 1-cell 𝑟. In particular, 𝑅1 comes with a canonical inclusion
O1 ↩→ 𝑅1 corresponding to the 1-cell 𝑟 and, if 𝐶 is an 𝜔-category, a 1-cell 𝑢
of 𝐶 is reversible if and only if there exists a dotted arrow making the triangle

O1� _

��

𝑢 // 𝐶

𝑅1

??

commute. In particular, two objects 𝑥 and 𝑦 of 𝐶 are 𝜔-equivalent if and only
if there exists a dotted arrow making the triangle

𝜕O1� _

��

(𝑥,𝑦)
// 𝐶

𝑅1

>>

,

where the vertical inclusion is the composite 𝜕O1 ↩→ O1 ↩→ 𝑅1, commute.
Similarly, for every 𝑛 ≥ 1, one can define an 𝜔-category 𝑅𝑛, endowed with

a canonical inclusion O𝑛 ↩→ 𝑅𝑛 corresponding to an 𝑛-cell 𝑟, modeled on
the definition of a reversible 𝑛-cell. This 𝜔-category has, by definition, the
following properties: an 𝑛-cell 𝑢 of an 𝜔-category 𝐶 is reversible if and only if
there exists a dotted arrow making the triangle

O𝑛� _

��

𝑢 // 𝐶

𝑅𝑛

>>

commute; in particular, two parallel (𝑛−1)-cells 𝑥 and 𝑦 of𝐶 are 𝜔-equivalent
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if and only if there exists a dotted arrow making the triangle

𝜕O𝑛� _

��

(𝑥,𝑦)
// 𝐶

𝑅𝑛

==

commute.

20.4.2 Incoherence. If 𝑥 and 𝑦 are two objects of a 2-category, it is well known
that 𝑥 and 𝑦 are equivalent if and only if there exists an adjoint equivalence
between 𝑥 and 𝑦. In other words, if there exists 1-cells 𝑢 : 𝑥 → 𝑦, 𝑣 : 𝑦 → 𝑥

and 2-cells 𝜂 : 1𝑥 → 𝑢𝑣 and 𝜀 : 𝑣𝑢 → 1𝑦 that are isomorphisms, then we can
choose these cells such that the triangular identities

(𝜂 ∗ 𝑢) (𝑢 ∗ 𝜀) = 1𝑢 and (𝑣 ∗ 𝜂) (𝜀 ∗ 𝑣) = 1𝑣

hold. A 4-tuple (𝑢, 𝑣, 𝜂, 𝜀) as above is a witness of the fact that 𝑥 and 𝑦 are
𝜔-equivalent. We can think of this witness as incoherent if the triangular
identities do not hold and as coherent if they hold.

Similarly, if 𝑥 and 𝑦 are two objects of an 𝜔-category 𝐶, the data of an
𝜔-functor 𝑅1 → 𝐶 making the triangle

𝜕O1� _

��

(𝑥,𝑦)
// 𝐶

𝑅1

>>

commute is witness of the fact that 𝑥 and 𝑦 are 𝜔-equivalent. This witness
is incoherent as, for instance, it does not satisfy the triangular identities up to
𝜔-equivalence. Technically, this boils down to the fact that 𝑅1 is not contractible
(see §22.4.1).

20.4.3 Coherence. Let 𝑛 ≥ 0. Consider the 𝜔-functor

𝜕O𝑛+1 → O𝑛
corresponding to the collapsing of the two non-trivial 𝑛-cells of 𝜕O𝑛+1. By
Proposition 19.2.2, this 𝜔-functor factors (non-uniquely) as a cofibration fol-
lowed by a trivial fibration. Let us fix such a factorization

𝜕O𝑛+1
𝑗
// 𝐽𝑛+1

𝑝
// O𝑛.

Let 𝑥 and 𝑦 be two parallel 𝑛-cells of an 𝜔-category 𝐶. The fact that 𝑝 is
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a trivial fibration makes it reasonable to think of a dotted arrow making the
triangle

𝜕O𝑛+1

𝑗

��

(𝑥,𝑦)
// 𝐶

𝐽𝑛+1

<<

commute as a coherent witness of the fact that 𝑥 and 𝑦 are 𝜔-equivalent.

20.4.4 Remark. As already mentioned, the 𝜔-category 𝐽𝑛+1 introduced in
the previous paragraph is not uniquely defined. Some choices are wiser than
others. For instance, we can choose 𝐽𝑛+1 so that its underlying (𝑛 + 1)-category
is obtained from O𝑛+1 by adding an (𝑛 + 1)-cell 𝑣 : 𝑦 → 𝑥 in the other
direction than the principal cell 𝑢 : 𝑥 → 𝑦 of O𝑛+1. We can even fix its
underlying (𝑛 + 2)-category by saying that it is generated by two (𝑛 + 2)-cells
𝜂 : 1𝑥 → 𝑢 ∗𝑛 𝑣 and 𝜀 : 𝑣 ∗𝑛 𝑢 → 1𝑦 . We do not assume that these additional
properties hold in the remaining of the text. (We will use the existence of these
better choices in Section 21.3.)

The following proposition shows that, as in the case of 2-categories, there
exists coherent witnesses if and only if there exists incoherent witnesses.

20.4.5 Proposition. Let 𝑛 ≥ 0 and let 𝑥 and 𝑦 be two parallel 𝑛-cells of an
𝜔-category 𝐶. The following assertions are equivalent:

1. The cells 𝑥 and 𝑦 are 𝜔-equivalent.
2. There exists a dotted arrow making the triangle

𝜕O𝑛+1� _

��

(𝑥,𝑦)
// 𝐶

𝑅𝑛+1

<<

commute.
3. There exists a dotted arrow making the triangle

𝜕O𝑛+1

𝑗

��

(𝑥,𝑦)
// 𝐶

𝐽𝑛+1

<<

commute.
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4. There exists a factorization

𝜕O𝑛+1
𝑘 // 𝐾

𝑞
// O𝑛

of the 𝜔-functor 𝜕O𝑛+1 → O𝑛 of §20.4.3 with 𝑞 a trivial fibration, and a
dotted arrow making the triangle

𝜕O𝑛+1

𝑘

��

(𝑥,𝑦)
// 𝐶

𝐾

<<

commute.

Proof. The equivalence between 1 and 2 is true by definition of 𝑅𝑛+1.
By definition, 3 implies 4. The converse follows by considering the solid

commutative square

𝜕O𝑛+1

𝑗

��

𝑘 // 𝐾

𝑞

��

𝐽𝑛+1 𝑝
//

<<

O𝑛

that admits a lift as 𝑗 is a cofibration and 𝑞 is a trivial fibration.
Let us prove that 4 implies 1. The 𝜔-functor 𝑘 : 𝜕O𝑛+1 → 𝐾 define a pair

of parallel 𝑛-cells in 𝐾 . These two cells are sent to the principal cell of 𝜕O𝑛 by
𝑞 : 𝐾 → O𝑛. Since this𝜔-functor 𝑞 is a trivial fibration, by Proposition 20.1.14,
there exists a reversible (𝑛 + 1)-cell 𝑟 in 𝐾 between these two parallel 𝑛-cells.
By commutativity of the triangle of the hypothesis, we have 𝑓 (𝑟) : 𝑥 → 𝑦,
showing that 𝑥 and 𝑦 are 𝜔-equivalent.

To conclude the proof, let us prove that 1 implies 4. Consider the 𝜔-functor
𝑥 : O𝑛 → 𝐶 corresponding to the 𝑛-cell 𝑥 and the associated 𝜔-category Γ̃𝑥
(see §20.3.9). We get a factorization

𝜕O𝑛+1
(𝑘1 ,𝑘2 ) // Γ̃𝑥

𝜋1 // O𝑛

of the 𝜔-functor 𝜕O𝑛+1 → O𝑛 of the assertion by choosing two parallel
𝑛-cells 𝑘1 and 𝑘2 of Γ̃𝑥 in the following way. Denote by 𝑝 the principal cell
of O𝑛. We set 𝑘1 = (𝑝, 𝜄(𝑥) : 𝑥 ↷ 𝑥). As for the cell 𝑘2, we choose a reversible
(𝑛 + 1)-cell 𝑢 : 𝑥 → 𝑦. Using this 𝑢, one easily defines a reversible cylinder
𝛼𝑢 : 𝑥 ↷ 𝑦 and we set 𝑘2 = (𝑝, 𝛼𝑢 : 𝑥 ↷ 𝑦). This ends the definition of the
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desired factorization. Moreover, by definition, the triangle

𝜕O𝑛+1

(𝑘1 ,𝑘2 )
��

(𝑥,𝑦)
// 𝐶

Γ̃𝑥

𝑝𝑥

==

commutes, thereby proving the result. □

20.4.6 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor. The following assertions
are equivalent:

1. The 𝜔-functor 𝑓 is an 𝜔-equivalence.
2. For every 𝑛 ≥ 0, every commutative square

𝜕O𝑛

i𝑛
��

// 𝐶

𝑓

��

O𝑛 // 𝐷

factors as

𝜕O𝑛

i𝑛
��

i𝑛 // O𝑛 //

��

𝐶

𝑓

��

O𝑛 // 𝑅𝑛+1 // 𝐷,

where the two 𝜔-functorsO𝑛 → 𝑅𝑛 are the two components of the inclusion
𝜕O𝑛+1 ↩→ O𝑛+1 ↩→ 𝑅𝑛+1.

3. For every 𝑛 ≥ 0, every commutative square

𝜕O𝑛

i𝑛
��

// 𝐶

𝑓

��

O𝑛 // 𝐷

factors as

𝜕O𝑛

i𝑛
��

i𝑛 // O𝑛 //

��

𝐶

𝑓

��

O𝑛 // 𝐽𝑛+1 // 𝐷

where the two𝜔-functorsO𝑛 → 𝐽𝑛 are the two components of the𝜔-functor
𝑗 : 𝜕O𝑛+1 → 𝐽𝑛+1.
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Proof. Using the defining property of 𝑅𝑛+1, the second assertion translates
directly to the definition of an 𝜔-equivalence. Indeed, if 𝑛 = 0, the data of
a square as in the assertion boils down to the data of an object 𝑦 of 𝐷 and
the data of a factorization boils down to the data of an object 𝑥 in 𝐶 and of
an incoherent witness of the fact that 𝑓 (𝑥) and 𝑦 are 𝜔-equivalent. Similarly,
if 𝑛 > 0, the data of the square boils down to the data of two (𝑛 − 1)-cells 𝑥
and 𝑥′ of 𝐶 and an (𝑛 + 1)-cell 𝑣 : 𝑓 (𝑥) → 𝑓 (𝑥′) in 𝐷, and the data of the
factorization boils down to the data of an (𝑛 + 1)-cell 𝑢 : 𝑥 → 𝑦 of 𝐶 and
an incoherent witness that 𝑓 (𝑢) and 𝑣 are 𝜔-equivalent. The third assertion
translates similarly replacing incoherent witnesses by coherent witnesses and
the result follows from the previous proposition. □

20.4.7 We will denote by

j𝑛 : O𝑛 → 𝐽𝑛+1

the composite

O𝑛
� � 𝜄1 // 𝜕O𝑛+1

𝑗
// 𝐽𝑛+1,

where 𝜄1 : O𝑛 ↩→ 𝜕O𝑛+1 denotes the 𝜔-functor corresponding to “source
𝑛-cell” of 𝜕O𝑛+1. Note that j𝑛 is defined as a composite of two cofibrations
and is hence a cofibration. Moreover, it is an 𝜔-equivalence. Indeed, we have a
commutative triangle

O𝑛
j𝑛
//

1O𝑛 !!

𝐽𝑛+1

𝑝

��

O𝑛,

where 𝑝 is trivial fibration and hence an𝜔-equivalence, and this follows from the
2-out-of-3 property (and more precisely, the easy case of Proposition 20.1.17).
We set

J = {j𝑛 | 𝑛 ≥ 0} .

An𝜔-functor 𝑓 : 𝐶 → 𝐷 is a fibration if it has the right lifting property with
respect to J . Concretely, this means that 𝑓 is a fibration if, for every 𝑛 ≥ 0,
every 𝑛-cell 𝑢 of 𝐶, every 𝑛-cell 𝑣 of 𝐷, every coherent witness that 𝑓 (𝑢) and
𝑣 are 𝜔-equivalent can be lifted to a coherent witness that 𝑢 and some 𝑛-cell 𝑢′
such that 𝑓 (𝑢′) = 𝑣 are 𝜔-equivalent.

20.4.8 Theorem. An 𝜔-functor 𝑓 is a trivial fibration if and only if it is both
an 𝜔-equivalence and a fibration.
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Proof. As elements of J are cofibrations, i.e., elements of 𝑙𝑟 (I), we have

𝑟 (I) = 𝑟𝑙𝑟 (I) ⊆ 𝑟 (J),

meaning that trivial fibrations are fibrations. As we already know that trivial
fibrations are 𝜔-equivalence (Proposition 20.1.13), this establishes one impli-
cation.

Conversely, let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor being both an 𝜔-equivalence
and a fibration. Fix 𝑛 ≥ 0 and consider a commutative square

𝜕O𝑛

i𝑛
��

// 𝐶

𝑓

��

O𝑛 // 𝐷.

As 𝑓 is an 𝜔-equivalence, by Proposition 20.4.6 this square factors as

𝜕O𝑛

i𝑛
��

i𝑛 // O𝑛 //

j𝑛
��

𝐶

𝑓

��

O𝑛 // 𝐽𝑛+1 // 𝐷.

But as 𝑓 is a fibration, the right square of the factorization admits a lift, showing
that the initial square admits a lift and hence that 𝑓 is a trivial fibration. □

20.5 Immersions

20.5.1 An 𝜔-functor 𝑖 : 𝐶 → 𝐷 is an immersion if it admits a retraction
𝑟 : 𝐷 → 𝐶, so that we have 𝑟𝑖 = 1𝐶 , and a reversible oplax transformation
𝛼 : 𝑖𝑟 ⇒ 1𝐷 such that 𝛼 ∗ 𝑖 = 1𝑖 (see §20.2.15). Diagrammatically, we have
the following commutative diagrams:

𝐶
𝑖 //

1𝐶

88𝐷
𝑟 // 𝐶

𝐷

𝐷
𝛼 //

𝑖𝑟 ,,

1𝐷
22

Γ̃(𝐷)
𝜋𝐷

88

𝜋𝐷 &&
𝐷

𝐶
𝑖 //

𝑖

��

𝐷

𝛼
��

𝐷 𝜄𝐷
// Γ̃(𝐷).
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The last square can also be written

𝐶
𝑖 //

𝜄𝐶
��

𝐷

𝛼
��

Γ̃(𝐶)
Γ̃ (𝑖)

// Γ̃(𝐷).

This notion of an immersion is an 𝜔-categorical version of the notion of a
“strong deformation retracts” in topology.

20.5.2 Proposition. An 𝜔-functor 𝑓 : 𝐶 → 𝐷 is an immersion if and only if
the commutative square

𝐶
𝑖 𝑓
//

𝑓

��

Γ̃ 𝑓

𝑝 𝑓

��

𝐷
1𝐷
// 𝐷

admits a lift.

Proof. By a definition, we have a pullback square

Γ̃ 𝑓

𝜋1

��

𝜋2 // Γ̃(𝐷)
𝜋

��

𝐶
𝑓
// 𝐷.

This means that an 𝜔-functor ℎ : 𝐷 → Γ̃ 𝑓 corresponds to the data of an
𝜔-functor 𝑔 : 𝐷 → 𝐶 and an 𝜔-functor 𝛼 : 𝐷 → Γ̃(𝐷) such that 𝜋𝛼 = 𝑓 𝑔,
i.e., a reversible oplax transformation whose source is 𝑓 𝑔. The commutativity
of the right-lower triangle of

𝐶
𝑖 𝑓
//

𝑓

��

Γ̃ 𝑓

𝑝 𝑓

��

𝐷
1𝐷
//

ℎ
??

𝐷,

using the equality 𝑝 𝑓 = 𝜋𝜋2, means that 𝜋𝛼 = 1𝐷 , i.e., that the target of 𝛼
is 1𝐷 . Finally, the commutativity of the left-upper triangle, using the fact that
𝑖 𝑓 = (1𝐶 , 𝜄𝐷 𝑓 ) : 𝐶 → 𝐶 ×𝐷 Γ̃(𝐷), means that (𝑔, 𝛼) 𝑓 = (1𝐶 , 𝜄𝐷 𝑓 ), i.e., that
𝑔 𝑓 = 1𝐶 and that 𝛼 ∗ 𝑓 = 1 𝑓 , thereby proving the result. □
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20.5.3 Corollary. If an 𝜔-functor is both an 𝜔-equivalence and a cofibration,
then it is an immersion.

Proof. If 𝑓 : 𝐶 → 𝐷 is an 𝜔-equivalence, then, by Proposition 20.3.10,
𝑝 𝑓 : Γ̃ 𝑓 → 𝐷 is a trivial fibration. In particular, if 𝑓 is additionally a cofibration,
then the square of the previous proposition admits a lift, showing that 𝑓 is indeed
an immersion. □

20.5.4 Proposition. Immersions are 𝜔-equivalences.

Proof. Let 𝑖 : 𝐶 → 𝐷 be an immersion, and let 𝑟 and 𝛼 be as in the definition
of §20.5.1.

1. Let 𝑦 be an object of 𝐷. The reversible cell 𝛼𝑦 : 𝑖𝑟 (𝑦) → 𝑦 shows that, for
𝑥 = 𝑟 (𝑦), 𝑖(𝑥) and 𝑦 are 𝜔-equivalent.

2. Let 𝑥 and 𝑥′ be two parallel 𝑛-cells of 𝐷 and let 𝑣 : 𝑖(𝑥) → 𝑖(𝑦) be an
(𝑛 + 1)-cell of 𝐷. Consider the cell 𝑟 (𝑣). As 𝑟𝑖 = 1𝐶 , we have 𝑟 (𝑣) : 𝑥 → 𝑦.
Consider now the reversible cell 𝛼𝑣. A priori, its source and target are given
by

𝛼𝑣 : 𝑖𝑟 (𝑣) ∗0 𝛼𝑡0 (𝑣) ∗1 · · · ∗𝑛 𝛼𝑡𝑛 (𝑣) → 𝛼𝑠𝑛 (𝑣) ∗𝑛 · · · ∗1 𝛼𝑠0 (𝑣) ∗0 𝑣.
As the cells 𝑠0 (𝑣), 𝑡0 (𝑣), . . . , 𝑠𝑛 (𝑣), 𝑡𝑛 (𝑣) are in the image of 𝑖, it follows
from the relation 𝛼 ∗ 𝑖 = 1𝑖 that the cells 𝛼𝑠0 (𝑣) , 𝛼𝑡0 (𝑣) , . . . , 𝛼𝑠𝑛 (𝑣) , 𝛼𝑡𝑛 (𝑣) are
units, so that we have 𝛼𝑣 : 𝑖𝑟 (𝑣) → 𝑣. This shows that 𝑖(𝑢), where 𝑢 = 𝑟 (𝑣),
and 𝑣 are 𝜔-equivalent. □

20.5.5 Proposition. The class of immersions is closed under pushouts.

Proof. Let 𝑖 : 𝐶 → 𝐷 be an immersion, and let 𝑟 and 𝛼 be as in the definition
of §20.5.1. Consider a pushout square

𝐶

𝑖

��

𝑓
// 𝐶′

𝑖′
��

𝐷 𝑔
// 𝐷′.

Using the universal property of this square, we get a retraction 𝑟 ′ of 𝑖′:

𝐶

𝑖

��

𝑓
// 𝐶′

𝑖′

��
1𝐶′

��

𝐷 𝑔
//

𝑓 𝑟 //

𝐷′
𝑟 ′
""

𝐶′.
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Similarly, we get a reversible oplax transformation 𝛼’:

𝐶

𝑖

��

𝑓
// 𝐶′

𝑖′

��

𝜄𝐶′
!!

Γ̃(𝐶′)

Γ̃ (𝑖′ )
��

𝐷 𝑔
//

𝛼 ��

𝐷′
𝛼′

!!

Γ̃(𝐷)
Γ̃ (𝑔)

// Γ̃(𝐷′).

Indeed, the outer diagram commutes as

Γ̃(𝑖′)𝜄′𝐶 𝑓 = Γ̃(𝑖′)Γ̃( 𝑓 )𝜄𝐶 = Γ̃(𝑔)Γ̃(𝑖)𝜄𝐶 = Γ̃(𝑔)𝛼𝑖.

Using the uniqueness part of the same universal property, one checks that
𝜋𝛼 = 𝑖′𝑟 ′ and 𝜋𝛼 = 1𝐷′ , i.e., that 𝛼 : 𝑖′𝑟 ′ ⇒ 1𝐷′ . The fact that 𝛼′ ∗ 𝑖′ = 1𝑖′
is expressed in one of the commutative squares defining 𝛼′. This proves that
𝑖′ : 𝐶′ → 𝐷′ is indeed an immersion. □

20.5.6 Theorem. The class of 𝜔-functors that are both 𝜔-equivalences and
cofibrations is closed under pushouts.

Proof. The class of cofibrations being closed under pushouts (see §19.1.2),
all we have to show is that the pushout of an 𝜔-functor 𝑓 being both an
𝜔-equivalence and a cofibration is an 𝜔-equivalence. But by Corollary 20.5.3,
such an 𝑓 is an immersion. Hence, by the previous proposition, a pushout of 𝑓
is still an immersion, and hence an 𝜔-equivalence by Proposition 20.5.4. □

20.5.7 Corollary. Every element of 𝑙𝑟 (J) is both an 𝜔-equivalence and a
cofibration.

Proof. Denote by W the class of 𝜔-equivalences and by Cof the class of
cofibrations. By Propositions 20.1.18 and 20.1.19, the classW is closed under
retracts and countable compositions. The same properties hold for the class
Cof = 𝑙𝑟 (I) (see §19.1.2). Using the previous proposition, we get that the
classW∩Cof is closed under retracts, pushouts and countable compositions.
It follows, using the small object argument (Proposition 19.1.9), that to show the
inclusion 𝑙𝑟 (J) ⊆ W ∩ Cof , it suffices to show the inclusion J ⊆ W ∩ Cof .
But we already noted in §20.4.7 that for every 𝑛, the 𝜔-functor j𝑛 : O𝑛 → 𝐽𝑛+1
is both an 𝜔-equivalence and a cofibration. □

20.5.8 Remark. We will see in the proof of Theorem 21.1.2 that it follows
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formally from what we proved so far that, conversely, an 𝜔-functor being both
an 𝜔-equivalence and a cofibration is in 𝑙𝑟 (J).



21
The folk model structure

This chapter is about proving the existence of the so-called folk model category
structure on Cat𝜔 , following Lafont, Métayer and Worytkiewicz [237]. This
model category structure is a generalization of a model category structure
on Cat whose weak equivalences are the equivalences of categories, a folklore
result, whence the name. The analogous result for 2-categories was proved by
Lack [229, 231].

The folk model category structure is a model category structure on Cat𝜔
whose weak equivalences are the 𝜔-equivalences and whose cofibrant resolu-
tions are the polygraphic resolutions. It is the natural homotopical framework
in which the notion of polygraphic resolutions lives. As a convincing evidence
of this, we will see in the next chapter that Métayer’s polygraphic homology
can be expressed as a derived functor with respect to the folk model category
structure.

The chapter is organized as follows. The first section is devoted to the proof
of the existence of the folk model category structure. The hard work was done
in the previous chapter and we are basically just assembling various results.
Our proof differs in one point from the original one: we avoid the use of
Smith’s theorem. In the second section, we prove, still according to [237], that
the 𝜔-category Γ̃(𝐶) of reversible cylinders in an 𝜔-category 𝐶 forms a path
object for 𝐶 in the sense of the folk model category structure. We deduce
from this fact that polygraphic resolutions are unique in a stronger sense that
the one proved before. In the last section, we transfer the folk model structure
on Cat𝜔 to the category of (𝑛, 𝑝)-categories. We give explicit descriptions of
the resulting structures for various special cases: 𝑛-categories with particular
small values of 𝑛, 𝜔-groupoids and (𝜔, 1)-categories.

446
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21.1 The folk model structure on Cat𝜔
The purpose of this section is to prove the existence of the so-called “folk model
structure” on Cat𝜔 . We start by recalling the definition of a model category,
see Appendix H for a more detailed presentation.

21.1.1 A model category is a category M endowed with three classes of
maps: the weak equivalences, the cofibrations and the fibrations; these data are
required to satisfy the following axioms:

1. the categoryM is finitely complete and finitely cocomplete,
2. the class of weak equivalences satisfies the 2-out-of-3 property,
3. the class of weak equivalences, cofibrations and fibrations are closed under

retracts,
4. cofibrations have the left lifting property with respect to trivial fibrations

(that is, maps that are both a fibration and a weak equivalence); trivial
cofibrations (that is, maps that are both a cofibration and a weak equivalence)
have the left lifting property with respect to fibrations,

5. every map ofM factors as a cofibration followed by a trivial fibration, and
as a trivial cofibration followed by a fibration.

21.1.2 Theorem. The classes of 𝜔-equivalences (see §20.1.11), cofibrations
(see §19.2.1) and fibrations (see §20.4.7) define a model structure on Cat𝜔
known as the “folk model structure”.

Proof. Let us denote byW the class of weak equivalences, by Cof the class of
cofibrations and by Fib the class of fibrations. By definition, we have

Cof = 𝑙𝑟 (I) and Fib = 𝑟 (J)

(see §19.2.1 and §20.4.7). We showed that

1. W satisfies the 2-out-of-3 property (Theorem 20.3.11) and is closed under
retracts (Proposition 20.1.18),

2. 𝑙𝑟 (J) ⊆ W ∩ Cof (Corollary 20.5.7),
3. W ∩ Fib = 𝑟 (I) (Theorem 20.4.8).

We will now see that these properties formally imply the theorem.
Let us first prove that the inclusion in 2 is actually an equality. Let 𝑓 be an

𝜔-functor inW∩Cof . Applying the small object argument (Proposition 19.1.9)
to 𝑓 and the set J yields a factorization 𝑓 = 𝑝𝑖, where 𝑝 is in Fib = 𝑟 (J) and
𝑖 in 𝑙𝑟 (J). By 2, 𝑖 is inW, and so is 𝑝 by 1. It follows from 3 that 𝑝 is in 𝑟 (I).
As 𝑓 = 𝑝𝑖 is in Cof = 𝑙𝑟 (I), it has the left lifting property with respect to 𝑝
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and, by the retract lemma (Lemma 19.1.10), 𝑓 is a retract of 𝑖. As 𝑖 is in 𝑙𝑟 (J),
so is 𝑓 , thereby proving the desired equality.

Let us now check that we indeed have a model structure. The category Cat𝜔
is complete and cocomplete. We have already proved that the class of 𝜔-equiv-
alences satisfies the 2-out-of-3 property and is closed under retracts. The fact
that the classes of cofibrations and fibrations can defined by lifting conditions
implies that they are closed under retracts as well. The equalities

Cof = 𝑙𝑟 (I), Fib = 𝑟 (J), W ∩ Cof = 𝑙𝑟 (J) and W ∩ Fib = 𝑟 (I)
show that the required lifting properties are fulfilled and, by applying the
small object argument, that the required factorization properties are fulfilled as
well. □

21.1.3 Remark. The folk model structure is what is called a “combinatorial
model structure”: a model category C is said to be combinatorial if, first, the
category C is locally presentable (see Appendix G) and, second, there exist
sets (by opposition to classes) of morphisms I and J such that the class of
cofibration is 𝑙𝑟 (I) and the class of trivial cofibrations is 𝑙𝑟 (J). The sets I
and J (which are not unique) are then said to generate the model category C.

21.1.4 Let C be a model category. An object 𝑋 of C is said to be cofibrant if
the unique morphism from the initial object of C to 𝑋 is a cofibration; similarly,
𝑋 is said to be fibrant if the unique morphism from 𝑋 to the terminal object
of C is a fibration.

21.1.5 Proposition. Every 𝜔-category is fibrant in the folk model structure.

Proof. Let 𝐶 be an 𝜔-category. Consider a diagram

𝐷
𝑓
//

𝑖

��

𝐶

𝐸 ,

where 𝑖 is a trivial cofibration. By Corollary 20.5.3, 𝑖 admits a retraction 𝑟 and
the triangle

𝐷
𝑓
//

𝑖
��

𝐶

𝐸

𝑓 𝑟

??

is commutative, thereby proving that 𝐶 is fibrant. □
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21.1.6 Theorem. The cofibrant objects of the folk model structure are exactly
the 𝜔-categories generated by polygraphs.

Proof. Let 𝐶 be a cofibrant 𝜔-category. By Proposition 19.2.2, the 𝜔-functor
∅ → 𝐶 is a retract of a relative polygraph 𝐷 → 𝐸 . In particular, ∅ is a
retract of 𝐷 and 𝐶 is a retract of 𝐸 . This means that 𝐷 ≃ ∅ and hence that 𝐷
is generated by a polygraph. This shows that 𝐶 is a retract of an 𝜔-category
generated by a polygraph.

To conclude the proof, it suffices to show that a retract of an 𝜔-category
generated by a polygraph is also generated by a polygraph. This immediately
follows from [279, Theorem 7.1], stating that the full subcategory of Cat𝜔
consisting of those 𝜔-categories that are generated by polygraphs is Cauchy-
complete. We briefly describe the general idea of the argument, and refer
to [279] for a complete proof. Thus, let 𝑃 be a polygraph and ℎ : 𝑃∗ → 𝑃∗ be
an idempotent morphism in Cat𝜔 . We have to build a polygraph 𝑄, together
with morphisms 𝑟 : 𝑃∗ → 𝑄∗ and 𝑠 : 𝑄∗ → 𝑃∗ such that 𝑟𝑠 = 1𝑄∗ and 𝑠𝑟 = ℎ.
The polygraph 𝑄 and the maps 𝑟 , 𝑠 are defined by simultaneous induction on
the dimension. In dimension 0, 𝑄0 =

{
ℎ(𝑥)

�� 𝑥 ∈ 𝑃∗0 = 𝑃0
}
, the map 𝑠 is given

by the obvious inclusion of 𝑄0 into 𝑃0 and 𝑟 (𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝑃0. Let
now 𝑛 > 0 and suppose we have defined 𝑄, 𝑟 and 𝑠 up to dimension 𝑛 − 1,
satisfying the above equations. We must now define the set 𝑄𝑛 of 𝑛-generators
in 𝑄, together with source and target maps 𝑠𝑛−1, 𝑡𝑛−1 : 𝑄𝑛 → 𝑄∗𝑛−1. The
crucial observation is that ℎ induces a partition of 𝑃𝑛 in three subsets:

𝑃𝑛 = 𝑃
0
𝑛 ⊔ 𝑃1

𝑛 ⊔ 𝑃2
𝑛

where 𝑃0
𝑛 is the set of those 𝑛-generators whose image by ℎ is an identity, 𝑃1

𝑛 is
the set of those generators 𝑎 ∈ 𝑃𝑛 such that ℎ(𝑎∗) = 𝑐[𝑎∗] where 𝑐[x] is a thin
𝑛-context (see Section 16.5), and 𝑃2

𝑛 is the set of remaining 𝑛-generators. We
may now define

𝑄𝑛 =
{
ℎ(𝑎∗)

�� 𝑎 ∈ 𝑃1
𝑛

}
which gives an obvious inclusion 𝑖 : 𝑄𝑛 → 𝑃∗𝑛. By induction hypothesis, the
morphism 𝑟 is defined up to dimension 𝑛 − 1, so that we can define

𝑠𝑛−1, 𝑡𝑛−1 : 𝑄𝑛 → 𝑄∗𝑛−1

by requiring the commutation of the following square

𝑄𝑛

𝑖

��

𝑠𝑛−1 ,𝑡𝑛−1 // 𝑄∗𝑛−1

𝑃∗𝑛
𝑠𝑛−1 ,𝑡𝑛−1 // 𝑃∗𝑛−1.

𝑟

OO
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for source and target maps. Thus the 𝜔-category 𝑄∗ is now defined up to
dimension 𝑛 and one easily checks that 𝑖 : 𝑄𝑛 → 𝑃∗𝑛 induces an extension of 𝑠
up to dimension 𝑛 from 𝑄∗ to 𝑃∗ satisfying ℎ𝑠 = 𝑠.

Finally, we must extend 𝑟 up to dimension 𝑛. The main difficulty is to find
where the generators belonging to 𝑆2

𝑛 should be sent. Therefore, we first consider
an auxiliary subpolygraph 𝑅 of 𝑃, identical to 𝑃 up to dimension 𝑛 − 1, and
whose set of 𝑛-generators is just 𝑅𝑛 = 𝑃0

𝑛 ⊔ 𝑃1
𝑛. The inclusion 𝑗 : 𝑅 → 𝑃

now induces a morphism 𝑗∗ of 𝑛-categories from 𝑅∗ → 𝑃∗, and one shows
the existence of 𝑛-morphisms ℎ′ : 𝑅∗ → 𝑅∗ and 𝑘 : 𝑃∗ → 𝑅∗ such that the
following square commutes:

𝑅∗ ℎ′ //

𝑗∗

��

𝑅∗

𝑗∗

��

𝑃∗
ℎ
//

𝑘

>>

𝑃∗

The purpose of the previous step was precisely to get rid of 𝑆2
𝑛. Now one builds

𝑟 ′ : 𝑅∗ → 𝑄∗ and 𝑠′ : 𝑄∗ → 𝑅∗, extending 𝑟 , 𝑠 up to dimension 𝑛 is such a
way that 𝑠′𝑟 ′ = ℎ′ and 𝑟 ′𝑠′ = 1𝑄∗ . Note that the proof of this last equation relies
on the fine properties of contexts, as presented in Section 16.5 .We obtain the
desired retraction 𝑟 up to dimension 𝑛 by taking 𝑟 = 𝑟 ′𝑘 . □

21.1.7 Remark. The previous theorem easily implies that the folk model struc-
ture is not “cartesian” (meaning that the cartesian product functor is not a
Quillen bifunctor in the sense of [187, Definition 4.2.1]). Indeed, in a cartesian
model structure, the product of two cofibrant objects is cofibrant. But it is not
true that the product of two 𝜔-categories generated by a polygraph is gener-
ated by a polygraph. For instance, the product O1 × O1 is not generated by a
polygraph.

21.2 The path objects of cylinders

The goal of this section is to prove that, for every 𝜔-category 𝐶, the 𝜔-cate-
gory Γ̃𝐶 (see §20.3.2), endowed with the maps

𝐶
𝜄𝐶 // Γ̃(𝐶) (𝜋,𝜋 )

// 𝐶 × 𝐶,

is a path object for 𝐶 in the folk model structure in the following sense:
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21.2.1 Path objects. LetM be a model category and let 𝑋 be an object ofM.
A path object for 𝑋 inM is an object 𝑃 ofM, endowed with a factorization

𝑋
𝑟 // 𝑃

𝑝
// 𝑋 × 𝑋

of the diagonal of 𝑋 , where 𝑟 a weak equivalence ofM and 𝑝 a fibration ofM.

As we already know that 𝜄𝐶 : 𝐶 → Γ̃(𝐶) is an 𝜔-equivalence (Proposi-
tion 20.3.8), all we have to prove is that (𝜋, 𝜋) : Γ̃(𝐶) → 𝐶 × 𝐶 is a fibration.
To do so, we will use the following variation on the notion of an immersion:

21.2.2 Strong immersions. An 𝜔-functor 𝑖 : 𝐶 → 𝐷 is a strong immersion
if it admits a retraction 𝑟 : 𝐷 → 𝐶 and reversible oplax transformations
𝛼 : 𝑖𝑟 ⇒ 1𝐷 and 𝛼′ : 1𝐷 ⇒ 𝑖𝑟 such that 𝛼 ∗ 𝑖 = 1𝑖 and 𝛼′ ∗ 𝑖 = 1𝑖 .

21.2.3 Proposition. Let 𝐶 be an 𝜔-category. Then the 𝜔-functor

(𝜋, 𝜋) : Γ̃(𝐶) → 𝐶 × 𝐶
has the right lifting properties with respect to strong immersions.

Proof. Let 𝑖 : 𝐷 → 𝐸 be a strong immersion and let 𝑟 ,𝛼 and𝛼′ be as in §21.2.2.
Consider a commutative square

𝐷

𝑖

��

𝛾
// Γ̃(𝐶)

(𝜋,𝜋 )
��

𝐸 ( 𝑓 ,𝑔)
// 𝐶 × 𝐶.

In other words, we have two 𝜔-functors 𝑓 , 𝑔 : 𝐸 → 𝐶 and a reversible oplax
transformation 𝛾 : 𝑓 𝑖 ⇒ 𝑔𝑖. A lift of such a square amounts to a reversible
oplax transformation 𝛿 : 𝑓 ⇒ 𝑔 such that 𝛿 ∗ 𝑖 = 𝛾. One defines 𝛿 as the
composite

𝑓
𝑓 ∗𝛼′ +3 𝑓 𝑖𝑟

𝛾∗𝑟 +3 𝑔𝑖𝑟
𝑔∗𝛼 +3 𝑔

(see Remark 20.2.16). We have

𝛿 ∗ 𝑖 = ((𝑔 ∗ 𝛼) (𝛾 ∗ 𝑟) ( 𝑓 ∗ 𝛼′)) ∗ 𝑖
= (𝑔 ∗ 𝛼 ∗ 𝑖) (𝛾 ∗ 𝑟𝑖) ( 𝑓 ∗ 𝛼′ ∗ 𝑖)
= 1𝑔𝑖 (𝛾 ∗ 1𝐷)1 𝑓 𝑖 = 𝛾,

thereby proving the result. □

21.2.4 Proposition. For every 𝑛 ≥ 0, the 𝜔-functor j𝑛 : O𝑛 → 𝐽𝑛+1 of §20.4.3
is a strong immersion.
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Proof. Let 𝑛 ≥ 0. By Corollary 20.5.3, every trivial cofibration is an immersion.
This means that there exists a section 𝑟 : 𝐽𝑛+1 → O𝑛 and a reversible oplax
transformation 𝛼 : 𝑖𝑟 ⇒ 1𝐷 . A dual proof shows that there exists a section
𝑟 ′ : 𝐽𝑛+1 → O𝑛 and a reversible oplax transformation 𝛼′ : 1𝐷 ⇒ 𝑖𝑟 ′. (More
formally, one can apply Corollary 20.5.3 to (j𝑛)o, where −o : Cat𝜔 → Cat𝜔
denotes the duality of Cat𝜔 consisting in reverting the orientation of 𝑛-cells for
every 𝑛 ≥ 1.) To conclude the proof it suffices to check that 𝑟 = 𝑟 ′. Consider
the reversible oplax transformation 𝑟 ∗ 𝛼′ : 𝑟 ⇒ 𝑟𝑖𝑟 ′ = 𝑟 ′. As in O𝑛, the
only reversible cells are the identities, this oplax transformation has to be the
identity, showing that 𝑟 = 𝑟 ′. □

21.2.5 Corollary. For every 𝜔-category 𝐶, the 𝜔-functor

(𝜋, 𝜋) : Γ̃(𝐶) → 𝐶 × 𝐶
is a fibration.

Proof. This is an immediate consequence of the two previous propositions. □

21.2.6 Remark. The same proof shows that (𝜋, 𝜋) : Γ(𝐶) → 𝐶 × 𝐶 is also a
fibration.

We thus have showed:

21.2.7 Theorem. For every 𝜔-category 𝐶, the 𝜔-category Γ̃(𝐶) (endowed
with the 𝜔-functors described before) is a path object for 𝐶 in the folk model
structure.

21.2.8 Remark. Although this is not related to the goal of the section, let
us mention that one can prove in a very similar way that for every 𝜔-functor
𝑓 : 𝐶 → 𝐷, the 𝜔-functor 𝑝 𝑓 : Γ̃ 𝑓 → 𝐷 is a fibration. Indeed, one checks
that it has the right lifting property with respect to (not necessarily strong)
immersions and the assertion thus follows from Corollary 20.5.3.

21.2.9 Proposition. Let 𝑓 : 𝐶 → 𝐷 be an 𝜔-functor and let (𝑃, 𝑝) and
(𝑄, 𝑞) be polygraphic resolutions (see §19.3.1) of 𝐶 and 𝐷, respectively. If
𝑔, 𝑔′ : 𝑃∗ → 𝑄∗ are two 𝜔-functors such that the two squares

𝑃∗

𝑝

��

𝑔
''

𝑔′
77 𝑄
∗

𝑞

��

𝐶
𝑓
// 𝐷

commute, then there exists a reversible oplax transformation 𝛼 : 𝑔 ⇒ 𝑔′.
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Proof. The fact that Γ̃(𝐴) is a path object for any 𝜔-category 𝐴 implies that
𝑢 : 𝐴→ 𝐵 is “right homotopic” to 𝑣 : 𝐴→ 𝐵 in the sense of model categories
if and only if there exists a reversible oplax transformation from 𝑢 to 𝑣. The
result thus follows from general properties of cofibrant resolutions in model
categories (see for instance [184, Proposition 8.1.25]). □

21.2.10 Remark. In particular, in the case where 𝐶 = 𝐷 and 𝑓 is the identity
𝜔-functor, we get a diagram

𝑃∗

𝑝
��

𝑔
((

𝑔′
66𝛼�� 𝑄∗

𝑞
��

𝐶

from which one can deduce that the morphism given in Remark 19.4.2 be-
tween any two resolutions is unique up to a (non-canonical) reversible oplax
transformation.

21.3 The folk model structure on Cat𝑛 and Cat𝑛,𝑝
The purpose of this section is to transfer the folk model structure on Cat𝜔 to
subcategories of Cat𝜔 such as the Cat𝑛 or more generally Cat𝑛,𝑝 . To do so,
we will use the following classical transfer lemma:

21.3.1 Lemma. Let (M,W, Cof , Fib) be a combinatorial model category
generated by 𝐼 and 𝐽. Let C be a locally presentable category, and let

𝐹 :M → C, 𝐺 : C →M
be a pair of adjoint functors. Suppose that

𝐺 (𝑙𝑟 (𝐹 (𝐽))) ⊆ W,

whereW denotes the class of weak equivalences ofM. Then 𝐹 (𝐼) and 𝐹 (𝐽)
generate a combinatorial model structure on C, whose class of weak equiva-
lences is 𝐺−1 (W) and whose class of fibrations is 𝐺−1 (Fib).
Proof. See for instance [98, Theorem 3.3]. □

21.3.2 Proposition. Let C be a reflective subcategory of Cat𝜔 closed under
pushouts and filtered colimits. Suppose that, for every 𝜔-category 𝐶 in C, the
𝜔-category Γ(𝐶) is still in C. Then there exists a model structure on C whose
weak equivalences are the 𝜔-equivalences between objects of C and whose
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fibrations are the “folk” fibrations (i.e., the one defined in §20.4.7) between
objects of C. This model structure is generated by 𝐹 (I) and 𝐹 (J), where
𝐹 : Cat𝜔 → C denotes the left adjoint of the inclusion functor.

Proof. As C is a reflective subcategory closed under filtered colimits of a
locally presentable category, the category C is itself locally presentable. Let us
check the hypothesis of the previous lemma: we have to show that 𝑙𝑟 (𝐹 (J)) is
included in the class of 𝜔-equivalences. By the small object argument applied
to 𝐹 (J) in C, elements of 𝑙𝑟 (𝐹 (J)) are transfinite compositions of pushouts
of elements of 𝐹 (J), these colimits being taken in C. By hypothesis, the
inclusion functors to Cat𝜔 preserves these colimits and they can be computed
in Cat𝜔 . By the following lemma, the elements of 𝐹 (J) are immersions.
By Proposition 20.5.5, a pushout of such an immersion is an immersion, and
hence is an 𝜔-equivalence by Proposition 20.5.4. As, by Proposition 20.1.19,
𝜔-equivalences are stable under transfinite compositions, this concludes the
proof. □

21.3.3 Lemma. Under the hypothesis of the previous proposition, if 𝑖 is an
immersion, so is 𝐹 (𝑖).
Proof. Let 𝐷 be an 𝜔-category. By hypothesis, Γ̃𝐹 (𝐷) is in C. For 𝐸 an
𝜔-category, denote by 𝜀𝐸 : 𝐸 → 𝐹 (𝐸) the canonical 𝜔-functor. The universal
property of 𝐹 gives a dotted arrow

Γ̃(𝐷) Γ̃ (𝜀𝐷 ) //

𝜀
Γ̃ (𝐷)
��

Γ̃𝐹 (𝐷)

𝐹 Γ̃(𝐷)
𝜏𝐷

::

making the triangle commute. If 𝑓 , 𝑔 : 𝐶 → 𝐷 are two 𝜔-functors and
𝛼 : 𝑓 ⇒ 𝑔 is a reversible oplax transformation, then

𝐹 (𝐶) 𝐹 (𝛼)
// 𝐹 Γ̃(𝐷) 𝜏𝐷 // Γ̃𝐹 (𝐷)

defines a reversible oplax transformation. By abuse of notation, we will denote
it by 𝐹 (𝛼). One checks that we have 𝐹 (𝛼) : 𝐹 ( 𝑓 ) ⇒ 𝐹 (𝑔) as expected.

Let now 𝑖 : 𝐶 → 𝐷 be an immersion and let 𝑟 and 𝛼 be as in the definition
of §20.5.1. By functoriality, 𝐹 (𝑟) is a retraction of 𝐹 (𝑖). The previous paragraph
gives a reversible oplax transformation 𝐹 (𝛼) : 𝐹 (𝑖)𝐹 (𝑟) ⇒ 1𝐹 (𝐷) . One checks
that 𝐹 (𝛼)∗𝐹 (𝑖) = 1𝐹 (𝑖) , thereby proving the result. (We refer the reader to [237,
Lemma 6.2] for a more detailed proof.) □

From now on, we fix 𝑛 to be either an integer or 𝜔, and 𝑝 ≤ 𝑛.
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21.3.4 Proposition. If 𝐶 is an (𝑛, 𝑝)-category, then so is Γ̃(𝐶).
Proof. Let 𝑘 > 𝑛 and let 𝛼 : 𝑥 ↷ 𝑦 be a 𝑘-cell of Γ̃(𝐶). Such a cell is a unit
in Γ̃(𝐶) if and only if 𝑥, 𝑦 and 𝛼𝑘 are units in 𝐶 and 𝛼−𝑘−1 = 𝛼+𝑘−1. As 𝐶 is an
𝑛-category, the 𝑘-cells 𝑥, 𝑦, 𝛼−𝑘−1, 𝛼+𝑘−1 and the (𝑘 + 1)-cell 𝛼𝑘 are units. As

𝑠𝑘−1 (𝛼−𝑘−1) = 𝑠𝑘−1 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗𝑘−2 𝛼
+
𝑘−2

= 𝑡𝑘−1 (𝑥) ∗0 𝛼+0 ∗1 · · · ∗𝑘−2 𝛼
+
𝑘−2 = 𝑠𝑘−1 (𝛼+𝑘−1),

we have 𝛼−𝑘−1 = 𝛼+𝑘−1, showing that 𝛼 : 𝑥 ↷ 𝑦 is indeed a unit.
Let now 𝑘 > 𝑝 and let 𝛼 : 𝑥 ↷ 𝑦 be a 𝑘-cell of Γ̃(𝐶). As 𝐶 is an
(𝑛, 𝑝)-category, the 𝑘-cells 𝑥 and 𝑦 are invertible. We now define an inverse
𝛽 : 𝑥−1 ↷ 𝑦−1 of 𝛼 : 𝑥 ↷ 𝑦 in Γ̃(𝐶) in the following way:

𝛽𝜀𝑙 = 𝛼𝜀𝑙 for 𝑙 ≤ 𝑘 − 2,

𝛽−𝑘−1 = 𝛼+𝑘−1, 𝛽+𝑘−1 = 𝛼−𝑘−1,

𝛽𝑘 = (𝑥−1 ∗0 𝛼+0 ∗1 · · · ∗𝑘−2 𝛼
+
𝑘−2

)
∗𝑘−1 𝛼

−1
𝑘 ∗𝑘−1 (𝛼−𝑘−2 ∗𝑘−2 · · · ∗1 𝛼−0 ∗0 𝑦−1),

the inverse of the (𝑘 + 1)-cells 𝛼𝑘 existing by hypothesis. One checks that
this indeed defines a revertible cylinder and that this cylinder is an inverse of
𝛼 : 𝑥 ↷ 𝑦. □

21.3.5 Theorem. There exists a model structure on Cat𝑛,𝑝 , known as “the folk
model structure”, whose weak equivalences are the 𝜔-equivalences between
(𝑛, 𝑝)-categories and whose fibrations are the “folk” fibrations (i.e., the one
defined in §20.4.7) between (𝑛, 𝑝)-categories. This model structure is generated
by 𝐹 (I) and 𝐹 (J), where 𝐹 : Cat𝜔 → Cat𝑛,𝑝 denotes the left adjoint of the
inclusion functor.

Proof. The result will be a consequence of Proposition 21.3.2 once we check
that the hypotheses hold. The previous proposition gives us one of the hypothe-
ses and we are left to check that the subcategory Cat𝑛,𝑝 of Cat𝜔 is stable under
pushout and filtered colimits. But it is actually stable under any colimits as the
inclusion functor Cat𝑛,𝑝 ↩→ Cat𝜔 admits a right adjoint, namely the functor
taking an𝜔-category𝐶 to the (𝑛, 𝑝)-category obtained from𝐶 by throwing out
𝑘-cells for 𝑘 > 𝑛, and non-invertible 𝑙-cells for 𝑙 > 𝑝. □

Let us now describe more precisely this model structure in some specific
cases.
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21.3.6 The folk model structure on Cat𝑛. The 𝜔-category Cat𝑛, which is
nothing but Cat𝑛,𝑛, is endowed with a folk model structure by the previ-
ous theorem. Its weak equivalences, fibrations and hence trivial fibrations are
inherited from the folk model structure on Cat𝜔 . Let us describe its cofibra-
tions. By the previous theorem, the class of cofibrations is 𝑙𝑟 (𝐹 (I)), where
𝐹 : Cat𝜔 → Cat𝑛 denotes the left adjoint to the inclusion functor. For 𝑘 ≥ 0,
we have

𝐹 (O𝑘) =
{
O𝑘 if 𝑘 ≤ 𝑛,
O𝑛 if 𝑘 > 𝑛,

and, similarly,

𝐹 (𝜕O𝑘) =
{
𝜕O𝑘 if 𝑘 ≤ 𝑛 + 1,
O𝑛 if 𝑘 > 𝑛 + 1.

This implies that

𝐹 (i𝑘)



i𝑘 if 𝑘 ≤ 𝑛,
i𝑛+1 if 𝑘 ≤ 𝑛 + 1,
1O𝑛 if 𝑘 > 𝑛 + 1,

where i𝑛+1 : 𝜕O𝑛+1 → O𝑛 corresponds to the collapsing of the two non-trivial
𝑛-cells of 𝜕O𝑛+1. This shows that the class of cofibrations is generated by

i0, . . . , i𝑛, i𝑛+1.

If 𝐶 is an 𝑛-category, then the 𝜔-functor from the empty 𝑛-category to 𝐶 is
a cellular extension for these generators if and only if 𝐶 is presented by an
(𝑛 + 1)-polygraph, that is, if and only if its underlying (𝑛 − 1)-category is
freely generated by a polygraph. In particular, any 𝑛-category admits such an
𝑛-category as a fibrant replacement in Cat𝑛. Actually, one can show that an
𝑛-category is cofibrant if and only if it is presented by an (𝑛 + 1)-polygraph.

Similarly, if one chooses carefully the 𝐽𝑘+1 (see Remark 20.4.4), one gets
that 𝐹 (j𝑘) = 1O𝑛 if 𝑘 ≥ 𝑛 so that trivial cofibrations of Cat𝑛 are generated by

j1 = 𝐹 (j1), . . . , j𝑛−1 = 𝐹 (j𝑛−1).

21.3.7 The folk model structure on Cat0, Cat1 and Cat2. The weak equiva-
lence of the folk model structure on Set = Cat0 are the𝜔-equivalences between
sets, that is, the bĳections. It follows from the discussion in the previous para-
graph that its class of cofibrations is generated by

∅ → {𝑥} and {𝑥, 𝑦} → {𝑧}.



21.3 The folk model structure on Cat𝑛 and Cat𝑛,𝑝 457

This implies that any map is cofibration. In particular, every set is cofibrant.
Similarly, its class of trivial cofibrations is generated by an empty set of gener-
ators, showing that any map is fibration.

The weak equivalences of the folk model structure on Cat = Cat1 are the
𝜔-equivalences between categories, that is, the equivalences of categories. Its
class of cofibrations is generated by the obvious functors of the form

∅ ↩→ ·, { · · } ↩→ { · // · }, { · !!
<< · } → { · // · }.

This implies that cofibrations are exactly the functors injective on objects. In
particular, every category is cofibrant. Similarly, the class of trivial cofibrations
is generated by j1. If one chooses 𝐽1 according to Remark 20.4.4, ones gets that
j1 is the inclusion functor

{𝑥} ↩→ { 𝑥 ∼ // 𝑦 },
where the symbol ∼ denotes an isomorphism. This means that an 𝜔-functor
𝑓 : 𝐶 → 𝐷 is a fibration in Cat if and only if it is an iso-fibration, that is, if
and only if for any object 𝑥 of 𝐶 and any isomorphism 𝑣 : 𝑓 (𝑥) → 𝑦 of 𝐷,
there exists an isomorphism 𝑢 : 𝑥 → 𝑥′ in 𝐶 such that 𝑓 (𝑢) = 𝑣. We have thus
recovered the classical folk model structure on Cat, as described for instance
in [312].

Let us now move on to Cat2. The weak equivalences are the 2-equivalences
of 2-categories. Its class of cofibrations is generated by the obvious 2-functors
of the form

∅ ↩→ ·, { · · } ↩→ { · // · }, { · !!
<< · } ↩→ { · !!

<<�� · }.

and

{ · !!
<<�� �� · } → { ·

!!
<<�� · }.

Its class of trivial cofibrations is generated by

{𝑥} ↩→ 𝐹 (𝐽1) and { ·
𝑢
!! · } ↩→ { ·

𝑢
!!

𝑣

<<

∼

�� · }.

Choosing 𝐽1 according to Remark 20.4.4, one gets that 𝐹 (𝐽1) is the free-
standing adjoint equivalence: it has two objects 𝑥 and 𝑦, two generating 1-cells
𝑢 : 0→ 1 and 𝑣 : 1→ 0, two generating 2-cells 𝜂 : 1𝑥 → 𝑢𝑣 and 𝜀 : 𝑣𝑢 → 1𝑦
and these 2-cells satisfy the triangular identities: (𝜂 ∗ 𝑢) (𝑢 ∗ 𝜀) = 1𝑢 and
(𝑣 ∗ 𝜂) (𝜀 ∗ 𝑣) = 1𝑣. We have thus recovered the folk model structure introduced
by Lack in [229], with a correction in [231].
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21.3.8 The folk model structure on Gpd𝜔 . The category Gpd𝜔 , which is
nothing but Cat𝜔,0, is endowed with a folk model structure. The weak equiva-
lences are the𝜔-equivalences between𝜔-groupoids. They can be characterized
as the 𝜔-functors inducing bĳections on connected components and homotopy
groups but we will not enter into that. Denote by 𝐹 : Cat𝜔 → Gpd𝜔 the
left adjoint to the inclusion functor. This functor sends an 𝜔-category 𝐶 to the
𝜔-groupoid obtained by formally inverting every cells of 𝐶. Set

Õ𝑛 = 𝐹 (O𝑛).

The class of cofibrations of Gpd𝜔 is generated by the inclusion

𝐹 (i𝑛) : 𝜕Õ𝑛 ↩→ Õ𝑛,

where 𝜕Õ𝑛 denotes the underlying (𝑛 − 1)-groupoid of Õ𝑛. Less trivially, the
class of trivial cofibrations is generated by the set J̃ of 𝜔-functors

j̃𝑛 : Õ𝑛 ↩→ Õ𝑛+1,

where 𝑛 ≥ 1, corresponding to the source of the principal cell of Õ𝑛+1. (Note
that these 𝜔-functors are not the 𝐹 (j𝑛).) To prove this, one can proceed as
follows. First, one notes that these 𝜔-functors are trivial cofibrations, so that
the class J̃ is included in the class of trivial cofibration. Second, one checks
that an 𝜔-equivalence between 𝜔-groupoids having the right lifting property
with respect to the j̃𝑛 is a trivial fibration. Third, one concludes using a similar
argument as in the proof of Theorem 21.1.2. Let 𝑓 be a trivial cofibration
in Gpd𝜔 . Using the small object argument, one can factor it as 𝑓 = 𝑝𝑖, where 𝑖
is in 𝑙𝑟 (J̃ ) and 𝑝 is in 𝑟 (J̃ ). By the first point, 𝑖 is a trivial cofibration and so 𝑝
is a weak equivalence by the 2-out-of-3 property. This implies that 𝑝 is a trivial
fibration by the second point. Thus, 𝑓 has the left lifting property with respect
to 𝑝 and, by the retract lemma, 𝑓 is a retract of 𝑖, showing that 𝑓 is in 𝑙𝑟 (J̃ ).

We refer the reader to [16] for more details on the folk model structure
on Gpd𝜔 . In this paper, this model structure is called the Brown-Golasiński
model structure as it coincides, through the equivalence of categories between
𝜔-groupoids and crossed complexes, with the model structure on crossed com-
plexes introduced by Brown and Golasiński in [62].

21.3.9 The folk model structure on Cat𝜔,1. The description of the folk model
structure on Cat𝜔,1 is very close to the one of Gpd𝜔 . Its weak equivalences
are the 𝜔-equivalences between (𝜔, 1)-categories. Setting

Õ𝑛 = 𝐹 (O𝑛),
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where 𝐹 : Cat𝜔 → Cat𝜔,1 denotes the left adjoint to the inclusion functor, the
class of cofibrations of Cat𝜔,1 is generated by the inclusions

𝐹 (i𝑛) : 𝜕Õ𝑛 ↩→ Õ𝑛,
where 𝜕Õ𝑛 denotes the underlying (𝑛−1, 1)-category of Õ𝑛. The class of trivial
cofibrations can be shown to be generated by

j̃1 = 𝐹 (j1) : Õ0 → 𝐹 (𝐽1)
and by the

j̃𝑛 : Õ𝑛 ↩→ Õ𝑛+1,
for 𝑛 ≥ 1, corresponding to the source of the principal cell of Õ𝑛+1.



22
Homology of 𝜔-categories

This chapter is about Métayer’s polygraphic homology of 𝜔-categories [278].
This homology theory was first defined in the following way: the polygraphic
homology of an 𝜔-category is the homology of the abelianization of any of
its polygraphic replacements. Métayer then showed with Lafont that for every
monoid, considered as an𝜔-category, its polygraphic homology coincides with
its classical homology as a monoid [236]. This result was then generalized to
1-categories by Guetta [155].

In this chapter, we prove that the polygraphic homology is the left derived
functor of a linearization functor from Cat𝜔 to the category ChZ,⩾0 of chain
complexes, where Cat𝜔 is endowed with 𝜔-equivalences and ChZ,⩾0 with
quasi-isomorphisms.

In the first section of the chapter, we define the abelianization functor and
we prove that an oplax transformation induces a chain homotopy after abelian-
ization. In the second section, we show that the abelianization functor is a left
Quillen functor for the folk model category structure on Cat𝜔 and the projec-
tive structure on ChZ,⩾0. We define polygraphic homology using this derived
functor. The fact that polygraphic resolutions are cofibrant resolutions for the
folk model category structure proves that this homology is indeed Métayer’s
polygraphic homology. In the third section, we show that polygraphic homology
generalizes monoid homology. The proof we present is based on a conceptual
reinterpretation of Lafont and Métayer’s proof by Guetta. Finally, in the last
section, we compute some examples of polygraphic homology.

In the whole chapter, we assume some familiarity with homological algebra,
and in particular homology of monoids. We refer the reader to Appendix E for
a quick introduction.

460
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22.1 The abelianization functor

22.1.1 Abelianization of an 𝜔-category. We now define the abelianization
functor

Ab : Cat𝜔 → ChZ,⩾0,

where ChZ,⩾0 denotes the category of chain complexes of abelian groups in
non-negative degree, see §E.2.1. Using the notation of Section 17.4, this functor
is just the composite

Cat𝜔
𝜆−→ ADC 𝑈−→ ChZ,⩾0.

Nevertheless, we will give a direct definition.
Let𝐶 be an𝜔-category. We define the chain complex Ab(𝐶) in the following

way. For every 𝑛 ≥ 0, the group Ab(𝐶)𝑛 is generated by elements [𝑥], for every
𝑛-cell 𝑥 of 𝐶, subject to the relations [𝑥 ∗𝑖 𝑦] = [𝑥] + [𝑦], for every pair of
𝑛-cells 𝑥 and 𝑦 such that 𝑥 ∗𝑖 𝑦 is defined. It follows that if 𝑧 is an 𝑚-cell
for𝑚 < 𝑛, then [1𝑧] = 0, where 1𝑧 denotes the iterated identity in dimension 𝑛.
For 𝑛 ≥ 1, we define 𝑑𝑛 by

𝑑𝑛 ( [𝑥]) = [𝑡𝑛−1 (𝑥)] − [𝑠𝑛−1 (𝑥)],
where 𝑥 is an 𝑛-cell of 𝐶. The axioms of 𝜔-categories giving the sources and
targets of compositions imply that these maps are well-defined and the globular
relations that they define a chain complex.

If 𝑓 : 𝐶 → 𝐷 is an 𝜔-functor, then we define a chain map

Ab( 𝑓 ) : Ab(𝐶) → Ab(𝐷)
by setting

Ab( 𝑓 )𝑛 ( [𝑥]) = [ 𝑓 (𝑥)]
for 𝑛 ≥ 0 and 𝑥 an 𝑛-cell of 𝐶. One checks that this is well-defined, that Ab( 𝑓 )
is a chain map and that Ab is indeed a functor.

22.1.2 Proposition. The functor Ab is a left adjoint. In particular, it preserves
colimits.

Proof. We saw in Remark 17.4.7 that Ab, which is𝑈𝜆 with the notation of this
remark, admits the functor 𝜈 : ChZ,⩾0 → Cat𝜔 of §17.4.5 as a left adjoint. □

22.1.3 Proposition. Let 𝑃 be a polygraph. For every 𝑛 ≥ 0, the abelian
group Ab(𝑃∗)𝑛 is free with basis the elements of the form [𝑥], where 𝑥 is in 𝑃𝑛.

Proof. This is part of Proposition 17.4.9. □
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22.1.4 Proposition. Let 𝑓 , 𝑔 : 𝐶 → 𝐷 be two 𝜔-functors and let 𝛼 : 𝑓 ⇒ 𝑔

be an oplax transformation. Then, setting

Ab(𝛼)𝑛 ( [𝑥]) = [𝛼𝑥]
for 𝑛 ≥ 0 and 𝑥 in 𝐶𝑛, we obtain a chain homotopy (see §E.2.4)

Ab(𝛼) : Ab( 𝑓 ) ⇒ Ab(𝑔).
Proof. Let us first check that the map Ab(𝛼)𝑛 is well-defined. Let 𝑥 and 𝑦 be two
𝑛-cells such that 𝑥 ∗𝑖 𝑦 is defined for some 𝑖 < 𝑛. We have to check the equality
Ab(𝛼)𝑛 ( [𝑥∗𝑖 𝑦]) = Ab(𝛼)𝑛 ( [𝑥]) +Ab(𝛼)𝑛 ( [𝑦]), that is, [𝛼𝑥∗𝑖 𝑦] = [𝛼𝑥] + [𝛼𝑦].
But this is exactly what we get by linearizing the formula

𝛼𝑥∗𝑖 𝑦 =
(
𝑓 (𝑠𝑖+1 (𝑥)) ∗0 𝛼𝑡0 (𝑦) ∗1 · · · ∗𝑖−1 𝛼𝑡𝑖−1 (𝑦) ∗𝑖 𝛼𝑦

)∗𝑖+1(
𝛼𝑥 ∗𝑖 𝛼𝑠𝑖−1 (𝑥 ) ∗𝑖−1 · · · ∗1 𝛼𝑠0 (𝑥 ) ∗0 𝑔(𝑡𝑖+1 (𝑦))

)
,

keeping in mind that, as we are linearizing in dimension 𝑛 + 1, we have [𝑧] = 0
for 𝑧 an 𝑚-cell with 𝑚 < 𝑛 + 1.

Let us now prove that Ab(𝛼) is indeed a chain homotopy. If 𝑥 is 0-cell of 𝐶,
we have 𝛼𝑥 : 𝑓 (𝑥) → 𝑔(𝑥) and so 𝑑1 [𝛼𝑥] = [𝑔(𝑥)] − [ 𝑓 (𝑥)], showing that
𝑑1 (Ab(𝛼)0 ( [𝑥])) = Ab(𝑔)0 ( [𝑥]) − Ab( 𝑓 )0 ( [𝑥]). Similarly, if 𝑥 is an 𝑛-cell
of 𝐶𝑛 for 𝑛 > 0, we have

𝛼𝑥 : 𝑓 (𝑥) ∗0 𝛼𝑡0 (𝑥 ) ∗1 · · · ∗𝑛−1 𝛼𝑡𝑛−1 (𝑥 ) → 𝛼𝑠𝑛−1 (𝑥 ) ∗𝑛−1 · · · ∗1 𝛼𝑠0 (𝑥 ) ∗0 𝑔(𝑥)
and, by linearizing,

𝑑𝑛+1 [𝛼𝑥] = [𝛼𝑠𝑛−1 (𝑥 ) ] + [𝑔(𝑥)] − [ 𝑓 (𝑥)] − [𝛼𝑡𝑛−1 (𝑥 ) ] .
As

[𝛼𝑡𝑛−1 (𝑥 ) ] − [𝛼𝑠𝑛−1 (𝑥 ) ] = Ab(𝛼)𝑛 ( [𝑡𝑛−1 (𝑥)]) − Ab(𝛼)𝑛 ( [𝑠𝑛−1 (𝑥)])
= Ab(𝛼)𝑛 ( [𝑡𝑛−1 (𝑥)] − [𝑠𝑛−1 (𝑥)])
= Ab(𝛼)𝑛 (𝑑𝑛 [𝑥]),

we get

𝑑𝑛+1 (Ab(𝛼)𝑛 ( [𝑥])) + Ab(𝛼)𝑛−1 (𝑑𝑛 [𝑥]) = Ab(𝑔)𝑛 ( [𝑥]) − Ab( 𝑓 )𝑛 ( [𝑥]),
thereby showing the result. □

22.2 Deriving the abelianization functor

In this section, we will show that the abelianization functor

Ab : Cat𝜔 → ChZ,⩾0
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can be derived, thus producing a homology theory for 𝜔-categories.

We start by some preliminaries on derived functors.

22.2.1 Homotopy category. A localizer (also called relative category) is a
category C endowed with a classW of morphisms called weak equivalences.
The homotopy category of a localizer (C,W) is the category C[W−1] ob-
tained from C by formally inverting arrows in W. We will also denote this
category by Ho(C), making implicit the classW. There is a canonical func-
tor 𝑝 : C → Ho(C).

In particular, any model categoryM has an underlying localizer (M,W)
and thus a homotopy category Ho(M).

22.2.2 Left derived functors. Let (C,WC) and (D,WD) be two localizers
and let 𝐹 : C → D be a functor. The (total) left derived functor of 𝐹, if it
exists, is the universal pair consisting of a functor

L𝐹 : Ho(C) → Ho(D)
and a natural transformation

C
𝑝C
��

𝐹 // D
𝑝D
��

Ho(C)
L𝐹
//

𝜆 5=

Ho(D).

By abuse of language, one often refers to L𝐹 as the left derived functor of 𝐹.

One important use of model categories is to provide tools to prove the
existence of derived functors. In particular, the so-called left Quillen functors
can be left derived.

22.2.3 Left Quillen functors. Let M and N be two model categories. A
left adjoint functor 𝐹 : M → N is called a left Quillen functor if it sends
cofibrations ofM to cofibrations of N and trivial cofibration ofM to trivial
cofibrations of N

Similarly, a right adjoint functor 𝐺 : N → M is said to be a right Quillen
functor if it sends fibrations to fibrations and trivial fibrations to trivial fibra-
tions.

If

𝐹 :M →N 𝐺 : N →M
is a pair of adjoint functor, then 𝐹 is a left Quillen functor if and only if 𝐺 is a
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right Quillen functor. The pair (𝐹, 𝐺) is then called a Quillen pair or a Quillen
adjunction.

22.2.4 Theorem (Quillen). A left Quillen functor 𝐹 : M → N admits a left
derived functor L𝐹 : Ho(M) → Ho(N). Moreover, if 𝑋 is an object ofM,
then L𝐹 (𝑝M (𝑋)) is canonically isomorphic to 𝑝N (𝐹 (𝑄)), where (𝑄,𝑄 → 𝑋)
is a cofibrant replacement, i.e., a cofibrant object 𝑄 endowed with a weak
equivalence 𝑄 → 𝑋 .

Similarly, a right Quillen functor admits a right derived functor that can be
computed using fibrant replacement.

22.2.5 Remark. One actually only needs 𝐹 to send trivial cofibrations between
cofibrant objects to weak equivalences for the previous theorem to apply.

We will now apply Quillen’s result to the abelianization functor

Ab : Cat𝜔 → ChZ,⩾0.

We first introduce a model category structure on ChZ,⩾0.

22.2.6 The projective model structure on chain complexes. The category
of chain complexes ChZ,⩾0 can be endowed with the so-called projective model
structure (see [307, Chapter II, Section 4, page 11]):

– the weak equivalences are the quasi-isomorphisms (see §E.3.5),
– the cofibrations are the monomorphisms 𝑓 such that, for every 𝑛 ≥ 0, the

cokernel of 𝑓𝑛 is projective,
– the fibrations are the morphisms 𝑓 such that, for every 𝑛 > 0, 𝑓𝑛 is an

epimorphism.

In particular, every chain complex is fibrant for this model structure and the
cofibrant chain complexes are exactly the ones that are projective in every
degree.

22.2.7 Theorem. The functor Ab : Cat𝜔 → ChZ,⩾0 is a left Quillen functor,
where Cat𝜔 is endowed with the folk model structure and ChZ,⩾0 is endowed
with the projective model structure.

Proof. We have to show that Ab preserves cofibrations and trivial cofibrations.
Since the cofibrations and trivial cofibrations of Cat𝜔 are generated by sets I
and J , it suffices to prove that these sets are sent to cofibrations and weak
equivalences respectively.

Let i𝑛 : 𝜕O𝑛 → O𝑛 be an element of I. Proposition 22.1.3 gives a con-
crete description of the morphism Ab(i𝑛) : Ab(𝜕O𝑛) → Ab(O𝑛): for 𝑘 such
that 0 ≤ 𝑘 < 𝑛, the morphism Ab(i𝑛)𝑘 can be identified with the identity of Z2,
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for 𝑘 = 𝑛, it can be identified with the unique morphism 0→ Z and, for 𝑘 > 𝑛,
with the identity of 0. All these morphisms are monomorphisms of cokernel
either 0 or Z. This means that Ab(i𝑛) is a cofibration.

Let now j𝑛 : O𝑛 → 𝐽𝑛+1 be an element of J . By Corollary 20.5.3, this
𝜔-functor admits an inverse up to reversible oplax transformations. (Now that
we have the folk model structure, this also follows from the so-called “White-
head Theorem”, see for instance [184, Theorem 7.5.10], as j𝑛 is a weak equiv-
alence between cofibrant and fibrant objects.) But since by Proposition 22.1.4,
oplax transformations are sent to chain homotopies, the morphism Ab(j𝑛) is
a homotopy equivalence (see §E.3.5) and thus a quasi-isomorphisms, thereby
proving the result. □

22.2.8 Polygraphic homology of 𝜔-categories. By the previous theorem, the
functor

Ab : Cat𝜔 → ChZ,⩾0

can be derived to a functor

LAb : Ho(Cat𝜔) → Ho(ChZ,⩾0).
In particular, for 𝑛 ≥ 0, by post-composing by the functor

𝐻𝑛 : Ho(ChZ,⩾0) → Ab

(induced by the 𝐻𝑛 : ChZ,⩾0 → Ab functor of §E.2.2), we get a functor

𝐻Pol
𝑛 : Ho(Cat𝜔) → Ab.

If 𝐶 is an 𝜔-category, by definition, the 𝑛-th polygraphic homology group of 𝐶
is the abelian group 𝐻Pol

𝑛 (𝐶).
Concretely, by Theorem 22.2.4, the group 𝐻Pol

𝑛 (𝐶) is computed in the fol-
lowing way:

𝐻Pol
𝑛 (𝐶) = 𝐻𝑛 (Ab(𝑃∗)),

where (𝑃, 𝑃∗ → 𝐶) is any polygraphic resolution of 𝐶.

22.3 Comparison with homology of monoids

In the previous section, we defined the polygraphic homology of an 𝜔-categ-
ory 𝐶. In this section, we will show, following [236], that when 𝑀 is a monoid,
the polygraphic homology of 𝑀 , seen as an 𝜔-category, coincides with the ho-
mology of the monoid 𝑀 . A similar result holds for 1-categories, the homology
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of 1-categories being defined using simplicial sets (see Section F.1), as proved
in [155].

22.3.1 Theorem. Let 𝑀 be a monoid. The polygraphic homology of 𝑀 seen
as an 𝜔-category coincides with the homology of the monoid 𝑀 .

Proof. Let 𝑝 : 𝑃∗ → 𝑀 be a polygraphic resolution of 𝑀 , considered as
a 1-category, such that 𝑃0 consists of a unique element that we will denote
by ∗. For instance, one could take the standard resolution. By definition, the
polygraphic homology of 𝑀 is the homology of the abelianization of 𝑃∗.
We will now associate to this polygraphic resolution a resolution by free left
Z𝑀-modules of Z (endowed with the trivial action).

Denote by 𝑒 the unit element of 𝑀 and by 𝑒\𝑀 the coslice category. Explic-
itly, an object of 𝑒\𝑀 is an element of 𝑀 , and if 𝑚 and 𝑚′ are two objects,
a morphism from 𝑚 to 𝑚′ is an element 𝑛 of 𝑀 such that 𝑛𝑚 = 𝑚′. Denote
by 𝑒\𝑃∗ the 𝜔-category defined by the pullback square

𝑒\𝑃∗ //

𝑞

��

𝑃∗

𝑝

��

𝑒\𝑀 // 𝑀 ,

where the bottom horizontal morphism is the forgetful functor. Let us describe
the cells of this 𝜔-category. An object of 𝑒\𝑃∗ consists of an element 𝑚 of 𝑀
that we will denote by (𝑚, ∗). A 1-cell from an object𝑚 to an object𝑚′ consists
of a 1-cell 𝑥 such that 𝑝(𝑥)𝑚 = 𝑚′. A 1-cell is thus uniquely determined by a
pair (𝑚, 𝑥), where 𝑚 is in 𝑀 and 𝑥 is a 1-cell of 𝑃∗. The source of such a 1-cell
is 𝑝(𝑥)𝑚 and its target is 𝑚′. Similarly, an 𝑖-cell for 𝑖 > 1 can be described as a
pair (𝑚, 𝑥), where 𝑚 is in 𝑀 and 𝑥 is an 𝑖-cell of 𝑃∗. Its source is (𝑚, 𝑠𝑖−1 (𝑥))
and its target (𝑚, 𝑡𝑖−1 (𝑥)).

One can show that the 𝜔-category 𝑒\𝑃∗ is freely generated in the sense of
polygraphs by its cells of the form (𝑚, 𝑎), where 𝑚 is in 𝑀 and 𝑎 is in 𝑃𝑖
for 𝑖 ≥ 0. This implies that the linearization of this 𝜔-category in degree 𝑖 is

Ab(𝑒\𝑃∗)𝑖 ≃ Z[𝑀 × 𝑃𝑖] ≃ Z𝑀 [𝑃𝑖].

In particular, it has a natural structure of left Z𝑀-module. If 𝑥 is a cell, setting
[𝑥] = [(𝑒, 𝑥)], we have [(𝑚, 𝑥)] = 𝑚 [𝑥]. By definition, if 𝑚 is in 𝑀 and 𝑥 is
an 𝑖-cell for 𝑖 > 0, we have

𝑑𝑖 (𝑚 [𝑥]) =
{
𝑚 [∗] − 𝑚𝑝(𝑥) [∗] if 𝑖 = 1,
𝑚 [𝑡𝑖−1 (𝑥)] − 𝑚 [𝑠𝑖−1 (𝑥)] if 𝑖 > 1,
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and the map 𝑑𝑖 is thus Z𝑀-linear. This shows that Ab(𝑒\𝑃∗) is a complex of
free left Z𝑀-modules.

The unique 𝜔-functor from 𝑒\𝑃∗ to the terminal 𝜔-category induces a
morphism of complexes Ab(𝑒\𝑃∗) to Z. In other words, by sending 𝑚 [∗]
in Ab(𝑒\𝑃∗)0 to 1 in Z, we get an augmented complex of left Z𝑀-modules

Z Z𝑀 [𝑃0]oo Z𝑀 [𝑃1]oo Z𝑀 [𝑃2]oo · · · .oo

We will see that this complex is exact. Assuming this, let us end the proof. As
the complex is exact, we have built, as announced, a resolution of Z by free
left Z𝑀-module. The homology of the monoid 𝑀 is thus the homology of the
complex

Z ⊗Z𝑀 Z𝑀 [𝑃0] Z ⊗Z𝑀 Z𝑀 [𝑃1]oo Z ⊗Z𝑀 Z𝑀 [𝑃2]oo · · · ,oo

which is canonically isomorphic to the complex

Z[𝑃0] Z[𝑃1]oo Z[𝑃2]oo · · · ,oo

which is nothing but Ab(𝑃∗). The homology of the monoid 𝑀 is thus the
homology of Ab(𝑃∗), that is, the polygraphic homology of 𝑀 .

To end the proof, it thus suffices to show that the augmented complex intro-
duced at the beginning of the previous paragraph is exact. We have a unique
𝜔-functor 𝑟 : 𝑒\𝑃∗ → 1, where 1 denotes the terminal 𝜔-category. We have to
show that Ab(𝑟) is a quasi-isomorphism. Consider the 𝜔-functor 𝑒 : 1 → 𝑒\𝑃∗
corresponding to the object (𝑒, ∗) of 𝑒\𝑃∗. The composition 𝑝𝑒 is the iden-
tity of 1. We will construct an oplax transformation 𝛼 : 𝑝𝑒 ⇒ 1𝑒\𝑃∗ . Using
Proposition 22.1.4, we will get that Ab(𝑟) is a homotopy equivalence and thus
a quasi-isomorphism. Let us construct this oplax transformation 𝛼. First, note
that there exists an oplax transformation 𝛽 : 𝑞𝑝𝑒 ⇒ 𝑞, where 𝑞 : 𝑒\𝑃∗ → 𝑒\𝑀
is the 𝜔-functor introduced at the beginning of the proof. (Note that 𝑞𝑝𝑒 is the
constant 𝜔-functor of value 𝑒.) Indeed, as 𝑒\𝑀 admits 𝑒 as an initial object,
we have a natural transformation 𝛾 : 𝑒 ⇒ 1𝑒\𝑀 , where 𝑒 denotes the constant
endofunctor of 𝑒\𝑀 of value 𝑒. The oplax transformation 𝛽 is thus 𝛾 ∗ 𝑞.
Second, note that 𝑞 is a trivial fibration, as it is defined by pulling back the
trivial fibration 𝑝. The existence of the transformation 𝛼 thus follows from the
following lemma that concludes the proof. □

22.3.2 Lemma. Let 𝑝 : 𝐶 → 𝐷 and 𝑓 , 𝑔 : 𝐵 → 𝐶 be three 𝜔-functors and
let 𝛽 : 𝑝 𝑓 ⇒ 𝑝𝑔 be an oplax transformation. If 𝑝 is a trivial fibration and 𝑇
is a cofibrant 𝜔-category, then there exists an oplax transformation 𝛼 : 𝑓 ⇒ 𝑔

such that 𝛽 = 𝑝 ∗ 𝛼.
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Proof. The oplax transformation 𝛽 corresponds to an 𝜔-functor 𝐵 → Γ(𝐷).
Consider the pullback square

Γ(𝐷) ×𝐷×𝐷 𝐶 × 𝐶 //

��

Γ(𝐷)
(𝜋,𝜋 )
��

𝐶 × 𝐶
𝑝×𝑝

// 𝐷 × 𝐷.

As the source of 𝛽 is 𝑝 𝑓 and its target is 𝑝𝑔, we get an 𝜔-functor

(𝛽, 𝑓 × 𝑔) : 𝐵→ Γ(𝐷) ×𝐷×𝐷 𝐶 × 𝐶.

The naturality square

Γ(𝐶) Γ (𝑝)
//

(𝜋,𝜋 )
��

Γ(𝐷)
(𝜋,𝜋 )
��

𝐶 × 𝐶
𝑝×𝑝
// 𝐷 × 𝐷

induces an 𝜔-functor

𝑞 : Γ(𝐶) → Γ(𝐷) ×𝐷×𝐷 𝐶 × 𝐶.

An oplax transformation 𝛼 as in the statement exactly corresponds to a dotted
arrow making the triangle

Γ(𝐶)
𝑞

��

𝐵

66

(𝛽, 𝑓 ×𝑔)
// Γ(𝐷) ×𝐷×𝐷 𝐶 × 𝐶

commute. As 𝐵 is cofibrant, to get the result it suffices to show that 𝑞 is a trivial
fibration.

Let us prove this:

1. An object of Γ(𝐷) ×𝐷×𝐷 𝐶 ×𝐶 is given by two objects 𝑥 and 𝑥′ of 𝐶 and a
1-cell 𝑣 : 𝑝(𝑥) → 𝑝(𝑥′). As 𝑝 is a trivial fibration, there exists 𝑢 : 𝑥 → 𝑥′

such that 𝑝(𝑢) = 𝑣, showing that 𝑞 is surjective on objects.
2. Let 𝑛 ≥ 1 and let 𝛾 : 𝑥 ↷ 𝑦 and 𝛿 : 𝑧 ↷ 𝑡 be two parallel 𝑛-cylinders

of 𝐶. Suppose we have an (𝑛 + 1)-cell from 𝑞(𝛾) to 𝑞(𝛿). This means that
we have two 𝑛-cells 𝑢 : 𝑥 → 𝑧 and 𝑣 : 𝑦 → 𝑡 of 𝐶 and an (𝑛 + 1)-cylinder
Γ : 𝑝(𝛾) → 𝑝(𝛿) : 𝑝(𝑢) ↷ 𝑝(𝑣). As 𝑝 is a trivial fibration, the (𝑛 + 2)-cell
of the (𝑛 + 1)-cylinder Γ can be lifted to 𝐶 yielding an (𝑛 + 1)-cylinder
Λ : 𝛾 → 𝛿 : 𝑢 ↷ 𝑣 of 𝐶 such that 𝑝(Λ) = Γ. This shows that 𝑞 is a trivial
fibration, thereby proving the lemma. □
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22.4 Examples

22.4.1 Polygraphic homology of 𝑅1. We will compute the polygraphic ho-
mology of the free-standing reversible cell 𝑅1, introduced in §20.4.1. We will
see that its homology is non trivial. This implies that 𝑅1 is not weakly con-
tractible.

Since 𝑅1 is freely generated by a polygraph, its homology is the homology
of its linearization 𝐶 = Ab(𝑅1). We have

𝐶0 = Z[0, 1]
and

𝐶 𝑗 = Z[{𝑟𝑙1 ,...,𝑙 𝑗−1 , 𝑟 𝑙1 ,...,𝑙 𝑗−1 | 𝑙𝑘 = ±, 1 ≤ 𝑘 < 𝑗}],
with

𝑑1 ( [𝑟]) = [𝑡0 (𝑟)] − [𝑠0 (𝑟)] = [1] − [0],
and similarly,

𝑑1 ( [𝑟]) = [0] − [1] = −𝑑 ( [𝑟]),

𝑑 𝑗 ( [𝑟𝑙1 ,...,𝑙 𝑗−2 ,−]) = [𝑡 𝑗−1 (𝑟𝑙1 ,...,𝑙 𝑗−2 ,−)] − [𝑠 𝑗−1 (𝑟𝑙1 ,...,𝑙 𝑗−1 ,−)]
= [𝑟𝑙1 ,...,𝑙 𝑗−2 ∗ 𝑗−2 𝑟 𝑙1 ,...,𝑙 𝑗−2 ] − [1𝑠 𝑗−2 (𝑟𝑙1 ,...,𝑙 𝑗−2 ) ]
= [𝑟𝑙1 ,...,𝑙 𝑗−2 ] + [𝑟 𝑙1 ,...,𝑙 𝑗−2 ],

and similarly,

𝑑 𝑗 ( [𝑟 𝑙1 ,...,𝑙 𝑗−2 ,−]) = −𝑑 𝑗 ( [𝑟𝑙1 ,...,𝑙 𝑗−2 ,−]),
𝑑 𝑗 ( [𝑟𝑙1 ,...,𝑙 𝑗−2 ,+]) = −𝑑 𝑗 ( [𝑟𝑙1 ,...,𝑙 𝑗−2 ,−]),
𝑑 𝑗 ( [𝑟 𝑙1 ,...,𝑙 𝑗−2 ,+]) = 𝑑 𝑗 ( [𝑟𝑙1 ,...,𝑙 𝑗−2 ,−]).

Let us compute the homology of this chain complex. One has

𝐻Pol
0 (𝑅1) = Z[0, 1]/⟨[1] − [0]⟩ ≃ Z.

A 1-chain 𝑎[𝑟] + 𝑏[𝑟] is a cycle if and only if

𝑑1 (𝑎[𝑟] + 𝑏[𝑟]) = (𝑎 − 𝑏) [𝑟] = 0,

that is, if and only if 𝑎 = 𝑏. But [𝑟] + [𝑟] is a boundary. Hence

𝐻Pol
1 (𝑅1) = 0.

Similarly, a 2-chain 𝑎[𝑟−] + 𝑏[𝑟−] + 𝑐[𝑟+] + 𝑑 [𝑟+] is a cycle if and only if
one has 𝑎 − 𝑏 − 𝑐 + 𝑑 = 0. The abelian group of 2-cycles is thus isomorphic
to Z3. As for the abelian group of 2-boundaries, it is spanned by [𝑟−] + [𝑟−]
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and [𝑟+] + [𝑟+]. It is thus isomorphic to Z2. Computing the quotient, one gets
that

𝐻Pol
2 (𝑅1) ≃ Z.

This already proves that 𝑅1 is not weakly contractible. More generally, for 𝑛 ≥ 2,
one checks that

𝐻Pol
𝑛 (𝑅1) ≃ Z(2𝑛−2𝑛−2 )−2𝑛−1

= Z2𝑛−2
.

22.4.2 Thomason homology and the homology of 𝐾 (N, 2). In this chapter,
we defined a homology theory for 𝜔-categories: the polygraphic homology.
There is a second homology theory for 𝜔-categories, that we will call the
Thomason homology, which can be morally defined in the following way. Let𝐶
be an 𝜔-category. Consider the weak 𝜔-groupoid obtained by weakly inverting
all the cells of 𝐶. This weak 𝜔-groupoid corresponds to a homotopy type and,
morally, the Thomason homology of 𝐶 is the homology of this homotopy type.
One way to give a precise definition of this homology is to use Street nerve
𝑁 : Cat𝜔 → Δ̂, introduced in [334], which extends the usual nerve functor
(see §F.1.3) to 𝜔-categories. If 𝐶 is an 𝜔-category, for every 𝑛 ≥ 0, we set

𝐻Th
𝑛 (𝐶) = 𝐻𝑛 (𝑁𝐶).

This is the Thomason homology of𝐶. When𝐶 is a category, we recover the clas-
sical homology of categories (generalizing the classical homology of monoids)
recalled in Section F.1. The main result of [155] says that the polygraphic
homology and the Thomason homology of a category agree. It is tempting to
think that these two homologies always agree. This is not the case!

Here is a counter-example. Recall (see Section 14.3) that to any abelian
monoid 𝑀 , one can associate a 2-category with only one object, one 1-cell
(the identity of the unique object) and 𝑀 as the set of 2-cells. Let us denote
this 2-category by 𝐾 (𝑀, 2). By [10, Theorem 4.7], if 𝑀 is an abelian group 𝐴,
then the Thomason homology of 𝐾 (𝐴, 2) is the homology of the corresponding
Eilenberg–Mac Lane space, that is, of any CW-complex whose homotopy
groups are trivial except the second one which is 𝐴. In particular, by classical
results, the Thomason homology of 𝐾 (Z, 2) is the homology of CP∞, the
infinite-dimensional complex projective space, and is hence Z in even degree
and null in odd degree. Moreover, by [10, Theorem 4.9], the inclusion 2-functor
𝐾 (N, 2) ↩→ 𝐾 (Z, 2) induces an isomorphism in homology. We thus have

𝐻Th
𝑛 (𝐾 (N, 2)) =

{
Z if 𝑛 is even,
0 if 𝑛 is odd.
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But 𝐾 (N, 2) is freely generated by the unique 2-polygraph 𝑃 with

𝑃0 = {⋆}, 𝑃1 = ∅, 𝑃2 = {𝛼}.
Its polygraphic homology is hence the homology of its linearization

Z 0oo Zoo 0oo · · ·oo

and we have

𝐻Pol
𝑛 (𝐾 (N, 2)) =

{
Z if 𝑛 = 0 or 𝑛 = 2,
0 otherwise.

In particular, 𝐻Pol
4 (𝐾 (N, 2)) ; 𝐻Th

4 (𝐾 (N, 2)).



23
Resolutions by (𝜔, 1)-polygraphs

Anick and Green constructed the first explicit free resolutions for algebras from
a presentation of relations by non-commutative Gröbner bases [7, 8, 9, 152].
Their constructions provide resolutions to compute homological invariants,
such as homology groups, Hilbert and Poincaré series of algebras presented
by generators and relations given by a Gröbner basis. The chains of these
resolutions are defined by iterated overlaps of the leading terms of the Gröbner
basis and the differentials are constructed by noetherian induction. Similar
methods for calculating free resolutions for monoids and algebras, inspired
by string rewriting mechanisms, have been developed in numerous works [60,
154, 219, 221]. A purely polygraphic approach to the construction of these
resolutions by rewriting has been developed in [163] using the notion of (𝜔, 1)-
polygraphic resolution, where the mechanism for proving the acyclicity of the
resolution relies on the construction of a normalization strategy extended in all
dimensions. The construction of polygraphic resolutions by rewriting has also
been applied to the case of associative algebras in [160] and shuffle operads in
[269], introducing in each case a notion of polygraph adapted to the algebraic
structure.

In this chapter, we show how to construct a polygraphic resolution of a
category from a convergent presentation of that category, and how to deduce
an abelian version of such a resolution. The notion of polygraphic resolution
of an 𝜔-category was introduced in Section 19.3: it consists of a polygraph
which is weakly equivalent to the category. We consider here a variant of this
notion adapted to (𝜔, 1)-categories, related to the folk model structure on the
category Cat𝜔,1 of (𝜔, 1)-categories. The chapter is organized as follows. In
Section 23.1, we introduce the notion of contraction with respect to a unital
section, which we often use to show that an (𝜔, 1)-polygraph is acyclic. In
Section 23.2, we show how to compute a cofibrant replacement of a category in
the category Cat𝜔,1 from one of its convergent presentation. This construction
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extends to higher dimensions the one given in low dimensions in Chapter 7 in
terms of coherent presentations. In Section 23.3, we explain how to deduce an
abelian resolution from a resolution by an (𝜔, 1)-polygraph, thus again extend-
ing the constructions given in low dimensions in Chapter 9. We deduce from
this resolution several homological and homotopical finiteness conditions for
finite-convergence. In Section 23.4, we extend the results about finite derivation
type presented in Chapter 8.

23.1 Polygraphic resolutions and contractions

In this section, we consider the folk model structure on Cat𝜔,1 constructed in
Theorem 21.3.5 and described in §21.3.9, and the notion of oplax transforma-
tion between 𝜔-functors as defined in §20.2.14.

23.1.1 Polygraphic resolution of an (𝜔, 1)-category. A polygraphic resolu-
tion of a category 𝐶 in Cat𝜔,1 is a pair (𝑃, 𝑝) made of an (𝜔, 1)-polygraph 𝑃
and a trivial fibration 𝑝 : 𝑃⊤ → 𝐶, where 𝑃⊤ is the free (𝜔, 1)-category
generated by 𝑃. Expanding the definition, 𝑃 is a polygraphic resolution of 𝐶
if and only if it presents 𝐶 and, for every 𝑛 ⩾ 2, the extension 𝑃𝑛+1 of 𝑃⊤⩽𝑛 is
acyclic.

23.1.2 Unital sections and essential cells. Let 𝑃 be an (𝜔, 1)-polygraph. For 𝑢
a 1-cell of the quotient category 𝑃, we denote by 𝑃⊤𝑢 the corresponding fiber
of the canonical projection 𝜋 : 𝑃⊤ ↠ 𝑃. By definition, 𝑃⊤𝑢 is an 𝜔-groupoid,
whose 0-cells are the representatives of 𝑢 in 𝑃⊤. To avoid confusion, we keep
the dimensions of the (𝜔, 1)-category 𝑃⊤ when talking about the cells and
compositions of 𝑃⊤𝑢 .

A unital section of 𝑃 is a family

𝜄 =
(
𝜄𝑢 : 1 → 𝑃⊤𝑢

)
𝑢∈𝑃

of 𝜔-functors, satisfying 𝜄1𝑥 = 11𝑥 for every 0-generator 𝑥 of 𝑃. Such a family
of functors assigns to every 1-cell 𝑢 of 𝑃 a representative 1-cell 𝜄𝑢 in 𝑃⊤, in such
a way that identities are mapped to identities. A unital section of 𝑃 is almost a
functorial section of the canonical projection 𝜋 : 𝑃⊤ → 𝑃, except that it is not
defined in dimension 0 and no specific compatibility with the 0-composition is
required.

Fix a unital section 𝜄 of 𝑃. If 𝜙 is an 𝑛-cell of 𝑃⊤, we will write 𝜙 for 𝜄𝜋(𝜙)
when no confusion occurs. Note that 𝜙 is an identity if 𝑛 ⩾ 2. A 1-cell 𝑢 of 𝑃⊤ is
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𝜄-reduced if 𝑢 = �̂� holds. A non-𝜄-reduced 1-cell 𝑢 of 𝑃⊤ is 𝜄-essential if 𝑢 = 𝑎𝑣,
with 𝑎 a 1-generator of 𝑃 and 𝑣 an 𝜄-reduced 1-cell of 𝑃⊤.

23.1.3 Contractions. Let 𝑃 be an (𝜔, 1)-polygraph, and 𝜄 be a unital section
of 𝑃. An 𝜄-contraction of 𝑃 is a family

𝜎 =
©«
𝑃⊤𝑢

1𝑃⊤𝑢
**

𝜀 **

𝑃⊤𝑢

1 𝜄

HH𝜎𝑢��

ª®®®¬𝑢∈𝑃
of oplax transformations such that 𝜎𝜎𝜙 = 1𝜎𝜙 and 𝜎𝜄𝑢 = 1 𝜄𝑢 for every cell 𝜙
in 𝑃⊤ and 1-cell 𝑢 in 𝑃, where𝜎𝜓 is a short notation for (𝜎𝜓)𝜓 . An 𝜄-contraction
is thus almost an oplax transformation from 1𝑃⊤ to 𝜄𝜀, but, like 𝜄𝜀, it is not
defined on 0-cells and no specific compatibility with the 0-composition is
required.

Fix an 𝜄-contraction 𝜎 of 𝑃. By definition of 𝜎, for all 𝑛 ⩾ 1, 𝑛-cell 𝜙 of 𝑃⊤,
and 1 ⩽ 𝑘 < 𝑛,

𝑠𝑘 (𝜎𝜙) = 𝜙 ∗1 𝜎𝑡1 (𝜙) ∗2 · · · ∗𝑘 𝜎𝑡𝑘 (𝜙) and 𝑡𝑘 (𝜎𝜙) =
{
𝜙 if 𝑘 = 1,
𝜎𝑠𝑘 (𝜙) otherwise.

An 𝑛-cell 𝜙 of 𝑃⊤ is 𝜎-reduced if it is an identity or in the image of 𝜎.

23.1.4 Sided contractions. We say that an 𝜄-contraction 𝜎 is right if, for
all 𝑛 ⩾ 1 and 𝑛-cells 𝜙, 𝜓 of 𝑃⊤ of respective 1-sources 𝑢 and 𝑣, it satisfies

𝜎𝜙𝜓 = 𝑢𝜎𝜓 ∗1 𝜎𝜙�̂�. (23.1)

Symmetrically, an 𝜄-contraction is left if for all 𝑛 ⩾ 1 and 𝑛-cells 𝜙, 𝜓 of 𝑃⊤ of
respective 1-sources 𝑢 and 𝑣, it satisfies

𝜎𝜙𝜓 = 𝜎𝜙𝑣 ∗1 𝜎𝑢𝜓 . (23.2)

In the sequel, we will consider right 𝜄-contractions, however the definitions and
results admit a left version.

If 𝜎 is a right 𝜄-contraction of 𝑃, and 𝑛 ⩾ 1, a non-𝜎-reduced 𝑛-cell 𝜙 of 𝑃⊤
is 𝜎-essential if there exist an 𝑛-cell 𝛼 of 𝑃 and an 𝜄-reduced 1-cell 𝑢 of 𝑃⊤
such that 𝜙 = 𝛼𝑢.

23.1.5 Lemma ([163, Corollary 3.3.5]). Let 𝑃 be an (𝜔, 1)-polygraph, and 𝜄
be a unital section of 𝑃. A right 𝜄-contraction 𝜎 of 𝑃 is uniquely and entirely
determined by its values on the 𝜄-essential 1-cells of 𝑃⊤ and, for every 𝑛 ⩾ 1,
on the 𝜎-essential 𝑛-cells of 𝑃⊤.
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Proof. If 𝜎 is a right 𝜄-contraction, then its values are prescribed on every cell
of 𝑃⊤ that is not 𝜄-essential or 𝜎-essential. Now, the values of 𝜎 on 𝜄-essential
and𝜎-essential cells of 𝑃⊤ can be chosen freely (with correct source and target),
provided that these values make 𝜎 compatible with all the defining relations
of the structure of (𝜔, 1)-category, and in particular with exchange relations
between the 0-composition and the other compositions. It turns out that (23.1)
imposes compatibility with these exchange relations. □

23.1.6 Theorem. Let 𝑃 be an (𝜔, 1)-polygraph, and 𝜄 be a unital section of 𝑃.
The canonical projection 𝜋 : 𝑃⊤ → 𝑃 is a trivial fibration in Cat𝜔,1 if and
only if 𝑃 admits a right 𝜄-contraction.

Proof. Assume that 𝜋 : 𝑃⊤ → 𝑃 is a trivial fibration. Let us define a right
𝜄-contraction 𝜎 of 𝑃 thanks to Lemma 23.1.5. If 𝑎𝑢 is an 𝜄-essential 1-cell of
the free (𝜔, 1)-category 𝑃⊤, then 𝜋(𝑎𝑢) = 𝜋(𝑎𝑢), so that, by definition of 𝑃,
there exists a 1-cell

𝜎𝑎𝑢 : 𝑎𝑢 → 𝑎𝑢

in 𝑃⊤. Assume that 𝜎 is defined on the 𝑛-cells of 𝑃⊤, for 𝑛 ⩾ 1, and let 𝛼𝑢 be
a 𝜎-essential (𝑛+1)-cell of 𝑃⊤. The 𝑛-cells 𝑠 (𝜎𝛼𝑢) and 𝑡 (𝜎𝛼𝑢) are parallel, so,
by hypothesis, there exists an (𝑛+1)-cell

𝜎𝛼𝑢 : 𝑠 (𝜎𝛼𝑢) → 𝑡 (𝜎𝛼𝑢)

in 𝑃⊤.
Conversely, let 𝜎 be an 𝜄-contraction of 𝑃, and 𝜙, 𝜓 be parallel 𝑛-cells of 𝑃⊤,

for 𝑛 ⩾ 1. We have 𝑡 (𝜎𝜙) = 𝜎𝑠 (𝜙) = 𝜎𝑠 (𝜓) = 𝑡 (𝜎𝜓) by hypothesis, so that the
(𝑛+1)-cell 𝜎𝜙 ∗𝑛 𝜎−𝜓 is well defined, with source 𝑠 (𝜎𝜙) and target 𝑠 (𝜎𝜓). The
fact that 𝑡𝑘 (𝜙) = 𝑡𝑘 (𝜓) holds for every 0 ⩽ 𝑘 < 𝑛 implies that

(𝜎𝜙 ∗𝑛 𝜎𝜓)− ∗𝑛−1 𝜎
−
𝑡𝑛−1 (𝜙) ∗𝑛−2 · · · ∗0 𝜎−𝑡0 (𝜙)

is a well-defined (𝑛+1)-cell of 𝑃⊤, with source 𝜙 and target 𝜓, thus proving
that 𝑃𝑛+1 is acyclic. □

This theorem shows that to prove that an (𝜔, 1)-polygraph 𝑃 is a polygraphic
resolution of the category 𝑃, it suffices to provide it with a right 𝜄-contraction. In
the next section, we show how to construct such a contraction from a convergent
presentation of the category 𝑃.
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23.2 Polygraphic resolutions from convergence

23.2.1 The cells of the Squier polygraphic resolution. Assume that 𝑃 is a
2-polygraph. Define Sq(𝑃) as the graded set (Sq𝑛 (𝑃))𝑛⩾0 where

1. Sq0 (𝑃) = 𝑃0 and Sq1 (𝑃) = 𝑃1,

2. for 𝑛 ⩾ 2, Sq𝑛 (𝑃) is the set of tuples (𝑢1, . . . , 𝑢𝑛), written 𝑢1 | · · · |𝑢𝑛, of
non-identity reduced 1-cells of 𝑃∗ such that

– 𝑢1 is a 1-generator of 𝑃,

– for every 1 ⩽ 𝑖 < 𝑛, the 1-cell 𝑢𝑖𝑢𝑖+1 is not reduced,

– for every 1 ⩽ 𝑖 < 𝑛, every proper left-factor of 𝑢𝑖𝑢𝑖+1 is reduced.

23.2.2 Interpretation in the reduced case. Assume that 𝑃 is a reduced
2-polygraph. Then 𝑢1 |𝑢2 is a 2-generator of Sq(𝑃) if and only if 𝑢1 is a 1-gene-
rator of 𝑃 and 𝑢1𝑢2 is the source of a 2-generator of 𝑃.

From the classification of critical branchings of a 2-polygraph given in §4.3.9,
the critical branchings of the reduced polygraph 𝑃 are of the form

𝑢1
//   

𝑣2
// 𝑤2 //

CC

𝑢3 //

𝛼
KS

𝛽��

where 𝛼 and 𝛽 are 2-generators of 𝑃, and 𝑢1𝑣2, 𝑤2 and 𝑢3 are reduced non-
identity 1-cells of 𝑃∗, with 𝑢1 a 1-generator of 𝑃. Putting 𝑢2 = 𝑣2𝑤2 induces
a one-to-one correspondence between the 3-cells 𝑢1 |𝑢2 |𝑢3 of Sq3 (𝑃) and the
critical branchings of 𝑃 whose source is 𝑢1𝑢2𝑢3.

For 𝑛 ⩾ 3, define the critical 𝑛-branchings of 𝑃 as the non-ordered families
(𝛼1, . . . , 𝛼𝑛) of rewriting steps of 𝑃 with the same source, overlapping in a
non-trivial and minimal way. Conducting a similar analysis as in §4.3.9 shows
that the critical 3-branchings of 𝑃 fall in one of the two cases

𝑢1
// !!

𝑣2
// 𝑤2 // AA𝑥2 //

��
𝑢3 //

𝑢4
//

𝛼
KS

𝛽��

𝛾
KS

(23.3)
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or

𝑢1
//

��

𝑣2
// 𝑤2 // AA

𝑣3 // 𝑤3 //
��

𝑢4
//

𝛼
KS

𝛽��

𝛾
KS

(23.4)

where 𝛼, 𝛽 and 𝛾 are 2-generators of 𝑃, and 𝑢1𝑣2, 𝑤2, 𝑢3 and 𝑢4 in (23.3)
or 𝑢1𝑣2, 𝑤2, 𝑣3𝑤3 and 𝑢4 in (23.4) are reduced non-identity 1-cells of 𝑃∗,
with 𝑢1 a 1-generator of 𝑃. Putting 𝑢2 = 𝑣2𝑤2𝑥2, in (23.3), or 𝑢2 = 𝑣2𝑤2 and
𝑢3 = 𝑣3𝑤3, in (23.4), induces a one-to-one correspondence between the 4-cells
𝑢1 |𝑢2 |𝑢3 |𝑢4 of Sq4 (𝑃) and the critical 3-branchings of 𝑃. This observation
generalizes to establish a bĳection between the (𝑛+1)-cells of Sq(𝑃) and the
critical 𝑛-branchings of 𝑃.

23.2.3 Theorem. Let 𝑃 be a convergent 2-polygraph. There exists a unique
structure of (𝜔, 1)-polygraph on Sq(𝑃), and unique unital section 𝜄 and right
𝜄-contraction 𝜎 of Sq(𝑃), that satisfy 𝜄𝑢 = �̂�, for every 1-cell 𝑢 of 𝑃∗, and

𝜎(𝑢1 | · · · |𝑢𝑛 )𝑢𝑛+1 =

{
𝑢1 | · · · |𝑢𝑛+1 if 𝑢1 | · · · |𝑢𝑛+1 ∈ Sq𝑛+1 (𝑃),
1(𝑢1 | · · · |𝑢𝑛 )𝑢𝑛+1 if 𝑢𝑛𝑢𝑛+1 is reduced,

(23.5)

for all 𝑛-cell 𝑢1 | · · · |𝑢𝑛 of Sq𝑛 (𝑃) with 𝑛 ⩾ 1, and reduced 1-cell 𝑢𝑛+1 of 𝑃∗.
Moreover, this structure makes Sq(𝑃) a polygraphic resolution of the cate-
gory 𝑃.

The polygraphic resolution Sq(𝑃) thus constructed is called the Squier poly-
graphic resolution of the category 𝑃 with respect to the presentation 𝑃.

Proof. If the condition (23.5) is satisfied, then the source and target maps
of Sq(𝑃) are imposed by the first case, and the definition of an 𝜄-contraction.
Indeed, writing 𝑢 = 𝑢1 | · · · |𝑢𝑛−1, we must have

𝑠 (𝑢1 | · · · |𝑢𝑛) = 𝑠 (𝜎𝑢𝑢𝑛 ) = 𝑢𝑢𝑛 ∗1 𝜎𝑡1 (𝑢)𝑢𝑛 ∗2 · · · ∗𝑛−1 𝜎𝑡𝑛−1 (𝑢)𝑢𝑛 ,

and

𝑡 (𝑢1 | · · · |𝑢𝑛) = 𝑡 (𝜎𝑢𝑢𝑛 ) =
{
𝑢1𝑢2 if 𝑛 = 2,
𝜎𝑠 (𝑢)𝑢𝑛 otherwise.

Then we prove, using the definition of the source and target of an 𝜄-contraction,
that these source and target maps satisfy the globular relations. Next, according
to Lemma 23.1.5, it is necessary and sufficient to define 𝜎 on the 𝜄-essential
and 𝜎-essential cells of Sq(𝑃)⊤.

The 𝜄-essential 1-cells are the 1-cells 𝑢1𝑢2, where 𝑢1 is a 1-cell of 𝑃, 𝑢2 is
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a reduced 1-cell of 𝑃∗, and 𝑢1𝑢2 is not reduced. If 𝑢1 |𝑢2 is a 2-cell of Sq(𝑃),
then (23.5) imposes 𝜎𝑢1𝑢2 = 𝑢1 |𝑢2. Otherwise, there exists a proper factor-
ization 𝑢2 = 𝑣2𝑤2 such that 𝑢1 |𝑣2 is a 2-cell of Sq(𝑃), and (23.5) reads
𝜎(𝑢1 |𝑣2 )𝑤2 = 1(𝑢1 |𝑣2 )𝑤2 . This last equality imposes that the source and target
of 𝜎(𝑢1 |𝑣2 )𝑤2 must be equal, giving the value of 𝜎 on 𝑢1𝑢2:

𝜎𝑢1𝑢2 = 𝑡 (𝜎(𝑢1 |𝑣2 )𝑤2 ) = 𝑠 (𝜎(𝑢1 |𝑣2 )𝑤2 ) = (𝑢1 |𝑣2)𝑤2 ∗1 𝜎𝑢1𝑣2𝑤2 .

Now, fix 𝑛 ⩾ 2. The 𝜎-essential 𝑛-cells of Sq(𝑃)⊤ are the 𝑢𝑢𝑛+1, where
𝑢 = 𝑢1 | · · · |𝑢𝑛 is an 𝑛-cell of Sq(𝑃), and 𝑢𝑛+1 is a reduced 1-cell of 𝑃∗. We
distinguish three cases. First, if 𝑢 |𝑢𝑛+1 is an (𝑛 + 1)-cell of Sq(𝑃), then (23.5)
imposes 𝜎𝑢𝑢𝑛+1 = 𝑢 |𝑢𝑛+1. Second, if 𝑢𝑛𝑢𝑛+1 is reduced, then (23.5) gives
𝜎𝑢𝑢𝑛+1 = 1𝑢𝑢𝑛+1 . Otherwise, there exists a proper factorization 𝑢𝑛+1 = 𝑣𝑛+1𝑤𝑛+1
such that 𝑢 |𝑣𝑛+1 is an (𝑛 + 1)-cell of Sq(𝑃). In that case, (23.5) implies that the
source and the target of 𝜎(𝑢 |𝑣𝑛+1 )𝑤𝑛+1 are equal. On the one hand, we have

𝑠 (𝜎(𝑢 |𝑣𝑛+1 )𝑤𝑛+1 ) = (𝑢 |𝑣𝑛+1)𝑤𝑛+1 ∗1 𝜎𝑡1 (𝑢 |𝑣𝑛+1 )𝑤𝑛+1 ∗2 · · · ∗𝑛 𝜎𝑡𝑛 (𝑢 |𝑣𝑛+1 )𝑤𝑛+1 ,

and, on the other hand, we obtain

𝑡 (𝜎(𝑢 |𝑣𝑛+1 )𝑤𝑛+1 ) = 𝜎𝑠 (𝑢 |𝑣𝑛+1 )𝑤𝑛+1 = 𝜎𝑠 (𝜎𝑢𝑣𝑛+1 )𝑤𝑛+1

= 𝜎𝑢𝑢𝑛+1∗1𝜎𝑡1 (𝑢)𝑣𝑛+1𝑤𝑛+1∗2 · · ·∗𝑛𝜎𝑡𝑛 (𝑢)𝑣𝑛+1𝑤𝑛+1 .

Using the compatibility of𝜎with the compositions ∗𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛, we develop
the latter expression, by induction on 𝑛, to obtain a composite (𝑛+1)-cell
containing 𝜎𝑢𝑢𝑛+1 , 𝜎𝜎𝑡𝑛 (𝑢)𝑣𝑛+1𝑤𝑛+1 , and lower dimensional invertible cells. Thus,
we obtain a relation between two composite (𝑛+1)-cells that defines 𝜎𝑢𝑢𝑛+1 in
terms of the other involved cells.

Finally, we apply Theorem 23.1.6 to conclude that Sq(𝑃) is a polygraphic
resolution of the category 𝐶. □

23.2.4 Interpretation in the reduced case. Assume that 𝑃 is a reduced con-
vergent 2-polygraph, and let us examine the first dimensions of Sq(𝑃).

The 2-cells 𝑎 |𝑢 of Sq2 (𝑃), for 𝑎 a 1-generator of 𝑃 and 𝑢 a reduced 1-cell
of 𝑃∗ such that 𝑎𝑢 is not reduced, have the shape

𝑎 |𝑢 : 𝑎𝑢 ⇒ 𝑎𝑢.

The 𝜄-contraction 𝜎 is given, on a 1-cell 𝑎𝑢 of 𝑃∗ with 𝑎 ∈ 𝑃1 and 𝑢 reduced,
by

𝜎𝑎𝑢 =



𝑎 |𝑢 if 𝑎 |𝑢 ∈ Sq2 (𝑃),
1𝑎𝑢 if 𝑎𝑢 is reduced,
(𝑎 |𝑣)𝑤 ∗1 𝜎𝑎𝑣𝑤 if 𝑢 = 𝑣𝑤 with 𝑎 |𝑣 ∈ Sq2 (𝑃).
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On more general 1-cells, 𝜎 is defined by the fact that it is a right 𝜄-contraction,
and the relation

𝜎𝑢𝑣 = 𝑢𝜎𝑣 ∗1 𝜎𝑢�̂�.
By construction, the 3-cells of Sq3 (𝑃) have the shape

𝑎𝑢𝑣 𝜎𝑎𝑢𝑣

�$
𝑎𝑢𝑣

(𝑎 |𝑢)𝑣 .6

𝜎𝑎𝑢𝑣

08 𝑎𝑢𝑣.
𝑎 |𝑢 |𝑣
�

The 𝜄-contraction 𝜎 is defined on the 2-cells (𝑎 |𝑢)𝑣 by (23.5). The simple cases
are 𝜎(𝑎 |𝑢)𝑣 = 𝑎 |𝑢 |𝑣, if the latter belongs to Sq3 (𝑃), and 𝜎(𝑎 |𝑢)𝑣 = 1(𝑎 |𝑢)𝑣 if 𝑢𝑣
is reduced. The more complicated case is the definition of 𝜎(𝑎 |𝑢)𝑣𝑤 when 𝑎 |𝑢 |𝑣
belongs to Sq3 (𝑃). In this situation, the relation 𝜎(𝑎 |𝑢 |𝑣)𝑤 = 1(𝑎 |𝑢 |𝑣)𝑤 implies
𝑠(𝜎(𝑎 |𝑢 |𝑣)𝑤) = 𝑡 (𝜎(𝑎 |𝑢 |𝑣)𝑤), which develops into

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤 (0

(𝑎 |𝑢 |𝑣)𝑤

�

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤

��
𝜎𝜎𝑎𝑢𝑣𝑤 
�

𝑎𝑢𝑣𝑤

(𝑎 |𝑢)𝑣𝑤

FN

𝜎𝑎𝑢𝑣𝑤

8@

𝜎𝑎𝑢𝑣𝑤

.6 �𝑎𝑢𝑣𝑤
=

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤 (0

𝜎𝑎𝑢𝑣𝑤

�&
𝜎(𝑎 |𝑢)𝑣𝑤
�

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤

��

𝜎𝜎𝑎𝑢𝑣𝑤


�

𝑎𝑢𝑣𝑤

(𝑎 |𝑢)𝑣𝑤

FN

𝜎𝑎𝑢𝑣𝑤

.6 �𝑎𝑢𝑣𝑤.

Finally, the 4-cells of Sq4 (𝑃) have the same shape as this last defining equation,
but in the case where 𝑣𝑤 is not reduced and with all proper left-factors reduced:

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤 (0

(𝑎 |𝑢 |𝑣)𝑤

�

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤

��
𝜎𝜎𝑎𝑢𝑣𝑤 
�

𝑎𝑢𝑣𝑤

(𝑎 |𝑢)𝑣𝑤

FN

𝜎𝑎𝑢𝑣𝑤

8@

𝜎𝑎𝑢𝑣𝑤

.6 �𝑎𝑢𝑣𝑤

𝑎 |𝑢 |𝑣 |𝑤

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤 (0

𝜎𝑎𝑢𝑣𝑤

�&
𝜎(𝑎 |𝑢)𝑣𝑤
�

𝑎𝑢𝑣𝑤

𝜎𝑎𝑢𝑣𝑤

��

𝜎𝜎𝑎𝑢𝑣𝑤


�

𝑎𝑢𝑣𝑤

(𝑎 |𝑢)𝑣𝑤

FN

𝜎𝑎𝑢𝑣𝑤

.6 �𝑎𝑢𝑣𝑤.

23.3 Abelianization of polygraphic resolutions

In Section 22.3, we saw that the polygraphic homology of a monoid, seen as an
𝜔-category, coincides with its integral homology. In the same spirit, in this sec-
tion we show how to deduce the homology of a small category with coefficients
in natural systems from one of its resolutions in Cat𝜔,1. In particular, we show
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how to associate a resolution of natural systems to a polygraphic resolution
of a category in Cat𝜔,1, and we illustrate this construction with examples of
polygraphic resolutions calculated from convergent polygraphs.

23.3.1 Free natural systems. A natural system on a category 𝐶 is a functor
from the category F𝐶 of factorization of 𝐶 and with values in the category Ab,
see §F.2.2 for details. For a family 𝑋 of 1-cells of 𝐶, we denote by 𝐹𝐶 [𝑋] the
free natural system on 𝐶 generated by 𝑋 and given by

𝐹𝐶 [𝑋] =
⊕
𝑥∈𝑋

F𝐶 (𝑥,−).

Fix an (𝜔, 1)-polygraph 𝑃 presenting 𝐶. We consider the free natural system
𝐹𝐶 [𝑃0] generated by the identity 1-cells 1𝑥 , for 𝑥 ∈ 𝑃0. If 𝑢 is a 1-cell of 𝐶,
then 𝐹𝐶 [𝑃0]𝑢 is the free abelian group generated by the pairs (𝑣, 𝑤) of 1-cells
of 𝐶 such that 𝑡 (𝑣) = 𝑠 (𝑤) = 𝑥 and 𝑣𝑤 = 𝑢.

We also consider, for every natural number 𝑛 ⩾ 1, the free natural system
𝐹𝐶 [𝑃𝑛] generated by one copy of the 1-cell 𝛼 of𝐶 for each 𝑛-generator 𝛼 of 𝑃.
If 𝑢 is a 1-cell of 𝐶, then 𝐹𝐶 [𝑃𝑛]𝑢 is the free abelian group generated by the
triples (𝑣, 𝛼, 𝑤), denoted by 𝑣[𝛼]𝑤, made of an 𝑛-generator 𝛼 of 𝑃, and 1-cells 𝑣
and 𝑤 of 𝐶, such that the composite 𝑣𝛼𝑤 is well defined in 𝐶 and equal to 𝑢

The mapping of every 1-generator 𝑥 of 𝑃 to the element [𝑥] of 𝐹𝐶 [𝑃1]𝑥 is
extended into a derivation of 𝑃∗1 into 𝐹𝐶 [𝑃1] by putting

[1𝑢] = 0 and [𝑢𝑣] = [𝑢]𝑣 + 𝑢[𝑣],
for all composable 1-cells 𝑢 and 𝑣 in 𝐶. Here, the natural system 𝐹𝐶 [𝑃1] on 𝐶
is seen as a natural system on 𝑃∗1 by composition with the canonical projection
𝑝 : 𝑃∗1 → 𝑃.

For 𝑛 > 1, the mapping of every 𝑛-generator 𝛼 of 𝑃 to the element [𝛼] of
𝐹𝐶 [𝑃𝑛]𝛼 is extended to associate to every 𝑛-cell 𝜙 of 𝑃⊤ the element [𝜙] of
𝐹𝐶 [𝑃𝑛]𝜙 , defined by induction on the size of 𝜙 as follows:

[1𝜙] = 0, [𝜙−] = −[𝜙], [𝜙 ∗𝑘 𝜓] =
{
[𝜙]𝜓 + 𝜙[𝜓] if 𝑘 = 0,
[𝜙] + [𝜓] otherwise.

23.3.2 Abelianization of polygraphic resolutions. Let 𝑃 be an (𝜔, 1)-poly-
graph. We denote by 𝐹𝑃 [𝑃] the complex

· · · // 𝐹𝑃 [𝑃𝑛]
𝑑𝑛 // 𝐹𝑃 [𝑃𝑛−1] // · · · 𝑑1 // 𝐹𝑃 [𝑃0] 𝜀 // Z // 0

of natural systems on 𝑃, whose boundary maps are defined as follows. The
augmentation morphism 𝜀 is defined, on every pair (𝑢, 𝑣) of composable 1-cells
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of 𝑃, by

𝜀(𝑢, 𝑣) = 1.

For 𝑛 ⩾ 1, the morphism 𝑑𝑛 of natural systems on 𝑃 is given, on the genera-
tor [𝛼] corresponding to an 𝑛-cell 𝛼 of 𝑃, by

𝑑𝑛 [𝛼] =
{
(1, 𝛼) − (𝛼, 1) if 𝑛 = 1,
[𝑡 (𝛼)] − [𝑠 (𝛼)] otherwise.

By induction on the size of cells of 𝑃⊤, we prove, for every 𝑛-cell 𝜙 in 𝑃⊤,
with 𝑛 ⩾ 1, that

𝑑𝑛 [𝜙] =
{
(1, 𝜙) − (𝜙, 1) if 𝑛 = 1,
[𝑡 (𝜙)] − [𝑠 (𝜙)] otherwise.

As a consequence, we have 𝜀𝑑1 = 0 and 𝑑𝑛𝑑𝑛+1 = 0, for every 𝑛 ⩾ 1, proving
that 𝐹𝑃 [𝑃] is indeed a chain complex.

23.3.3 Theorem. If 𝑃 is a polygraphic resolution of a category 𝐶, then 𝐹𝐶 [𝑃]
is a resolution by free natural systems on 𝐶 of the constant natural system Z.

Proof. Let 𝜄 be a unital section of 𝑃. By Theorem 23.1.6, 𝑃 admits a right
𝜄-contraction𝜎. Let us consider the following families of morphisms of Z-mod-
ules, indexed by a 1-cell 𝑤 of 𝐶:

𝑖−1 : Z→ 𝐹𝐶 [𝑃0]𝑤 𝑖𝑛 : 𝐹𝐶 [𝑃𝑛]𝑢 → 𝐹𝐶 [𝑃𝑛+1]𝑤

defined by

– 𝑖−1 (1) = (𝑤, 1),
– 𝑖0 (𝑢, 𝑣) = 𝑢 [̂𝑣], for all 1-cells 𝑢, 𝑣 of 𝐶 such that 𝑤 = 𝑢𝑣,
– 𝑖𝑛 (𝑢[𝛼]𝑣) = 𝑢[𝜎𝛼�̂�], for all 𝑛 ⩾ 1, 𝑛-generator 𝛼 in 𝑃, and 1-cells 𝑢, 𝑣 of 𝐶

such that 𝑤 = 𝑢𝛼𝑣.

By induction on the size of the 𝑛-cells of the free (𝜔, 1)-category 𝑃⊤, using
the properties of a right 𝜄-contraction, we prove that

𝑖𝑛 (𝑢[𝜙]𝑣) = 𝑢[𝜎𝜙�̂�]

holds for all 𝑛 ⩾ 1, 𝑛-cell 𝜙 of 𝑃⊤, and 1-cells 𝑢, 𝑣 of 𝐶 such that the compos-
ite 𝑢𝜙𝑣 is well defined. We deduce that (𝜎𝑛)𝑛⩾1 is a contracting homotopy for
the complex 𝐹𝐶 [𝑃]. □
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23.3.4 Homological syzygies. For 𝑛 ⩾ 1, the kernel of the differential 𝑑𝑛
defined in §23.3.2 is the natural system on 𝑃 defined pointwise by

(ℎ𝑛)𝑤 = ker
(
𝐹𝑃 [𝑃𝑛]𝑤

𝑑𝑛 // 𝐹𝑃 [𝑃𝑛−1]𝑤
)
,

for every 1-cell 𝑤 in 𝑃. It is denoted by ℎ𝑛 (𝑃), and its elements are called the
homological 𝑛-syzygies of 𝑃. As a consequence of Theorems 23.2.3 and 23.3.3,
we obtain the following result.

23.3.5 Theorem. Let 𝐶 be a category, and 𝑃 a convergent presentation of 𝐶.
Then, for every 𝑛 ⩾ 2, the natural system ℎ𝑛 (𝑃) is generated by the elements

𝑑𝑛 [𝑢1 | · · · |𝑢𝑛] = [𝑢1 | · · · |𝑢𝑛−1]𝑢𝑛 + [𝜎𝑡 (𝑢1 | · · · |𝑢𝑛−1 )𝑢𝑛 ] − [𝜎𝑠 (𝑢1 | · · · |𝑢𝑛−1 )𝑢𝑛 ]
where 𝑢1 | · · · |𝑢𝑛 ranges over the 𝑛-cells of Sq(𝑃), and 𝜎 is the right 𝜄-contrac-
tion associated to Sq(𝑃).

We now state a consequence of Theorems 23.2.3 and 23.3.3 for reduced
presentations without critical 3-branchings. In §23.2.2 and §23.2.4 we give an
interpretation of the 𝑛-generators of the resolution Sq(𝑃) when 𝑃 is a reduced
convergent 2-polygraph. In particular, there is a one-to-one correspondence
between the 2-generators of the resolution Sq(𝑃) and the critical branchings on
the one hand, and between the 3-generators and the critical 3-branchings on the
other. Moreover, when 𝑃 admits no critical 3-branchings, it also has no critical
𝑛-branchings for 𝑛 ⩾ 3, and so Sq𝑛 (𝑃) is empty for 𝑛 ⩾ 3. The result is thus as
follows.

23.3.6 Corollary. Let 𝐶 be a category, and 𝑃 a reduced convergent presenta-
tion of 𝐶 without critical 3-branchings. Then the sequence

0 // 𝐹𝐶 [Sq2 (𝑃)]
𝑑3 // 𝐹𝐶 [𝑃2] 𝑑2 // 𝐹𝐶 [𝑃1] 𝑑1 // 𝐹𝐶 [𝑃0] 𝜀 // Z // 0

is a partial resolution of length 4 of the trivial natural system Z.

This result was proved by Squier for presentation of monoids by string
rewriting systems using a direct method based on the characterization of critical
3-branchings [326, Theorem 3.2]. It is useful for proving examples of categories
or monoids of finite type that do not admit a finite convergent presentation, as
we did in Chapter 9.

23.3.7 Convergence and homology of categories. The construction given
in this section allows us to calculate the homology of a category 𝐶 from
a presentation of this category by a convergent 2-polygraph 𝑃. Indeed, by
Theorem 23.2.3, Sq(𝑃) is a polygraphic resolution of the category 𝐶, and by
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Theorem 23.3.3, 𝐹𝐶 [Sq(𝑃)] is a resolution by free natural systems on 𝐶 of the
constant natural systemZ. The homology of𝐶 with coefficient in a contravariant
natural system 𝐷 on 𝐶, as defined in §F.2.3, is thus given by

𝐻∗ (𝐶, 𝐷) = Tor𝐹𝐶 (𝐷,Z) = H∗ (𝐷 ⊗𝐹𝐶 Sq(𝑃)).

23.3.8 Example: the reduced standard polygraphic resolution. Let 𝐶 be a
category. To simplify the example, assume that, if a composite morphism 𝑓 𝑔

of 𝐶 is an identity, then so are 𝑓 and 𝑔. The reduced standard presentation
of 𝐶 is the 2-polygraph Std2 (𝐶) whose 0-generators are objects of 𝐶, with one
1-generator �̂� for each non-identity morphism 𝑓 of 𝐶, and one 2-generator

𝑓 |𝑔 : �̂� �̂� ⇒ �̂� 𝑔

for each pair ( 𝑓 , 𝑔) of composable non-identity morphisms in 𝐶. Without the
simplifying hypothesis on 𝐶, the target of 𝑓 |𝑔 is replaced by 1𝑥 if 𝑓 𝑔 = 1𝑥
in 𝐶.

The 2-polygraph Std2 (𝐶) is reduced and convergent, and applying Theo-
rem 23.2.3 extends it into a polygraphic resolution of 𝐶, denoted by Std(𝐶)
and called the reduced standard polygraphic resolution of 𝐶. For 𝑛 ⩾ 2, the
𝑛-generators of Std(𝐶) are the 𝑓1 | · · · | 𝑓𝑛, such that each 𝑓𝑖 is a non-identity
morphism of 𝐶 and each ( 𝑓𝑖 , 𝑓𝑖+1) is composable.

The source and target of the 3-generators of Std(𝐶) are given by

�̂� 𝑔ℎ̂ 𝑓 𝑔 |ℎ
�'

�̂� �̂�ℎ̂

( 𝑓 |𝑔) ℎ̂ .6

�̂� (𝑔 |ℎ) (0

�̂� 𝑔ℎ

�̂� 𝑔ℎ 𝑓 |𝑔ℎ

8@𝑓 |𝑔 |ℎ
�

and a 4-generator 𝑎 |𝑏 |𝑐 |𝑑 has source

�̂� 𝑔ℎ̂�̂�
( 𝑓 𝑔 |ℎ) �̂� +3

( 𝑓 |𝑔 |ℎ) �̂�

�̂� 𝑔ℎ�̂�
𝑓 𝑔ℎ |𝑘

��
�̂� �̂�ℎ̂�̂�

( 𝑓 |𝑔) ℎ̂�̂� 19

�̂� (𝑔 |ℎ) �̂� +3

�̂� 𝑔 (ℎ |𝑘 ) %-

�̂� 𝑔ℎ�̂�

( 𝑓 |𝑔ℎ) �̂�
7?

�̂� (𝑔ℎ |𝑘 )
�'

𝑓 |𝑔ℎ |𝑘 �𝑓 𝑔ℎ𝑘

�̂� �̂�ℎ̂𝑘
�̂� (𝑔 |ℎ𝑘 )

+3

�̂� (𝑔 |ℎ |𝑘 )

�̂� 𝑔ℎ𝑘
𝑓 |𝑔ℎ𝑘

BJ
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and target

�̂� 𝑔ℎ̂�̂�
( 𝑓 𝑔 |ℎ) �̂� +3

�̂� 𝑔 (ℎ |𝑘 )
�'

�̂� 𝑔ℎ�̂�
𝑓 𝑔ℎ |𝑘

��
�̂� �̂�ℎ̂�̂�

( 𝑓 |𝑔) ℎ̂�̂� 19

�̂� 𝑔 (ℎ |𝑘 ) %-

= �̂� 𝑔ℎ̂𝑘 𝑓 𝑔 |ℎ𝑘 +3

𝑓 𝑔 |ℎ |𝑘

𝑓 |𝑔 |ℎ𝑘

�𝑓 𝑔ℎ𝑘.

�̂� �̂�ℎ̂𝑘

( 𝑓 |𝑔) ℎ̂𝑘
7?

�̂� (𝑔 |ℎ𝑘 )
+3 �̂� 𝑔ℎ𝑘

𝑓 |𝑔ℎ𝑘

BJ

(with the arrows of 3-cells removed for clarity).
For 𝑛-cells, 𝑛 ⩾ 2, we prove, by induction on 𝑛, that the source and target of

𝑛-generators are composites of the (𝑛 − 1)-cells

𝑑𝑖 ( 𝑓1 | · · · | 𝑓𝑛) =


�̂�1 ( 𝑓2 | · · · | 𝑓𝑛) if 𝑖 = 0,
𝑓1 | · · · | 𝑓𝑖 𝑓𝑖+1 | · · · | 𝑓𝑛 if 1 ⩽ 𝑖 ⩽ 𝑛 − 1,
( 𝑓1 | · · · | 𝑓𝑛−1) �̂�𝑛 if 𝑖 = 𝑛,

with 𝑘-cells, for 1 < 𝑘 < 𝑛−1. More precisely, the source of 𝑓1 | · · · | 𝑓𝑛 contains
one copy of each 𝑑𝑖 ( 𝑓1 | · · · | 𝑓𝑛) for 𝑛 − 𝑖 even, and its target, one copy of each
𝑑𝑖 ( 𝑓1 | · · · | 𝑓𝑛) for 𝑛 − 𝑖 odd.

Theorem 23.3.3 applied to Std(𝐶) gives a free resolution

· · · // 𝐹𝐶 [Std𝑛 (𝐶)] 𝑑𝑛 // 𝐹𝐶 [Std𝑛−1 (𝐶)] // · · · // 𝐹𝐶 [𝐶0] 𝜀 // Z // 0

with differential defined by

𝑑𝑛 [ 𝑓1 | · · · | 𝑓𝑛] = (−1)𝑛 𝑓1 [ 𝑓2 | · · · | 𝑓𝑛]+
𝑛−1∑︁
𝑖=1
(−1)𝑛−𝑖 [𝑑𝑖 ( 𝑓1 | · · · | 𝑓𝑛)] + [ 𝑓1 | · · · | 𝑓𝑛−1] 𝑓𝑛.

23.3.9 The associative polygraphic resolution. Let 𝐴 be the monoid with one
non-trivial idempotent element, that is presented by the following 2-polygraph:

As2 = ⟨ 𝑎0 | 𝑎1 | 𝑎2 : 𝑎1𝑎1 ⇒ 𝑎1 ⟩ .

This polygraph is reduced and convergent, see Example 4.3.12, with one critical
𝑛-branching for every 𝑛 ⩾ 2. Thus, the reduced standard polygraphic resolution
As𝜔 = Sq(As2) of 𝐴, given by Theorem 23.2.3, has one 𝑛-generator 𝑎𝑛 for
every 𝑛 ⩾ 0, corresponding to the product 𝑎1 | · · · |𝑎1 of 𝑛 copies of 𝑎1. The
3-generator 𝑎3 of As𝜔 is given in classical notation and in string diagrams
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respectively as follows:

𝑎2𝑎1 ∗1 𝑎2
𝑎3
⇛ 𝑎1𝑎2 ∗1 𝑎2 ⇛ .

The 4-generator 𝑎4 of As𝜔 is

3 +3 2

��
4

4<

+3

"*

3

>F

� 

1

3 +3 2

FN
�?

3 +3

� 

2

��
4

4<

"*

= 2 +3 1

3

>F

+3 2

FN

which, contracting by one dimension, can also be pictured as Mac Lane’s
pentagon, or Stasheff’s polytope 𝐾4:

*4

�"

4B

%/

4C��
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Finally, the 5-generator 𝑎5 of As𝜔 has the shape of Stasheff’s polytope 𝐾5, its
source being

�'

*4

��

*4

��

=


�

5C 7G

*4

��

*4


�

=


�

JT 7G

*4 *4 *4

and its target being given by a symmetric composite 4-cell, see [163, Sec-
tion 6.1]. Theorem 23.3.3, applied to As𝜔 , yields a resolution

· · · // 𝐹𝐴[ ] 𝑑4 // 𝐹𝐴[ ] 𝑑3 // 𝐹𝐴[ ] 𝑑2 // 𝐹𝐴[ ] 𝑑1 // 𝐹𝐴[∗] 𝜀 // Z // 0

of Z by free natural systems on 𝐴. Computing this differential on each 𝑛-cell
of As𝜔 gives generators of the natural systems of homological 𝑛-syzygies
of As𝜔 . For example, ℎ2 (As) is generated by

𝑑3 [ ] =
[ ]

−
[ ]

=
[ ]

𝑎 − 𝑎 [ ]
while ℎ3 (As) is generated by

𝑑4
[ ]

=
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]

= 𝑎
[ ] − [ ] + [ ]

𝑎.

Similarly, ℎ4 (As) is generated by 𝑑5 [𝑎5], which is equal, by definition, to[ ]
+

[ ]
+

[ ]
−

[ ]
−

[ ]
−

[ ]
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and reduces to

𝑑5 [𝑎5] =
[ ]

𝑎 − 𝑎 [ ]
.

23.3.10 The category of monotone surjections. We denote by Δ𝜇 the sub-
category of the simplicial category whose objects are the natural numbers and
whose morphisms from𝑚 to 𝑛 are the monotone surjections from {0, . . . , 𝑚} to
{0, . . . , 𝑛}. This category, studied in [251], see also [261, Section 7.5, Exercise
3.(a)], admits a presentation by the 2-polygraph 𝑃 with the natural numbers as
0-cells, with one 1-cell 𝑥𝑛𝑖 : 𝑛 + 1 → 𝑛 for all natural numbers 1 ⩽ 𝑖 ⩽ 𝑛, and
one 2-cell

𝑛 + 1 𝑥𝑛𝑗

  
𝑥𝑛𝑖, 𝑗��𝑛 + 2

𝑥𝑛+1𝑖 22

𝑥𝑛+1𝑗+1
,,

𝑛

𝑛 + 1 𝑥𝑛𝑖

==

for all natural numbers 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛 + 1. The 1-cell 𝑥𝑛𝑖 represents the map

𝑥𝑛𝑖 ( 𝑗) =

{
𝑗 if 𝑗 ⩽ 𝑖,
𝑗 − 1 if 𝑗 > 𝑖.

This is a variant of the presentation constructed in §4.5.6. Thereafter, we drop
the exponents of the 1-cells and 2-cells of 𝑃, simply writing 𝑥𝑖 and 𝑥𝑖, 𝑗 .

The 2-polygraph 𝑃 is convergent. Indeed, for termination, given a 1-cell
𝑢 = 𝑥𝑖1 . . . 𝑥𝑖𝑘 of 𝑃∗, we define the natural number 𝜈(𝑢) as the number of
pairs (𝑖𝑝 , 𝑖𝑞) such that 𝑖𝑝 ⩽ 𝑖𝑞 , with 1 ⩽ 𝑝 < 𝑞 ⩽ 𝑘 . In particular, we have
𝜈(𝑥𝑖𝑥 𝑗 ) = 1 and 𝜈(𝑥 𝑗+1𝑥𝑖) = 0 when 𝑖 ⩽ 𝑗 , giving 𝜈(𝑠 (𝑥𝑖, 𝑗 )) > 𝜈(𝑡 (𝑥𝑖, 𝑗 )).
Moreover, we have 𝜈(𝑤𝑢𝑤′) > 𝜈(𝑤𝑣𝑤′) when 𝜈(𝑢) > 𝜈(𝑣) holds. Thus, for
every non-identity 2-cell 𝑎 : 𝑢 ⇒ 𝑣 of 𝑃∗, the strict inequality 𝜈(𝑢) > 𝜈(𝑣)
is satisfied, giving termination. Moreover, the 2-polygraph 𝑃 has one critical
branching (𝑥𝑖, 𝑗𝑥𝑘 , 𝑥𝑖𝑥 𝑗 ,𝑘) for all possible 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑘 ⩽ 𝑛 + 2, which is
confluent.

Theorem 23.2.3, applied to 𝑃, gives a polygraphic resolution Sq(𝑃) of Δ𝜇,
whose 3-cells are given, in classical notation and in string diagrams (with 𝑥𝑖 = 𝑖
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and 𝑥𝑖, 𝑗 = 𝑖, 𝑗 ) respectively, by

𝑥 𝑗+1𝑥𝑖𝑥𝑘
𝑥 𝑗+1𝑥𝑖,𝑘 +3 𝑥 𝑗+1𝑥𝑘+1𝑥𝑖

𝑥 𝑗+1,𝑘+1𝑥𝑖

��
𝑥𝑖𝑥 𝑗𝑥𝑘

𝑥𝑖, 𝑗 𝑥𝑘
6>

𝑥𝑖 𝑥 𝑗,𝑘 #+

𝑥𝑘+2𝑥 𝑗+1𝑥𝑖

𝑥𝑖𝑥𝑘+1𝑥 𝑗 𝑥𝑖,𝑘+1𝑥 𝑗
+3 𝑥𝑘+2𝑥𝑖𝑥 𝑗

𝑥𝑘+2𝑥𝑖, 𝑗

EM
𝑥𝑖, 𝑗,𝑘


�

𝑖, 𝑗 ,𝑘

𝑖, 𝑗 ,𝑘
*4

𝑖, 𝑗 ,𝑘

The (𝜔, 1)-polygraph Sq(𝑃) has one 4-cell 𝑥𝑖, 𝑗 ,𝑘,𝑙 for every possible indices
0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑘 ⩽ 𝑙 ⩽ 𝑛+3, given in string diagrams and omitting the subscripts,
by the following diagrams:

*4 *4

��

� 

0<

". *4 *4

<J

Then, Theorem 23.3.3 gives, in particular, generators for the natural systems of
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homological 𝑛-syzygies of 𝑃. For example, ℎ2 (𝑃) is generated by the elements

𝑑3
[

𝑖, 𝑗 ,𝑘

]
=

[
𝑖, 𝑗 ,𝑘

]
−

[
𝑖, 𝑗 ,𝑘

]

=




([
𝑖, 𝑗

]
𝑥𝑘 − 𝑥𝑘+2

[
𝑖, 𝑗

] )
+ (

𝑥 𝑗+1
[

𝑖,𝑘

] − [
𝑖,𝑘+1

]
𝑥 𝑗

)
+

( [
𝑗+1,𝑘+1

]
𝑥𝑖 − 𝑥𝑖

[
𝑗 ,𝑘

] )
.

23.4 Categories of finite homological type

In Chapter 8, we introduced the notion of a finite derivation type for categories.
In this section, we show how to refine this notion in higher dimensions and how
to relate it with finite homological type.

23.4.1 Higher-dimensional finite derivation type. Let 𝐶 be a category and
𝑛 ∈ N ∪ {∞}. We say that 𝐶 has finite 𝑛-derivation type, FDT𝑛 for short,
if it admits a polygraphic resolution 𝑃 in Cat𝜔,1 such that 𝑃𝑘 is finite for
every 𝑘 ⩽ 𝑛. In particular, 𝐶 has FDT1 if it is finitely generated, FDT2 if it
is finitely presented, and FDT3 if it has finite derivation type as defined in
Section 8.1. By definition, FDT∞ implies FDT𝑛, and FDT𝑛+1 implies FDT𝑛,
for every 𝑛 ⩾ 0.

As an immediate consequence of Theorem 23.2.3, we deduce the following
condition for finite convergence.

23.4.2 Theorem. A category with a finite convergent presentation has FDT∞.

23.4.3 Categories of finite homological type. A category𝐶 is of homological
type FP𝑛 if the constant natural system Z on 𝐶 is of homological type FP𝑛,
see §F.3 for a summary on the notion of finite homological type for categories.
As a consequence of Theorems 23.2.3 and 23.3.3, we obtain the following
implications.

23.4.4 Theorem. Let 𝐶 be a category, and 𝑛 ∈ N ∪ {∞}. If 𝐶 has FDT𝑛,
then it is of homological type FP𝑛. In particular, if 𝐶 has a finite convergent
presentation, then it is of homological type FP∞.

This result generalizes [99, Theorem 3.2] and [233, Theorem 3] stating that,
if a monoid has FDT, then it is FP3 (see also [306]). It also generalizes Squier’s
homological theorem [326, Theorem 4.1], that says that a monoid admitting a
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finite convergent presentation is FP3, and the extensions of Squier’s result in
[219, 60, 154] that prove that such a monoid is FP∞.

23.4.5 Example. The 2-polygraph As2 defined in §23.3.9 extends to a poly-
graphic resolution As𝜔 having one 𝑛-generator for every 𝑛 ⩾ 0. Hence the
polygraph As2 and the presented monoid have FDT∞.

23.5 Homological syzygies and identities among relations

In this section we establish an isomorphism between the natural systems of
homological 2-syzygies and identities among relations for a category presented
by a 2-polygraph. This is an extension to category presentations of a Brown-
Huebschmann theorem in group theory that states an isomorphism between the
modules of identities among relations and homological 2-syzygies for group
presentations [64].

In this section, 𝑃 denotes a 2-polygraph. We aim to build an isomorphism
between the natural system Π(𝑃) of identities among relations of 𝑃 defined
in §8.3.2 and the natural system ℎ2 (𝑃) of its homological 2-syzygies defined
in §23.3.4.

23.5.1 Lemma. Let 𝑃 be a 2-polygraph. For every 2-loop 𝜓 of 𝑃⊤, we have
[𝜓] = 0 in 𝐹𝑃 [𝑃2] if and only if ⌊𝜓⌋ = 0 holds in Π(𝑃).
Proof. To prove that ⌊𝜓⌋ = 0 implies [𝜓] = 0, we check that the relations (8.2)
and (8.3) defining Π(𝑃) are also satisfied in 𝐹𝑃 [𝑃2]. The first relation is given
by the definition of the map [−]. The second relation is checked as follows:

[𝜓 ∗1 𝜙] = [𝜓] + [𝜙] = [𝜙] + [𝜓] = [𝜙 ∗1 𝜓] .
Conversely, let us consider a 2-loop 𝜓 in 𝑃⊤ with source 𝑤 such that [𝜓] = 0.
We decompose 𝜓 into

𝜓 = 𝑢1𝛼
𝜖1
1 𝑣1 ∗1 · · · ∗1 𝑢𝑝𝛼

𝜖𝑝
𝑝 𝑣𝑝 ,

where 𝛼𝑖 is a 2-generator, 𝑢𝑖 , 𝑣𝑖 are 1-cells of 𝑃⊤, and 𝜖𝑖 ∈ {−, +}. Then we get

0 = [𝜓] = 𝜖1𝑢1 [𝛼1]𝑣1 + . . . + 𝜖𝑝𝑢𝑝 [𝛼𝑝]𝑣𝑝 .
Since the natural system 𝐹𝑃 [𝑃2] is freely generated by the elements [𝛼] of
𝐹𝑃 [𝑃2]𝛼, for 𝛼 a 2-generator, this implies the existence of a self-inverse per-
mutation 𝜏 of {1, . . . , 𝑝} such that the following relations are satisfied:

𝛼𝑖 = 𝛼𝜏 (𝑖) , 𝑢𝑖 = 𝑢𝜏 (𝑖) , 𝑣𝑖 = 𝑣𝜏 (𝑖) , 𝜖𝑖 = −𝜖𝜏 (𝑖) .
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Let us denote, for every 1 ⩽ 𝑖 ⩽ 𝑝, the source and target of 𝛼𝜖𝑖𝑖 by 𝑤𝑖 and 𝑤′𝑖
respectively. They satisfy 𝑤𝑖 = 𝑤′𝑖 . We also fix a section ·̂ and a left strategy 𝜎
for the 2-polygraph 𝑃, so that �̂� = �̂� for all 1-cells 𝑢 and 𝑣 such that 𝑢 = 𝑣.

For every 1 ⩽ 𝑖 ⩽ 𝑝, we denote by 𝜓𝑖 the following 2-cell of 𝑃⊤:

𝜓𝑖 = 𝜎
−
𝑢𝑖𝑤𝑖𝑣𝑖 ∗1 𝑢𝑖𝛼𝜖𝑖𝑖 𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤′𝑖𝑣𝑖 .

Using the facts that 𝑤 = 𝑢1𝑤1𝑣1 = 𝑢𝑝𝑤′𝑝𝑣𝑝 and that 𝑢𝑖𝑤′𝑖𝑣𝑖 = 𝑢𝑖+1𝑤𝑖+1𝑣𝑖+1 for
every 1 ⩽ 𝑖 < 𝑝, we can write the 2-loop 𝜓 as the following composite:

𝜓 = 𝜎𝑤 ∗1 𝜓1 ∗1 · · · ∗1 𝜓𝑝 ∗1 𝜎−𝑤 .
As a consequence, we get

⌊𝜓⌋ = ⌊
𝜎−𝑤 ∗1 𝜓 ∗1 𝜎𝑤

⌋
= ⌊𝜓1⌋ + . . . +

⌊
𝜓𝑝

⌋
.

In order to conclude, we prove that the equality
⌊
𝜓𝜏 (𝑖)

⌋
= − ⌊𝜓𝑖⌋ holds, for

every 1 ⩽ 𝑖 ⩽ 𝑝. Since 𝜎 is a left strategy, we have

𝜎𝑢𝑖𝑤𝑖𝑣𝑖 = 𝜎𝑢𝑖𝑤𝑖𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤𝑖
𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤𝑖𝑣𝑖

and, using the fact that 𝑢𝑖𝑤𝑖 = 𝑢𝑖𝑤′𝑖 , we have

𝜎𝑢𝑖𝑤′𝑖𝑣𝑖 = 𝜎𝑢𝑖𝑤
′
𝑖𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤′𝑖 𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤𝑖𝑣𝑖 .

This gives

⌊𝜓𝑖⌋ =
⌊
𝜎−�𝑢𝑖𝑤𝑖𝑣𝑖

∗1𝜎−𝑢𝑖𝑤𝑖
𝑣𝑖∗1𝜎−𝑢𝑖𝑤𝑖𝑣𝑖∗1 𝑢𝑖𝛼𝜖𝑖𝑖 𝑣𝑖 ∗1𝜎𝑢𝑖𝑤′𝑖𝑣𝑖∗1𝜎𝑢𝑖𝑤′𝑖 𝑣𝑖∗1𝜎�𝑢𝑖𝑤𝑖𝑣𝑖

⌋
=

⌊
𝜎−𝑢𝑖𝑤𝑖

𝑣𝑖 ∗1 𝜎−𝑢𝑖𝑤𝑖𝑣𝑖 ∗1 𝑢𝑖𝛼𝜖𝑖𝑖 𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤′𝑖𝑣𝑖 ∗1 𝜎𝑢𝑖𝑤′𝑖 𝑣𝑖
⌋

=
⌊
𝜎−𝑢𝑖𝑤𝑖

∗1 �̂�𝑖𝛼𝜖𝑖𝑖 ∗1 𝜎𝑢𝑖𝑤′𝑖
⌋
𝑣𝑖 .

Now, let us compute
⌊
𝜓𝜏 (𝑖)

⌋
. We already know that 𝛼𝜏 (𝑖) = 𝛼𝑖 and 𝜖𝜏 (𝑖) = −𝜖𝑖 .

As a consequence, we get 𝑤𝜏 (𝑖) = 𝑤′𝑖 and 𝑤′
𝜏 (𝑖) = 𝑤𝑖 . Moreover, we have

�̂�𝜏 (𝑖) = �̂�𝑖 , so that we have:
⌊
𝜓𝜏 (𝑖)

⌋
=

⌊
𝜎−�𝑢𝑖𝑤𝑖𝑣𝜏 (𝑖)

⋆1 𝜎
−
𝑢𝑖𝑤

′
𝑖
𝑣𝜏 (𝑖) ⋆1 𝜎

−
𝑢𝑖𝑤
′
𝑖𝑣𝜏 (𝑖)

⋆1𝑢𝜏 (𝑖)𝛼
−𝜖𝑖
𝑖 𝑣𝜏 (𝑖) ⋆1 𝜎𝑢𝑖𝑤𝑖𝑣𝜏 (𝑖) ⋆1 𝜎𝑢𝑖𝑤𝑖

𝑣𝜏 (𝑖) ⋆1 𝜎�𝑢𝑖𝑤𝑖𝑣𝜏 (𝑖)

⌋
=

⌊
𝜎−𝑢𝑖𝑤′𝑖

∗1 �̂�𝑖𝛼−𝜖𝑖𝑖 ∗1 𝜎𝑢𝑖𝑤𝑖

⌋
𝑣𝑖 = − ⌊𝜓𝑖⌋ .

This implies ⌊𝜓⌋ = 0, thus concluding the proof. □

23.5.2 Lemma. For every element 𝑎 in ℎ2 (𝑃), there exists a 2-loop 𝜓 in 𝑃⊤

such that 𝑎 = [𝜓] holds.
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Proof. Let 𝑤 be the 1-cell of 𝑃 such that 𝑎 belongs to 𝐹𝑃 [𝑃2]𝑤 and let 𝑃3 be
an acyclic extension of the (2, 1)-category 𝑃⊤. Since 𝑑2 (𝑎) = 0, by acyclicity
of 𝑃3 and Theorem 23.3.3, there exists 𝑏 in 𝐹𝑃 [𝑃3]𝑤 such that 𝑎 = 𝑑3 (𝑏). By
definition of 𝐹𝑃 [𝑃3]𝑤, we can write

𝑏 = 𝜖1𝑢1 [𝛼1]𝑣1 + . . . + 𝜖𝑝𝑢𝑝 [𝛼𝑝]𝑣𝑝 ,
with, for every 1 ⩽ 𝑖 ⩽ 𝑝, 𝛼𝑖 ∈ 𝑃3, 𝑢𝑖 , 𝑣𝑖 ∈ 𝑃 and 𝜖𝑖 ∈ {−, +} such that
𝑢𝑖𝛼𝑖𝑣𝑖 = 𝑤 holds. We fix a section ·̂ of 𝑃 and we choose 2-cells

𝜙𝑖 : 𝑤 ⇒ �̂�𝑖𝑠1 (𝛼𝜖𝑖𝑖 )̂𝑣𝑖 and 𝜓𝑖 : �̂�𝑖𝑡1 (𝛼𝜖𝑖𝑖 )̂𝑣𝑖 ⇒ 𝑤.

Let 𝐴 be 3-cell of 𝑃⊤3 defined by

𝐴 =
(
𝜙1 ∗1 �̂�1𝛼

𝜖1
1 �̂�1 ∗1 𝜓1

) ∗1 · · · ∗1 (
𝜙𝑘 ∗1 �̂�𝑘𝛼𝜖𝑘𝑘 �̂�𝑘 ∗1 𝜓𝑘

)
.

By definition of [·] on 3-cells, we have

[𝐴] =
𝑝∑︁
𝑖=1

[
𝜙𝑖 ∗1 �̂�𝑖𝛼𝜖𝑖𝑖 �̂�𝑖 ∗1 𝜓𝑖

]
=

𝑝∑︁
𝑖=1

([1𝜙𝑖 ] + 𝜖𝑖𝑢𝑖 [𝛼𝑖]𝑣𝑖 + [1𝜓𝑖 ]) = 𝑏.
Finally, we get

𝑎 = 𝑑3 [𝐴] = [𝑠(𝐴)] − [𝑡 (𝐴)] = [𝑠(𝐴) ∗1 𝑡 (𝐴)−] .
Hence 𝜓 = 𝑠(𝐴) ∗1 𝑡 (𝐴)− is a 2-loop of 𝑃⊤ that satisfies 𝑎 = [𝜓]. □

When 𝑃 is a convergent 2-polygraph, we have seen that the natural systems
ℎ2 (𝑃) and Π(𝑃) on 𝑃 are generated by a family of generating confluences of 𝑃.
The following result from [163, Theorem 5.6.5] states that, more generally,
the natural systems ℎ2 (𝑃) and Π(𝑃) are isomorphic, as proved by Brown-
Huebschmann for presentations of groups in [64].

23.5.3 Theorem. Let 𝑃 be a 2-polygraph. The natural systemsΠ(𝑃) and ℎ2 (𝑃)
are isomorphic.

Proof. We define a morphism of natural systemsΦ : Π(𝑃) → ℎ2 (𝑃) by setting
Φ ⌊𝜙⌋ = [𝜙] for every identity 𝜙 of 𝑃. This definition is correct, since the
defining relations of Π(𝑃) also hold in 𝐹𝑃 [𝑃2], and thus in ℎ2 (𝑃). Moreover,
Φ is a morphism of natural systems, since we have

Φ(𝑢 ⌊𝜙⌋ 𝑣) = Φ(⌊�̂�𝜙𝑣⌋) = [�̂�𝜙𝑣] = 𝑢[𝜙]𝑣 = 𝑢Φ(⌊𝜙⌋)𝑣,
for every 2-loop 𝜙 in 𝑃⊤ and 1-cells 𝑢, 𝑣 in 𝑃 such that �̂�𝜙𝑣 is defined.

Now, let us define a morphism of natural systems Ψ : ℎ2 (𝑃) → Π(𝑃). Let 𝑎
be an element of ℎ2 (𝑃)𝑤. By Lemma 23.5.2, there exists a 2-loop 𝜓 : 𝑢 ⇒ 𝑢 in
𝑃⊤ such that 𝑎 = [𝜓] and 𝑤 = 𝑢. We define Ψ(𝑎) = ⌊𝜓⌋. This definition does
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not depend on the choice of 𝜓. Indeed, let us assume that 𝜙 : 𝑣⇒ 𝑣 is a 2-loop
such that 𝑎 = [𝜙]. It follows that 𝑣 = 𝑢, and we can choose a 2-cell 𝜉 : 𝑢 ⇒ 𝑣

in 𝑃⊤. Then we have

𝑎 = [𝜓] = [𝜙] = [𝜉 ∗1 𝜙 ∗1 𝜉−] .

As a consequence, we get

[𝜓 ∗1 𝜉− ∗1 𝜙− ∗1 𝜉] = [𝜓] − [𝜉 ∗1 𝜙 ∗1 𝜉−] = 0.

Thus

0 = ⌊𝜓 ∗1 𝜉− ∗1 𝜙− ∗1 𝜉⌋ = ⌊𝜓⌋ − ⌊𝜉 ∗1 𝜙 ∗1 𝜉−⌋ = ⌊𝜓⌋ − ⌊𝜙⌋ .

Finally, the relations ΨΦ = 1Π (𝑃) and ΦΨ = 1ℎ2 (𝑃) are direct consequences of
the definitions of Φ and Ψ. □

The following result relates the low-dimensional finiteness properties seen
in this chapter and in §8.3.5 for the property FDTab.

23.5.4 Theorem. Let 𝑃 be a finite 2-polygraph. The following conditions are
equivalent.

1. The category 𝑃 is of homological type FP3.
2. The natural system ℎ2 (𝑃) on 𝑃 is finitely generated.
3. The natural system Π(𝑃) on 𝑃 is finitely generated.
4. The category 𝑃 has FDTab.

Proof. The equivalence between 1 and 2 comes from the definition of the prop-
erty FP3. The equivalence between 2 and 3 is a consequence of Theorem 23.5.3.
The equivalence between 3 and 4 is given by Proposition 8.3.7. □

Note that, following Theorem 23.4.4, the property FDT3 implies FP3. We
expect the reverse implication to be false in general, which amounts to proving
that FDTab does not imply FDT3, since FP3 is equivalent to FDTab for finitely
presented categories. This question is still open.

23.5.5 Identities among relations for higher polygraphs. We conclude this
chapter by mentioning some results on identities among relations for 𝑛-poly-
graphs for any 𝑛 ⩾ 0. As in §8.3.5 for the case 𝑛 = 2, we call an (𝑛, 𝑛− 1)-cate-
gory 𝐶 abelian if, for every (𝑛 − 1)-cell 𝑢 of 𝐶, the group Aut𝐶𝑢 of 𝑛-loops
of 𝐶 with source 𝑢 is abelian. For 𝐶 an (𝑛, 𝑛 − 1)-category, its abelianiza-
tion𝐶ab is the quotient of𝐶 by the cellular extension that contains one 𝑛-sphere
𝜙 ∗𝑛−1 𝜓 → 𝜓 ∗𝑛−1 𝜙 for every 𝑛-loops 𝜙 and 𝜓 of 𝐶 with the same source.
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Identities among relations for 2-polygraphs, as defined in §8.3.2, were ex-
tended to the structure of an 𝑛-polygraph 𝑃 in [164] to form a natural sys-
tem Π(𝑃) on the (𝑛 − 1)-category 𝑃. This definition is based on a general-
ization of a result proved by Baues and Jibladze, see [33] for the case 𝑛 = 2,
stating that an (𝑛, 𝑛 − 1)-category is abelian if and only if it is linear, where
(𝑛, 𝑛 − 1)-categories correspond to a notion of “globular crossed module” for
𝑛-categories. When the polygraph 𝑃 is convergent, the natural system Π(𝑃) is
generated by the generating confluences of 𝑃 [164, Proposition 2.4.2].

A notion of abelian finite derivation type, FDTab for short, can also be
defined for 𝑛-polygraphs. An 𝑛-polygraph 𝑃 has FDTab when the abelian
(𝑛, 𝑛 − 1)-category 𝑃⊤ab admits a finite acyclic cellular extension. As for case
𝑛 = 2 in Proposition 8.3.7, we prove that an 𝑛-polygraph is FDTab if and
only if the natural system Π(𝑃) of identities among relations of 𝑃 is finitely
generated [163, Proposition 5.7.2].
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Appendix A
A catalogue of 2-polygraphs

In this section, we list some examples of presentations of monoids and cate-
gories by a 2-polygraph.

A.1 Presentations of monoids

The richest source of presentations of categories can be found in presentations
of monoids (and groups), which are seen here are as a particular instance of a
category.

A.1.1 Monoid. A monoid (𝑀,×, 1) is a set equipped with a binary operation×
which is associative and admits 1 as neutral element. A morphism between two
monoids is a function between the underlying sets which preserves multiplica-
tion and neutral element.

The following lemma shows that one can always see a monoid as a particular
case of a category with only one element, conventionally denoted ⋆.

A.1.2 Lemma. The category Mon of monoids is isomorphic to the full subcat-
egory of Cat whose objects are the categories with ⋆ as only object.

Proof. To a monoid (𝑀,×, 1) we can associate a category 𝐵𝑀 , sometimes
called the delooping of 𝑀 , with ⋆ as only object, the elements 𝑎 ∈ 𝑀 as
morphisms 𝑎 : ⋆ → ⋆, composition being given by 𝑏 ◦ 𝑎 = 𝑎 × 𝑏, with 1
as identity on ⋆. This construction is easily extended as a functor which is an
isomorphism of categories. □

A presentation of a monoid consists of a 2-polygraph 𝑃 whose set of 0-genera-
tors is reduced to one element 𝑃0 = {⋆}. A group being a monoid, presentations
of groups provide many such examples [95]; we mostly restrict here to those
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which are “really monoids”, meaning that the presence inverses does not play
a crucial role in the presentation.

A.1.3 Notations. In a polygraph 𝑃 = ⟨ ⋆ | 𝑃1 | 𝑃2 ⟩, we generally omit men-
tioning the source and target of 1-generators since they are necessarily ⋆. More-
over, as far as we are concerned with the presented category, the names of the
2-generators, as well as their orientation, will not be relevant. The 2-polygraph

⟨ ⋆ | 𝑎 : ⋆→ ⋆ | 𝛼 : 𝑎𝑎 ⇒ 1 ⟩

will thus often be simply noted

⟨ ⋆ | 𝑎 | 𝑎𝑎 = 1 ⟩ . (A.1)

Traditionally, the set 𝑃0 is even omitted, i.e., the above presentation is noted
⟨ 𝑎 | 𝑎𝑎 = 1 ⟩, we will however refrain from doing so in order to avoid a possible
confusion with a 1-polygraph. We sometimes write the indices at the bottom
right of the presentation. For instance〈

⋆
�� 𝑎𝑖 �� 𝑎 𝑗𝑎𝑖 = 𝑎𝑖𝑎 𝑗 〉𝑖, 𝑗∈N

denotes a presentation with

𝑃1 = {𝑎𝑖 | 𝑖 ∈ N} and 𝑃2 =
{
𝑎 𝑗𝑎𝑖 = 𝑎𝑖𝑎 𝑗

�� 𝑖, 𝑗 ∈ N}
.

A.1.4 Natural numbers. The additive monoid N of natural numbers admits
the presentation

⟨ ⋆ | 𝑎 | ⟩

where 𝑎 corresponds the natural number 1, and more generally 𝑎𝑛 to 𝑛 ∈ N.

A.1.5 Cyclic monoids. The additive monoid of booleansN/2N admits the pre-
sentation (A.1) above. More generally, given 𝑛 ∈ N, the additive monoidN/𝑛N
admits the presentation

⟨ ⋆ | 𝑎 | 𝑎𝑛 = 1 ⟩ .

A.1.6 Booleans. The set B of booleans respectively consists of the two el-
ements ⊥ (standing for false) and ⊤ (standing for true). We respectively
write ∧, ∨ and × for conjunction, disjunction and exclusive disjunction. The
monoid (B,×,⊥) is isomorphic toN/2N and thus admits (A.1) as presentation.
The monoids (B,∨,⊥) and (B,∧,⊤) are isomorphic and admit the presentation

⟨ ⋆ | 𝑎 | 𝑎𝑎 = 𝑎 ⟩ .
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A.1.7 Free monoids. Fix a set 𝑋 . A word 𝑢 over 𝑋 is a finite sequence
𝑢 = 𝑎1 . . . 𝑎𝑛 of elements 𝑎𝑖 of 𝑋 . Given two words 𝑢 = 𝑎1 . . . 𝑎𝑚 and
𝑣 = 𝑏1 . . . 𝑏𝑛, their concatenation is the word 𝑢𝑣 = 𝑎1 . . . 𝑎𝑚𝑏1 . . . 𝑏𝑛. The
free monoid 𝑋∗ over 𝑋 can be described as the monoid of words over 𝑋 , with
concatenation as composition and empty word as unit. It admits the presentation

⟨ ⋆ | 𝑋 | ⟩ .

A.1.8 Free commutative monoids. Fix a set 𝑋 . Recall from §1.4.1 that a
multiset over 𝑋 is a function 𝜇 : 𝑋 → N, assigning a multiplicity to an element
𝑎 of 𝑋 , the that every element 𝑎 of 𝑋 has a null multiplicity, excepting for a
finite number. Given two multisets 𝜇 and 𝜈, we write 𝜇 ⊔ 𝜈 for their pointwise
sum. The constant function equal to 0 is called the empty multiset. The free
commutative monoid over 𝑋 can be described as the monoid of multisets with
⊔ as composition and empty multiset as unit. It admits the presentation

⟨ ⋆ | 𝑋 | 𝑎𝑏 = 𝑏𝑎 ⟩𝑎,𝑏∈𝑋 .

For instance, the multiplicative monoidN\ {0} is the free commutative monoid
over the setN, since an element of this monoid can be interpreted as the multiset
of its prime factors. It admits the presentation〈

⋆
�� 𝑎𝑖 �� 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 〉𝑖, 𝑗∈N

where the 1-generator 𝑎𝑖 corresponds to the 𝑖-th prime number, i.e., 𝑎0 = 2,
𝑎1 = 3, 𝑎2 = 5, etc.

A.1.9 Partially commutative monoids. Suppose given an alphabet 𝑋 and
𝐼 ⊆ 𝑋×𝑋 a reflexive and symmetric relation, called independence. The monoid
with presentation

⟨ ⋆ | 𝑋 | 𝑎𝑏 = 𝑏𝑎 ⟩ (𝑎,𝑏) ∈𝐼
is called a trace monoid, a partially commutative monoid or a heap monoid.
This family of monoids was introduced by Cartier and Foata [79] in order to
study combinatorial problems of rearrangements and also studied in computer
science [273, 115, 124] for the following reason. The elements of 𝑋 can be
interpreted as actions, and thus 𝑋∗ as the set of possible sequences of actions.
Sometimes, the order in which two actions 𝑎 and 𝑏 are performed does not
matter, for instance when 𝑎 and 𝑏 consist in reading or writing at disjoint
positions in the memory in a computer program: in the end, executing 𝑎 then 𝑏,
or 𝑏 then 𝑎, will lead to the same state. This kind of situation is naturally modeled
by having (𝑎, 𝑏) ∈ 𝐼 and occurs when considering concurrent processes.
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A.1.10 Baumslag–Solitar monoids. Given natural numbers 𝑚 and 𝑛, the
Baumslag-Solitar monoid 𝐵𝑆(𝑚, 𝑛) [35] is the monoid presented by

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏𝑚 = 𝑏𝑛𝑎 ⟩
which can be seen as a variant of the commutativity relation described above,
𝐵𝑆(1, 1) being the free commutative monoid on two generators. The envelop-
ing groups of those monoids provide examples of non-Hopfian groups, e.g.
𝐵𝑆(2, 3).

A.1.11 Finite subsets. Given a set 𝐼, the set Pfin (𝐼) of finite subsets of 𝐼 is a
monoid with union as multiplication and empty set as neutral element. It admits
as presentation 〈

⋆
�� 𝑎𝑖 �� 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 , 𝑎𝑖𝑎𝑖 = 𝑎𝑖 〉𝑖, 𝑗∈𝐼 .

It is thus the free idempotent commutative monoid on the set 𝐼.

A.1.12 Coproduct and product. The monoids N⊔N and N×N respectively
admit the presentations

⟨ ⋆ | 𝑎, 𝑏 | ⟩ and ⟨ ⋆ | 𝑎, 𝑏 | 𝑏𝑎 = 𝑎𝑏 ⟩ .
More generally, given 2-polygraphs𝑃 and𝑄, respectively presenting monoids𝑀
and 𝑁 ,

– their coproduct (or free product) 𝑀 + 𝑁 is presented by

⟨ ⋆ | 𝑃1, 𝑄1 | 𝑃2, 𝑄2 ⟩ ,
– their product 𝑀 × 𝑁 is presented by

⟨ ⋆ | 𝑃1, 𝑄1 | 𝑃2, 𝑄2, 𝑅2 ⟩
where

𝑅2 = {𝑏𝑎 = 𝑎𝑏 | 𝑎 ∈ 𝑃1, 𝑏 ∈ 𝑄1} .
These constructions are detailed and generalized in Chapter 3.

A.1.13 Bicyclic monoid. The bicyclic monoid is the monoid presented by

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏 = 1 ⟩ .
If we read 𝑎 as an “opening bracket” and 𝑏 as a “closing bracket”, then the
words in the equivalence class of 1 are precisely the well-bracketed words (also
called Dyck words). From this property follow applications in combinatorics
and computer science (e.g. this monoid is the syntactic monoid of the language
of Dyck words).
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A.1.14 Integers. The additive group Z admits, as a monoid, the presentation

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏 = 1, 𝑏𝑎 = 1 ⟩
where 𝑎 and 𝑏 can respectively be interpreted as 1 and −1.

A.1.15 Enveloping group. The forgetful functor Grp→Mon, from the cat-
egory of groups to the category of monoids, admits a left adjoint, under which
the image of a monoid is called the associated enveloping group. For instance,
the additive group Z is the enveloping group of the additive monoid N. As
such, the previous example is an instance of a more general construction: given
a polygraph 𝑃 presenting a monoid 𝑀 , its enveloping group 𝐺 is presented as
a monoid by 〈

⋆
�� 𝑃1, 𝑃

−
1

�� 𝑃2, 𝑅2
〉

where

𝑃−1 = {𝑎− | 𝑎 ∈ 𝑃1} and 𝑅2 = {𝑎𝑎− = 1, 𝑎−𝑎 = 1 | 𝑎 ∈ 𝑃1} .
This construction is detailed and generalized in §3.2.1. By abuse of notation,
given a word 𝑢 = 𝑎1 . . . 𝑎𝑛 in 𝑃∗1, we sometimes write 𝑢− = 𝑎−𝑛 . . . 𝑎−1 .

Two distinct monoids can generate isomorphic enveloping groups. For in-
stance, consider the monoid presented by

⟨ ⋆ | 𝑎, 𝑏 | 𝑎𝑏 = 𝑏𝑏𝑎, 𝑏𝑎 = 𝑎𝑎𝑏 ⟩ .
This monoid is not the trivial one since for instance the classes of 1, 𝑎 and 𝑏
contain only one element (there is no derivable relation involving those, the
generating relations being between words of length 2 and 3). We can observe
that the relation 𝑎𝑏 = 𝑏𝑎𝑎𝑏 is derivable since 𝑎𝑏 = 𝑏𝑏𝑎 = 𝑏𝑎𝑎𝑏, and similarly
the relation 𝑏𝑎 = 𝑎𝑏𝑏𝑎 is also derivable. In the enveloping group, we thus
have 𝑏𝑎 = 𝑏𝑎𝑎𝑏𝑏−𝑎− = 𝑎𝑏𝑏−𝑎− = 1, and similarly 𝑎𝑏 = 1. Therefore,
1 = 𝑎𝑏 = 𝑏𝑏𝑎 = 𝑏1 = 𝑏 and similarly 1 = 𝑎. The presented group is therefore
the trivial one, which is also the enveloping group of the trivial monoid. Another
example is given in §A.1.28.

A.1.16 Group presentation. As a variant of the previous construction, by a
group presentation one usually understands a pair

⟨ 𝑃1 | 𝑃2 ⟩
where 𝑃1 is a set and 𝑃2 ⊆ (𝑃1 ∪ 𝑃−1 )∗, which implicitly means the group
presented by the 2-polygraph〈

⋆
�� 𝑃1, 𝑃

−
1

�� 𝑎−𝑎 = 1, 𝑎𝑎− = 1, 𝑢 = 1
〉
𝑎∈𝑃1 ,𝑢∈𝑃2

.
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Here, we only consider relations of the form 𝑢 = 1, since having a relation 𝑢 = 𝑣
is equivalent (by Tietze transformations) to having the relation 𝑢−𝑣 = 1.

A.1.17 Positive rational numbers. We have seen a presentation of the mul-
tiplicative monoid N \ {0} in §A.1.8. The multiplicative group Q>0 of strictly
positive rational numbers is its enveloping group and, from the construction of
§A.1.15, we deduce that it admits the presentation〈

⋆
�� 𝑎𝑖 , 𝑎−𝑖 �� 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 , 𝑎−𝑖 𝑎𝑖 = 1, 𝑎𝑖𝑎−𝑖 = 1

〉
𝑖, 𝑗∈N .

A.1.18 Non-negative rational numbers. Let us detail an example of a presen-
tation coming from [205, Section 5.7]. The additive monoidQ+ of non-negative
rational numbers can be presented by the 2-polygraph

𝑃 =
〈

⋆
�� 𝑎𝑖 �� (𝑎𝑖+1)𝑖+1 = 𝑎𝑖

〉
𝑖∈N\{0} .

Here, any pair of generators commute, i.e., the relations 𝑎 𝑗𝑎𝑖 = 𝑎𝑖𝑎 𝑗 are
derivable since, supposing 𝑗 > 𝑖, we have

𝑎 𝑗𝑎𝑖 = 𝑎
𝑗 ( 𝑗−1) ...(𝑖+1)
𝑖 𝑎𝑖 = 𝑎𝑖𝑎

𝑗 ( 𝑗−1) ...(𝑖+1)
𝑖 = 𝑎𝑖𝑎 𝑗 .

The interpretation of a generator 𝑎𝑖 in Q+ is 𝑓 (𝑥𝑖) = 1/𝑖!, which extends as a
morphism of monoids 𝑓 : 𝑃∗ → Q+. It is compatible with the relations since

𝑓 (𝑎𝑖+1𝑖+1) =
𝑖 + 1
(𝑖 + 1)! =

1
𝑖!

= 𝑓 (𝑎𝑖)

and thus induces a morphism 𝑓 : 𝑃 → Q+, which we prove to be an iso-
morphism. The function 𝑓 is surjective since for (𝑝, 𝑞) ∈ N × (N \ {0}), one
has

𝑝

𝑞
=
𝑝(𝑞 − 1)!

𝑞!
= 𝑓

(
𝑎𝑝 (𝑞−1)!
𝑞

)
.

Let us show that it is injective. Suppose given two words 𝑢, 𝑣 ∈ 𝑃∗1 such that
𝑓 (𝑢) = 𝑓 (𝑣). Since the generators commute, the words 𝑢 and 𝑣 are, up to
equivalence, of the form

𝑢 = 𝑎𝑚1
1 𝑎𝑚2

2 . . . 𝑎𝑚𝑘

𝑘 and 𝑣 = 𝑎𝑛1
1 𝑎

𝑛2
2 . . . 𝑎𝑛𝑘𝑘

with 𝑘 ∈ N and 𝑚𝑖 , 𝑛𝑖 ∈ N for 0 ⩽ 𝑖 ⩽ 𝑘 . We can also suppose that 𝑚𝑘 ≠ 0, up
to exchanging the roles of 𝑢 and 𝑣 and lowering 𝑘 . Suppose moreover that 𝑘 > 1
(this hypothesis is not innocuous since it will lead to a contradiction). If 𝑛𝑘 ⩾ 𝑘 ,
we can use the relation 𝑎𝑘𝑘 = 𝑎𝑘−1 to transform 𝑢 into a word 𝑢′ equivalent to 𝑢
and satisfying 0 ⩽ 𝑚𝑘 < 𝑘 . For this reason, we can also suppose, without loss
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of generality, that 0 < 𝑚𝑘 < 𝑘 and 0 ⩽ 𝑛𝑘 < 𝑘 . Up to exchanging the roles of 𝑢
and 𝑣, we can also suppose 𝑚𝑘 ⩾ 𝑛𝑘 . We have

0 = 𝑓 (𝑢) − 𝑓 (𝑢′) = 𝑚1 − 𝑛1
1!

+ 𝑚2 − 𝑛2
2!

+ . . . + 𝑚𝑘 − 𝑛𝑘
𝑘!

and therefore

0 = (𝑘 − 1)! ( 𝑓 (𝑢) − 𝑓 (𝑢′))

= (𝑘 − 1)!
(
𝑚1 − 𝑛1

1!
+ 𝑚2 − 𝑛2

2!
+ . . . + 𝑚𝑘−1 − 𝑛𝑘−1

(𝑘 − 1)!

)
+ 𝑚𝑘 − 𝑛𝑘

𝑘

= 𝑚 + 𝑚𝑘 − 𝑛𝑘
𝑘

with 𝑚 ∈ Z. Since 0 < 𝑚𝑘 < 𝑘 , 0 ⩽ 𝑛𝑘 < 𝑘 and 𝑚𝑘 ⩾ 𝑛𝑘 , we have
0 < (𝑚𝑘 − 𝑛𝑘)/𝑘 < 1, and thus a contradiction. Therefore, we have 𝑘 = 1
and 𝑚𝑘 = 𝑓 (𝑢) = 𝑓 (𝑣) = 𝑛𝑘 , i.e., 𝑢 = 𝑣. The morphism 𝑓 : 𝑃 → Q+ is thus
injective. From the results of §A.1.15, we can deduce the following presentation
of the additive monoid Q, which is its enveloping group:〈

⋆
�� 𝑎𝑖 , 𝑏𝑖 �� 𝑎𝑖+1𝑖+1 = 𝑎𝑖 , 𝑎𝑖𝑏𝑖 = 1, 𝑏𝑖𝑎𝑖 = 1

〉
𝑖∈N\{0} .

A.1.19 Symmetric groups. The symmetric group 𝑆𝑛+1 is the group of bĳec-
tions (or permutations) from the set {0, . . . , 𝑛} to itself, with multiplication
given by composition and unit by identity. More geometrically, it can also be
defined as the group of symmetries of an 𝑛-simplex. Considered as a monoid,
it admits a presentation where the set of generators is 𝑃1 = {𝑎0, . . . , 𝑎𝑛−1} and
the relations are

– 𝑎𝑖𝑎𝑖 = 1, for 0 ⩽ 𝑖 < 𝑛,
– 𝑎𝑖𝑎𝑖+1𝑎𝑖 = 𝑎𝑖+1𝑎𝑖𝑎𝑖+1, for 0 ⩽ 𝑖 < 𝑛 − 1,
– 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 , for 0 ⩽ 𝑖 < 𝑗 < 𝑛 with 𝑗 > 𝑖 + 1,

as found out by Moore [288]. Here, the generator 𝑎𝑖 should be interpreted as
the transposition exchanging 𝑖 with 𝑖 + 1, written (𝑖(𝑖 + 1)), whose graph can be
pictured as

... ... .

The presentation is studied in details in §5.2.7.
The above presentation is based on the transpositions (𝑖(𝑖 + 1)) as genera-

tors 𝑎𝑖 , but other choices of generators are possible and will give rise to other
presentations [95, Section 6.2], for instance:

– the generators 𝑎𝑖 = (𝑖𝑛), with 0 ⩽ 𝑖 < 𝑛, induce a presentation with relations

𝑎2
𝑖 = 1 (𝑎𝑖𝑎𝑖+1)3 = 1 (𝑎𝑖𝑎𝑖+1𝑎𝑖𝑎 𝑗 )2 = 1



504 A catalogue of 2-polygraphs

for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛 − 1 with 𝑗 ≠ 𝑖 and 𝑗 ≠ 𝑖 + 1, where 𝑎𝑛 = 𝑎0 by convention,
– the generators 𝑎0 = (1𝑛) and 𝑎𝑖 = (0𝑖𝑛) for 1 ⩽ 𝑖 < 𝑛 induce a presentation

with relations

𝑎2
0 = 1 𝑎3

𝑗 = 1 (𝑎𝑖𝑎 𝑗 )2 = 1

for 0 ⩽ 𝑖 < 𝑗 < 𝑛,
– the two generators 𝑎 = (01) and 𝑏 = (012 . . . 𝑛) induce a presentation with

relations

𝑎2 = 1 𝑏𝑛+1 = 1 (𝑏𝑎)𝑛 = 1 (𝑎𝑏𝑛𝑎𝑏)3 = 1 (𝑎𝑏𝑛+1− 𝑗𝑎𝑏 𝑗 ) = 1

for 1 ⩽ 𝑗 < 𝑛 − 1.

A.1.20 Alternating groups. The alternating group 𝐴𝑛+1 is the subgroup
of 𝑆𝑛+1 consisting of symmetries of even signature (recall that the signature of
a symmetry is the parity of the number of transpositions used to express it). It
admits a presentation with generators 𝑃1 = {𝑎0, . . . , 𝑎𝑛−1} and relations

𝑎3
𝑗 = 1 (𝑎𝑖𝑎 𝑗 )2 = 1

for 0 ⩽ 𝑖 < 𝑗 < 𝑛 − 1. Here, a generator 𝑎𝑖 should be interpreted as the
permutation (𝑖(𝑛 − 1)𝑛), see [95, Section 6.3] for details.

A.1.21 Braid groups and monoids. We introduce notations for the spaces
𝐼 = [0, 1], 𝑋 = R2 and 𝑌 = 𝐼 × 𝑋 . Suppose given 𝑛 ∈ N and continuous
functions

𝑏𝑖 : 𝐼 → 𝑌

with 0 ⩽ 𝑖 < 𝑛, which are mutually disjoint (i.e., for 𝑡 ∈ 𝐼, 𝑏𝑖 (𝑡) = 𝑏 𝑗 (𝑡) implies
𝑖 = 𝑗) and with fixed endpoints (say, 𝑏𝑖 (0) = (0, 𝑖, 0) and 𝑏𝑖 (1) = (1, 𝑖, 0)).
This induces a subspace 𝛽 of 𝑌 = 𝐼 × 𝑋 defined as

𝛽 = {(𝑡, 𝑏𝑖 (𝑡)) | 𝑡 ∈ 𝐼, 0 ⩽ 𝑖 < 𝑛} .
Such a subspace is called a (geometric) braid with 𝑛 strands. Graphically, a
braid with 3 strands can be pictured as follows, where the first coordinate is
pictured vertically:
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Braids are considered up to endpoint-preserving isotopy: we identify two
braids 𝛽 and 𝛽′ for which there exists a continuous function

ℎ : 𝐼 → 𝑌𝑌

such that ℎ(0) = 1𝑌 , ℎ(1) (𝛽) = 𝛽′ and, for every 𝑡 ∈ 𝐼, the function ℎ(𝑡) is an
homeomorphism, whose restriction to ({0} × 𝑋 ⊔ {1} × 𝑋) ⊆ 𝑌 is the identity,
such that ℎ(𝑡) (𝛽) is a braid. The set 𝐵𝑛 of braids with 𝑛 strands (up to isotopy)
forms a group, where the composition is given by concatenation of strands, and
the identity is given by the braid induced by constant functions 𝑏𝑖 (𝑡) = (𝑖, 0).

An alternative description can be given as follows. Given a topological
space 𝑋 (typically, 𝑋 = R2 in the following), the 𝑛-element configuration
space is

𝐶𝑛𝑋 =
{(𝑥1, . . . , 𝑥𝑛)

�� 𝑥𝑖 = 𝑥 𝑗 implies 𝑖 = 𝑗
}

.

The 𝑛-element unlabeled configuration space 𝐷𝑛𝑋 = 𝐶𝑛𝑋/Σ𝑛 is the quotient
of 𝐶𝑛𝑋 under the action of the symmetric group permuting the coordinates.
The 𝑛-strand braid group can equivalently be defined as the fundamental group
of this space: 𝐵𝑛 = 𝜋1 (𝐷𝑛R2).

Before presenting the braid group, we first present a submonoid of this group.
The (positive) braid monoid 𝐵+𝑛+1 with 𝑛+1 strands, admits a presentation with
𝑃1 = {𝑎0, . . . , 𝑎𝑛−1}, where 𝑎𝑖 can be pictured as

... ...

(with 𝑖 strands on the left), and the relations are

– 𝑎𝑖𝑎𝑖+1𝑎𝑖 = 𝑎𝑖+1𝑎𝑖𝑎𝑖+1, for 0 ⩽ 𝑖 < 𝑛 − 1,
– 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 , for 0 ⩽ 𝑖 < 𝑖 + 1 < 𝑗 < 𝑛.

For instance, with 𝑛 + 1 = 4, the generators 𝑎0, 𝑎1, 𝑎2 respectively correspond
to the following braids with four strands:

𝑎0 = 𝑎1 = 𝑎2 =

and the relations are

= =

𝑎0𝑎1𝑎0 = 𝑎1𝑎0𝑎1 𝑎1𝑎2𝑎1 = 𝑎2𝑎1𝑎2
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and

=

𝑎0𝑎2 = 𝑎2𝑎0

We can expect that the full braid group can be recovered by moreover adding
the other kind of crossings

𝑎−𝑖 = ... ...

which are inverse to the crossings 𝑎𝑖 . Indeed, the braid group 𝐵𝑛+1 is the
enveloping group of the monoid 𝐵+𝑛+1, from which a presentation can be con-
structed, see §A.1.15:

– generators are 𝑎𝑖 , 𝑎−𝑖 for 0 ⩽ 𝑖 < 𝑛,
– relations are those of the braid monoid plus 𝑎𝑖𝑎−𝑖 = 1 and 𝑎−𝑖 𝑎𝑖 = 1

for 0 ⩽ 𝑖 < 𝑛.

This presentation is due to Artin [17].
From the above presentation, we see that the symmetric group can be obtained

from the braid group by identifying 𝑎𝑖 with 𝑎−𝑖 . There is thus a projection
morphism 𝐵𝑛 → 𝑆𝑛 and we write 𝑃𝑛 for its kernel, which is called the pure
braid group: the group 𝑃𝑛 can be seen as the submonoid of 𝐵𝑛 consisting of
braids which become identities if we interpret them as symmetries, and we have
an exact sequence

1→ 𝑃𝑛 → 𝐵𝑛 → 𝑆𝑛 → 1.

This group can also more directly be described as the fundamental group of
a configuration space: 𝑃𝑛 = 𝜋1 (𝐶𝑛R2). A presentation of 𝑃𝑛 can be given
with generators 𝑎𝑖 𝑗 for 0 ⩽ 𝑖 < 𝑗 < 𝑛, as well as their formal inverses 𝑎−𝑖 𝑗 .
Considering 𝑃𝑛 as a subgroup of 𝐵𝑛, the generators 𝑎𝑖 𝑗 can be expressed in
terms of the generators of 𝐵𝑛 as

𝑎𝑖 𝑗 = 𝑎𝑖𝑎𝑖+1 . . . 𝑎 𝑗−2𝑎
2
𝑗−1𝑎

−
𝑗−2 . . . 𝑎

−
𝑖+1𝑎

−
𝑖 .

Graphically,
...

... ... ...

...
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The relations satisfied by those are

𝑎𝑘𝑙𝑎𝑖 𝑗𝑎
−
𝑘𝑙 =




𝑎𝑖 𝑗 if 𝑙 < 𝑖 or 𝑗 < 𝑘 ,
𝑎−𝑖𝑙𝑎𝑖 𝑗𝑎𝑖𝑙 if 𝑖 < 𝑗 = 𝑘 < 𝑙,
𝑎−𝑖 𝑗𝑎

−
𝑖𝑘𝑎𝑖 𝑗𝑎𝑖𝑘𝑎𝑖 𝑗 if 𝑖 < 𝑘 < 𝑗 = 𝑙,

𝑎−𝑖𝑙𝑎
−
𝑖𝑘𝑎𝑖𝑙𝑎𝑖𝑘𝑎𝑖 𝑗𝑎

−
𝑖𝑘𝑎
−
𝑖𝑙𝑎𝑖𝑘𝑎𝑖𝑙 if 𝑖 < 𝑘 < 𝑗 < 𝑙.

A.1.22 Hyperoctahedral group. The hyperoctahedral group 𝐵𝑛 (or 𝐶𝑛) is
the group of symmetries of a cube of dimension 𝑛. It admits a presentation with
generators 𝑎𝑖 , with 0 ⩽ 𝑖 < 𝑛 and relations

– 𝑎0𝑎1𝑎0𝑎1 = 𝑎1𝑎0𝑎1𝑎0

– 𝑎𝑖𝑎𝑖+1𝑎𝑖 = 𝑎𝑖+1𝑎𝑖𝑎𝑖+1 for 0 < 𝑖 < 𝑛 − 1,
– 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 for 0 ⩽ 𝑖 < 𝑖 + 1 < 𝑗 < 𝑛.

This group can also be described as the group of signed symmetries, i.e., 𝑛×𝑛
orthogonal matrices with integer entries, i.e., 𝑛×𝑛 matrices with coefficients
in {−1, 0, 1} containing exactly one non-null coefficient on each row and each
column, see §C.11.4 for details.

A.1.23 Progressive ribbon group. Given 𝑛 ∈ N, the monoid 𝑅+𝑛+1 of positive
progressive ribbons with 𝑛+1 strands admits a presentation with generators 𝑎𝑖 ,
with 0 ⩽ 𝑖 < 𝑛, and 𝑏𝑖 , with 0 ⩽ 𝑖 ⩽ 𝑛, subject to the relations

– 𝑎𝑖𝑎𝑖+1𝑎𝑖 = 𝑎𝑖+1𝑎𝑖𝑎𝑖+1 for 0 ⩽ 𝑖 < 𝑛 − 1,
– 𝑎𝑖𝑎 𝑗 = 𝑎 𝑗𝑎𝑖 for 0 ⩽ 𝑖 < 𝑖 + 1 < 𝑗 < 𝑛,
– 𝑏𝑖𝑎𝑖 = 𝑎𝑖𝑏𝑖+1 for 0 ⩽ 𝑖 < 𝑛,
– 𝑏𝑖+1𝑎𝑖 = 𝑎𝑖𝑏𝑖 for 0 ⩽ 𝑖 < 𝑛,
– 𝑏𝑖𝑎 𝑗 = 𝑎 𝑗𝑏𝑖 for 0 ⩽ 𝑖 < 𝑛, 0 ⩽ 𝑗 ⩽ 𝑛 and 𝑖 ∉ {𝑖, 𝑖 + 1}.
Graphically, an element of this monoid can be depicted as 𝑛 ribbons in the
space, the generators are respectively

𝑎𝑖 = . . . . . . 𝑏𝑖 = . . . . . .

and the relations have natural graphical interpretations, which the reader is
encouraged to draw. The group 𝑅𝑛 of progressive ribbons is the enveloping
group of 𝑅+𝑛. Note that the relations satisfied by the generators 𝑎𝑖 are precisely
the relations of the braid group. In fact, there is an obvious action of the braid
group 𝐵𝑛 on the set [𝑛] = {0, . . . , 𝑛 − 1} of braids and 𝑅𝑛 can be obtained as
the wreath product 𝑅𝑛 = Z ≀ 𝐵𝑛 of the additive group of integers with the braid
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group. The groups 𝑅𝑛, as well as their presentation, are detailed in [208], as
well as in §C.11.5.

A.1.24 Dihedral groups. The dihedral group 𝐷𝑛 is the group of symmetries
of a regular polygon with 𝑛 vertices. It admits a presentation by the 2-polygraph
with with 1-generators 𝑟0, . . . , 𝑟𝑛−1 and 𝑠0, . . . , 𝑠𝑛−1, and relations

𝑟0 = 1 𝑟𝑖𝑟 𝑗 = 𝑟𝑖+ 𝑗 𝑟𝑖𝑠 𝑗 = 𝑠𝑖+ 𝑗 𝑠𝑖𝑟 𝑗 = 𝑠𝑖− 𝑗 𝑠𝑖𝑠 𝑗 = 𝑟𝑖− 𝑗

for every indices 0 ⩽ 𝑖, 𝑗 < 𝑛, with addition and subtraction taken modulo 𝑛.
Alternatively, it can be presented by the 2-polygraph〈

⋆
�� 𝑟, 𝑠 �� 𝑟𝑛 = 1, 𝑠2 = 1, 𝑟𝑠𝑟𝑠 = 1

〉
(the relationship with previous generators is given by 𝑟 = 𝑟1, 𝑠 = 𝑠0, 𝑟𝑖 = 𝑟 𝑖 and
𝑠𝑖 = 𝑟 𝑖𝑠). In terms of symmetries of a polygon with 𝑛 vertices, 𝑠 corresponds to
a symmetry and 𝑟 a rotation of 2𝜋/𝑛, and more generally 𝑠𝑖 and 𝑟𝑖 respectively
correspond to a reflection along the 𝑖-th axis and a rotation of 2𝜋𝑖/𝑛:

𝑠0

𝑠1

𝑠2
𝑟

𝑠0

𝑠1

𝑠2

𝑠3

𝑟

𝑠0

𝑠1

𝑠2𝑠3
𝑠4

𝑟

The case of 𝐷3 is detailed in Example 5.1.4.

A.1.25 Artin monoids and Coxeter groups. Given a finite set 𝑆 of generators,
a Coxeter matrix 𝑀 is a function which to every pair of elements (𝑠, 𝑡) ∈ 𝑆 × 𝑆
associates 𝑚𝑠𝑡 ∈ N ⊔ {∞} such that 𝑚𝑠𝑡 = 𝑚𝑡𝑠 , 𝑚𝑠𝑠 = 1 and 𝑚𝑠𝑡 > 1 for every
𝑠, 𝑡 ∈ 𝑆 with 𝑠 ≠ 𝑡. Such a matrix induces

– an Artin monoid with presentation

⟨ ⋆ | 𝑠 | ⟨𝑠𝑡⟩𝑚𝑠𝑡 = ⟨𝑡𝑠⟩𝑚𝑡𝑠 ⟩𝑠,𝑡∈𝑆
where ⟨𝑠𝑡⟩𝑘 denotes the alternating product of 𝑠 and 𝑡 of length 𝑘 starting
with 𝑘 (e.g. ⟨𝑠𝑡⟩5 = 𝑠𝑡𝑠𝑡𝑠) and, by convention, there is no relation when
𝑚𝑠𝑡 = ∞ or 𝑚𝑡𝑠 = ∞,

– an Artin group, which is the group freely generated by the above monoid,
and

– a Coxeter group with presentation as a monoid

⟨ ⋆ | 𝑠 | ⟨𝑠𝑡⟩𝑚𝑠𝑡 = ⟨𝑡𝑠⟩𝑚𝑡𝑠 , 𝑠𝑠 = 1 ⟩𝑠,𝑡∈𝑆
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or equivalently

⟨ ⋆ | 𝑠 | (𝑠𝑡)𝑚𝑠𝑡 = 1 ⟩𝑠,𝑡∈𝑆 .

Since the set 𝑆 is finite, writing 𝑛 for its cardinal, we can assume that it is
of the form 𝑆 = {𝑖 ∈ N | 0 ⩽ 𝑖 < 𝑛}, which is convenient in the following. A
Coxeter matrix 𝑀 is often pictured as a Dynkin diagram consisting of a labeled
non-oriented simple graph with 𝑛 vertices 𝑥𝑖 , with 0 ⩽ 𝑖 < 𝑛, with an edge
between 𝑥𝑖 and 𝑦𝑖 labeled by𝑚𝑖 𝑗 . By convention, the looping edges on vertices,
as well as edges with label 2, are not drawn, and edges with label 3 are not
labeled. Artin monoids are further detailed in §B.1.

For instance, the Coxeter matrix such that 𝑚𝑖 (𝑖+1) = 3, and 𝑚𝑖 𝑗 = 2
for |𝑖 − 𝑗 | > 2, can be represented by the diagram

. . .

The Artin monoid is the braid monoid with 𝑛 + 1 strands (see §A.1.21) and
the Coxeter group is the symmetric group on 𝑛 + 1 elements (see §A.1.19).
Similarly, the hyperoctahedral group 𝐵𝑛 is the Coxeter group associated to

. . .4

(with 𝑛 vertices) and the dihedral group 𝐷𝑛 is the Coxeter group associated to

. . .

(with 𝑛 vertices). A detailed presentation of these groups can be found in several
places such as [146].

A.1.26 Plactic, Chinese and Sylvester monoids. The plactic monoid 𝑃𝑛 of
rank 𝑛 in type 𝐴 was introduced by Knuth in [217] and further developed by
Lascoux and Schützenberger [242]. It admits a presentation with {1, . . . , 𝑛} as
generators, and relations

𝑧𝑥𝑦 = 𝑥𝑧𝑦, for 1 ⩽ 𝑥 ⩽ 𝑦 < 𝑧 ⩽ 𝑛, 𝑦𝑧𝑥 = 𝑦𝑥𝑧, for 1 ⩽ 𝑥 < 𝑦 ⩽ 𝑧 ⩽ 𝑛.

Its elements are in bĳection with semistandard Young tableaux [217, 254], from
which stem applications in representation theory [141, 250]. Plactic monoids
are further detailed in §B.2.

Many variants of plactic monoids exist, such as the Chinese monoids. These
monoids were introduced in [118] thought the following presentation, called
Chinese presentation. The Chinese monoid of rank 𝑛 > 0, denoted by 𝐶ℎ𝑛, is
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the quotient of the free monoid {1, . . . , 𝑛}∗ by the congruence generated by the
following relations:

𝑧𝑦𝑥 = 𝑧𝑥𝑦 = 𝑦𝑧𝑥 for all 1 ⩽ 𝑥 ⩽ 𝑦 ⩽ 𝑧 ⩽ 𝑛. (A.2)

The Sylvester monoids 𝑆𝑦𝑙𝑛 [185] are also a variant, with the same generators
and relations

𝑧𝑥𝑢𝑦 = 𝑥𝑧𝑢𝑦,

for 1 ⩽ 𝑥 ⩽ 𝑦 < 𝑧 ⩽ 𝑛 and 𝑢 ∈ {1, . . . , 𝑛}∗.

A.1.27 Thompson group 𝐹. We write 𝐼 ⊆ R for the interval 𝐼 = [0, 1]. An
element 𝑥 ∈ 𝐼 is called dyadic when it is of the form 𝑚

2𝑛 for some 𝑚, 𝑛 ∈ N. The
Thompson group 𝐹 [275, 75] has elements the homeomorphisms 𝑓 : 𝐼 → 𝐼

which

– are piecewise linear with slopes 2𝑛 for some 𝑛 ∈ Z,
– with a finite number of breakpoints,
– such that the coordinates of the breakpoints are dyadic.

The multiplication 𝑔 𝑓 of two elements 𝑓 : 𝐼 → 𝐼 and 𝑔 : 𝐼 → 𝐼 is given by
their composite 𝑔 ◦ 𝑓 . For instance, we have the three functions whose graphs
are depicted below are elements of 𝐹, respectively called 𝑥0, 𝑥1 and 𝑥2:

0 1
4

1
2

1
0

1
2

3
4

1

0 1
2

5
8

3
4

1
0

1
2

3
4

1

0 3
4

1
0

3
4

1

The explicit definition of 𝑥0 is

𝑥0 (𝑡) =



2𝑡 if 0 ⩽ 𝑡 ⩽ 1
4

𝑡 + 1
4 if 1

4 ⩽ 𝑡 ⩽
1
2

𝑡+1
2 if 1

2 ⩽ 𝑡 ⩽ 1

and more generally, given 𝑖 ∈ N, one can define a function 𝑥𝑖 : 𝐼 → 𝐼 in 𝐹 by

𝑥𝑖 (𝑡) =
{
𝑡 if 0 ⩽ 𝑡 ⩽ 𝑡𝑖
𝑥0 (2𝑖 (𝑡 − 𝑡𝑖))/2𝑖 + 𝑡𝑖 if 𝑡𝑖 ⩽ 𝑡 ⩽ 1

where 𝑡𝑖 = 1 − 1
2𝑖 and 𝑖 ≠ 0. The group 𝐹 is generated by the elements 𝑥𝑖 and

can be described as the enveloping group of the Thompson monoid 𝐹+, which
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is presented by

𝐹+ =
〈

⋆
�� 𝑥𝑖 �� 𝑥 𝑗+1𝑥𝑖 = 𝑥𝑖𝑥 𝑗 〉𝑖< 𝑗∈N .

More explicitly, this means that, starting from the above presentation, we
should add a formal inverse 𝑥−𝑖 to each generator 𝑥𝑖 , as explained in §A.1.15.
Insights on this presentation, as well as alternative descriptions of 𝐹, are
given in §C.9. Note that the generator 𝑥2 is superfluous, since the relation
𝑥2𝑥0 = 𝑥0𝑥1 can be replaced by 𝑥2 = 𝑥0𝑥1𝑥

−
0 . More generally, given 𝑖 ⩾ 2, one

has 𝑥𝑖 = 𝑥𝑛−1
0 𝑥1 (𝑥−0 )𝑛−1, which shows that the group is generated by 𝑥0 and 𝑥1.

Following this trail, the group 𝐹 also admits the following finite presentation
with only two generators and their inverses [75]:

⟨ ⋆ | 𝑎, 𝑏, 𝑎− , 𝑏− | [𝑎𝑏− , 𝑎−𝑏𝑎], [𝑎𝑏− , 𝑎−𝑎−𝑏𝑎𝑎], 𝑎𝑎− , 𝑎−𝑎, 𝑏𝑏− , 𝑏−𝑏 ⟩

where 𝑎 and 𝑏 respectively correspond to 𝑥0 and 𝑥1 in the previous presentation,
[𝑢, 𝑣] is a notation for the commutator 𝑢𝑣𝑢−𝑣− , and we simply write 𝑢 for a
relation 𝑢 = 1. The Thompson group 𝐹 is FP∞ [61].

Two other variants of the group 𝐹 were introduced by Thompson [75]. The
group 𝑇 is a “cyclic variant” whose elements are piecewise linear functions
𝑓 : 𝑆1 → 𝑆1, where 𝑆1 denotes the circle of unit perimeter. The group 𝑉 is
a “symmetric variant” consisting of functions 𝑓 : 𝑆1 → 𝑆1 which are right-
continuous, bĳective and piecewise-linear satisfying similar requirements as
before. There are natural inclusion morphisms 𝐹 ↩→ 𝑇 ↩→ 𝑉 . Typical elements
of 𝑇 and 𝑉 are

0 1
0

1

0 1
0

1

Both 𝑇 and 𝑉 also admit finite presentations. Generalizations of those groups
were also introduced by using 𝑛-ary trees instead of binary ones [180], by
using 𝐼𝑛 instead of 𝐼 for the domain of the endomorphisms [57], and by using
braidings instead of symmetries [58].

A.1.28 Wirtinger monoids. A knot is an embedding 𝜅 : 𝑆1 → R3 of the circle
into space. Suppose given a diagram representing such a knot on the plane, e.g.
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the trefoil knot:
𝑎

𝑏 𝑐

We label the arcs (here by 𝑎, 𝑏, 𝑐) and orient them following a conventional ori-
entation of 𝑆1. This induces a presentation of a monoid, with arcs as generators,
and a relation

𝑎𝑏 = 𝑐𝑎

for each crossing

𝑎𝑏 𝑐

(the orientation of 𝑏 or 𝑐 is not relevant). For instance, the monoid associated
to the trefoil knot is

⟨ ⋆ | 𝑎, 𝑏, 𝑐 | 𝑎𝑏 = 𝑐𝑎, 𝑏𝑐 = 𝑎𝑏, 𝑐𝑎 = 𝑏𝑐 ⟩ .
The enveloping group of the monoid is the fundamental group of the knot,
i.e., the fundamental group of R3 \ 𝜅(𝑆1), and the presentation is called the
Wirtinger presentation. This group only depends on the knot, up to isotopy (not
on the diagram used to construct it or its orientation for instance). As a side
note, this group is also the enveloping group of the monoid

⟨ ⋆ | 𝑎, 𝑏 | 𝑏𝑎𝑏 = 𝑎𝑏𝑎 ⟩
which is not isomorphic to the above monoid.

Let us see an application of those presentations. Two knots are equivalent
when their complements are isomorphic. Moreover, the fundamental group of
the complement is an invariant of the equivalence classes. This shows that
the trefoil is not isomorphic to the unknot: for instance, one has an abelian
fundamental group whereas the other does not.

A.1.29 Temperley-Lieb monoids. Given 𝑛 ∈ N, the 𝑛-th Temperley-Lieb
monoid is presented by the 2-polygraph with 1-generators 𝑑 and 𝑢𝑖 , indexed by
0 ⩽ 𝑖 < 𝑛, together with relations, for 0 ⩽ 𝑖, 𝑗 < 𝑛:

– 𝑑𝑢𝑖 = 𝑢𝑖𝑑,
– 𝑢𝑖𝑢𝑖 = 𝑑𝑢𝑖 ,
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– 𝑢𝑖𝑢 𝑗𝑢𝑖 = 𝑢𝑖 whenever | 𝑗 − 𝑖 | = 1,
– 𝑢 𝑗𝑢𝑖 = 𝑢𝑖𝑢 𝑗 whenever | 𝑗 − 𝑖 | > 1.

Given a ring 𝑅 and a parameter 𝛿 ∈ 𝑅, the Temperley-Lieb algebra 𝐴𝑛 (𝛿) is
the free 𝑅-algebra, generated by the 𝑢𝑖 as above, satisfying the above relations
with 𝑑 = 𝛿. More details can be found in [341, 207, 215, 1], as well as §C.10.7.

A.1.30 Brauer monoids. Given 𝑛 ∈ N, the 𝑛-th Brauer monoid [55, 227] is
presented by the 2-polygraph with 1-generators 𝑎𝑖 and 𝑢𝑖 , indexed by 0 ⩽ 𝑖 < 𝑛,
subject to the 12 families of relations, indexed by 0 ⩽ 𝑖, 𝑗 < 𝑛,

– for 0 ⩽ 𝑖 < 𝑛,

𝑎𝑖𝑎𝑖 = 1 𝑢𝑖𝑢𝑖 = 1 𝑎𝑖𝑢𝑖 = 𝑢𝑖 𝑢𝑖𝑎𝑖 = 𝑢𝑖

– for | 𝑗 − 𝑖 | = 1,

𝑎𝑖𝑎 𝑗𝑎𝑖 = 𝑎 𝑗𝑎𝑖𝑎 𝑗 𝑢𝑖𝑢 𝑗𝑢𝑖 = 𝑢𝑖 𝑎𝑖𝑢 𝑗𝑎𝑖 = 𝑎 𝑗𝑢𝑖𝑎 𝑗 𝑢𝑖𝑎 𝑗𝑢𝑖 = 𝑢𝑖

– for | 𝑗 − 𝑖 | > 1,

𝑎 𝑗𝑎𝑖 = 𝑎𝑖𝑎 𝑗 𝑢 𝑗𝑢𝑖 = 𝑢𝑖𝑢 𝑗 𝑢 𝑗𝑎𝑖 = 𝑎𝑖𝑢 𝑗

– for 0 ⩽ 𝑖 < 𝑛 − 3,

𝑎𝑖𝑎𝑖+1𝑢𝑖𝑢𝑖+2 = 𝑎𝑖+2𝑎𝑖+1𝑢𝑖𝑢𝑖+2

In particular, the relations satisfied by the 𝑎𝑖 are precisely those of the symmetric
group, see §A.1.19, and the relations satisfied by the 𝑢𝑖 are those of Temperley-
Lieb monoids with 𝑑 = 1, see §A.1.29. More details about Brauer algebras, as
well as a graphical illustration of the relations can be found in §C.10.8.

A.1.31 Graphs. Consider the monoid presented by

⟨ ⋆ | 𝑠, 𝑡 | 𝑠𝑠 = 𝑠𝑡 = 𝑠, 𝑡𝑠 = 𝑡𝑡 = 𝑡 ⟩ .
A right action of this monoid on a set 𝑋 is precisely a directed graph: the
vertices are elements 𝑥 ∈ 𝑋 such that 𝑥 · 𝑠 = 𝑥 · 𝑡 = 𝑥, and other elements 𝑦 ∈ 𝑋
are edges with source 𝑦 · 𝑠 and target 𝑦 · 𝑡.

A.1.32 Tseitin monoid. The Tseitin monoid is the one whose set of 1-gene-
rators is {𝑎, 𝑐, 𝑏, 𝑑, 𝑒}, subject to the relations

𝑎𝑐 = 𝑐𝑎 𝑏𝑐 = 𝑐𝑏 𝑒𝑐𝑎 = 𝑐𝑒 𝑐𝑐𝑎𝑒 = 𝑐𝑐𝑎

𝑎𝑑 = 𝑑𝑎 𝑏𝑑 = 𝑑𝑏 𝑒𝑑𝑏 = 𝑑𝑒
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The reason why it is interesting is that it admits a small presentation, and yet it
was shown to have undecidable word problem by Tseitin [346] (see Section 4.2),
meaning that, writing 𝑃 for the above 2-polygraph, there is no algorithm which,
given any two 1-cells 𝑢, 𝑣 ∈ 𝑃∗1, answers whether 𝑢 ≈𝑃 𝑣 holds or not. In
fact, a 1-polygraph with only three relations exhibiting this property can be
found [272].

A.2 Presentations of categories

An example of a presentation of a category which is not a monoid was already
given in Example 2.3.12: the walking isomorphism category. There are pos-
sible variations on this construction of the “walking something”, as we show
below, although most interesting categorical constructions (e.g. adjunctions)
are 2-categorical and will require using 3-polygraphs.

A.2.1 The walking retract. A retract in a category 𝐶 consists of a pair of
morphisms 𝑎 : 𝑥 → 𝑦 and 𝑏 : 𝑦 → 𝑥 such that 𝑏 ◦ 𝑎 = 1𝑥 . In this case,
𝑎 is called a section and 𝑏 a retraction. The walking retract is the category
presented by

⟨ 𝑥, 𝑦 | 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑥 | 𝑎𝑏 = 1𝑥 ⟩ .
It can be described as the category

𝑥
𝑎
((
𝑦

𝑏

gg 𝑐dd

with two objects 𝑥, 𝑦 and three non-trivial morphisms

𝑎 : 𝑥 → 𝑦 𝑏 : 𝑦 → 𝑥 𝑐 : 𝑦 → 𝑦

with non-trivial compositions

𝑎𝑏 = 1𝑥 𝑎𝑐 = 𝑎 𝑏𝑎 = 𝑐 𝑐𝑐 = 𝑐

A.2.2 Interval objects. Given an object 𝑥 in a category, a cylinder on 𝑥 is
an object 𝑦 together with morphisms 𝑠, 𝑡 : 𝑥 → 𝑦 and 𝑝 : 𝑦 → 𝑥 such that
𝑝◦𝑠 = 1𝑥 = 𝑝◦ 𝑡. A typical example of cylinder object on a topological space 𝑋
is the space 𝑋 × 𝐼, where 𝐼 = [0, 1] is the standard interval, with 𝑠(𝑥) = (𝑥, 0),
𝑡 (𝑥) = (𝑥, 1) and 𝑝(𝑥, 𝑎) = 𝑥, see [211] for details. The theory of an object
together with a cylinder is the category presented by

⟨ 𝑥, 𝑦 | 𝑠 : 𝑥 → 𝑦, 𝑡 : 𝑥 → 𝑦, 𝑝 : 𝑦 → 𝑥 | 𝑠𝑝 = 1𝑥 , 𝑡 𝑝 = 1𝑥 ⟩ .
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Note that it is a variation on previous case, since it consists of two morphisms
with a common retraction. Depending on the applications, the cylinder can be
equipped with various extra morphisms such as

– reversion: a morphism 𝑟 : 𝑦 → 𝑦 satisfying

𝑟 ◦ 𝑠 = 𝑡 𝑟 ◦ 𝑡 = 𝑠 𝑟 ◦ 𝑟 = 1𝑥 𝑠 ◦ 𝑟 = 𝑠
typically, the endomorphism of 𝑋 × 𝐼 defined by 𝑟 (𝑥, 𝑎) = (𝑥, 1 − 𝑎),

– concatenation: morphisms 𝑐− , 𝑐+ : 𝑦 → 𝑦 satisfying the relations

𝑠 ◦ 𝑐− = 𝑠 𝑡 ◦ 𝑐+ = 𝑡 𝑝 ◦ 𝑐− = 𝑝 𝑝 ◦ 𝑐+ = 𝑝
and moreover, in the presence of a reversion

𝑟 ◦ 𝑐− = 𝑐+ ◦ 𝑟 𝑟 ◦ 𝑐+ = 𝑐− ◦ 𝑟
typically, on a topological cylinder 𝑋 × 𝐼, we define 𝑐− (𝑥, 𝑎) = (𝑥, 𝑎/2) and
𝑐+ (𝑥, 𝑎) = (𝑥, (𝑎 + 1)/2).

A.2.3 The walking factorization. A factorization of a morphism 𝑐 : 𝑥 → 𝑧

consists of a pair of morphisms 𝑎 : 𝑥 → 𝑦 and 𝑏 : 𝑦 → 𝑧 such that 𝑐 = 𝑏 ◦ 𝑎.
The walking factorization is the category presented by

⟨ 𝑥, 𝑦, 𝑧 | 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑦 → 𝑧, 𝑐 : 𝑥 → 𝑧 | 𝑎𝑏 = 𝑐 ⟩ .
It can be described as the category with {0, 1, 2} as objects, one morphism 𝑖 → 𝑗

whenever 𝑖 ⩽ 𝑗 and no morphism 𝑖 → 𝑗 whenever 𝑖 > 𝑗 .

A.2.4 The walking 𝑛-span. Given a natural number 𝑛, consider the poset 𝑆𝑛
whose elements are

𝑆𝑛 =
{
𝑥−0 , 𝑥

+
0 , 𝑥
−
1 , 𝑥

+
1 , . . . , 𝑥

−
𝑛−1, 𝑥

+
𝑛−1, 𝑥𝑛

}
ordered by 𝑥𝛼𝑖 < 𝑥

𝛽
𝑗 whenever 𝑖 < 𝑗 , for any 𝛼, 𝛽 ∈ {−, +}, and 𝑥𝑛 is the

maximal element. For 𝑛 = 0, 1, 2, 3, the Hasse diagram of the poset is

𝑥0 𝑥1

𝑥−0

AA

𝑥+0

]]
𝑥2

𝑥−1

AA

𝑥+1

]]

𝑥−0

OO
99

𝑥+0

ee
OO

𝑥3

𝑥−2

AA

𝑥+2

]]

𝑥−1

OO
99

𝑥+1

ee
OO

𝑥−0

OO
99

𝑥+0 .

ee
OO

This poset can be seen as a category, still denoted 𝑆𝑛, with the above set of
objects and an arrow 𝑥 → 𝑦 when 𝑥 ⩽ 𝑦. Given a category𝐶, a functor 𝑆𝑛 → 𝐶
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(resp. 𝑆op
𝑛 → 𝐶) is called an 𝑛-cospan (resp. 𝑛-span) [29]. In particular, a 1-span

is a span in the usual sense. A typical 𝑛-cospan in the category Top is given
by sending 𝑥𝛼𝑖 to the 𝑖-disk 𝐷𝑖 , the inclusion 𝑥−𝑖−1 → 𝑥𝛼𝑖 (resp. 𝑥+𝑖−1 → 𝑥𝛼𝑖 )
corresponding to the inclusion of the (𝑖−1)-disk into the lower (resp. upper)
hemisphere of the sphere 𝑆𝑖−1 bounding the disk 𝐷𝑖 . The category 𝑆𝑛 admits
a presentation with

– 0-generators: 𝑥−𝑖 , 𝑥
+
𝑖 , 𝑥𝑛 for 0 ⩽ 𝑖 < 𝑛,

– 1-generators: 𝑥𝛼𝑖−1 → 𝑥
𝛽
𝑖 and 𝑥𝛼𝑛−1 → 𝑥𝑛 for 0 < 𝑖 < 𝑛 and 𝛼, 𝛽 ∈ {−, +},

– 2-generators:

𝑥
𝛾
𝑖

𝑥
𝛽
𝑖−1

==

⇒ 𝑥
𝛽′
𝑖−1

aa

𝑥𝛼𝑖−2

aa ==

𝑥𝑛

𝑥
𝛽
𝑛−1

;;

⇒ 𝑥
𝛽′
𝑛−1

cc

𝑥𝛼𝑛−2

bb <<

for 1 < 𝑖 < 𝑛 and 𝛼, 𝛽, 𝛽′, 𝛾 ∈ {−, +}.

A.2.5 The globe category. Given an integer 𝑛 ≥ 0, we write O(𝑛) for the cat-
egory with {0, . . . , 𝑛} as objects and two non-trivial morphisms 𝜎𝑖𝑗 , 𝜏

𝑖
𝑗 : 𝑗 → 𝑖

for every 𝑗 < 𝑖, with composition given by 𝑓 ◦ 𝜎 𝑗𝑖 = 𝜎𝑘𝑖 and 𝑓 ◦ 𝜏 𝑗𝑖 = 𝜏𝑘𝑖 for
every morphism 𝑓 : 𝑗 → 𝑘 . Writing 𝜎𝑖 and 𝜏𝑖 for 𝜎𝑖+1𝑖 and 𝜏𝑖+1𝑖 , it can be
pictured as

0
𝜎0 //

𝜏0
// 1

𝜎1 //

𝜏1
// · · ·

𝜎𝑛−1 //

𝜏𝑛−1
// 𝑛.

This category is called the category of globes of dimension ≤ 𝑛 and a presheaf
on O(𝑛) an 𝑛-globular set, see Section 14.1. The category O(𝑛) admits the
presentation〈

0, . . . , 𝑛
�� 𝜎𝑖 , 𝜏𝑖 : 𝑖 → 𝑖 + 1

�� 𝜎𝑖+1𝜎𝑖 = 𝜏𝑖+1𝜎𝑖 , 𝜎𝑖+1𝜏𝑖 = 𝜏𝑖+1𝜏𝑖 〉 .

A.2.6 The augmented simplicial category. The augmented simplicial cat-
egory Δ+ is the category where an object is a natural number 𝑛 ∈ N and a
morphism 𝑓 : 𝑚 → 𝑛 is a weakly monotone function 𝑓 : [𝑚] → [𝑛], where
[𝑛] denotes the set {0, . . . , 𝑛 − 1}. A presentation of this category is detailed
in §4.5.6.

A.2.7 Presentations of monoidal categories. Many categories of interest are
actually monoidal categories. It is generally much easier to present them as
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monoidal categories (as opposed to as a category) and then deduce a presen-
tation of those as categories if one insists on having that, see §10.3.10. For
instance, one can construct a presentation of the augmented simplicial cate-
gory Δ+, see §10.3.2, and recover the presentation evoked in previous section,
see Example 10.3.11.



Appendix B
Examples of coherent presentations of monoids

In this chapter, we present examples of coherent presentations of monoids, in
the sense developed in Chapter 7. In particular, we focus on families of monoids
which occur in algebra and whose coherent presentations are computed using
the rewriting method that extends Squier’s and Knuth-Bendix’s completion
procedures into a homotopical completion-reduction procedure as presented in
Chapter 7. Theorem B.1.2 shows how coherent presentations of monoids can be
used to make explicit the actions of monoids on small categories. We apply this
construction to the case of Artin monoids in §B.1. In particular, we prove that
the Zamolodchikov 3-generators extend the Artin presentation into a coherent
presentation (Theorem B.1.9) and, as a byproduct, we give a constructive proof
of a theorem of Deligne on the actions of an Artin monoid on a category. We
also give coherent presentations of plactic and Chinese monoids in §B.2.

B.1 Artin monoids

We provide here coherent presentations of Artin monoids, already introduced
in §A.1.25. We also explain that these provide an explicit description of actions
of those monoids on categories. The construction is done in two stages. Given
an Artin monoid 𝐵+ (𝑊) on a Coxeter group 𝑊 , first we consider the coher-
ent presentation Gar3 (𝑊) constructed on the Garside presentation of 𝐵+ (𝑊).
Then we apply the homotopical completion-reduction on this coherent presen-
tation by examining a family of generating triple confluences. We thus obtain a
coherent presentation Art3 (𝑊) of 𝐵+ (𝑊) that extends the Artin presentation.

B.1.1 Action of monoids on categories. Let 𝑀 be a monoid seen as a 2-cate-
gory with exactly one 0-cell ⋆, with the elements of𝑀 as 1-cells, 0-composition
given by product in 𝑀 and with identity 2-cells only, see Lemma A.1.2. An

518
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action 𝑇 of the monoid 𝑀 on a category is a pseudofunctor 𝑇 : 𝑀 → Cat.
More explicitly, such an action is specified by

– a category C = 𝑇 (⋆),
– an endofunctor 𝑇 (𝑢) : C → C for every element 𝑢 of 𝑀 ,
– a natural isomorphism 𝑇𝑢,𝑣 : 𝑇 (𝑢)𝑇 (𝑣) ⇒ 𝑇 (𝑢𝑣) for every pair (𝑢, 𝑣) of

elements of 𝑀 and a natural isomorphism 𝑇⋆ : 1C ⇒ 𝑇 (1),
satisfying the following conditions:

– for every triple (𝑢, 𝑣, 𝑤) of elements of 𝑀 , the following diagram commutes:

𝑇 (𝑢𝑣)𝑇 (𝑤) 𝑇𝑢𝑣,𝑤

�'
𝑇 (𝑢)𝑇 (𝑣)𝑇 (𝑤)

𝑇𝑢,𝑣𝑇 (𝑤) -5

𝑇 (𝑢)𝑇𝑣,𝑤 )1

𝑇 (𝑢𝑣𝑤)

𝑇 (𝑢)𝑇 (𝑣𝑤) 𝑇𝑢,𝑣𝑤

7?

– for every element 𝑢 of 𝑀 , the following two diagrams commute:

𝑇 (1)𝑇 (𝑢) 𝑇1,𝑢

� 
𝑇 (𝑢)

𝑇⋆𝑇 (𝑢) 08

𝑇 (𝑢)

𝑇 (𝑢)𝑇 (1) 𝑇𝑢,1

� 
𝑇 (𝑢)

𝑇 (𝑢)𝑇⋆
08

𝑇 (𝑢)
Such an action corresponds to a 2-representation of 𝑀 in Cat, as defined by
Elgueta in [122]. We denote by Rep2 (𝑀,Cat) the category of actions of 𝑀 on
categories, equipped with suitable morphisms, as detailed in [145, Section 5.1].
The following result is proved in [145, Theorem 5.1.6]:

B.1.2 Theorem. Suppose given a monoid 𝑀 and a coherent presentation of 𝑀
by a (3, 1)-polygraph 𝑃. We have an equivalence of categories

Rep2 (𝑀,Cat) � Cat2 (𝑃,Cat)
between actions of 𝑀 on categories and 2-functors from the (2, 1)-category
presented by 𝑃 to Cat.

Deligne already observed that this equivalence holds for Garside’s presentation
of spherical Artin monoids [111, Theorem 1.5]. In the rest of this section, we
present an application of Theorem B.1.2 to give an equational description of
an action of an Artin monoid on a category using Zamolodchikov relations.

B.1.3 Coxeter groups. Recall from §A.1.25 that a Coxeter group is a group𝑊
that admits a presentation with a finite set 𝑆 of generators and with one relation

(𝑠𝑡)𝑚𝑠𝑡 = 1 (B.1)
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with 𝑚𝑠𝑡 ∈ N ⊔ {∞}, for every 𝑠 and 𝑡 in 𝑆, with the following requirements
and conventions:

– 𝑚𝑠𝑡 = ∞ means that there is, in fact, no relation between 𝑠 and 𝑡,

– 𝑚𝑠𝑡 = 1 if and only if 𝑠 = 𝑡.

The last requirement implies that 𝑠2 = 1 holds in 𝑊 for every 𝑠 in 𝑆. As
a consequence, the group 𝑊 can also be seen as the monoid with the same
presentation. As in §A.1.25, we denote by ⟨𝑠𝑡⟩𝑛 the element of length 𝑛 in the
free monoid 𝑆∗, obtained by multiplication of alternating copies of 𝑠 and 𝑡:

⟨𝑠𝑡⟩0 = 1, ⟨𝑠𝑡⟩𝑛+1 = 𝑠⟨𝑡𝑠⟩𝑛.

When 𝑠 ≠ 𝑡 and 𝑚𝑠𝑡 < ∞, we use this notation and the relations 𝑠2 = 𝑡2 = 1 to
write (B.1) as a braid relation:

⟨𝑠𝑡⟩𝑚𝑠𝑡 = ⟨𝑡𝑠⟩𝑚𝑠𝑡 . (B.2)

A reduced expression of an element 𝑢 of 𝑊 is a representative of minimal
length of 𝑢 in the free monoid 𝑆∗, and we write 𝑙 (𝑢) for the length of any of the
reduced expressions of 𝑢, called the length of 𝑢. The Coxeter group𝑊 is finite
if and only if it admits an element of maximal length [56, Theorem 5.6]. In that
case, this element is unique, called the longest element of𝑊 and is denoted by
𝑤0 (𝑆). For 𝐼 ⊆ 𝑆, the subgroup of 𝑊 spanned by the elements of 𝐼 is denoted
by𝑊𝐼 . It is a Coxeter group with generating set 𝐼. If𝑊𝐼 is finite, we denote by
𝑤0 (𝐼) its longest element.

We recall that the Artin monoid associated to 𝑊 is the monoid denoted
by 𝐵+ (𝑊), generated by 𝑆 and subject to the braid relations (B.2). This pre-
sentation, seen as a 2-polygraph, is denoted by Art2 (𝑊) and called Artin’s
presentation. This is the same as the one of𝑊 , except for the relations 𝑠2 = 1.

B.1.4 Length notation. For every 𝑢 and 𝑣 in 𝑊 , we have 𝑙 (𝑢𝑣) ⩽ 𝑙 (𝑢) + 𝑙 (𝑣)
and we will use the following notations

𝑢 𝑣 ⇔ 𝑙 (𝑢𝑣) = 𝑙 (𝑢) + 𝑙 (𝑣),
𝑢 𝑣
× ⇔ 𝑙 (𝑢𝑣) < 𝑙 (𝑢) + 𝑙 (𝑣).

We generalize the notation for a greater number of elements of𝑊 . For example,
in the case of three elements 𝑢, 𝑣 and 𝑤 of 𝑊 , we write 𝑢 𝑣 𝑤 when both
equalities 𝑙 (𝑢𝑣) = 𝑙 (𝑢) + 𝑙 (𝑣) and 𝑙 (𝑣𝑤) = 𝑙 (𝑣) + 𝑙 (𝑤) hold. This case splits in
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the following two mutually exclusive subcases:

𝑢 𝑣 𝑤 ⇔
{
𝑢 𝑣 𝑤

𝑙 (𝑢𝑣𝑤) = 𝑙 (𝑢) + 𝑙 (𝑣) + 𝑙 (𝑤),

𝑢 𝑣 𝑤
×

⇔
{
𝑢 𝑣 𝑤

𝑙 (𝑢𝑣𝑤) < 𝑙 (𝑢) + 𝑙 (𝑣) + 𝑙 (𝑤).

B.1.5 Garside’s coherent presentation. Let 𝑊 be a Coxeter group. We call
Garside’s presentation of 𝐵+ (𝑊) the 2-polygraph Gar2 (𝑊) whose 1-cells are
the elements of𝑊 \ {1} and with one 2-cell

𝛼𝑢,𝑣 : 𝑢 |𝑣⇒ 𝑢𝑣

whenever 𝑙 (𝑢𝑣) = 𝑙 (𝑢) + 𝑙 (𝑣) holds. Here, we write 𝑢𝑣 for the product in 𝑊
and 𝑢 |𝑣 for the product in the free monoid over𝑊 . We denote by Gar3 (𝑊) the
extended presentation of 𝐵+ (𝑊) obtained from Gar2 (𝑊) by adjunction of one
3-cell

𝑢𝑣 |𝑤 𝛼𝑢𝑣,𝑤

�$
𝐴𝑢,𝑣,𝑤


�
𝑢 |𝑣 |𝑤

𝛼𝑢,𝑣 |𝑤 .6

𝑢 |𝛼𝑣,𝑤 '/

𝑢𝑣𝑤

𝑢 |𝑣𝑤 𝛼𝑢,𝑣𝑤

:B

for every 𝑢, 𝑣 and 𝑤 of𝑊 \ {1} with 𝑢 𝑣 𝑤 .

B.1.6 Homotopical completion-reduction of Garside’s presentation. The
coherent presentation Gar3 (𝑊) can be computed by coherent completion-
reduction of the 2-polygraph Gar2 (𝑊), as we know explain, see [145].

Let < denote the strict order on the elements of the free monoid𝑊∗ that first
compares their length as elements of𝑊∗, then the length of their components,
starting from the right. The order relation ⩽ generated by< by adding reflexivity
is a termination order on Gar2 (𝑊): for every 2-cell 𝛼𝑢,𝑣 of Gar2 (𝑊), we have
𝑢 |𝑣 > 𝑢𝑣. Hence the 2-polygraph Gar2 (𝑊) terminates, so that its coherent
completion is defined (see Section 7.5). By applying the coherence completion-
reduction procedure (see §7.5.6), one can obtain a coherent extension of the
Garside presentation Gar2 (𝑊), as detailed in [145, Proposition 3.2.1]. The
resulting (3, 1)-polygraph KBS(Gar2 (𝑊)) has one 0-cell, one 1-cell for every
element of𝑊 \ {1}, the 2-cells

𝛼𝑢,𝑣 : 𝑢 |𝑣⇒ 𝑢𝑣 𝛽𝑢,𝑣,𝑤 : 𝑢 |𝑣𝑤⇒ 𝑢𝑣 |𝑤
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for every 𝑢 and 𝑣 of𝑊 \ {1} with 𝑢 𝑣 and every 𝑢, 𝑣 and 𝑤 of𝑊 \ {1} with
𝑢 𝑣 𝑤
×

, and the nine following families of 3-cells

𝑢𝑣 |𝑤
𝛼𝑢𝑣,𝑤

��
𝐴𝑢,𝑣,𝑤


�
𝑢 |𝑣 |𝑤

𝛼𝑢,𝑣 |𝑤 4<

𝑢 |𝛼𝑣,𝑤 "*

𝑢𝑣𝑤

𝑢 |𝑣𝑤
𝛼𝑢,𝑣𝑤

DL
𝑢 |𝑣 |𝑤

𝛼𝑢,𝑣 |𝑤
%-

𝑢 |𝛼𝑣,𝑤 $,

𝑢𝑣 |𝑤

𝑢 |𝑣𝑤
𝛽𝑢,𝑣,𝑤

>F
𝐵𝑢,𝑣,𝑤

�

𝑢𝑣 |𝑤𝑥
𝛽𝑢𝑣,𝑤,𝑥

��
𝐶𝑢,𝑣,𝑤,𝑥
�

𝑢 |𝑣 |𝑤𝑥

𝛼𝑢,𝑣 |𝑤𝑥 4<

𝑢 |𝛽𝑣,𝑤,𝑥 !)

𝑢𝑣𝑤|𝑥

𝑢 |𝑣𝑤 |𝑥 𝛼𝑢,𝑣𝑤 |𝑥

AI

𝑢 |𝑣 |𝑤𝑥

𝛼𝑢,𝑣 |𝑤𝑥
&.

𝑢 |𝛽𝑣,𝑤,𝑥 !)

𝑢𝑣 |𝑤𝑥

𝑢 |𝑣𝑤 |𝑥
𝛽𝑢,𝑣,𝑤 |𝑥
+3 𝑢𝑣 |𝑤 |𝑥

𝑢𝑣 |𝛼𝑤,𝑥

AI
𝐷𝑢,𝑣,𝑤,𝑥


�

𝑢𝑣 |𝑤 |𝑥
𝑢𝑣 |𝛼𝑤,𝑥
��

𝐸𝑢,𝑣,𝑤,𝑥
�
𝑢 |𝑣𝑤 |𝑥

𝛽𝑢,𝑣,𝑤 |𝑥 5=

𝑢 |𝛼𝑣𝑤,𝑥 "*

𝑢𝑣 |𝑤𝑥

𝑢 |𝑣𝑤𝑥 𝛽𝑢,𝑣,𝑤𝑥

AI

𝑢𝑣 |𝑤 |𝑥𝑦
𝑢𝑣 |𝛼𝑤,𝑥𝑦
�"

𝑢 |𝑣𝑤 |𝑥𝑦

𝛽𝑢,𝑣,𝑤 |𝑥𝑦 2:

𝑢 |𝛽𝑣𝑤,𝑥,𝑦 �%

𝑢𝑣 |𝑤𝑥𝑦

𝑢 |𝑣𝑤𝑥 |𝑦
𝛽𝑢,𝑣,𝑤𝑥 |𝑦

+3 𝑢𝑣 |𝑤𝑥 |𝑦
𝑢𝑣 |𝛼𝑤𝑥,𝑦

FN𝐹𝑢,𝑣,𝑤,𝑥,𝑦
�

𝑢𝑣 |𝑤 |𝑥𝑦
𝑢𝑣 |𝛽𝑤,𝑥,𝑦

��
𝐺𝑢,𝑣,𝑤,𝑥,𝑦
�

𝑢 |𝑣𝑤 |𝑥𝑦

𝛽𝑢,𝑣,𝑤 |𝑥𝑦 3;

𝑢 |𝛽𝑣𝑤,𝑥,𝑦 "*

𝑢𝑣 |𝑤𝑥 |𝑦

𝑢 |𝑣𝑤𝑥 |𝑦 𝛽𝑢,𝑣,𝑤𝑥 |𝑦

?G

𝑢𝑣 |𝑥𝑦
𝛽𝑢𝑣,𝑥,𝑦

��
𝑢 |𝑣𝑥𝑦

𝛽𝑢,𝑣,𝑥𝑦
3;

𝛽𝑢,𝑣𝑥,𝑦

19 𝑢𝑣𝑥 |𝑦
𝐻𝑢,𝑣,𝑥,𝑦

�

𝑢𝑣 |𝑤 = 𝑢𝑣 |𝑥𝑦 𝛽𝑢𝑣,𝑥,𝑦

�!

𝐼𝑢,𝑣,𝑤,𝑣′ ,𝑤′

�

𝑢 |𝑣𝑤
=

𝑢 |𝑣′𝑤′

𝛽𝑢,𝑣,𝑤
/7

𝛽𝑢,𝑣′ ,𝑤′ %-

𝑢𝑣𝑥 |𝑦
=

𝑢𝑣′𝑥′ |𝑦

𝑢𝑣′ |𝑤′ = 𝑢𝑣′ |𝑥′𝑦 𝛽𝑢𝑣′ ,𝑥′ ,𝑦

=E

These 3-cells are families indexed by all the possible elements of𝑊 \ {1}, that
can be deduced by the sources and targets of the 2-cells. For example, there

is one 3-cell 𝐴𝑢,𝑣,𝑤 for every elements 𝑢, 𝑣 and 𝑤 in 𝑊 \ {1} with 𝑢 𝑣 𝑤 ,
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and one 3-cell 𝐹𝑢,𝑣,𝑤,𝑥,𝑦 for every elements 𝑢, 𝑣, 𝑤, 𝑥 and 𝑦 in 𝑊 \ {1} with

𝑢 𝑣 𝑤 𝑥 𝑦
× ×

.
By considering a family of generating triple confluences, associated to some

of the triple critical branchings of KBS(Gar2 (𝑊)), one can reduce this family
of 3-cells and obtain the following result [145, Theorem 6.4.3]:

B.1.7 Theorem. For every Coxeter group𝑊 , the Artin monoid 𝐵+ (𝑊) admits
Gar3 (𝑊) as a coherent presentation.

The (3, 1)-polygraph Gar3 (𝑊) is called Garside’s coherent presentation of the
Artin monoid 𝐵+ (𝑊).

B.1.8 Artin’s coherent presentation of Artin monoids. Let𝑊 be a Coxeter
group with a totally ordered set 𝑆 of generators. The homotopical reduction
method of §7.5.6 can be used on Garside’s coherent presentation Gar3 (𝑊) to
contract it into a smaller coherent presentation associated to Artin’s presenta-
tion [145].

We consider the presentation of the Artin monoid 𝐵+ (𝑊) by the 2-polygraph
Art2 (𝑊) with one 0-cell, the elements of 𝑆 as 1-cell and one 2-cell

𝛾𝑠,𝑡 : ⟨𝑡𝑠⟩𝑚𝑠𝑡 ⇒ ⟨𝑠𝑡⟩𝑚𝑠𝑡 ,

for every 𝑡 > 𝑠 in 𝑆 such that 𝑚𝑠𝑡 is finite. The following result extends the
2-polygraph Art2 (𝑊) into a coherent presentation of the Artin monoid 𝐵+ (𝑊),
called the Artin coherent presentation of 𝐵+ (𝑊) [145, Theorem 4.1.1]. This
coherent presentation is obtained using the homotopical reduction §7.5.4 on
Garside’s coherent presentation Gar3 (𝑊).

B.1.9 Theorem. For every Coxeter group𝑊 , the Artin monoid 𝐵+ (𝑊) admits
the coherent presentation Art3 (𝑊) made of Artin’s presentation Art2 (𝑊) and
one 3-cell 𝑍𝑟 ,𝑠,𝑡 for every elements 𝑡 > 𝑠 > 𝑟 of 𝑆 such that the subgroup
𝑊{𝑟 ,𝑠,𝑡 } is finite.

Artin’s coherent presentation has exactly one 𝑘-cell, 0 ⩽ 𝑘 ⩽ 3, for every
subset 𝐼 of 𝑆 of rank 𝑘 such that the subgroup 𝑊𝐼 is finite. The shape of the
3-generators 𝑍𝑟 ,𝑠,𝑡 of the polygraph Art3 (𝑊) are obtained by projection of
the 3-generators of the polygraph Gar3 (𝑊) given in §B.1.6 and depend on the
type of the Coxeter type of the parabolic subgroup 𝑊{𝑟 ,𝑠,𝑡 } . According to the
classification of finite Coxeter groups [53, Chapter VI, § 4, Theorem 1], there
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are five cases, shown below:

𝑟 𝑠 𝑡

𝐴3

𝑟 𝑠 𝑡4

𝐵3

𝑟 𝑠 𝑡5

𝐻3

𝑟 𝑠 𝑡

𝐴1 × 𝐴1 × 𝐴1

𝑟 𝑠 𝑡𝑝

𝐼2 (𝑝) × 𝐴1 3 ⩽ 𝑝 < ∞

According to this types, the 3-generators 𝑍𝑟 ,𝑠,𝑡 have the following shapes

– type 𝐴3:

𝑠𝑡𝑟𝑠𝑟𝑡
𝑠𝛾𝑟𝑡 𝑠𝛾

−
𝑟𝑡+3 𝑠𝑟𝑡𝑠𝑡𝑟

𝑠𝑟𝛾𝑠𝑡𝑟+3

𝑍𝑟,𝑠,𝑡


�

𝑠𝑟𝑠𝑡𝑠𝑟 𝛾𝑟𝑠 𝑡𝑠𝑟

��
𝑠𝑡𝑠𝑟𝑠𝑡

𝑠𝑡𝛾𝑟𝑠 𝑡 .6

𝑟𝑠𝑟𝑡𝑠𝑟

𝑡𝑠𝑡𝑟𝑠𝑡

𝛾𝑠𝑡𝑟𝑠𝑡
KS

𝑡𝑠𝛾𝑟𝑡 𝑠𝑡 ��

𝑟𝑠𝑡𝑟𝑠𝑟

𝑟𝑠𝛾𝑟𝑡 𝑠𝑟
KS

𝑡𝑠𝑟𝑡𝑠𝑡

𝑡𝑠𝑟𝛾𝑠𝑡 (0

𝑟𝑠𝑡𝑠𝑟𝑠

𝑟𝑠𝑡𝛾𝑟𝑠

KS

𝑡𝑠𝑟𝑠𝑡𝑠
𝑡𝛾𝑟𝑠 𝑡𝑠

+3 𝑡𝑟𝑠𝑟𝑡𝑠
𝛾𝑟𝑡 𝑠𝛾

−
𝑟𝑡 𝑠
+3 𝑟𝑡𝑠𝑡𝑟𝑠 𝑟𝛾𝑠𝑡𝑟𝑠

?G
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– type 𝐵3:

𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑡𝑟
𝑠𝑟𝛾𝑠𝑡𝑟𝑠𝛾𝑟𝑡+3 𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡

𝑠𝑟𝑠𝑡𝛾𝑟𝑠 𝑡+3

𝑍𝑟 ,𝑠,𝑡


�

𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑡 𝑠𝑟𝑠𝛾𝑟𝑡 𝑠𝑟𝑠𝑡

��
𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟

𝑠𝑟𝑡𝑠𝛾−𝑟𝑡 𝑠𝑡𝑟 .6

𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡

𝛾𝑟𝑠 𝑡𝑠𝑟𝑠𝑡��
𝑠𝑡𝑟𝑠𝑟𝑠𝑡𝑠𝑟

𝑠𝛾𝑟𝑡 𝑠𝑟𝛾
−
𝑠𝑡𝑟
KS

𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑡

𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟

𝑠𝑡𝛾𝑟𝑠 𝑡𝑠𝑟
KS

𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑡

𝑟𝑠𝑟𝛾𝑠𝑡𝑟𝑠𝑡
KS

𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑟

𝛾𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑟
KS

𝑡𝑠𝛾𝑟𝑡 𝑠𝛾
−
𝑟𝑡 𝑠𝑟 ��

𝑟𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡

𝑟𝑠𝑟𝑡𝑠𝛾−𝑟𝑡 𝑠𝑡
KS

𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟

𝑡𝑠𝑟𝛾𝑠𝑡𝑟𝑠𝑟
��

𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑡𝑠

𝑟𝑠𝛾𝑟𝑡 𝑠𝑟𝛾
−
𝑠𝑡

KS

𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟

𝑡𝑠𝑟𝑠𝑡𝛾𝑟𝑠 ��

𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠

𝑟𝑠𝑡𝛾𝑟𝑠 𝑡𝑠
KS

𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠

𝑡𝑠𝑟𝑠𝛾𝑟𝑡 𝑠𝑟𝑠 (0

𝑟𝑡𝑠𝑡𝑟𝑠𝑡𝑟𝑠

𝑟𝛾𝑠𝑡𝑟𝑠𝛾𝑟𝑡 𝑠
KS

𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠
𝑡𝛾𝑟𝑠 𝑡𝑠𝑟𝑠

+3 𝑡𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠
𝛾𝑟𝑡 𝑠𝑟𝛾

−
𝑠𝑡𝑟𝑠
+3 𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠 𝑟𝑡𝑠𝛾−𝑟𝑡 𝑠𝑡𝑟𝑠

>F

– type 𝐴1 × 𝐴1 × 𝐴1:

𝑠𝑡𝑟
𝑠𝛾𝑟𝑡 +3 𝑠𝑟𝑡 𝛾𝑟𝑠𝑡

��
𝑡𝑠𝑟

𝛾𝑠𝑡𝑟 ,4

𝑡𝛾𝑟𝑠 *2

𝑟𝑠𝑡

𝑡𝑟𝑠 𝛾𝑟𝑡 𝑠
+3 𝑟𝑡𝑠 𝑟𝛾𝑠𝑡

AI𝑍𝑟 ,𝑠,𝑡

�
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– type 𝐻3:

𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡 +3 𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡
�'

𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟𝑡

.6

𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑠𝑡

��
𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡

KS

𝑠𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡

��
𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡

KS

𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡

��
𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟

KS

𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡

𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟

KS

𝑟𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡

KS

𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟

KS

𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑡

KS

𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟

KS

𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑡

KS

𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟

KS

𝑟𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡

KS

𝑡𝑠𝑡𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟

KS

��
𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠

KS

𝑡𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟

��
𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠

KS

𝑡𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑡𝑟𝑠𝑟

��
𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟𝑡𝑠

KS

𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟

��
𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠

KS

𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟

��
𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠

KS

𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟

��
𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠

KS

𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟

��
𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠

KS

𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑠

��
𝑟𝑡𝑠𝑟𝑠𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠

KS

𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑠

)1

𝑡𝑟𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠

KS

𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑡𝑟𝑠𝑟𝑡𝑠𝑟𝑠 +3 𝑡𝑠𝑟𝑠𝑟𝑠𝑡𝑠𝑟𝑠𝑟𝑡𝑠𝑟𝑠

7?

𝑍𝑟 ,𝑠,𝑡


�

– type 𝐼2 (𝑝) × 𝐴1, 𝑝 ⩾ 3:

𝑠𝑡⟨𝑟𝑠⟩𝑝−1𝑠𝛾𝑟𝑡 ⟨𝑟𝑠⟩𝑝−2
+3 (· · · ) +3

𝑍𝑟 ,𝑠,𝑡
�

⟨𝑠𝑟⟩𝑝𝑡 𝛾𝑟𝑠𝑡

��
𝑡⟨𝑠𝑟⟩𝑝

𝛾𝑠𝑡 ⟨𝑟𝑠⟩𝑝−1 ,4

𝑡𝛾𝑟𝑠
,4

⟨𝑟𝑠⟩𝑝𝑡

𝑡⟨𝑟𝑠⟩𝑝
𝛾𝑟𝑡 ⟨𝑠𝑟⟩𝑝−1

+3 𝑟𝑡⟨𝑠𝑟⟩𝑝−1

𝑟𝛾𝑠𝑡 ⟨𝑠𝑟⟩𝑝−2
+3 (· · · )

?G
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B.1.10 Action of braid monoids on categories. Following Theorem B.1.2
that, up to equivalence, the actions of a monoid 𝑀 on categories are the same
as the 2-functors from 𝑃 to Cat, where 𝑃 is any coherent presentation of 𝑀 .
As an application of B.1.9, we establish the relationship between coherent
presentations of Artin monoids and Deligne’s notion of an action on a cat-
egory. In particular, Deligne’s Theorem [111, Theorem 1.5] is equivalent to
Theorem B.1.7.

The extended presentation Gar3 (𝑊) is a coherent presentation of the Artin
monoid 𝐵+ (𝑊). We thus get Deligne’s Theorem [111, Theorem 1.5], for any
Artin monoid as a consequence of Theorems B.1.2 and B.1.7. Moreover, The-
orem B.1.9 gives a similar result in terms of Artin’s coherent presentation
Art3 (𝑊), formalizing [111, Paragraph 1.3] on the actions of 𝐵+4 on a category.

B.2 Plactic and Chinese monoids

We provide here coherent presentations of plactic and Chinese monoids whose
presentations are recalled in §A.1.26. First, we recall a few points concerning
the combinatorics of plactic monoids.

B.2.1 Rows, columns and tableaux. A row is a non-decreasing word 𝑥1 . . . 𝑥𝑘
in the free monoid {1, . . . , 𝑛}∗, i.e., with 𝑥1 ⩽ 𝑥2 ⩽ . . . ⩽ 𝑥𝑘 . A column is
a decreasing word 𝑥𝑝 . . . 𝑥1 in {1, . . . , 𝑛}∗, i.e., with 𝑥𝑝 > 𝑥𝑝−1 > . . . > 𝑥1.
We denote by col(𝑛) the set of non-empty columns. A row 𝑥1 . . . 𝑥𝑘 dominates
a row 𝑦1 . . . 𝑦𝑙 , and we denote 𝑥1 . . . 𝑥𝑘 ▷ 𝑦1 . . . 𝑦𝑙 , if 𝑘 ⩽ 𝑙 and 𝑥𝑖 > 𝑦𝑖 ,
for 1 ⩽ 𝑖 ⩽ 𝑘 . Any word 𝑤 in {1, . . . , 𝑛}∗ has a unique decomposition as
a product of rows of maximal length 𝑢1 . . . 𝑢𝑘 , and it is called a tableau if
𝑢1 ▷ 𝑢2 ▷ . . . ▷ 𝑢𝑘 .

B.2.2 Schensted’s algorithm. The Schensted algorithm computes for each 𝑤
in {1, . . . , 𝑛}∗ a tableau, denoted by 𝑃(𝑤), called the Schensted tableau of 𝑤,
and constructed from the following steps [320]. Given 𝑢 a tableau written as a
product of rows of maximal length 𝑢 = 𝑢1 . . . 𝑢𝑘 and 1 ⩽ 𝑦 ⩽ 𝑛, it computes the
tableau 𝑃(𝑢𝑦) as follows. If 𝑢𝑘𝑦 is a row, the result is 𝑢1 . . . 𝑢𝑘𝑦. If 𝑢𝑘𝑦 is not
a row, then suppose 𝑢𝑘 = 𝑥1 . . . 𝑥𝑙 with 1 ⩽ 𝑥𝑖 ⩽ 𝑛 and let 𝑗 minimal such that
𝑥 𝑗 > 𝑦, then the result is 𝑃(𝑢1 . . . 𝑢𝑘−1𝑥 𝑗 )𝑣𝑘 , where 𝑣𝑘 = 𝑥1 . . . 𝑥 𝑗−1𝑦𝑥 𝑗+1 . . . 𝑥𝑙 .
The tableau 𝑃(𝑤) is computed from the empty tableau and iteratively applying
the Schensted algorithm. In this way, 𝑃(𝑤) is the row reading of the planar
representation of the tableau computed by the Schensted algorithm.
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B.2.3 Knuth’s 2-polygraph. Let us give an orientation to the Knuth relations
set out in §A.1.26 with respect to the lexicographic order, thus forming a 2-
polygraph, denoted by Knuth2 (𝑛), whose 1-generators are 1, . . . , 𝑛 and the
2-generators are

𝜂𝑥,𝑦,𝑧 : 𝑧𝑥𝑦 ⇒ 𝑥𝑧𝑦, for 1 ⩽ 𝑥 ⩽ 𝑦 < 𝑧 ⩽ 𝑛,
𝜀𝑥,𝑦,𝑧 : 𝑦𝑧𝑥 ⇒ 𝑦𝑥𝑧, for 1 ⩽ 𝑥 < 𝑦 ⩽ 𝑧 ⩽ 𝑛.

The congruence on the free monoid {1, . . . , 𝑛}∗ generated by this polygraph
is called the plactic congruence of rank 𝑛 and the 2-polygraph Knuth2 (𝑛) is a
presentation of the plactic monoid 𝑃𝑛, [217, Theorem 6].

B.2.4 Pre-column presentation. One adds to the presentation Knuth2 (𝑛) one
superfluous generator 𝑐𝑢 for any 𝑢 in col(𝑛). We denote by Col1 (𝑛) the set of
column generators 𝑐𝑢 for any 𝑢 in col(𝑛) and by

𝛾𝑢 : 𝑐𝑥𝑝 . . . 𝑐𝑥1 ⇒ 𝑐𝑢,

the defining relation for the column generators 𝑢 = 𝑥𝑝 . . . 𝑥1 in col(𝑛) of length
greater than 2. In the free monoid Col1 (𝑛)∗, the Knuth relations can be written
in the following form

𝜂𝑐𝑥,𝑦,𝑧 : 𝑐𝑧𝑐𝑥𝑐𝑦 ⇒ 𝑐𝑥𝑐𝑧𝑐𝑦 , for 1 ⩽ 𝑥 ⩽ 𝑦 < 𝑧 ⩽ 𝑛,

𝜀𝑐𝑥,𝑦,𝑧 : 𝑐𝑦𝑐𝑧𝑐𝑥 ⇒ 𝑐𝑦𝑐𝑥𝑐𝑧 , for 1 ⩽ 𝑥 < 𝑦 ⩽ 𝑧 ⩽ 𝑛.

The 2-polygraph Knuth𝑐2 (𝑛) whose 1-generators are columns and 2-generators
are the defining relations 𝛾𝑢 for columns generators and the Knuth rela-
tions 𝜂𝑐𝑥,𝑦,𝑧 and 𝜀𝑐𝑥,𝑦,𝑧 is a presentation of the monoid 𝑃𝑛. We define the
2-polygraph PreCol2 (𝑛) with column generators and the 2-cells are

𝛼′𝑥,𝑧𝑦 : 𝑐𝑥𝑐𝑧𝑦 ⇒ 𝑐𝑧𝑥𝑐𝑦 , for 1 ⩽ 𝑥 ⩽ 𝑦 < 𝑧 ⩽ 𝑛,

𝛼′𝑦,𝑧𝑥 : 𝑐𝑦𝑐𝑧𝑥 ⇒ 𝑐𝑦𝑥𝑐𝑧 , for 1 ⩽ 𝑥 < 𝑦 ⩽ 𝑧 ⩽ 𝑛,

𝛼′𝑥,𝑢 : 𝑐𝑥𝑐𝑢 ⇒ 𝑐𝑥𝑢, for 𝑥𝑢 ∈ col(𝑛) and 1 ⩽ 𝑥 ⩽ 𝑛,

where the 2-generators 𝛼′𝑥,𝑧𝑦 and 𝛼′𝑦,𝑧𝑥 correspond respectively to the Knuth
relations 𝜂𝑐𝑥,𝑦,𝑧 and 𝜀𝑐𝑥,𝑦,𝑧 . The 2-polygraph PreCol2 (𝑛) is a presentation of the
monoid 𝑃𝑛, then called the pre-column presentation.

B.2.5 Coherent column presentation. Given columns 𝑢 and 𝑣, if the planar
representation of the Schensted tableau 𝑃(𝑢𝑣) is not the tableau obtained as
the concatenation of the two columns 𝑢 and 𝑣, we write 𝑢 𝑣

× . In this case, the
tableau 𝑃(𝑢𝑣) contains at most two columns [74, Lemma 3.1]. We write 𝑢 𝑣×1
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(resp. 𝑢 𝑣×2 ) if the tableau 𝑃(𝑢𝑣) has one column (resp. two columns). When
𝑢 𝑣
× , we define a 2-generator

𝛼𝑢,𝑣 : 𝑐𝑢𝑐𝑣 ⇒ 𝑐𝑤𝑐𝑤′

where 𝑤 = 𝑢𝑣 and 𝑐𝑤′ = 1, if 𝑢 𝑣×1 , and 𝑤 and 𝑤′ are respectively the left and
right columns of the tableau 𝑃(𝑢𝑣), if 𝑢 𝑣×2 .

The 2-polygraph Col2 (𝑛) whose set of 1-generators is Col1 (𝑛) and the 2-
generators are the 𝛼𝑢,𝑣 is a finite convergent presentation of the monoid 𝑃𝑛,
called the column presentation [74]. Using the coherent completion procedure
defined in §7.5.2, this polygraph is extended into the column coherent presenta-
tion Col3 (𝑛) of the monoid 𝑃𝑛, [173, Theorem 3.2.2]. Its 3-generators, given by
the confluence diagrams of the critical branchings of the 2-polygraph Col2 (𝑛),
have the following hexagonal form

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛼𝑒′ ,𝑡 +3

X𝑢,𝑣,𝑡

�

𝑐𝑒𝑐𝑏𝑐𝑏′ 𝛼𝑒,𝑏𝑐𝑏′

!)
𝑐𝑢𝑐𝑣𝑐𝑡

𝛼𝑢,𝑣𝑐𝑡 -5

𝑐𝑢𝛼𝑣,𝑡 )1

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑢𝑐𝑤𝑐𝑤′ 𝛼𝑢,𝑤𝑐𝑤′
+3 𝑐𝑎𝑐𝑎′𝑐𝑤′ 𝑐𝑎𝛼𝑎′ ,𝑤′

4<

for any columns 𝑢, 𝑣 and 𝑡 such that 𝑢 𝑣 𝑡
× × .

B.2.6 Pre-column coherent presentation. Using the homotopical reduction
procedure (§7.5.6), the coherent presentation Col3 (𝑛) can be reduced into a
smaller coherent presentation of 𝑃𝑛 as follows. Firstly, we apply a homotopical
reduction on the (3, 1)-polygraph Col3 (𝑛) with a collapsible part defined by
some of the generating triple confluences of the 2-polygraph Col2 (𝑛). In this
way, we reduce the coherent presentation Col3 (𝑛) of the monoid 𝑃𝑛 into the
coherent presentation Col3 (𝑛) of 𝑃𝑛, whose underlying 2-polygraph is Col2 (𝑛)
and the 3-cellsX𝑢,𝑣,𝑡 are those of Col3 (𝑛), but with 𝑢 is of length 1. Then we re-
duce the coherent presentation Col3 (𝑛) into a coherent presentation PreCol3 (𝑛)
obtained from PreCol2 (𝑛) by adjunction of the 3-cell 𝑅Γ3 (𝐶′𝑥,𝑣,𝑡 ) where

𝑐𝑥𝑣𝑐𝑡

𝐶′𝑥,𝑣,𝑡
�
𝑐𝑥𝑐𝑣𝑐𝑡

𝛼𝑥,𝑣𝑐𝑡 ,4

𝑐𝑥𝛼𝑣,𝑡 )1 𝑐𝑥𝑐𝑤𝑐𝑤′ 𝛼𝑥,𝑤𝑐𝑤′
+3 𝑐𝑥𝑣𝑐𝑧𝑙 ...𝑧𝑞+1𝑐𝑤′

𝑐𝑥𝑣𝛼𝑧𝑙 ...𝑧𝑞+1 ,𝑤′
dl
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with 𝑥 𝑣 𝑡
×1 ×2 , and the 3-cell 𝑅Γ3 (𝐷𝑥,𝑣,𝑡 ) where

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛼𝑒′ ,𝑡 +3

𝐷𝑥,𝑣,𝑡
�

𝑐𝑒𝑐𝑏𝑐𝑏′
𝛼𝑒,𝑏𝑐𝑏′

"*
𝑐𝑥𝑐𝑣𝑐𝑡

𝛼𝑥,𝑣𝑐𝑡 -5

𝑐𝑥𝛼𝑣,𝑡
)1

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑥𝑐𝑤𝑐𝑤′ 𝛼𝑥,𝑤𝑐𝑤′
+3 𝑐𝑎𝑐𝑎′𝑐𝑤′ 𝑐𝑎𝛼𝑎′ ,𝑤′

3;

with 𝑥 𝑣 𝑡
×2 ×2 and where the homotopical reduction 𝑅Γ3 eliminates a collapsible

part Γ3 of Col3 (𝑛). In this way, we prove that the (3, 1)-polygraph PreCol3 (𝑛)
is a coherent presentation of the monoid 𝑃𝑛 [173, Theorem 4.3.4]. For instance,
the coherent presentation Col3 (2) has only one 3-cell

𝑐21𝑐21

𝐶′2,1,21
�𝑐2𝑐1𝑐21

𝛼2,1𝑐21 ,4

𝑐2𝛼1,21
*2 𝑐2𝑐21𝑐1 𝛼2,21𝑐1

+3 𝑐21𝑐2𝑐1

𝑐21𝛼2,1
bj

In this case, the (3, 1)-polygraphs PreCol3 (2) and Col3 (2) coincide.

B.2.7 Knuth’s coherent presentation. The coherent presentation PreCol3 (𝑛)
can be reduced into a coherent presentation of the monoid 𝑃𝑛 whose underlying
2-polygraph is Knuth2 (𝑛). We define an extended presentation Knuth3 (𝑛) of
the monoid 𝑃𝑛 obtained from Knuth2 (𝑛) by adjunction of the following set of
3-cells {

R(𝐶′𝑥,𝑣,𝑡 )
��� 𝑥 𝑣 𝑡
×1 ×2

}
∪

{
R(𝐷𝑥,𝑣,𝑡 )

��� 𝑥 𝑣 𝑡
×2 ×2

}
,

where R : Col3 (𝑛)⊤ → Knuth𝑐3 (𝑛)⊤ is a Tietze transformation, see [173,
Section 4.4]. This gives a coherent presentation of the plactic monoid on the
Knuth generators.

B.2.8 Theorem ([173, Theorem 4.4.7]). For 𝑛 > 0, the (3, 1)-polygraph
Knuth3 (𝑛) is a coherent presentation of the monoid 𝑃𝑛.

B.2.9 Example. For instance, the Knuth coherent presentation of the mo-
noid 𝑃2 has generators 𝑐1 and 𝑐2 subject to the Knuth relations

𝜂𝑐1,1,2 : 𝑐2𝑐1𝑐1 ⇒ 𝑐1𝑐2𝑐1 and 𝜀𝑐1,2,2 : 𝑐2𝑐2𝑐1 ⇒ 𝑐2𝑐1𝑐2

and the following 3-cell

𝑐2𝑐2𝑐1𝑐1

2𝜂𝑐1,1,2

"*

𝜀𝑐1,2,21

3;𝑐2𝑐1𝑐2𝑐1.𝐶′′
�
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Note that the Knuth coherent presentation of the monoid 𝑃2 corresponds to
the coherent presentation that one can compute directly using the fact that the
2-polygraph Knuth2 (2) is convergent.

B.2.10 Chinese monoids. Using the completion-reduction method, as applied
previously for the plactic monoid, we calculate a coherent presentation of the
Chinese monoid 𝐶ℎ𝑛 of rank 𝑛 > 0 whose presentation is recalled in (A.2).
We do not give here the details of this construction, developed in [174], but
only present the method to obtain the form of the 3-generators of this coherent
presentation.

Chinese relations (A.2) generate the Chinese congruence, denoted by ∼C𝑛 ,
and interpreted in [80] in terms of Chinese staircases. A Chinese staircase is
a collection of boxes in right-justified rows, filled with non-negative integers,
whose rows and columns are indexed with elements of {1, . . . , 𝑛} from top to
bottom and from right to left respectively, and where the 𝑖-th row contains 𝑖
boxes, for 1 ⩽ 𝑖 ⩽ 𝑛. We denote by 𝑅(𝑡) the reading of a Chinese staircase 𝑡,
row by row from right to left and from top to bottom. A Schensted-like insertion
algorithm, denoted by ⇝

𝑟 , is introduced in [80], and consists in inserting
an element of {1, . . . , 𝑛} into a Chinese staircase from the right. From a word
𝑤 = 𝑥1𝑥2 . . . 𝑥𝑘 , we associate a Chinese staircase J𝑤K obtained by insertion of 𝑤
in the empty staircase ∅ by application of ⇝

𝑟 step by step from left to right:

J𝑤K := (. . . ((∅ ⇝

𝑟 𝑥1) ⇝

𝑟 𝑥2) ⇝

𝑟 . . .) ⇝

𝑟 𝑥𝑘 .

Chinese staircases satisfy the cross-section property for the congruence ∼C𝑛 ,
that is, for all words 𝑤 and 𝑤′, 𝑤 ∼C𝑛 𝑤′ if and only if the insertion algorithm
yields the same Chinese staircase: J𝑤K = J𝑤′K, [80]. The elements of the
monoid 𝐶ℎ𝑛 can thus be identified with the Chinese staircases, which also
form a monoid, whose product is defined by setting 𝑡 ⋆𝑟 𝑡′ := (𝑡 ⇝

𝑟 𝑅(𝑡′)), for
all Chinese staircases 𝑡 and 𝑡′.

We construct a finite convergent presentation Chin2 (𝑛) of the monoid 𝐶ℎ𝑛,
whose 1-generators are columns on {1, . . . , 𝑛} of length at most 2 and square
generators, as defined in [174, Section 4.1], and whose 2-generators are

𝛾𝑢,𝑣 : 𝑐𝑢𝑐𝑣 ⇒ 𝑐𝑒𝑐𝑒′ ,

for all columns 𝑐𝑢 and 𝑐𝑣 such that 𝑐𝑢𝑐𝑣 does not form a Chinese staircase
and 𝑐𝑢 ⋆𝑟 𝑐𝑣 is equal to the Chinese staircase composed by the columns 𝑐𝑒
and 𝑐𝑒′ . Note that the polygraph Chin2 (𝑛) is obtained from the relations (A.2)
by applying Tietze transformations, defined in Section 5.1, which consist in
adding column generators and associated relations.

By definition of the 2-generators, the source of each critical branching
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of Chin2 (𝑛) has the form 𝑐𝑢𝑐𝑣𝑐𝑡 , for columns 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 such that 𝑐𝑢𝑐𝑣 and 𝑐𝑣𝑐𝑡
are not Chinese staircases. Their confluence diagrams are then obtained by ap-
plying the 2-generators 𝛾, see [174, Theorem 5.6] for a detailed proof. Following
Squier’s homotopical theorem, Theorem 7.3.5, the 2-polygraph Chin2 (𝑛) ex-
tends into a coherent presentation Chin3 (𝑛) of the monoid 𝐶ℎ𝑛 by adjunction
of 3-generators with the following decagonal form

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛾𝑒′ ,𝑡+3

X𝑢,𝑣,𝑡

�

𝑐𝑒𝑐𝑏𝑐𝑏′
𝛾𝑒,𝑏𝑐𝑏′+3 𝑐𝑠𝑐𝑠′𝑐𝑏′

𝑐𝑠𝛾𝑠′ ,𝑏′+3 𝑐𝑠𝑐𝑘𝑐𝑘′ 𝛾𝑠,𝑘𝑐𝑘′

�%
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 /7

𝑐𝑢𝛾𝑣,𝑡 &.

𝑐𝑙𝑐𝑚𝑐𝑘′

𝑐𝑢𝑐𝑤𝑐𝑤′𝛾𝑢,𝑤𝑐𝑤′
+3 𝑐𝑎𝑐𝑎′𝑐𝑤′𝑐𝑎𝛾𝑎′ ,𝑤′

+3 𝑐𝑎𝑐𝑑𝑐𝑑′𝑐𝑎𝛾𝑎′ ,𝑤′
+3 𝑐𝑙𝑐𝑙′𝑐𝑑′ 𝑐𝑙𝛾𝑙′ ,𝑑′

8@

for all column 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 such that 𝑐𝑢𝑐𝑣 and 𝑐𝑣𝑐𝑡 are not normal forms with
respect to Chin2 (𝑛), and where the 𝛾 denote either a 2-generator of Chin2 (𝑛)
or an identity. This proves the following result.

B.2.11 Theorem. For 𝑛 > 0, the (3, 1)-polygraph 𝐶𝑜𝑙3 (𝑛) is a finite coherent
convergent presentation of the Chinese monoid 𝐶ℎ𝑛.



Appendix C
A catalogue of 3-polygraphs

In this chapter, we give some examples of presentations of 2-categories by
3-polygraphs. In many examples, the presented 2-categories are in fact mon-
oidal categories and, actually, PROs. For those, we consider presentations by
3-polygraphs 𝑃 with only one 0-generator ⋆ and one 1-generator 𝑎, so that we
only need to provide the 2-generators (which we simply call generators) and
3-generators (which we call rules or relations). Moreover, we simply write 𝑛
instead of 𝑎𝑛 for a 1-cell in 𝑃∗1.

C.1 Braids and symmetries

C.1.1 Positive braids. The category B+ of positive braids contains all positive
braid groups 𝐵+𝑛, see §A.1.21. It has natural numbers as objects, every positive
braid 𝑏 ∈ 𝐵+𝑛 induces a morphism 𝑛→ 𝑛, for every 𝑛 ∈ N, and composition and
identities are induced by multiplication and units of the monoids 𝐵+𝑛. Otherwise
said, if we consider the monoids 𝐵+𝑛 as one-object categories (see §A.1.1), we
have

B+ =
∐
𝑛∈N

𝐵+𝑛.

The expected monoidal structure makes a PRO out of it. As such, it admits a
presentation by a 3-polygraph with one 2-generator 𝛾 : 2→ 2, called braiding
and pictured as

533
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one 3-generator corresponding to the Yang-Baxter relation

⇛ . (C.1)

C.1.2 Braids. The category B of braids is defined similarly as

B =
∐
𝑛∈N

𝐵𝑛

where 𝐵𝑛 is the 𝑛-th braid group, see §A.1.21, so that this category is a groupoid.
It admits a presentation with two 2-generators 𝛾, 𝛾− : 2→ 2,

and three relations: the Yang-Baxter relation (C.1), as well as

⇛ ⇛ .

As an application, consider the ring 𝑅 = Z[𝑡, 𝑡−1] of Laurent polynomials
in one variable 𝑡. The category Vect𝑅 of finitely generated free 𝑅-modules is
monoidal with the usual tensor product. Writing 𝑃 for the above presentation,
we interpret a 1-cell 𝑛 of 𝑃 as 𝑅𝑛, the 2-generators 𝛾 and 𝛾− as the morphisms
𝑅2 → 𝑅2 whose matrix representations are respectively

[𝛾] =
(
1−𝑡 𝑡

1 0

)
[𝛾−] =

(
0 1
𝑡−1 1−𝑡−1

)

This interpretation can be checked to be compatible with the relations of the
presentation and thus induces a monoidal functor 𝑓 : B→ VectVect𝑅

𝑅 , which is
known as the Burau representation [70]. As a side note, this representation is
not faithful [41] (i.e., there are distinct braids with the same image), but other
are, such as Lawrence-Krammer representation [244, 42, 225].

C.1.3 Permutations. The category S of permutations (or sometimes symme-
tries) is the monoidal category

S =
∐
𝑛∈N

𝑆𝑛

where 𝑆𝑛 is the 𝑛-th symmetric group considered as a one-object category,
see §A.1.19. Alternatively, the morphisms 𝑚 → 𝑛 can be described as the
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bĳections [𝑚] → [𝑛] where [𝑛] is the set {0, . . . , 𝑛 − 1}. A presentation for
this category can be obtained from the presentation of B by adding the relation

⇛

In this case, the relation ⇛ can be derived, which is why we generally
remove one of the two generators, and note the remaining one as

(C.2)

which is often called transposition in this context. The two relations of the
presentation are thus

⇛ ⇛ . (C.3)

A notion of canonical form (which is in fact a normal form for the above
rewriting system) was presented in §10.4.1: it consist of morphisms of the form

or
...
𝜓

... ...

where the diagram on the left is the empty diagram, and 𝜓 is a canonical form.

C.1.4 Free braided and symmetric monoidal categories. A braided strict
monoidal category (𝐶, ⊗, 𝑖, 𝛾) is a strict monoidal category (𝐶, ⊗, 𝑖) equipped
with an invertible natural transformation of components

𝛾𝑢,𝑣 : 𝑣 ⊗ 𝑢 → 𝑢 ⊗ 𝑣
called braiding, which is compatible with the monoidal structure: for every
objects 𝑢, 𝑣, 𝑤 ∈ 𝐶,

𝛾𝑢⊗𝑣,𝑤 = (𝑢 ⊗ 𝛾𝑣,𝑤) ◦ (𝛾𝑤,𝑢 ⊗ 𝑣), 𝛾𝑖,𝑢 = 1𝑢,
𝛾𝑢,𝑣⊗𝑤 = (𝛾𝑢,𝑣 ⊗ 𝑤) ◦ (𝑣 ⊗ 𝛾𝑢,𝑤), 𝛾𝑢,𝑖 = 1𝑢.

A symmetric monoidal category is a braided monoidal category in which the
braiding moreover satisfies 𝛾𝑣,𝑢◦𝛾𝑢,𝑣 = 1𝑢⊗𝑣 for every object 𝑢, 𝑣 ∈ 𝐶, in which
case it is called a symmetry. A braided monoidal functor 𝑓 : 𝐶 → 𝐷 between
braided monoidal categories𝐶 and 𝐷, with 𝛾𝐶 and 𝛾𝐷 as respective braidings,
is a monoidal functor which preserves the braiding, i.e., 𝑓 (𝛾𝐶𝑢,𝑣) = 𝛾𝐷𝑓 𝑢, 𝑓 𝑣 for
every objects 𝑢, 𝑣 ∈ 𝐶. A symmetric monoidal functor is a braided monoidal
functor between symmetric monoidal categories.
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Given a monoidal category 𝐶, there always exists a free braided monoidal
category �̃�: it is a braided monoidal category equipped with a monoidal func-
tor 𝐶 → �̃� such that, given a braided monoidal category 𝐷, a monoidal
functor 𝐶 → 𝐷 extends uniquely as a braided monoidal functor �̃� → 𝐷. A
similar statement holds for symmetric, instead of braided, monoidal categories.
When 𝐶 is presented by a 3-polygraph, �̃� admits the following presentation.

C.1.5 Theorem. Suppose given a 3-polygraph 𝑃 presenting a monoidal cate-
gory 𝑃, i.e., 𝑃0 = {⋆}. The free braided monoidal category on 𝑃 is presented
by the 3-polygraph 𝑄 such that

𝑄0 = {⋆}
𝑄1 = 𝑃1

𝑄2 = 𝑃2 ⊔
{
𝛾𝑎,𝑏 : 𝑏𝑎 ⇒ 𝑎𝑏, 𝛾−𝑎,𝑏 : 𝑎𝑏 ⇒ 𝑏𝑎

�� 𝑎, 𝑏 ∈ 𝑃1
}

𝑄3 = 𝑃3 ⊔
{
𝐺𝑎,𝑏, 𝐺

′
𝑎,𝑏, 𝐿𝑎,𝛼, 𝑅𝑎,𝛼

�� 𝑎, 𝑏 ∈ 𝑃1, 𝛼 ∈ 𝑄2
}

with relations

𝐺𝑎,𝑏 : 𝛾−𝑎,𝑏 ∗ 𝛾𝑎,𝑏 ⇛ 1𝑎𝑏 𝐺′𝑎,𝑏 : 𝛾𝑎,𝑏 ∗ 𝛾−𝑎,𝑏 ⇛ 1𝑎𝑏

for 𝑎, 𝑏 ∈ 𝑃1 and, for 𝛼 : 𝑢′ → 𝑢,

𝐿𝑎,𝛼 : 𝛼𝑎 ∗ 𝛾𝑎,𝑢 ⇛ 𝛾𝑢′ ,𝑎 ∗ 𝑎𝛼 𝑅𝑎,𝛼 : 𝑎𝛼 ∗ 𝛾𝑢,𝑎 ⇛ 𝛾𝑎,𝑢′ ∗ 𝛼𝑎

Above, 𝛾𝑎,𝑢 : 𝑢𝑎 ⇒ 𝑎𝑢 is a notation for the morphism defined inductively on 𝑢
by

𝛾𝑎,𝑖 = 1𝑎 𝛾𝑎,𝑏 = 𝛾𝑎,𝑏 𝛾𝑎,𝑏𝑢 = 𝑏𝛾𝑎,𝑢 ∗ 𝛾𝑎,𝑏𝑢

and similarly, for 𝛾𝑢;𝑎 : 𝑎𝑢 ⇒ 𝑢𝑎. Graphically, 𝛾𝑎,𝑏, 𝛾𝑎,𝑢 and 𝛾𝑢,𝑎 are
respectively depicted as

𝑏 𝑎

𝑎 𝑏

𝑎...

...
𝑎

𝑎 ...

...
𝑎

and the relations 𝐿𝑎,𝛼 and 𝑅𝑎,𝛼 are respectively

𝑎...
𝛼
...

...
𝑎

⇛

𝑎...

...
𝛼
...

𝑎

𝑎 ...
𝛼
...

...
𝑎

⇛

𝑎 ...

...
𝛼
...

𝑎

(C.4)

The braiding on 𝑄 is the one which is given on objects 𝑎, 𝑏 ∈ 𝑄1 by 𝛾𝑎,𝑏. The
free symmetric monoidal category is presented by the 3-polygraph obtained
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from 𝑄 by removing the 2-generators 𝛾−𝑎,𝑏 and the associated relations 𝐺𝑎,𝑏
and 𝐺′𝑎,𝑏, and adding the relations

𝐼𝑎,𝑏 : 𝛾𝑏,𝑎 ∗ 𝛾𝑎,𝑏 ⇛ 1𝑎𝑏

indexed 𝑎, 𝑏 ∈ 𝑃1 (see also §12.5.5).

In particular, we see that B is the free braided monoidal category on the
terminal category: there is only one 1-generator 𝑎, one invertible 2-generator
𝛾𝑎,𝑎, and the two relations 𝐿𝑎,𝛾𝑎,𝑎 and 𝑅𝑎,𝛾𝑎,𝑎 both correspond to the Yang-
Baxter relation (C.1). Similarly, S is the free symmetric monoidal category on
the terminal category. It can also be shown that B (resp. S) is the terminal
braided (resp. symmetric) monoidal category.

In every presentation of a braided (resp. symmetric) monoidal category, the
generators 𝛾𝑎,𝑏 are definable and the relations 𝐿𝑎,𝛼 and 𝑅𝑎,𝛼 (resp. and 𝐼𝑎,𝑏) are
derivable. Up to Tietze equivalence, we can thus suppose that every presentation
of a braided (resp. symmetric) monoidal category is of the form given in the
above theorem. For this reason, in a presentation 𝑃 with only one 1-generator,
we often say that a 2-generator 𝛾 : 2 → 2 is a symmetry when it is involutive
(i.e., satisfies the equation on the right of (C.3)) and satisfies relations (C.4) for
every 2-generator 𝛼 (in particular, for 𝛼 = 𝛾, the Yang-Baxter relation has to
be satisfied).

C.2 Monoids

Consider the category F where an object is a natural number and a morphism
𝑓 : 𝑚 → 𝑛 is a function 𝑓 : [𝑚] → [𝑛]. Alternatively, this category can
be described as the skeleton of the full subcategory of Set on finite sets. It
can be equipped with a tensor product similar to the one of the simplicial
category, see §10.3.2, thus making it a PRO. This category contains interesting
subcategories, with the same objects, closed under tensor product, with the
following morphisms:

– the category F𝜂 of injective functions,
– the category F𝜇 of surjective functions,
– the category S of bĳections,
– the category Δ+ of non-decreasing functions,
– the category Δ𝜂 of injective non-decreasing functions,
– the category Δ𝜇 of surjective non-decreasing functions.

Details for this section can be found in [73, 235, 230].
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C.2.1 Non-decreasing injections. The PRO Δ𝜂 of injective non-decreasing
functions admits a presentation with one generator 𝜂 : 0 → 1, called unit and
pictured as

and no relation. The generator is interpreted as the terminal function 0 → 1
and, for instance, the interpretation of the diagram on the left is the injective
non-decreasing function 𝑓 : [4] → [6] whose graph is depicted on the right:

0 1 2 3

0 1 2 3 4 5.

The opposite PRO Δop
𝜂 can be described as the category whose morphisms are

non-decreasing partial surjective functions.

C.2.2 Non-decreasing surjections. The PROΔ𝜇 of non-decreasing surjective
functions (already encountered in §23.3.10) admits a presentation with one
generator 𝜇 : 2→ 1, called multiplication and pictured as

and one relation

⇛

The generator can be interpreted as the terminal function 2→ 1, whose graph
is

0 1

0

and, for instance, the interpretation of the diagram on the left is depicted on the
right:

0 1 2 3 4 5 6 7 8 9.

0 1 2

This category is thus the theory for semigroups: a monoidal functor from Δ𝜇
to Set (with the monoidal structure induced by cartesian product) consists of
a set equipped with an associative binary operation. The rewriting system is
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convergent and normal forms can be described as the canonical form given by

or
...
𝜓
...

or
...
𝜓

...

where 𝜓 is a canonical form (the diagram on the left is the empty diagram).

C.2.3 Non-decreasing functions. The PRO Δ+ (the augmented simplicial
category) can be presented with two generators 𝜂 : 0 → 1 and 𝜇 : 2 → 1,
pictured as above, together with the rules of §C.2.1 and §C.2.2:

⇛

as well as the additional rules

⇛ ⇛ .

These define a distributive law ℓ between the two previous categories so that

Δ+ = Δ𝜇 ⊗ℓ Δ𝜂 .

The rewriting system is convergent, see §10.3.2, and normal forms can be
described as the following canonical forms:

or
...
𝜓
...

or
...
𝜓

...
or

...
𝜓
...

where 𝜓 is a canonical form; moreover, in the third case, we suppose that 𝜓 is
not of the form given of the fourth case.

An alternative notion of canonical form (which is not a normal form for a
rewriting system, for similar reasons as in Example 10.3.8) is

or
...
𝜓

...
or

...
𝜓
...

.

This means that morphisms in Δ+ can be shown to be in bĳection with 2-cells
of the above form. Note that, here, the canonical form of an identity does not
only consists of wires.

From this presentation, one sees that Δ+ is the theory for monoids: the
monoidal functors from Δ+ to a monoidal category𝐶 correspond to monoids𝐶
(see Example 10.1.5). We can also deduce that it is the free cocartesian category
on the terminal category, see Section 13.4 and §C.2.10.

Writing 𝑃 for the above polygraph, the morphisms from 𝑛 to 1 in 𝑃∗2, for
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some 𝑛 ∈ N can be ordered by 𝜙 ⩽ 𝜓 whenever there exists a rewriting path
𝜙 ⇛ 𝜓. The resulting poset is a well-studied lattice called the 𝑛-th Tamari
lattice [139].

C.2.4 Injections. The PRO F𝜂 admits a presentation with two generators

satisfying the relations for symmetries (§C.1.3) and non-decreasing injections
(§C.2.1)

⇛ ⇛

as well as the compatibility relations

⇛ ⇛ .

Those define a distributive law ℓ between S and Δ𝜂 , so that

F𝜂 = S ⊗ℓ Δ𝜂 .

The resulting presentation is convergent with normal forms being given by

... or
...
𝜓

... ...

.

Note that the second (or the first) compatibility relation is redundant since we
have

⇚ ⇛ .

C.2.5 All functions. The PRO F corresponds to commutative monoids. It
admits a presentation with three generators

and relations which consist of those for monoids (§C.2.3)

⇛ ⇛ ⇛
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those for symmetries (§C.1.3)

⇛ ⇛

compatibility relations

⇛ ⇛ ⇛ ⇛ (C.5)

and the commutativity relation

⇛ . (C.6)

This rewriting system is convergent. A notion of canonical form (which does not
exactly coincide with normal forms for similar reasons as in Example 10.3.8)
can be given by

... or

...
𝜓

... ...

.

This monoidal category is the theory for commutative monoids: a symmetric
monoidal functor to a symmetric monoidal category 𝐶 correspond to commu-
tative monoid in 𝐶. It can be obtained as a composite PROP F = F𝜇 ⊗ℓ F𝜂
along the expected distributive law.

C.2.6 Partial functions. Consider the PRO F𝜀 where a morphism 𝑓 : 𝑚 → 𝑛

is a partial function 𝑓 : [𝑚] → [𝑛]. It admits a presentations with four
generators

satisfying the relations of §C.2.5 together with

⇛ ⇛ ⇛ ⇛
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The resulting rewriting system is convergent and canonical forms can be given
by

... or

...
𝜓

... ...

or
...
𝜓
...

.

The category can be described as a composite PROP F𝜀 = Fop
𝜂 ⊗ℓ F along

the expected distributive law, as well as the composite PRO F = Δop
𝜂 ⊗ℓ F

along the expected distributive law. In the last case, the associated factorization
system given by Proposition 3.3.4, is the usual factorization of a partial func-
tion 𝑓 : 𝑋 → 𝑌 as a partial non-decreasing injection (given by the canonical
partial function 𝑋 → dom( 𝑓 ) where dom( 𝑓 ) ⊆ 𝑋 is the domain of 𝑓 ) followed
by a total function (the restriction of 𝑓 to its domain).

Similar presentations exists for other variants of the PRO (e.g. partial non-
decreasing surjective functions). In particular, for the category of partial injec-
tive non-decreasing functions Δ𝜂𝜀 , we obtain a decomposition as

Δ𝜂𝜀 = Δop
𝜂 ⊗ℓ Δ𝜂 = Cospan(Δ𝜂).

C.2.7 Symmetric monoids. The theory of symmetric monoids is obtained
from the theory of commutative monoids of §C.2.5 by removing the commu-
tativity relation (C.6): by Theorem C.1.5, this is the free symmetric monoidal
category on Δ+, and therefore it is the PROP of monoids. The relations induce
a distributive law ℓ so that this PRO can be obtained as S ⊗ℓ Δ+, see [230]. A
direct description of this category can be given as the PRO where a morphism
𝑓 : 𝑚 → 𝑛 is a function 𝑓 : [𝑚] → [𝑛] together with total order on each of the
sets 𝑓 −1 (𝑖) for 0 ⩽ 𝑖 < 𝑛, equipped with suitable composition [298].

C.2.8 Braided monoids. As a variant of the theory for commutative monoids,
one can consider the one braided monoids. It admits a presentation with four
generators

and the laws are similar to those of commutative monoids (§C.2.5) excepting
that the transpositions satisfy the laws for braidings (§C.1.2) instead of sym-
metries (§C.1.3). As in §C.2.7, one could also considered the variant without
the commutativity relation, i.e., the free braided monoidal category on Δ+, but
in practice braided monoids are always understood commutative.

C.2.9 Comonoids. Dual categories are also interesting. For instance, Δop
+ is

the theory representing comonoids and Fop cocommutative comonoids.
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C.2.10 Free cartesian categories. The category Fop can be characterized as
being the free cartesian category on the terminal one (and of course the case
of F is dual, but the opposite is more commonly used from this perspective). We
briefly describe here the situation and refer the reader to Section 13.4, where
cartesian categories are considered in details.

Any cartesian category has an underlying symmetric monoidal category,
where the tensor product is induced by the cartesian product and unit is the
terminal object. Not every symmetric monoidal category can be obtained in
this way: those who can are characterized by the fact that every object is
equipped with a structure of commutative comonoid, in a natural way, see
Theorem 13.4.3. From this observation, one can derive the characterization of
free cartesian categories given in Theorem 13.4.5. In particular, the category Fop

is the free category on the terminal category.

C.3 Distributive laws

C.3.1 Distributive laws between monads. A monad is a particular case of a
monoid, as already mentioned in Example 10.1.5. Namely, a 2-functor from the
2-category Δ+ (which represents monoids, see §C.2.3) to the 2-category Cat
(of categories, functors and natural transformations) amounts to the data of

– a category 𝐶 (the image of ⋆),
– a functor 𝑇 : 𝐶 → 𝐶 (the image of 𝑎),
– natural transformations 𝜇 : 𝑇 ◦ 𝑇 ⇒ 𝑇 and 𝜂 : 1𝐶 ⇒ 𝑇 (the respective

images of 𝜇 and 𝜂)

satisfying axioms so that (𝑇, 𝜇, 𝜂) is a monad on 𝐶 (see §3.3.12).
As a variant, a theory corresponding to pairs of monads on a same category

can easily be constructed. The category Δ+ ⊔ Δ+, the coproduct of Δ+ with
itself as monoidal categories admit a presentation with two 1-generators 𝑎, 𝑏
and four 2-generators

𝜇𝑎 : 𝑎𝑎 ⇒ 𝑎 𝜂𝑎 : 1 ⇒ 𝑎 𝜇𝑏 : 𝑏𝑏 ⇒ 𝑏 𝜂𝑏 : 1 ⇒ 𝑏

respectively pictured as

𝑎 𝑎

𝑎 𝑎

𝑏 𝑏

𝑏 𝑏

such that the pair (𝜇𝑎, 𝜂𝑎) satisfies the laws of monoids, see §C.2.3, as well as
the pair (𝜇𝑏, 𝜂𝑏).
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More interestingly, the previous theory can be modified in order to present
a pair of monads on a same category, together with a distributive law between
them. We recall that a distributive law between two monads 𝑇 and𝑈 consists of
a natural transformation ℓ : 𝑇 ◦𝑈 ⇒ 𝑈 ◦𝑇 satisfying four suitable axioms, see
§3.3.12 or [36]. This theory DLaw can be obtained from the one for Δ+ ⊔ Δ+
by adding a 2-generator 𝜆 : 𝑏𝑎 ⇒ 𝑎𝑏, pictured as

𝑏 𝑎

𝑎 𝑏

and the four relations

⇛ ⇛

⇛ ⇛

This presentation is convergent. It was shown by Beck [36] that a distributive
law between monads 𝑇 and 𝑈 induces a structure of monad on the composite
endofunctor𝑈 ◦ 𝑇 . This can be rephrased in the above setting as follows:

C.3.2 Theorem. In DLaw, the two following morphisms induce the structure
of a monoid on 𝑎𝑏:

𝑎 𝑏 𝑎 𝑏

𝑎 𝑏

𝑎 𝑏

Proof. Associativity is shown by the following derivation

⇛ ⇛ ⇛

and left and right neutrality by

⇛ ⇛ and ⇛ ⇛

which concludes the proof. □
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For instance, on Set, the monad of rings can be obtained as𝑈 ⊗ℓ 𝑇 where 𝑇
is the monad of free monoids, 𝑈 and the monad of free abelian groups and
ℓ : 𝑇𝑈 ⇒ 𝑈𝑇 is the usual distributive law, which sends the formal expression
of the form (𝑎 + 𝑏) (𝑐 + 𝑑) to 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑.

C.3.3 Iterated distributive laws. It is useful to iterate this construction: given
three monads 𝑆, 𝑇,𝑈 on a category 𝐶 and distributive laws between 𝑆 and 𝑇 ,
𝑆 and 𝑈, and 𝑇 and 𝑈, we would like to have a monad structure on the
composite 𝑈 ◦ 𝑇 ◦ 𝑆. This is the case where the distributive laws satisfy a
suitable compatibility axiom [83]. The theory IDLaw for iterated distributive
laws axiomatizes such a situation. It has three 1-generators 𝑎, 𝑏 and 𝑐, nine
2-generators

𝜇𝑎 : 𝑎𝑎 ⇒ 𝑎 𝜇𝑏 : 𝑏𝑏 ⇒ 𝑏 𝜇𝑐 : 𝑐𝑐⇒ 𝑐 ℓ𝑎𝑏 : 𝑏𝑎 ⇒ 𝑎𝑏

𝜂𝑎 : 1 ⇒ 𝑎 𝜂𝑏 : 1 ⇒ 𝑏 𝜂𝑐 : 1 ⇒ 𝑐 ℓ𝑎𝑐 : 𝑐𝑎 ⇒ 𝑎𝑐

ℓ𝑏𝑐 : 𝑐𝑏 ⇒ 𝑏𝑐

pictured as

𝑎 𝑎

𝑎 𝑎

𝑏 𝑏

𝑏 𝑏

𝑥 𝑐

𝑐 𝑐

𝑏 𝑎

𝑎 𝑏

𝑐 𝑎

𝑎 𝑐

𝑐 𝑏

𝑏 𝑐

satisfying relations expressing that (𝑎, 𝜇𝑎, 𝜂𝑎), (𝑏, 𝜇𝑏, 𝜂𝑏) and (𝑐, 𝜇𝑐, 𝜂𝑐) are
monoids, ℓ𝑎𝑏, ℓ𝑏𝑐 and ℓ𝑎𝑐 are distributive laws, and the additional axiom

𝑐 𝑏 𝑎

𝑎 𝑏 𝑐

⇛

𝑐 𝑏 𝑎

𝑎 𝑏 𝑐

reminiscent of the Yang-Baxter relation. This is illustrated in §C.5.3.
In order to compose four or more monads, one might at first think that we

should need new axioms, but it is in fact enough to assume the above axioms
for every triple of monads in order to compose an arbitrary number of those,
see [83] and §3.3.16.

C.3.4 Other distributive laws. Variants of the notion of distributive law have
been studied in the literature. For instance, the expected notion of distributive
law between a monad and a comonad is studied in [305]. A weaker notion of
distributive law has also been studied by Street [340]: here the two relations
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involving units have been replaced by the unique relation

⇛

or, equivalently, the two relations

⇛ ⇛ .

C.3.5 Linear non-linear terms. A functor 𝑇 : F → Set is an abstract way
to encode a collection of terms. Namely, for 𝑛 ∈ N, the set 𝑇𝑛 can be seen
as the collection of terms 𝑡 (𝑥0, . . . , 𝑥𝑛−1) with 𝑛 free variables, and given
a morphism 𝑓 : 𝑚 → 𝑛, i.e., a function 𝑓 : [𝑚] → [𝑛], the function
𝑇 𝑓 : 𝑇𝑚 → 𝑇𝑛 is the reindexing function, sending a term 𝑡 (𝑥0, . . . , 𝑥𝑛−1)
to the term 𝑡 (𝑥 𝑓 (0) , . . . , 𝑥 𝑓 (𝑛−1) ) obtained by replacing the variable 𝑥𝑖 by 𝑥 𝑓 (𝑖) ,
see for instance [131]. Similarly, a functor 𝑇 : S → Set encodes a collection
of “linear” terms: 𝑇𝑛 consists of terms in which each 𝑥𝑖 , for 0 ⩽ 𝑖 < 𝑛, occurs
exactly once and, for this reason, we can only permute variables, and not merge
two of them or forget one of them.

Now suppose that we are interested in a “mixed” situation where a term
can have both linear and non-linear variables. A linear variable can always be
considered as a non-linear one, by forgetting about the fact that it should occur
exactly once. Those are naturally modeled by the following theory [128, 194],
with two 1-generators 𝑎 and 𝑏, six 2-generators

𝜇𝑎 : 𝑎𝑎 ⇒ 𝑎 𝜂𝑎 : 1 ⇒ 𝑎 𝜎 : 𝑏 ⇒ 𝑎

𝛾𝑎𝑎 : 𝑎𝑎 ⇒ 𝑎𝑎 𝛾𝑎𝑏 : 𝑏𝑎 ⇒ 𝑎𝑏 𝛾𝑏𝑏 : 𝑏𝑏 ⇒ 𝑏𝑏

pictured as

𝑎 𝑎

𝑎 𝑎

𝑏

𝑎

𝑎 𝑎

𝑎 𝑎

𝑏 𝑎

𝑎 𝑏

𝑏 𝑏

𝑏 𝑏

such that the axioms of symmetries hold for whichever typing of the wires,
(𝜇𝑎, 𝜂𝑎, 𝛾𝑎𝑎) satisfies the axioms of commutative monoids, and the axioms

⇛ ⇛

hold for whichever typing of the wires. The object 𝑎 thus corresponds to a



C.4 Bialgebras 547

non-linear variable (which can duplicated, erased and exchanged with other
variables), the object 𝑏 to linear variable (which can only be exchanged with
other variables), and the morphism 𝜎 to the fact that we can consider a linear
variable as a non-linear one.

C.4 Bialgebras

C.4.1 Matrices. Given a semiring 𝑅, we write M𝑅 for the category whose
objects are natural numbers and a morphism 𝑓 : 𝑚 → 𝑛 is an 𝑛×𝑚-matrix with
coefficients in 𝑅, with usual composition and identities. This category is a PRO
with the usual direct sum of matrices.

When 𝑅 is a ring, the category M𝑅 is equivalent to the category of finite
dimensional 𝑅-modules and 𝑅-linear maps. When k is a field, the category Mk is
equivalent to Vectk, the category of vector spaces and k-linear maps. Writing 𝐾
for the semiring of small cardinals, with disjoint union as addition and cartesian
product as product, the category M𝐾 is equivalent to the full subcategory of
Span(Set) (the category of isomorphism classes of spans, see §3.3.14) on finite
sets.

C.4.2 Multirelations. Given two sets 𝑋 and 𝑌 , a multirelation from 𝑋 to 𝑌 is
a function 𝑋 × 𝑌 → N such that the set

{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑓 (𝑥, 𝑦) ≠ 0}

is finite. Any relation 𝑅 ⊆ 𝑋 ×𝑌 is canonically seen as the multirelation 𝑓 such
that 𝑓 (𝑥, 𝑦) = 1 if (𝑥, 𝑦) ∈ 𝑅 and 𝑓 (𝑥, 𝑦) = 0 otherwise. Conversely, a multire-
lation can be thought of as a relation with multiplicities: given (𝑥, 𝑦) ∈ 𝑋 × 𝑌 ,
𝑓 (𝑥, 𝑦) is called the multiplicity of the relation (𝑥, 𝑦). Given two multirelations
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , their composite is given by

(𝑔 ◦ 𝑓 ) (𝑥, 𝑧) =
∑︁
𝑦∈𝑌

𝑓 (𝑥, 𝑦) × 𝑔(𝑦, 𝑧)

(note that the sum only involves a finite number of non-zero terms) and the
identity on a set 𝑋 is such that 1𝑋 (𝑥, 𝑥′) = 0 if 𝑥 ≠ 𝑥′ and 1𝑋 (𝑥, 𝑥) = 1.
We write MRel for the category of sets and multirelations. This is a monoidal
category when equipped with the tensor product induced by disjoint union. A
morphism 𝑓 : 𝑋 → 𝑌 in this category can be seen as a span

𝑋 𝑅
𝑠oo 𝑡 // 𝑌 (C.7)
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where 𝑅 is a finite set, such that the image under 𝑓 of (𝑥, 𝑦) ∈ 𝑋 × 𝑌 is the
cardinal of the following set:

𝑓 (𝑥, 𝑦) = |{𝑟 ∈ 𝑅 | 𝑥 = 𝑠(𝑟) and 𝑦 = 𝑡 (𝑟)}|

making MRel a subcategory of Span(Set), the category of sets and isomor-
phism classes of spans of functions.

The full subcategory of MRel on finite sets is equivalent to MN, the category
of matrices with coefficients in N. Namely, a morphism 𝑓 : 𝑚 → 𝑛 is an 𝑛×𝑚-
matrix with coefficients in N, which corresponds to the multirelation from [𝑚]
to [𝑛] such that the multiplicity of (𝑖, 𝑗) ∈ [𝑚] × [𝑛] is 𝑓 (𝑖, 𝑗). Note that the
category MN is isomorphic to Span(F). This category can also be described as
the PRO where a morphism 𝑓 : 𝑚 → 𝑛 is a morphism of free finitely generated
monoids 𝑓 : N𝑚 → N𝑛, see [298].

C.4.3 Bialgebras. The PRO MN admits a presentation with generators

𝜇 : 2⇒ 1 𝜂 : 0⇒ 1 𝛿 : 1⇒ 2 𝜀 : 1⇒ 0 𝛾 : 2⇒ 2

pictured as

and relations expressing that 𝛾 is a symmetry (§C.1.4), (𝜇, 𝜂, 𝛾) is a commuta-
tive monoid (§C.2.5), (𝛿, 𝜀, 𝛾) is a cocommutative comonoid (§C.2.9) and the
compatibility relations

⇛ ⇛ ⇛ ⇛ .

The interpretations of the generators are the following multirelations, repre-
sented as matrices

𝜇 =
(
1 1

)
𝛿 =

(
1
1

)
𝛾 =

(
0 1
1 0

)

i.e., graphically,

𝑥 𝑦

𝑥+𝑦 0

𝑥

𝑥 𝑥

𝑥
𝑦 𝑥

𝑥 𝑦

.
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A notion of canonical form is given by

or

...

𝜓

... ...

or
...
𝜓
...

or
...
𝜓
...

up to some relations, for which normal forms can be given, see [282]. For
instance, the multirelation 𝑓 : 3→ 4 whose graph is shown on the left (we link
two points as many times as their multiplicity in the multirelation) is represented
by the canonical form on the right:

0 1 2

0 1 2 3

This example should make more clear the correspondence between the category
and its presentation, and details can be found in various places [298, 235, 230,
282]. This presentation can be obtained from the one of F given in §C.2.5, using
the methods of Section 10.5 for composing PROPs: we have Span(F) = Fop⊗ℓF
where the distributive law ℓ : F ⊗S Fop → F ⊗S Fop is given by pullback,
see [230].

This is the theory for an algebraic structure called a bicommutative bialgebra,
or bimonoid. More generally, if we drop the requirement that the monoid and the
comonoid structures should be commutative, we obtain the theory of bialgebras
(which are said to be commutative/cocommutative/bicommutative when the
monoid/comonoid/both structures are commutative). Bialgebras are generally
considered in the category Vectk of vector spaces over a fixed field k. For
instance, given a monoid (𝑀, ·, 1), the vector space k𝑀 generated by the set 𝑀
is canonically a cocommutative bialgebra: writing 𝑒𝑎 with 𝑎 ∈ 𝑀 for a basis
vector, the interpretations of the various morphisms are given by

𝜇 : k𝑀 ⊗ k𝑀 → k𝑀 𝜂 : 1→ k𝑀
𝑒𝑎 ⊗ 𝑒𝑏 ↦→ 𝑒𝑎·𝑏 1 ↦→ 𝑒1

𝛿 : k𝑀 → k𝑀 ⊗ k𝑀 𝜀 : k𝑀 → 1 𝛾 : k𝑀 ⊗ k𝑀 → k𝑀 ⊗ k𝑀
𝑒𝑎 ↦→ 𝑒𝑎 ⊗ 𝑒𝑎 𝑒1 ↦→ 1 𝑒𝑎 ⊗ 𝑒𝑏 ↦→ 𝑒𝑏 ⊗ 𝑒𝑎
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C.4.4 Relations. Consider the category Rel whose objects are sets and where
a morphism from 𝑋 to 𝑌 is a relation from 𝑋 to 𝑌 , i.e., a subset 𝑅 ⊆ 𝑋 × 𝑌 .
Explicitly, the composite of two relations 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑌 × 𝑍 is the
relation 𝑆 ◦ 𝑅 ⊆ 𝑋 × 𝑍 defined by

𝑆 ◦ 𝑅 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 | ∃𝑦 ∈ 𝑌, (𝑥, 𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆} .

This category is monoidal with tensor product given on objects by disjoint
union of sets. It may be described as a variant of category of Span(Set) where
morphisms are isomorphism classes of spans of the form (C.7), such that 𝑠 and
𝑡 are jointly monic, i.e., two distinct 𝑥 and 𝑦 give rise to distinct pairs of images
(𝑠(𝑥), 𝑡 (𝑥)) and (𝑠(𝑦), 𝑡 (𝑦)).

The full subcategory whose objects are finite sets is equivalent to the cate-
gory MB of matrices over the semiring of booleans (with ∨ as addition and ∧
as multiplication). It admits a presentation obtained from the theory of bicom-
mutative bialgebras by further adding the relation

⇛ . (C.8)

If we remember that the theory of bicommutative bialgebras is a presentation of
the category MN, of matrices with coefficients in N, adding the relation (C.8),
amounts to quotient coefficients in N in matrices by the relation 1 + 1 = 1.
Otherwise said, we describe MB as the quotient of MN under the relation
identifying two morphisms 𝑓 , 𝑔 : 𝑚 → 𝑛 which have the same non-zero
coefficients, i.e., when 𝑓 (𝑖, 𝑗) = 0 iff 𝑔(𝑖, 𝑗) = 0 for every (𝑖, 𝑗) ∈ [𝑚] × [𝑛].
This is the theory for bialgebras which are called special, relational [193], or
qualitative [282]. Note that the category of relations can be described as the
following pushout in MonCat (the category of monoidal categories an strict
monoidal functors):

F𝜂 ⊔ Fop
𝜂

��

// Span(F𝜂)
��

Cospan(F𝜂) // MB

where the arrows are the canonical inclusions, from which the presentation
of MB can be deduced, see [132] for details and generalizations of this situation.

C.4.5 Matrices over Z/2Z. The category MZ/2Z of natural numbers and ma-
trices with coefficients over the ring Z/2Z admits a presentation obtained from
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the theory of bialgebras by adding the relation

⇛

which amounts to quotient coefficients in N by 1 + 1 = 0. This is the theory for
bialgebras which are anti-separable [235]. More generally, matrices over Z/𝑛Z
can be obtained by replacing the above relation by a relation of the form

...

...

⇛

where the diagram on the left contains 𝑛− 1 morphisms and morphisms .
An alternative confluent presentation is given in [235, Section 3.2] and shown
to be terminating in [158, Section 7].

C.4.6 Matrices over Z, Hopf algebras. The category MZ of natural numbers
and matrices overZ admits a presentation obtained from the theory of bialgebras
by adding a generator 𝜎 : 1→ 1, called antipode, pictured as

and interpreted as the 1×1-matrix (−1), together with the relations

⇛ ⇛ ⇛ ⇛ .

⇛ ⇛ ⇛

This is the theory for bicommutative Hopf algebras. We have seen in §C.4.3 that
every monoid induces a bialgebra; when this monoid is a group𝐺, bialgebra k𝐺
is canonically a Hopf algebra, the interpretation of the antipode being given by
inverses:

𝜎 : k𝐺 → k𝐺
𝑒𝑎 ↦→ 𝑒−𝑎
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C.4.7 Matrices over an arbitrary semiring. More generally, given a semir-
ing 𝑅, the PRO M𝑅 admits a presentation containing the theory of matrices,
plus a generator

𝑎

for every 𝑎 ∈ 𝑅, interpreted as the 1×1-matrix (𝑎), and relations

𝑎
⇛

𝑎 𝑎

𝑎
⇛

𝑎

𝑏
⇛ 𝑎𝑏 1 ⇛

⇛
𝑎 𝑎

𝑎
⇛ 𝑎 𝑏 ⇛ 𝑎+𝑏 0 ⇛

𝑎
⇛

𝑎

𝑎
⇛

𝑎

see [235]. This is the theory for bicommutative 𝑅-linear bialgebras. For instance
the diagram on the left corresponds to the linear transformation R3 → R2

associated to the matrix depicted on the right:

4 7 3 5 8 2 (
4 3 8
7 5 2

)

Note that we recover the laws for Hopf algebras (§C.4.6) by setting

= −1 .

C.4.8 Variants. Other variants have been studied in the literature. We can
mention presentation of invertible, orthogonal, special orthogonal, unitary, and
special unitary matrices [235] and stochastic matrices [140].

C.5 Coefficients

C.5.1 The free monoidal category on a category. Given a category 𝐶, the
free monoidal category𝐶⊗ it generates is the monoidal category whose monoid
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of objects is𝐶⊗0 , the free monoid over the objects of𝐶, the monoid of morphisms
is 𝐶⊗1 the free monoid over the morphisms of 𝐶, with

𝑓1 . . . 𝑓𝑛 : 𝑎1 . . . 𝑎𝑛 → 𝑏1 . . . 𝑏𝑛

whenever 𝑓𝑖 : 𝑎𝑖 → 𝑏𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛, composition is given pointwise, i.e.,

(𝑔1 . . . 𝑔𝑛) ◦ ( 𝑓1 . . . 𝑓𝑛) = (𝑔1 ◦ 𝑓1) . . . (𝑔𝑛 ◦ 𝑓𝑛)
with identities 1 . . . 1 and tensor product is given by composition in the free
monoid, i.e., concatenation.

There is an obvious functor 𝐶 → 𝐶⊗, which is such that for every func-
tor 𝐶 → 𝐷, where 𝐷 a monoidal category, there is a unique strict monoidal
functor 𝐶⊗ → 𝐷 making the following diagram commute:

𝐶

��

// 𝐷.

𝐶⊗

==

Given a presentation of a category 𝐶 by a 2-polygraph 𝑃, the monoidal
category 𝐶⊗ admits a presentation by the 3-polygraph 𝑄 with

𝑄0 = {⋆} 𝑄1 = 𝑃0 𝑄2 = 𝑃1 𝑄3 = 𝑃2

sometimes referred to as the suspension of the 2-polygraph 𝑃.

C.5.2 Monoid actions. As a particular case, when 𝑀 is a monoid considered
as a category with one object, an algebra for the theory 𝑀⊗ in a monoidal
category 𝐶, consists of an action of 𝑀 , i.e., an object 𝑥 of the monoidal
category 𝐶 together with a morphism of monoids 𝑀 → 𝐶 (𝑥, 𝑥).

For instance, given a monoid (𝑀,×, 1), we can consider its standard presen-
tation, see §2.3.14: 〈

⋆
�� 𝑎 �� 𝛼𝑢,𝑣 : 𝑢𝑣⇒ (𝑢 × 𝑣) 〉

the resulting presentation of the free monoidal category generated by 𝑀 has a
presentation with a generator

𝑢

for every element 𝑢 ∈ 𝑀 , with relations

𝑢

𝑣
⇛ 𝑢×𝑣 .

More generally, when a monoid𝑀 admits a presentation by a 2-polygraph 𝑃, the
free monoidal category generated by𝑀 admits a presentation with 2-generators

𝑎
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indexed by 𝑎 ∈ 𝑃1, together with a relation

𝑎1
...

𝑎𝑖

⇛

𝑏1
...

𝑏 𝑗

for every relation 𝑎1 . . . 𝑎𝑖 ⇒ 𝑏1 . . . 𝑏 𝑗 in 𝑃2.

C.5.3 Thee free linear category. Suppose given a monoid 𝑀 and write 𝑅
for the semiring it freely generates. As explained above, the monoid 𝑀 freely
generates a monoidal category, and we write here 𝑀⊗ for the free symmetric
monoidal category generated by this monoidal category. We have seen in §C.4.3
that the PROP MN can be seen as a composite PROP Fop ⊗ℓ F. More generally,
the PROP M𝑅 can be seen as a a composite PROP:

M𝑅 = Fop ⊗S 𝑀
⊗ ⊗S F.

The tensor product above is an iterated distributive law, in the sense of §C.3.3:
it is induced by three distributive laws

ℓ1 : 𝑀⊗ ⊗S Fop→ Fop ⊗S 𝑀
⊗

ℓ2 : F ⊗S Fop→ Fop ⊗S F
ℓ3 : F ⊗S 𝑀

⊗ → 𝑀⊗ ⊗S F

such that the diagram

𝑀⊗ ⊗S F ⊗S Fop
𝑀⊗⊗Sℓ2

// 𝑀⊗ ⊗S Fop ⊗S F
ℓ1⊗SF
''

F ⊗S 𝑀
⊗ ⊗S Fop

ℓ3⊗SFop 77

F⊗Sℓ1 ''

Fop ⊗S 𝑀
⊗ ⊗S F

F ⊗S Fop ⊗S 𝑀
⊗

ℓ2⊗S𝑀
⊗
// Fop ⊗S F ⊗S 𝑀

⊗
Fop⊗Sℓ3

77

commutes. More generally, when the semiring 𝑅 is not freely generated by a
monoid, the PROP M𝑅 admits a description of the form

M𝑅 = (Fop ⊗S 𝑀
⊗ ⊗S F)/∼

meaning that it can be obtained from the above PROP by further quotienting
by the congruence ∼ generated by the two relations

𝑎 𝑏 ⇛ 𝑎+𝑏 0 ⇛

see [48] for details.



C.6 Frobenius algebras 555

C.6 Frobenius algebras

In this section, we study Frobenius algebras, which are “dual” to bialgebras
in a sense that will be made precise. The axioms were first discovered by
Lawvere [246] (and rediscovered in [78]) and a nice introduction to the subject
can be found in Kock’s book [224].

C.6.1 Presentation. The theory of Frobenius algebras is the PRO presented
by four generators

𝜇 : 2→ 1 𝜂 : 0→ 1 𝛿 : 1→ 2 𝜀 : 1→ 0

respectively pictured as

such that (𝜇, 𝜂) is a monoid, (𝛿, 𝜀) is a comonoid and the two following relations
are satisfied

⇛ ⇛ (C.9)

The theory of commutative Frobenius algebras is obtained by taking the free
symmetric algebra as described in §C.1.4 (i.e., adding a generator 𝛾 : 2 → 2
pictured as usual, see (C.2), together with the axioms for symmetries (C.3), the
compatibility relations between symmetry and the monoid structure (C.5), as
well as the comonoid structure), and adding the commutativity relations

⇛ ⇛ .

The theory of special or separable Frobenius algebras (commutative or not)
can be obtained by further adding the relation

⇛ (C.10)

and the theory of extraspecial Frobenius algebras by further adding to the
theory of special Frobenius algebras the relation

⇛ .

Other variants can be found in §C.11.9.
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Note that these axiomatizations are not claimed to be minimal. For instance,
associativity in presence of other axioms implies coassociativity:

= = =

= =

and the situation is similar for unitality and commutativity.
It is conjectured that the rewriting system for Frobenius algebras and its

variants is terminating and can be completed into a finite convergent rewriting
system [135]. Note that there are indexed critical pairs such as

...

𝜙

...

⇚

...

𝜙

...

⇛

...

𝜙

...

but we expect to be able to handle those using the techniques of Section 10.4.
Even in the absence of a notion of normal form, we can introduce the

following notion of canonical form for morphisms. We define a family of
morphisms 𝜙𝑚,𝑔,𝑛, indexed by 𝑚, 𝑔, 𝑛 ∈ N, defined by

𝜙𝑚,𝑔,𝑛 = 𝜇𝑚 ∗ (𝛿 ∗ 𝜇) ∗ (𝛿 ∗ 𝜇) ∗ . . . ∗ (𝛿 ∗ 𝜇) ∗ 𝛿𝑛

=
...
𝜇𝑚 · · · 𝛿𝑛

... (C.11)

(the diagram is drawn horizontally to save space) where 𝜇𝑚 : 𝑚 → 1 is a right
comb of multiplications, defined inductively by

𝜇0 =

...

𝜇𝑚+1 =

...
𝜇𝑚

and dually 𝛿𝑛 : 1 → 𝑛 is a right comb of comultiplications, and there are
𝑔 occurrences of 𝛿 ∗ 𝜇 in the middle: 𝑚 and 𝑛 are respectively the arity and
coarity of the morphism and 𝑔 is called its genus for reasons explained below.
It can then be shown that, in the bicommutative case, any morphism rewrites
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to a tensor product of such morphisms (up to composing with a symmetry). In
the case of special Frobenius algebras, the normal forms are tensor products of
morphism of the form 𝜙𝑚,0,𝑛, and in the case of extraspecial Frobenius algebras
the normal forms are the same excepting that 𝜙0,0,0 is not allowed to occur.

C.6.2 Frobenius algebras. A Frobenius algebra is typically considered in
the category Vectk: it consists of a vector space 𝐴 which is both an alge-
bra (i.e., equipped with associative and unital morphisms 𝜇 : 𝐴 ⊗ 𝐴 → 𝐴

and 𝜂 : k → 𝐴), a coalgebra (i.e., equipped with coassociative and counital
morphisms 𝛿 : 𝐴 → 𝐴 ⊗ 𝐴 and 𝜀 : 𝐴 → k) satisfying the compatibility
axioms (C.9).

There are many alternative characterizations of those [339, 224]. For in-
stance, it can also be defined as an algebra (𝐴, 𝜇, 𝜂), equipped with a non-
degenerate bilinear form 𝜎 : 𝐴 ⊗ 𝐴→ 𝐴 which is associative, in the sense that
𝜎 ◦ (𝜇 ⊗ 𝐴) = 𝜎 ◦ (𝐴 ⊗ 𝜇), see §C.10.9 for details; or as an algebra (𝐴, 𝜇, 𝜂)
equipped with a linear form 𝜀 : 𝐴 → k such that 𝜀(𝑎𝑏) = 0 for every 𝑎 ∈ 𝐴
implies 𝑏 = 0. Namely, one can transform the first into the second definition,
and vice-versa, by defining 𝜀(𝑎) = 𝜎(1, 𝑎) and 𝜎 = 𝜀 ◦ 𝜇.

C.6.3 Frobenius as cospans. The category presented by the theory of special
Frobenius algebras is the category Cospan(Δ+) of isomorphism classes of
cospans of non-decreasing functions. Namely, it is composed of the presentation
ofΔop

+ (comonoids), the presentation ofΔ+ (monoids), and compatibility axioms
can be obtained as pushouts in Δ+:

3
𝜇1
��

1𝜇
��

2
𝜇 ��

2
𝜇��

1

2
𝜇

��

𝜇

��
1

1 ��

1

1��
1

3
1𝜇
��

𝜇1
��

2
𝜇 ��

2.
𝜇��

1

The diagram on the middle corresponds to the separability axiom (C.10),
whereas the two other to the Frobenius axioms (C.9). The presentation can thus
be deduced from the one of Δ+, by using the fact that Cospan(Δ+) = Δ+ ⊗ℓ Δop

+
where the distributive law ℓ : Δop

+ ⊗ Δ+ → Δ+ ⊗ Δop
+ is given by pushout.

Similarly, the theory of special commutative Frobenius algebras presents the
category Cospan(F) = F ⊗ℓ Fop of isomorphism classes of cospans of func-
tions. In this sense it is dual to the theory Span(F) of commutative bialgebras
described in §C.4.3 (by analogy, one could be tempted to consider Span(Δ+) as
a theory for non-commutative bialgebras, but this is not well-defined because
Δ+ does not have all pullbacks).
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C.6.4 Corelations. The theory of extraspecial commutative Frobenius alge-
bras corresponds to the variant of the category Cospan(F) whose morphisms
are jointly surjective cospans (considered up to isomorphism), i.e., cospans of
the form 𝑋 𝑓 // 𝑌 𝑍𝑔oo such that for every 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 such
that 𝑓 (𝑥) = 𝑦 or there exists 𝑧 ∈ 𝑍 such that 𝑔(𝑧) = 𝑦, see [96]. Dually to the
case of relations, see §C.4.4, these morphisms can alternatively be described
as follows. Given two sets 𝑋 and 𝑌 , a corelation 𝑓 : 𝑋 → 𝑌 is a partition
of 𝑋 ⊔ 𝑌 . Given two corelations 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , their composite
𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is defined as the restriction to 𝑋 ⊔ 𝑍 of the finest partition
of 𝑋 ⊔ 𝑌 ⊔ 𝑍 which is coarser than 𝑓 (resp. 𝑔) when restricted to 𝑋 ⊔ 𝑌 (resp.
𝑌 ⊔ 𝑍). The identity corelation 1𝑋 : 𝑋 → 𝑋 is the diagonal corelation. We
write Corel for the category of natural numbers and corelations: this category
is isomorphic to the category of cospans described above. For instance, we have
the following composition of corelations

𝑋 𝑌 𝑌 𝑍 𝑋 𝑍

which corresponds to the following composition in the theory of extraspecial
commutative Frobenius algebras

Any morphism 𝑓 : 𝑚 → 𝑛 in Cospan(F), which consists of a cospan

𝑚 𝑓1 // 𝑝 𝑛𝑓2oo

up to isomorphism, can be uniquely be written as

𝑓 = 𝑓 ′ ∗0 ∗0 . . . ∗0

where 𝑓 ′ : 𝑚 → 𝑛 is a corelation and the number of instances of indicates
the number of elements of [𝑝] which are neither in the image of 𝑓1 nor in the
image of 𝑓2, i.e., measures the deficiency of surjectivity of 𝑓 .
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C.6.5 2-cobordisms. We briefly recall the well-known description of the cate-
gory presented by the theory of commutative Frobenius algebras in geometrical
terms. A clear and detailed account of the situation can be found in [224]. Fix
a natural number 𝑛 ∈ N. Given a smooth oriented manifold with boundary Σ,
its boundary decomposes as 𝜕Σ = 𝜕−Σ ⊔ 𝜕+Σ, where the two components are
determined according to the orientation, and we say that Σ is an 𝑛-cobordism
from 𝜕−Σ to 𝜕+Σ. One can build a category Cob𝑛 whose objects are oriented
smooth (𝑛−1)-manifolds, morphisms are 𝑛-cobordisms, considered up to dif-
feomorphism, and composition is given by gluing (i.e., taking pushouts) along
common boundaries. This category is symmetric monoidal, with tensor product
given on objects and morphisms by disjoint union, and people usually consider
topological quantum field theories, which are symmetric monoidal functors
Cob𝑛 → Vectk.

Here, we will be interested in Cob2: an object is a disjoint union of circles
and a morphism consists of “trousers” between those, such as on the left below

. (C.12)

The category Cob2 admits the theory of commutative Frobenius algebras as
presentation. Namely, the generators are interpreted as

𝜇 = 𝜂 = 𝛿 = 𝜀 = 𝛾 =

so that, for instance, the morphism on the left of (C.12) corresponds to the
diagram on the right. Verifying that the relations are satisfied in Cob2 is direct.
Conversely, in order to show that they are sufficient, one can use the classical
result that the connected morphisms (i.e., diffeomorphism classes of connected
compact oriented surfaces with boundaries) are characterized by their number
of inputs, outputs, and genus (roughly, the number of holes): these are thus
in bĳection with normal forms (C.11) since the interpretation of 𝜙𝑚,𝑔,𝑛 is a
cobordism of genus 𝑔 with 𝑚 inputs and 𝑛 outputs.

Non-commutative Frobenius algebras admit a similar description by 2-dimen-
sional thick tangles [243].
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C.7 Linear relations

Suppose fixed a field k. The category LinRelk has vector spaces over k as
objects, a morphism 𝑓 : 𝑋 → 𝑌 is a subspace of the vector space 𝑋 ⊕ 𝑌 ,
composition of 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 is given by relational composition

𝑔 ◦ 𝑓 = {𝑥 ⊕ 𝑧 ∈ 𝑋 ⊕ 𝑍 | ∃𝑦 ∈ 𝑌, 𝑥 ⊕ 𝑦 ∈ 𝑓 ∧ 𝑦 ⊕ 𝑧 ∈ 𝑔}
and identity on 𝑋 is the diagonal in 𝑋 ⊕ 𝑋 . A morphism 𝑓 : 𝑋 → 𝑌 in this
category is a relation between the underlying sets 𝑋 and 𝑌 , which is closed
under addition and multiplication by scalars, and thus called a linear relation.
This category is typically used to provide semantics to networks such as those
found in electric circuits [23] or control [22, 47].

It is shown in [22, 48] that this category admits a presentation with generators

𝑎

for 𝑎 ∈ k such that

– ( , , , , , 𝑎 ) is a bicommutative linear bialgebra (§C.4.7),
– ( , , , , , 𝑎 ) is a bicommutative linear bialgebra (§C.4.7),
– ( , , , , ) is a bicommutative extraspecial Frobenius algebra (§C.6.1),
– ( , , , , ) is a bicommutative extraspecial Frobenius algebra (§C.6.1),
– the following compatibility relations hold:

= = (C.13)

where is a notation for −1 . The generators should be interpreted as the
following linear relations:

𝑥 𝑦

𝑥+𝑦 0

𝑥+𝑦

𝑥 𝑦

0
𝑦 𝑥

𝑥 𝑦

𝑥

𝑎

𝑎𝑥

𝑥 𝑥

𝑥
𝑥

𝑥

𝑥 𝑥

𝑥

meaning that the interpretation of is the linear relation

{(𝑥 ⊗ 𝑦) ⊕ (𝑥 + 𝑦) | 𝑥, 𝑦 ∈ k} ⊆ (k ⊗ k) ⊕ k
and so on. For instance, the two compatibility relations (C.13) can be read as
the fact that the space of pairs (𝑥, 𝑦) such that 𝑥 + 𝑦 = 0 coincides with the
space of pairs (𝑥,−𝑥), with 𝑥 and 𝑦 ranging over k. This theory is sometimes
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called the theory of interacting Hopf algebras over k and has applications to
control theory.

In [48], it is shown that this category can be obtained as the following pushout
in MonCat:

Vectk ⊔ Vectop
k

��

// Span(Vectk)
��

Cospan(Vectk) // LinRelk

from which the above presentation can be obtained. Another possible descrip-
tion is mentioned in §C.10.9.

C.8 Interchange

C.8.1 Interchange algebra. The theory of interchange algebras [234, 253]
models algebraic structures with two multiplications satisfying the exchange
law (which is sometimes also called the interchange law) holds. It can be
presented by the 3-polygraph 𝑃 with generators

𝑃0 = {⋆} 𝑃1 = {𝑎} 𝑃2 = {𝛾 : 𝑎𝑎 ⇒ 𝑎𝑎, 𝜇 : 𝑎𝑎 ⇒ 𝑎, 𝜈 : 𝑎𝑎 ⇒ 𝑎}

and relations expressing that 𝛾 is a symmetry (§C.1.4) together with the relation

⇛

where the white (resp. gray) triangle corresponds to 𝜇 (resp. 𝜈). An interchange
algebra is associative when both 𝜇 and 𝜈 are. It is unital when equipped with
two morphisms 1 ⇒ 𝑎 acting as a left and right unit for 𝜇 and 𝜈 respectively. For
instance, an associative unital interchange algebra in the cartesian category Set
is precisely a 2-category with only one 0-cell and one 1-cell. By the Eckmann-
Hilton argument [120], this is the same as a commutative monoid.

C.8.2 Iterated monoidal categories. A variant of interchange algebras with 𝑛
distinct monoid structures instead of two is the following one. An 𝑛-fold monoid
is a set equipped with 𝑛-distinct products which are suitably compatible. More
precisely, the corresponding theory can be presented by the 3-polygraph 𝑃 with
generators 𝑃0 = {⋆}, 𝑃1 = {𝑎} and

𝑃2 = {𝛾 : 𝑎𝑎 ⇒ 𝑎𝑎, 𝜂 : 1 ⇒ 𝑎, 𝜇0 : 𝑎𝑎 ⇒ 𝑎, . . . , 𝜇𝑛−1 : 𝑎𝑎 ⇒ 𝑎}
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such that for every 0 ⩽ 𝑖 < 𝑗 < 𝑛, 𝜂, 𝜇𝑖 and 𝜇 𝑗 satisfy the axioms of associa-
tive unital interchange algebras. Again, by the Eckmann-Hilton argument, this
theory is equivalent to the one of commutative monoids. However, the theory
of 𝑛-fold pseudomonoids (where equalities are replaced by coherent isomor-
phisms) is more interesting: its algebras in the cartesian 2-category Cat are
𝑛-fold monoidal categories. This structure is the one one obtains by consider-
ing monoids in the category of monoids in the category of monoids in . . . in
the category Cat with the monoidal structure induced by cartesian product,
see [25].

C.8.3 Interchange bialgebra. An interchange bialgebra [253] is a PROP
which is both an interchange algebra and an interchange coalgebra, with the
following compatibility relations

⇛ ⇛ ⇛ ⇛ .

The most studied variant of this notion is the one of interaction nets, which are
detailed in §C.12.5.

C.9 Idempotent objects

An idempotent object in a monoidal category is an object 𝑥 equipped with an
isomorphism 𝑥 ⊗ 𝑥 → 𝑥. The theory for idempotent objects is the PRO T,
called the Thompson category, presented by the 3-polygraph 𝑃 with 𝑃0 = {⋆},
𝑃1 = {𝑎}, with 2-generators 𝜇 : 𝑎𝑎 ⇒ 𝑎 and 𝛿 : 𝑎 ⇒ 𝑎𝑎, depicted as

and subject to the relations

⇛ ⇛ .

A morphism is a binary tree (resp. a cotree) when it has 𝑎 as target (resp. source)
and is a composite of generators 𝜇 (resp. 𝛿) only. It is observed in [130] that
the monoid of automorphisms T(𝑎, 𝑎) is isomorphic to the Thomson group 𝐹,
already presented in §A.1.27. Namely, we can recover the generators of the
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usual presentation as defined by induction on 𝑖 by

𝑥0 = and 𝑥𝑖+1 = 𝑥𝑖 .

More generally, any morphism 𝑎 → 𝑎 of T decomposes as a cotree followed by
a tree respectively encoding the dyadic partitions of the input and of the output
of the corresponding morphism 𝐼 → 𝐼 in the Thompson group, by specifying
when the interval should be split in two halves. For instance, the morphism on
the left corresponds to the function on the right:

0 1
4

3
8

1
2

3
4

7
8

1
0

1
2

3
4

1

By post-composition, the elements of 𝐹 act on trees which are “large enough”
(the action is partially defined). For instance, we have the following action of 𝑥0:

∗
⇛

From this point of view, the generator 𝑥0 can be pictured as

𝑥0→

since it will “replace” a prefix of a tree as on the left with a prefix as on the
right. Such a transformation is sometimes called an associative law and the
group 𝐹 can be described as the group of those, with expected composition.
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For instance, Mac Lane’s pentagon is

𝑥0

��

𝑥0𝑥0𝑥
−
1 𝑥
−
0 //

𝑥0

%%

𝑥1
��

𝑥0
//

Similarly, the Thompson group 𝑉 can be recovered as the group of automor-
phisms on 𝑎 in the free symmetric monoidal category on T. This entails that 𝑉
can be described as the group of automorphisms of the free Cantor algebra on
a singleton [59]: we recall that a Cantor algebra is a set 𝐴 equipped with a
bĳection 𝛼 : 𝐴→ 𝐴 × 𝐴.

C.10 Dualities

C.10.1 Adjunctions. An adjunction consists of two functors 𝑓 : 𝐶 → 𝐷

and 𝑔 : 𝐷 → 𝐶 together with natural transformations 𝜂 : 1𝐶 ⇒ 𝑓 𝑔 and
𝜀 : 𝑔 𝑓 ⇒ 1𝐷 such that (𝜂 𝑓 ) ∗ ( 𝑓 𝜀) = 1 𝑓 and (𝑔𝜂) ∗ (𝜀𝑔) = 1𝑔. In such a
situation 𝑓 is called a left adjoint to 𝑔, and 𝑔 a right adjoint to 𝑓 .

The theory of adjunctions is the 2-category Adj presented by the 3-poly-
graph 𝑃 with generators

𝑃0 = {𝑐, 𝑑} 𝑃1 = { 𝑓 : 𝑐 → 𝑑, 𝑔 : 𝑑 → 𝑐}
and

𝑃2 = {𝜂 : 1𝑐 ⇒ 𝑓 𝑔, 𝜀 : 𝑔 𝑓 ⇒ 1𝑑}
pictured as

𝜂 =
𝑓 𝑔

𝜀 =
𝑔 𝑓
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and respectively called unit and counit, together with the two relations

⇛ ⇛ (C.14)

often called zigzag or triangle identities. This presentation is convergent, the
normal forms being the horizontal composites of 𝜂, 𝜀 and identities. A 2-functor
𝐹 : Adj→ Cat corresponds precisely to an adjunction in the usual sense.

The 2-category Adj is studied in [319]. In particular, if we consider the
2-category Adj(𝑐, 𝑐), which is the full sub-2-category of Adj on the 0-cell 𝑐,
we have an isomorphism of 2-categories (or of monoidal categories)

Adj(𝑐, 𝑐) ≃ Δ+

Namely, the monoid of 1-cells is freely generated by 𝑓 𝑔 : 𝑐 → 𝑐 (thus isomor-
phic toN), and one can define a structure of monoid on 𝑓 𝑔whose multiplication
and unit are respectively 𝑓 𝜀𝑔 and 𝜂, from which the isomorphism can easily
be deduced. For instance, the non-decreasing function pictured on the left,
corresponds to the 2-cell on the right in the theory of monoids

0 1 2 3

0 1 2

and to the following 2-cell in Adj(𝑐, 𝑐):
𝑓 𝑔 𝑓 𝑔 𝑓 𝑔 𝑓 𝑔

𝑓 𝑔 𝑓 𝑔 𝑓 𝑔

.

Similarly, we have Adj(𝑑, 𝑑) ≃ Δop
+ , and Adj(𝑐, 𝑑) and Adj(𝑑, 𝑐) are the

subcategories ofΔ+whose objects are non-zero natural numbers and morphisms
are the last-element (resp. first-element) preserving functions. Note that Δop

+
is isomorphic to the subcategory of Δ+ whose objects are non-zero natural
numbers and morphisms are preserving both first and last element.

C.10.2 Duality. A duality in a monoidal category 𝐶 is an adjunction in 𝐶,
considered as a 2-category. It consists of two objects 𝑥 and 𝑥∗ together with
morphisms

𝜂𝑥 : 1 → 𝑥𝑥∗ 𝜀𝑥 : 𝑥∗𝑥 → 1

satisfying the zigzag relations (C.14). In this case 𝑥 is called a left dual of 𝑥∗,
and 𝑥∗ a right dual of 𝑥. Two left (resp. right) duals of a given object are
necessarily isomorphic. An object 𝑥 is self-dual when it admits a right dual 𝑥∗
which is isomorphic to 𝑥.
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A monoidal category is right-autonomous (resp. left-autonomous) when ev-
ery object 𝑥 admits a right dual 𝑥∗ (resp. a left dual ∗𝑥). It is strictly so when
duals are chosen so that (𝑥𝑦)∗ = 𝑦∗𝑥∗, 1∗ = 1, 𝜂1 = 11 = 𝜀1 , 𝜂𝑥𝑦 = 𝑥𝜂𝑦𝑥∗ ◦ 𝜂𝑥
and 𝜀𝑥𝑦 = 𝜀𝑦 ◦ 𝑦∗𝜀𝑥𝑦; without loss of generality, we consider that this is al-
ways the case in the following. It is autonomous (or rigid) when it is both left-
and right-autonomous. A compact closed category is a symmetric monoidal
category which is autonomous. For instance, the category Vectk of k-vector
spaces is compact closed, the dual 𝑥∗ of a vector space 𝑥 being its linear dual.
A coherence theorem for compact closed categories was shown by Kelly and
Laplaza [216]. In particular, in a compact closed category, we have isomor-
phisms ∗𝑥 ≃ 𝑥∗, 𝑥∗∗ ≃ 𝑥, which we will be considered as equalities in the
following. Given a morphism 𝑓 : 𝑥 → 𝑥 of a compact closed category, the
morphism

tr( 𝑓 ) = 𝜀𝑥∗ ◦ 𝑓 𝑥∗ ◦ 𝜂𝑥 𝑓

is called its trace: there is a general axiomatization of trace in symmetric
monoidal categories [210], which every compact closed category canonically
possesses. In particular, the morphism tr(1𝑥) is often called the dimension of 𝑥.
The category is loop-free when every object 𝑥 is 1-dimensional, i.e., tr(𝑥) = 11 .

A right-autonomous category is pivotal when equipped with a monoidal
natural isomorphism 𝑥 ≃ 𝑥∗∗, considered as an equality in the following. A nice
survey of the flavors of categories with duals can be found in [324].

C.10.3 The free compact category. Suppose given a symmetric monoidal
category 𝐶 presented by a 3-polygraph 𝑃. The free compact category on 𝐶
admits a presentation by the 3-polygraph 𝑄 with generators

𝑄0 = 𝑃0 = {⋆}
𝑄1 = {𝑎𝑛 | 𝑎 ∈ 𝑃1 and 𝑛 ∈ Z}
𝑄2 =

{
𝑓 : 𝑢0 ⇒ 𝑣0 �� 𝑓 : 𝑢 ⇒ 𝑣 ∈ 𝑃2

} ⊔{
𝜂𝑎𝑛 : 1 ⇒ 𝑎𝑛𝑎𝑛+1, 𝜀𝑎𝑛 : 𝑎𝑛+1𝑎𝑛 ⇒ 1

�� 𝑎𝑛 ∈ 𝑄1
}

where, for 𝑢 = 𝑎1 . . . 𝑎𝑘 , we write 𝑢𝑛 for 𝑎𝑛1 . . . 𝑎
𝑛
𝑘 . The generators 𝜂𝑎𝑛 and 𝜀𝑎𝑛

are respectively pictured

𝑎𝑛 𝑎𝑛+1
and 𝑎𝑛+1 𝑎𝑛 .

The relations are those in 𝑃3 together with the zigzag relations (C.14) satisfied
by 𝜂𝑎𝑛 and 𝜀𝑎𝑛 for every 𝑎 ∈ 𝑃1 and integer 𝑛.
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Here, the object 𝑎0 corresponds to 𝑎 in the original category and, for 𝑛 ∈ N,
𝑎𝑛 (resp. 𝑎−𝑛) corresponds to 𝑎∗∗···∗ (resp. ∗···∗∗𝑎), with ∗ applied 𝑛 times.
Thanks to this presentation, one can for instance deduce that the canonical
monoidal functor from a monoidal category into its free compact category is
faithful [283].

C.10.4 The free compact closed category. Suppose given a symmetric mon-
oidal category 𝐶 presented by a 3-polygraph 𝑃. The free compact closed cate-
gory on 𝐶 admits a presentation by the 3-polygraph 𝑄 with generators

𝑄0 = 𝑃0 = {⋆}
𝑄1 = {𝑎, 𝑎∗ | 𝑎 ∈ 𝑃1}
𝑄2 = { 𝑓 : 𝑢 ⇒ 𝑣 | 𝑓 : 𝑢 ⇒ 𝑣 ∈ 𝑃2} ⊔ {𝜂𝑎 : 1 ⇒ 𝑎𝑎∗, 𝜀𝑎 : 𝑎∗𝑎 ⇒ 1 | 𝑎 ∈ 𝑃1}

and relations being those in 𝑄3 together with the zigzag relations for each 𝜂𝑎
and 𝜀𝑎.

The theory for a pair of adjoint endofunctors can be obtained from the
category Adj of §C.10.1 by identifying the two objects, and its presentation
can be obtained from the one of Adj by identifying the 0-generators 𝑐 and 𝑑.
The above results shows that this theory is the free compact closed category on
the terminal category.

C.10.5 The free “self-dual” compact closed category. As a variant of the
situation described in previous section, given a symmetric monoidal category𝐶
presented by a polygraph 𝑃, we call the free self-dual compact closed category
on 𝐶, the category presented by the 3-polygraph 𝑄 with generators

𝑄0 = 𝑃0 = {⋆}
𝑄1 = 𝑃1

𝑄2 = { 𝑓 : 𝑢 ⇒ 𝑣 | 𝑓 : 𝑢 ⇒ 𝑣 ∈ 𝑃2} ⊔ {𝜂𝑎 : 1 ⇒ 𝑎𝑎, 𝜀𝑎 : 𝑎𝑎 ⇒ 1 | 𝑎 ∈ 𝑃1}

and relations being those in 𝑄3 together with the zigzag relations for each 𝜂𝑎
and 𝜀𝑎, and the relations

= =

𝛾𝑎,𝑎 ◦ 𝜂𝑎 = 𝜂𝑎 𝜀𝑎 ◦ 𝛾𝑎,𝑎 = 𝜀𝑎

for every 1-generator 𝑎 ∈ 𝑃1. In the resulting category, only the generators
are self-dual, for instance the dual of the 1-cell 𝑎𝑏 is 𝑏𝑎. The axiomatization
of self-dual categories is quite subtle, see [323], and it is not clear that this
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construction is an instance of those. However, it is quite useful in the following,
so we use it without claiming a universal property.

C.10.6 1-cobordisms. The category of 𝑛-cobordisms was presented in §C.6.5.
In this section we study the case 𝑛 = 1 and give a presentation of the monoidal
category Cob1. Its objects are disjoint unions of oriented 0-dimensional mani-
folds, i.e., points together with an orientation− or +, and it admits a presentation
by the polygraph 𝑃 with 𝑃0 = {⋆}, 𝑃1 = {−, +}, 2-generators being

− −

− −

− +

+ −

+ −

− +

+ +

+ + − +

+ −

such that the four first generators equip the monoidal category with a symmetric
structure, see §C.1.4, and the two last generators satisfy the axioms for dualities.
In other words, Cob1 is the free compact closed symmetric monoidal category
on one object.

C.10.7 The Temperley-Lieb category. The Temperley-Lieb category TL, in-
troduced and studied in [1], is the PRO generated by

subject to the relations

⇛ ⇛ ⇛ .

It is thus the free monoidal category containing a self-dual object, satisfying
the last relation above. Note that this presentation is not terminating because of
the loop

⇛ ⇛

it can however be shown to be quasi-terminating [6], in the sense of §1.3.11.
Given 𝑛 ∈ N, the monoid of endomorphisms TL(𝑛, 𝑛) is generated by

𝑑 = ... and 𝑢𝑖 = ... ...

with 0 ⩽ 𝑖 ⩽ 𝑛 − 2, where 𝑢𝑖 is composed of the identity on 𝑖 on the left and
on 𝑛 − 𝑖 − 2 on the right, subject to relations of §A.1.29, making it the 𝑛-th



C.10 Dualities 569

Temperley-Lieb monoid, see §A.1.29. For instance, with 𝑛 = 4, we have the
relations

= = = .

𝑢0𝑢1𝑢0 = 𝑢0 𝑢1𝑢1 = 𝑑𝑢1 𝑢0𝑢2 = 𝑢2𝑢0

C.10.8 Chord diagrams. Consider the full subcategory 𝐶 of Corel (see
§C.6.4) whose morphisms are corelations 𝑋 𝑓 // 𝑌 𝑍𝑔oo which are one to
one, meaning that for every 𝑦 ∈ 𝑌 the cardinal of 𝑓 −1 (𝑦)∪𝑔−1 (𝑦) is precisely 2.
A morphism can be represented by drawing a line between two elements of the
source 𝑋 or the target 𝑍 which are sent to the same element of 𝑌 by 𝑓 or 𝑔, as
on the left below:

(C.15)

such diagrams are sometimes called chord diagrams or Brauer linkings [55].
The resulting PRO, which we call the Brauer category, has a presentation with
generators

such that the last one is a symmetry (§C.1.4) and the relations

⇛ ⇛ ⇛

⇛ ⇛

(C.16)

hold, see [192]. The morphism corresponding to the diagram on the left
of (C.15) is shown on the right. This category is the free loop-free self-dual
compact closed symmetric monoidal category on an object, in sense of §C.10.5.
Given 𝑛 ∈ N, the monoid of endomorphisms on 𝑛 is precisely the 𝑛-th Brauer
monoid, as described in §A.1.30. In terms of the presentation of the monoid,
the generators 𝑎𝑖 and 𝑢𝑖 are respectively interpreted as

𝑎𝑖 = ... ... 𝑢𝑖 = ... ...
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and for instance, we have the derivation of the following relations:

⇛ ⇛ ⇛ .

𝑎0𝑢1𝑎0 = 𝑎1𝑢0𝑎1 𝑢0𝑎1𝑢0 = 𝑢0 𝑎0𝑎1𝑢0𝑢2 = 𝑎2𝑎1𝑢0𝑢2

A variant without loop-freeness can be obtained by dropping the last rule
of (C.16). The resulting category corresponds to the subcategory of Cospan(Δ+)
whose morphisms satisfy a similar condition as above.

C.10.9 Frobenius algebras and dualities. A Frobenius algebra is always
canonically equipped with a notion of duality and can even be characterized in
terms of this structure, see [224] for details.

C.10.10 Proposition. The following theories present the same category:

1. The theory of Frobenius algebras, generated by , , and such that
– ( , ) is a monoid,
– ( , ) is a comonoid,
– the Frobenius relations (C.9) hold between and .

2. The theory generated by , , , such that
– ( , ) is a monoid,
– the following relations hold:

⇛ ⇛ ⇚ .

3. The theory generated by , , , such that
– ( , ) is a monoid,
– ( , ) is a duality,
– the following relation holds:

⇛

or equivalently the following relation holds:

⇛ .
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Proof. The equivalence between theories can be derived using Tietze trans-
formations. We sketch the equivalence between the first and last one. In the
theory (1), we can define

= =

and conversely, in the theory (3), we can define

= =

In both cases, the required relations are derivable. □

Various extensions of this result are possible in order to take in account varia-
tions on the notion of Frobenius algebra (commutative, special, etc.).

Following the same ideas as previously, in the theory of interacting Hopf
algebras (§C.7) a self-duality can be defined by

= =

and the structure can be axiomatized as follows taking these as generators [22]:

C.10.11 Proposition. The following theories present the same category:

1. The theory of interacting Hopf algebras.
2. The theory generated by , , , , , 𝑎 , , such that

– ( , , , , , 𝑎 ) is a bicommutative linear bialgebra,
– ( , ) is a duality,

– ( , , , , ) is a bicommutative extraspecial Frobenius al-

gebra,

– ( , , , , ) is a bicommutative extraspecial Frobenius al-

gebra.

C.10.12 Tangles. A category of tangles can be defined as a variation of the
category of braids, see §A.1.21 and C.1.1, intuitively by allowing wires to loop.
Given natural numbers 𝑚, 𝑛 ∈ N, a tangle from 𝑚 to 𝑛 is an embedding

𝑡 : 𝑇 → 𝑋
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where𝑇 is a 1-manifold with boundary and 𝑋 = R2× [0, 1], such that the image
of the boundary 𝜕𝑇 of 𝑇 is of the form

𝑡 (𝜕𝑇) = {(0, 𝑖, 0) | 𝑖 ∈ N, 0 ⩽ 𝑖 < 𝑚} ⊔ {(0, 𝑖, 1) | 𝑖 ∈ N, 0 ⩽ 𝑖 < 𝑛}

where the natural number 𝑚 (resp. 𝑛) is called the source (resp. target) of the
tangle. Graphically, a tangle from 4 to 2 can be pictured as

Tangles are considered up to endpoint-preserving isotopy: we identify two
tangles 𝑡 : 𝑇 → 𝑋 and 𝑡′ : 𝑇 ′ → 𝑋 for which there exists a continuous map
ℎ : [0, 1] → 𝑋𝑋 such that ℎ(0) = 1𝑋, ℎ(1) ◦𝑡 = 𝑡′ and, for every 𝑡 ∈ [0, 1], ℎ(𝑡)
is a homeomorphism such that ℎ(𝑡) (𝜕𝑇) = ℎ(0) (𝜕𝑇). We write Tang for the
PRO with tangles as morphisms with expected composition (corresponding to
linking wires) and tensor product (corresponding to juxtaposition of diagrams).

The category Tang is the free braided monoidal category on a self-dual
object, which moreover satisfies the first Reidemeister move (C.17) below,
see [137, 138]. Explicitly, this means that it admits a presentation with genera-
tors

subject to the relations

– first Reidemeister move:

⇛ ⇚ (C.17)

– second Reidemeister move:

⇛ ⇚



C.10 Dualities 573

– third Reidemeister move (aka Yang-Baxter rule):

⇛

– zigzag relations:

⇛ ⇚

– the naturality relations:

⇛ ⇛

⇛ ⇛

⇛ ⇛

⇛ ⇛

or equivalently, the sliding relations:

⇛ ⇛

⇛ ⇛

If we replace relation (C.17) by

⇛ (C.18)
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we present the category of framed tangles or ribbons: in this category, mor-
phisms correspond to pieces of ribbon (instead of wire), i.e., embeddings

𝑟 : 𝑇 × [0, 1] → 𝑋

where 𝑇 is a 1-manifold with boundary, e.g.

considered up to endpoint-preserving isotopy. Note that the relation (C.17) is
not satisfied since trying to strengthen the loop introduces a “twist” on the rope

=

and is thus not the identity ribbon. If we remove the relation (C.17) (without
adding (C.18)), we present the category of tangles up to regular isotopy, a
variant of isotopy which forces ribbons to always be flat against the plane,
which prevents the identity (C.18) from holding:

≠ .

A tangle from 0 to 0 is called a link, and a knot is a link 𝑡 : 𝑇 → 𝑋 such
that 𝑇 is the 1-sphere. The Reidemeister moves were originally introduced for
those [309].

A variant of this category can be obtained by considering oriented tangles,
see [137, 138, 214, 324]: the objects of this category are sequences of “-”
and “+”, and morphisms are oriented tangles up to endpoint-preserving planar
isotopy, e.g.

+ + −

− + + + −



C.11 Endomorphisms 575

Of course, ribbon variants of this category can also be considered. The resulting
categories are pivotal (instead of being self-dual).

C.10.13 First-order logic. The dependencies between quantifiers in proofs
for first-order logic are characterized by the structure of free pivotal category
on a bialgebra, see [282].

C.11 Endomorphisms

C.11.1 The theory of endomorphisms. Consider the PRO whose morphisms
are endomorphisms 𝑓 : 𝑛 → 𝑛 consisting of a list ( 𝑓1, . . . , 𝑓𝑛) of 𝑛 natural
numbers. The composite of two morphisms 𝑓 : 𝑛→ 𝑛 and 𝑔 : 𝑛→ 𝑛 is given
by pointwise addition ( 𝑓1 + 𝑔1, . . . , 𝑓𝑛 + 𝑔𝑛), identities are lists (0, . . . , 0), and
tensor product is given by concatenation of lists. This PRO admits a presentation
with one generator

and no relation, the generator being interpreted as the list (1). An algebra for
this theory in a monoidal category consists of an object 𝑥 together with an
endomorphism 𝑓 : 𝑥 → 𝑥 on 𝑥. This is a particular case of a presentation of
the free monoidal category generated by the monoid N, see §C.5.2: since N is
free on one generator, its action is entirely determined by an endomorphism
(corresponding to the action of 1).

C.11.2 Actions of a set. Suppose fixed a set 𝐿. Previous situation can be
generalized by considering the PRO where the morphisms are endomorphisms
𝑓 : 𝑛 → 𝑛 consisting of a list ( 𝑓1, . . . , 𝑓𝑛) of elements of 𝐿∗, the free monoid
over 𝐿: composition is given by pointwise concatenation in 𝐿∗ and tensor by
concatenation of lists. It admits a presentation with generators

𝑎

indexed by 𝑎 ∈ 𝐿 and no relation. This is the theory for an action of 𝐿: it
consists of an object 𝑥 together with a family 𝑓𝑎 : 𝑥 → 𝑥 of endomorphisms
of 𝑥 indexed by 𝑎 ∈ 𝐿. Again, this is a particular case of a presentation of the
free monoidal category generated by the monoid 𝐿∗ (the free monoid on the
set 𝐿). We recover the theory of §C.11.1 in the particular case where 𝐿 is a
singleton.
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C.11.3 Involutions. The monoidal theory of involutions admits a presentation
with one generator

and relation

⇛

It is the free monoidal category on the monoid Z/2Z.

C.11.4 The hyperoctahedral category. The symmetric monoidal theory of
involutions admits a presentation with two generators

and relations

⇛ ⇛ ⇛

together with usual relations for symmetries, see §C.1.3.
Given 𝑛 ∈ N, the monoid of endomorphisms on 𝑛 is in fact a group called the

hyperoctahedral group or signed symmetric group, and noted 𝐶𝑛, see §A.1.22.
It can be described as the group of signed permutations of a set with 𝑛 elements,
i.e., (𝑛×𝑛)-matrices where each column and each row contains one non-null
coefficient which is either 1 or −1, with usual multiplication and identities, the
two generators being respectively interpreted as(

−1
)

and
(
0 1
1 0

)
.

It can also be described as the wreath product

𝐶𝑛 = 𝑆2 ≀ 𝑆𝑛
of symmetric groups. The presentation of𝐶𝑛 given in §A.1.22 can be recovered
as the associated presentation of category (in the sense of §10.3.10), where the
generators 𝑎0 and 𝑎𝑖 (with 0 < 𝑖 < 𝑛) respectively correspond to

... and ... ... .

For instance, the relation 𝑎0𝑎1𝑎0𝑎1 = 𝑎1𝑎0𝑎1𝑎0 corresponds to

... ⇛ ... .
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In this category, every morphism factors uniquely as a symmetry (i.e., a
matrix containing only 0 and 1) followed by a diagonal matrix. This provides a
factorization system inducing a description of the category as S⊗ℓN⊗ whereN⊗
is the free monoidal category over the monoid N, considered as a category, and
ℓ is the distributive law induced by the factorization system. Of course, this
category being self-dual, we also have a decomposition as N⊗ ⊗ℓ S.

C.11.5 Progressive ribbons. The category R is the subcategory of the cate-
gory of ribbons up to endpoint-preserving isotopy described in §C.10.12, with
the same objects, where

– we restrict to ribbons which are progressive, i.e., always “go down”, so that
the ribbon on the left is valid but not the one on the right:

,

– we restrict to ribbons which always show the “same face” at the boundary,
so that the ribbon on the left is valid, but not the one on the right:

.

For instance, we have the following morphism 3→ 3:

.

Note that the ribbons can be twisted. This category admits a presentation with
generators

such that the two first generators are mutually inverse and the two last generators
form a braiding (Theorem C.1.5). For instance the above morphism corresponds
to the diagram

.

This category can be shown to be the free balanced category on an object [208].
We recall that a balanced category is a braided monoidal category equipped
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with a natural family of isomorphisms 𝜃𝑢 : 𝑢 → 𝑢, called twists, such that
𝜃𝑖 = 𝑖 and the following diagram commutes for every pair of objects 𝑢 and 𝑣:

𝑣 ⊗ 𝑢
𝜃𝑣⊗𝑢
��

𝛾𝑢,𝑣
// 𝑢 ⊗ 𝑣

𝜃𝑢⊗𝜃𝑣.
��

𝑣 ⊗ 𝑢 𝑢 ⊗ 𝑣𝛾𝑣,𝑢
oo

Graphically,
𝑣 𝑢

𝑣 𝑢

=

𝑣 𝑢

𝑣 𝑢

.

Given 𝑛 ∈ N, the group of endomorphisms of 𝑛 is the group 𝑅𝑛 of progressive
ribbons with 𝑛 strands described in §A.1.23:

R =
∐
𝑛∈N

𝑅𝑛

It can be obtained as the wreath product of the additive group of integers with
the 𝑛-th braid group:

𝑅𝑛 = Z ≀ 𝐶𝑛.

C.11.6 The pearl necklace. The pearl necklace is the PRO, introduced in
§12.2.8, presented by the 3-polygraph with three generators

subject to the four relations

⇛ ⇛ ⇛ ⇛ .

This is the free monoidal category on a self-dual object together with an
endomorphism, see also §C.10.5 and §C.11.1. This presentation was introduced
and studied in [161] as a first example of a convergent finite presentation which
does not have a finite derivation type, see §12.2.8.

C.11.7 Directed acyclic graphs. A directed acyclic graph, or DAG, is a graph

𝐺 = 𝐺0 𝐺1
𝑠oo

𝑡
oo

which is acyclic, i.e., every path from a vertex to itself is empty. Any 𝑛 ∈ N
can canonically be seen as a DAG with the set [𝑛] = {0, . . . , 𝑛 − 1} as set of
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vertices and no edge; we write [𝑛] for this graph. A vertex 𝑥 ∈ 𝐺0 of a DAG 𝐺

is minimal (resp maximal) when there is no edge with 𝑥 as target (resp. as
source). Given a set 𝑉 ⊆ 𝐺0, the restriction of 𝐺 to 𝑉 is the subgraph of 𝐺
with𝑉 as vertices, whose edges are the edges 𝐺 such that both their source and
their target belong to 𝑉 . Given a set 𝑉 ⊆ 𝐺0, the graph obtained by hiding 𝑉
in 𝐺 is the graph obtained from 𝐺 by adding a new edge 𝑥 → 𝑧 for every
vertex 𝑦 ∈ 𝑉 and pair of edges 𝑥 → 𝑦 and 𝑦 → 𝑧 in 𝐺 and then restricting the
resulting graph to 𝐺0 \𝑉 .

We can build a PROP DAG of DAGs, where an object is a natural number
and a morphism from 𝑚 to 𝑛 is a cospan

[𝑚] 𝑓
// 𝐺 [𝑛]𝑔
oo

where 𝐺 is a finite graph, 𝑓 and 𝑔 are injective morphisms of graphs such that
for every 𝑖 ∈ [𝑚] (resp. 𝑖 ∈ [𝑛]) the vertex 𝑓 (𝑖) (resp. 𝑔(𝑖)) is a minimal (resp.
maximal) vertex in 𝐺, and the images of 𝑓 and 𝑔 are disjoint. A vertex of 𝐺 is
a source (resp. target, resp. internal) vertex when it is in the image of 𝑓 (resp.
in the image of 𝑔, resp. neither in the image of 𝑓 nor the image of 𝑔). We will
picture by

𝑥 𝑦

a morphism with 𝑥 and 𝑦 as internal vertices, 2 source vertices and 3 target
vertices. The composite of two morphisms 𝐺 : 𝑚 → 𝑛 and 𝐻 : 𝑛→ 𝑜 is given
by computing the pushout

𝐺 ×𝑛 𝐻

𝐺

ℎ′ ::

𝐻

𝑔′dd

[𝑚]
𝑓 ==

[𝑛]
𝑔

dd
ℎ
::

[𝑜]
𝑖

aa

and then hiding ℎ′ (𝑔( [𝑛])) in the resulting graph, with the expected cospan
morphisms induced from ℎ′ ◦ 𝑓 and 𝑔′ ◦ 𝑖. For instance, we have the following
composition of morphisms:

𝑥 𝑦 ∗

𝑎

𝑏 = 𝑥 𝑦

𝑎

𝑏
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The identity on 𝑛 is the graph obtained from [𝑛] ⊔ [𝑛] by adding, for every
𝑖 ∈ [𝑛] a vertex from the first copy of 𝑖 to the second one, e.g. the identity on 3
is

Tensor product is given on morphisms by disjoint union and symmetries are
the expected ones. It is shown in [129] that this PROP admit a presentation with
generators

such that the five first generators satisfy the axioms for bicommutative bialge-
bras (§C.4.3) and the penultimate one is a symmetry (§C.1.4). In this language,
the composition of the two above morphisms can be written

∗ =

If we restrict the morphisms of the category DAG to simple graphs, i.e., for-
bidding multiple edges with same source and same target, we can obtain a
presentation of the resulting category by further adding the relation (C.8) of
special bialgebras.

C.11.8 Posets. As a variant of previous situation, consider the PROP whose
objects are integers and morphisms 𝑚 → 𝑛 are cospans

[𝑚] 𝑓
// 𝐸 [𝑛]𝑔
oo

of finite posets, where [𝑛] is the discrete poset with 𝑛 elements, and the mor-
phisms are injective non-decreasing functions with disjoint images, such that
the images of 𝑓 (resp. 𝑔) are minimal (resp. maximal) elements of the poset.
Composition is obtained from the pushout by removing the elements which are
identified in the interface, as in §C.11.7. This category admits the same pre-
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sentation as the category of simple graphs, with the extra transitivity relation

⇛

see [284] for details.

C.11.9 Frobenius. We now consider a variant of the categories introduced
previous section, as well as a generalization of the theory of special commutative
Frobenius algebras, which is the category Cospan(F) as explained §C.6.3.

A formalization of “circuits” (such as electric circuits made of electronic
components) was introduced and studied in [315] by considering the cate-
gory Circ, which is the full subcategory of the category Cospan(FinGraph)
whose objects are integers 𝑛 ∈ N, seen as graphs with [𝑛] as vertices and no
edge, morphisms being isomorphism classes of cospans of finite graphs. A mor-
phism𝐺 : 𝑚 → 𝑛 in this category is a graph𝐺 (considered up to isomorphism)
together with two functions 𝑓 : [𝑚] → 𝐺 and 𝑔 : [𝑛] → 𝐺, composition is
given by pushout and identities are cospans of the form [𝑛] // [𝑛] [𝑛]oo

with both morphisms being identities. The resulting category is a PROP which
admits a presentation with generators

such that the five first generators satisfy the axioms for special commutative
Frobenius algebras (§C.6.1) and the penultimate one is a symmetry (§C.1.4).

Given a set 𝐿 of labels (thought of as the possible components of our circuits),
we can consider a variant of the previous category where the vertices of graphs
are labeled in 𝐿. It is shown to have a similar presentation as above, with the
generator being replaced by a family of generators 𝑎 , indexed by 𝑎 ∈ 𝐿.
From §C.11.2, we deduce that this is the theory for special Frobenius algebras
equipped with an action of 𝐿 [315, Proposition 3.2]. This category has found
many applications to modeling networks [23, 21].

C.12 Nets

Some of the previous examples consist in categories whose morphisms are
graphs of some sort (e.g. §C.11.7 or C.11.9). The kind of constructions per-
formed there can be adapted in order to build freely generated monoidal cate-
gories as follows, by formalizing the networks occurring in string-diagrammatic
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representations of morphisms. Those networks will comprise nodes, which cor-
respond to 2-generators, ports which represent the inputs and outputs of the
generators and of the whole net, and wires which link ports together.

Throughout the section, we suppose fixed a signature 2-polygraph 𝑃 with
𝑃0 = {⋆}. We recall that, given an element 𝑢 = 𝑎0 . . . 𝑎𝑛−1 of 𝑃∗1, we write
|𝑢 | = 𝑛 for its length.

C.12.1 Definition. Following [234], a 𝑃-net consists of

– a finite set 𝑁 of nodes,

– a labeling function ℓ : 𝑁 → 𝑃2,

– finite totally ordered sets 𝑋− =
{
𝑥−0 , . . . , 𝑥

−
𝑚

}
and 𝑋+ =

{
𝑥+0 , . . . , 𝑥

+
𝑛

}
of

input and output ports,

– a labeling function ℓ : 𝑋 → 𝑃1, where

𝑋 = 𝑋− ⊔ 𝑋+ ⊔ 𝑋−◦ ⊔ 𝑋+◦

is the set of ports and

𝑋−◦ =
{
𝜈−𝑖

�� 𝜈 ∈ 𝑁, 0 ⩽ 𝑖 < |𝑠1 (ℓ(𝜈)) |
}

𝑋+◦ =
{
𝜈+𝑗

��� 𝜈 ∈ 𝑁, 0 ⩽ 𝑗 < |𝑡1 (ℓ(𝜈)) |}

are the sets of inner input and output ports respectively,

– a finite set𝑊 of wires,

– a labeling function ℓ : 𝑊 → 𝑃1,

– a boundary 𝜕𝑤 ⊆ 𝑋 for every wire 𝑤 ∈ 𝑊 ,

such that

– for every node 𝜈 ∈ 𝑁 such that 𝑠1 (𝜈) = 𝑎1 . . . 𝑎𝑝 and 𝑡1 (𝜈) = 𝑏1 . . . 𝑏𝑞 , we
have ℓ(𝜈−𝑖 ) = 𝑎𝑖 and ℓ(𝜈+𝑗 ) = 𝑏 𝑗 for 0 ⩽ 𝑖 < 𝑝 and 0 ⩽ 𝑗 < 𝑞,

– for every 𝑤 ∈ 𝑊 , 𝜕𝑤 contains 0 or 2 elements, and in the case 𝜕𝑤 = {𝑥, 𝑦}
we have ℓ(𝑤) = ℓ(𝑥) = ℓ(𝑦),

– the sets 𝜕𝑤 form a partition of 𝑋 , i.e., 𝑋 =
⋃
𝑤∈𝑊 𝜕𝑤 and 𝑤 ≠ 𝑤′ implies

𝜕𝑤 ∩ 𝜕𝑤′ = ∅.

The source (resp. target) of such a net is ℓ(𝑥−0 ) . . . ℓ(𝑥−𝑚) (resp. ℓ(𝑥+0 ) . . . ℓ(𝑥+𝑛)).
For instance, with 𝑃1 = {𝑎, 𝑏} and 𝑃2 = {𝛼 : 𝑎𝑎𝑎𝑎 ⇒ 𝑎, 𝛽 : 𝑎𝑏 ⇒ 𝑎𝑏}, the
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diagram on the left below

𝛼

𝛽

𝑥 𝑥′

𝑤2 𝑤3

𝑤1 𝑤5

𝜇

𝑤4 𝑤7

𝜈

𝑤6

𝑦

can be encoded as the net (figured on the right) with

𝑁 = {𝜇, 𝜈} 𝑋− = {𝑥, 𝑥′} 𝑋+ = {𝑦} 𝑊 = {𝑤1, . . . , 𝑤7}

labels being

ℓ(𝜇) = 𝛼 ℓ(𝜈) = 𝛽 ℓ(𝑥) = 𝑎 ℓ(𝑥′) = 𝑏 ℓ(𝜇−𝑖 ) = 𝑎 ℓ(𝑤1) = 𝑎 . . .

and boundaries being

𝜕𝑤1 =
{
𝜇−0 , 𝜇

−
1
}

𝜕𝑤2 =
{
𝜇−2 , 𝑥

}
𝜕𝑤3 =

{
𝜈−1 , 𝑥

′} . . . 𝜕𝑤7 = ∅

As it can be observed for 𝑤7 above, wires with empty boundary encode “loops”.
Nets are considered up to isomorphism, i.e., renaming of ports, wires and

nodes, preserving labels. Two nets can be composed by linking wires along
inner boundary ports and removing those ports; two nets can also be tensored
by juxtaposition. We write Net𝑃 for the resulting monoidal category, with 𝑃∗1
as objects and nets as morphisms.

C.12.2 Proposition. The monoidal category Net𝑃 is the free self-dual compact
closed category on 𝑃, in the sense of §C.10.5.

Various other free constructions can be obtained by considering monoidal
subcategories obtained by restricting the notion of net.

C.12.3 Traced categories. The free traced category on 𝑃, see [210], can be
obtained by forbidding wires to link two input ports, or two output ports. More
formally, we restrict the category Net𝑃 to nets such that for every wire 𝑤 ∈ 𝑊 ,
its boundary 𝜕𝑤 is either empty or of the form 𝜕𝑤 = {𝑥, 𝑦} with

(𝑥, 𝑦) ∈ (
𝑋− × 𝑋−◦

) ∪ (
𝑋+◦ × 𝑋−◦

) ∪ (
𝑋+◦ × 𝑋+

)
see [175] for details.
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C.12.4 Free symmetric monoidal categories. Given a net, we define a rela-
tion ≺ on nodes as the smallest transitive relation such that 𝜇 ≺ 𝜈 whenever
there exists a wire 𝑤 such that 𝜕𝑤 =

{
𝜇+𝑗 , 𝜈

−
𝑖

}
for some indices 𝑖 and 𝑗 , i.e.,

some output port of 𝜇 is linked to some input port of 𝜈. The free symmetric
monoidal category on 𝑃 can obtained by considering the subcategory of Net𝑃
whose morphisms are nets such that the relation ≺ is acyclic, the condition of
§C.12.3 is satisfied, and 𝜕𝑤 ≠ ∅ for every wire 𝑤 ∈ 𝑊 .

C.12.5 Interaction nets. The morphisms in Net𝑃 are called interaction nets
whenever all the generators in 𝑃2 are of the form 𝛼 : 𝑎1 . . . 𝑎𝑛 ⇒ 𝑏, i.e., their
target consists of only one generator. An interaction rule 𝐴 : 𝜙 ⇛ 𝜓 consists
of a pair of parallel nets 𝜙 : 𝑢 ⇒ 𝑣 and 𝜓 : 𝑢 ⇒ 𝑣 which are of the form

... ...
𝛼 𝛽

⇛

... ...
𝜓

(in particular, 𝑣 is always an identity). These were introduced by Lafont [232,
234] in order to provide a distributed model of computation, where there is no
global synchronization. Because of the shape of the rules, the corresponding
rewriting system is confluent (as a rewriting system on nets) since there is no
critical branching. The signature 𝑃 together with a set 𝑃3 of interaction rules
can be encoded as a 3-polygraph 𝑄 obtained from the free self-dual compact
closed symmetric monoidal category on 𝑃, as described in §C.10.5, by adding
the elements of 𝑃3 as 3-generators.

As a particular case, interaction combinators [234] are the following inter-
action nets. The sets of 0- and 1-generators are respectively 𝑃0 = {⋆} and
𝑃1 = {𝑎}. The 2-generators are

respectively called constructor (noted 𝛾), duplicator (noted 𝛿) and eraser
(noted 𝜀), and the interaction rules are

⇛ ⇛

⇛ ⇛ ⇛
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⇛

as well as symmetric ones. Lafont’s original notation was

⇛ ⇛ ⇛

⇛ ⇛ ⇛ .

which suggests that they can also be formalized without resorting to the compact
closure, at the cost of having to add two copies of each 2-generator (one going
upward and one going downward). Interaction nets are “universal” in the sense
that they can simulate any net [234, Theorem 1]. In particular, this implies that
they are Turing-complete.

C.13 Simplicial and cubical categories

Given a category C, we write Ĉ for the category of presheaves on this cat-
egory: the objects of Ĉ are functors Cop → Set and morphisms are natural
transformations.

C.13.1 Simplicial categories. In §C.2, we have already described presenta-
tions of monoidal categories, whose associated presheaf categories are widely
used in algebraic topology:

– for Δ+ presented in §C.2.3, Δ̂+ is the category of augmented simplicial sets,
– for Δ𝜂 presented in §C.2.1, Δ̂𝜂 is the category of augmented presimplicial

or semisimplicial sets,
– for F presented in §C.2.5, F̂ is the category of augmented symmetric simpli-

cial sets [148].

The non-augmented variants can be obtained by taking presheaves on the same
categories with the object 0 removed. For each of those, from their presentation
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as a monoidal category, we can deduce a presentation as a category by using the
method of §10.3.10, and thus obtain a algebraic description of the associated
presheaves.

For instance, from the presentation of the PRO Δ𝜂 given in §C.2.1, we can
deduce the following presentation of it as a category:〈

𝑛
��� 𝑑𝑛𝑖 : 𝑛→ 𝑛 + 1

��� 𝑑𝑛𝑗 𝑑𝑛+1𝑖 ⇒ 𝑑𝑛𝑖 𝑑
𝑛+1
𝑗+1

〉
0⩽𝑖⩽ 𝑗⩽𝑛

(see Example 10.3.11 for details). An augmented presimplicial set thus consists
of a family of sets (𝑋𝑛)𝑛∈N together with functions

𝜕𝑛𝑖 : 𝑋𝑛+1 → 𝑋𝑛

with 0 ⩽ 𝑖 ⩽ 𝑛, satisfying relations dual to those of the above presentation. The
description of non-augmented presimplicial sets is similar, excepting that we
constrain 𝑛 to be strictly positive (there is no 𝑋0 nor 𝜕0

0 ). For those, an element
of 𝑋𝑛+1 can be interpreted geometrically as an 𝑛-simplex and the function 𝜕𝑛𝑖
as the function associating to an 𝑛-simplex its 𝑖-th face, obtained by removing
its 𝑖-th vertex; more generally, a simplicial set can be thought of as the result of
gluing simplices. For instance, the space

𝑥1 𝑥4

𝑥0 𝑥3 𝑥5

𝑥2

𝛼013
𝛼013

𝑓13
𝛽 𝛾

𝑓45𝑓01

𝑓02

𝑓03

𝑓34

𝑓35

𝛼123

𝛼023
𝑓23

can be described by the simplicial set 𝑋 with

𝑋1 = {𝑥0, 𝑥1, . . .} 𝑋2 = { 𝑓01, 𝑓02, . . .} 𝑋3 = {𝛼012, . . . , 𝛽, 𝛾} 𝑋4 = {𝐴}

and 𝑋𝑛 = ∅ for 𝑛 ⩾ 5, face maps being

𝜕2
0 (𝛽) = 𝑓45 𝜕2

1 (𝛽) = 𝑓35 𝜕2
2 (𝛽) = 𝑓34

and so on. A simplicial set 𝑋 is moreover equipped with functions

𝜎𝑛𝑖 : 𝑋𝑛 → 𝑋𝑛+1

with 0 ⩽ 𝑖 < 𝑛, sending an 𝑛-simplex to the corresponding 𝑛+1-simplex with
degenerated 𝑖-th face. For instance, given a 1-simplex 𝑥0 𝑓 // 𝑥1, its images
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under 𝜎3
0 and 𝜎3

1 are respectively

𝑥0

=
𝑓

!!
𝑥0

𝑓
// 𝑥1

𝑥1

=

𝑥0

𝑓 ==

𝑓
// 𝑥1.

Similarly, a symmetric augmented simplicial set 𝑋 is equipped with functions

𝛾𝑛𝑓 : 𝑋𝑛 → 𝑋𝑛

indexed by bĳections 𝑓 : [𝑛] → [𝑛] sending an 𝑛-simplex to the corresponding
𝑛-simplex with vertices renumbered according to 𝑓 .

C.13.2 Cubical categories. Developments similar to previous section can be
performed using cubes instead of simplices. The precubical category is the
PRO □𝜂 generated by

𝜂− : 0→ 1 and 𝜂+ : 1→ 0

respectively depicted as

− +

with no relation. As a category, □𝜂 can be presented by〈
𝑛
��� 𝑑−𝑛,𝑖 : 𝑛→ 𝑛 + 1, 𝑑+𝑛,𝑖 : 𝑛→ 𝑛 + 1

��� 𝑑 𝜖𝑛, 𝑗𝑑 𝜖 ′𝑛+1,𝑖 = 𝑑 𝜖 ′𝑛,𝑖𝑑 𝜖𝑛+1, 𝑗+1 〉
0⩽𝑖⩽ 𝑗<𝑛

with 𝜖, 𝜖 ′ ∈ {−, +}. A presheaf 𝑋 on this category is called a precubical set:
it consists of a family of sets (𝑋𝑛)𝑛∈N, whose elements can be interpreted as
𝑛-dimensional cubes, together with morphisms

𝜕 𝜖𝑖 : 𝑋𝑛+1 → 𝑋𝑛

with 0 ⩽ 𝑖 < 𝑛 and 𝜖 ∈ {−, +}, defined by

𝜕 𝜖𝑖 = 1𝑛−𝑖 ⊗ 𝜂𝜖 ⊗ 1𝑛−𝑖−1

and associating to each (𝑛+1)-cube its source (𝜖 = −) or target (𝜖 = +) face in
the 𝑖-th direction. For instance, the space

𝑥011 𝑥111 𝑥211

𝑥010 𝑥110

𝑥001 𝑥101 𝑥201

𝑥000 𝑥100

𝑓.11 𝑓.11

𝛾

𝛽

𝑓01.

𝑓.10

𝛼.1.

𝛼1..

𝑓11.𝑓0.1

𝑓.01

𝑓1.1

𝑓.01

𝑓2.1

𝑓0.0
𝑓00.

𝑓.00

𝛼..0

𝑓1.0

𝑓10.
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corresponds to the precubical set with

𝑋0 = {𝑥000, 𝑥001, . . .} 𝑋1 = { 𝑓.00, 𝑓.01, . . .} 𝑋2 = {𝛼..0, 𝛼..1, . . .} 𝑋3 = {𝐴}

and 𝑋𝑛 = ∅ for 𝑛 ⩾ 4. Face maps are given by

𝜕−0 (𝛽) = 𝑓1.1 𝜕+0 (𝛽) = 𝑓2.1 𝜕−1 (𝛽) = 𝑓·01 𝜕+1 (𝛽) = 𝑓·11

and so on.
Many variations on this category (and thus on associated presheaves) are

possible and considered in the literature, see [149] for a panorama which is
briefly recalled here. The cubical category □ is the PRO generated by

− +

subject to the relations

−
⇛

+
⇛ . (C.19)

A cubical set 𝑋 is a presheaf on this category and comes equipped with
morphisms

𝜎𝑛𝑖 : 𝑋𝑛 → 𝑋𝑛+1

with 0 ⩽ 𝑖 ⩽ 𝑛, called degeneracies, sending an 𝑛-cube to the corresponding
(𝑛+1)-cube degenerated in dimension 𝑖. For instance, the images under 𝜎0
and 𝜎1 of the 1-cube 𝑥 𝑓 // 𝑦 are respectively

𝑦
=

𝑦

𝑥

𝑓
OO

𝑥

𝑓
OO

𝑥
𝑓
//

=

𝑦

𝑥
𝑓
// 𝑦.

The symmetric cubical category □𝛾 is the free symmetric monoidal category
on the PRO □, it is generated by

− +

subject to the above relations (C.19) and those of symmetries (§C.1.3). A pre-
sheaf 𝑋 on it is called a symmetric cubical set and is equipped with morphisms

𝛾𝑛𝑓 : 𝑋𝑛 → 𝑋𝑛

indexed by bĳections 𝑓 : [𝑛] → [𝑛] sending an 𝑛-cube to the corresponding
𝑛-cube obtained by permuting the directions along 𝑓 . For instance the image



C.13 Simplicial and cubical categories 589

of the 2-cube on the left along the transposition [2] → [2] is the 2-cube on the
right:

𝑥01
𝑓.1 // 𝑥11

𝑥00

𝑓0.
OO

𝑓.0
// 𝑥10

⇒ 𝑓1.
OO

𝑥10
𝑓1. // 𝑥11

𝑥00

𝑓.0
OO

𝑓0.
// 𝑥01.

⇒ 𝑓.1
OO

(C.20)

By definition, the cartesian cubical category □× is the free cartesian category
on the PROP □𝛾: it is generated by

− +

subject to the relations given in §C.2.10, which include (C.19). Note that this
is the Lawvere theory for sets which are bipointed (i.e., equipped with two
distinguished elements). A presheaf 𝑋 on this category is a symmetric cubical
set equipped with morphisms

𝛿𝑛𝑖 : 𝑋𝑛+1 → 𝑋𝑛

with 0 ⩽ 𝑖 < 𝑛, which to an (𝑛+1)-cube associate a diagonal 𝑛-cube (in
directions 𝑖 and 𝑖 + 1). For instance, the image under 𝛿1

0 of the 2-cube on the
left is a one cube as on the right

𝑦1 // 𝑧.

𝑥

OO

// 𝑦0

⇒
OO

𝑧

𝑥

??

The cubical category with connections □𝜅 is the PRO generated by

− + − +

subject to relations (C.19), as well as

𝜖

𝜖
⇛

𝜖

𝜖

𝜂

𝜖
⇛

𝜂

𝜖
⇛

𝜖
⇛

𝜂

𝜖
⇛

𝜂

𝜂

𝜖
⇛

𝜂

for 𝜂, 𝜖 ∈ {−, +}with 𝜂 ≠ 𝜖 . A presheaf 𝑋 on this category is a cubical category
with connections and is equipped with morphisms

𝜅 𝜖𝑖 : 𝑋𝑛 → 𝑋𝑛+1

called connections which produce degenerated cubes, but in an other way than
degeneracies. For instance, the images under 𝜅−0 and 𝜅+0 of the 1-cube 𝑥 𝑓 // 𝑦
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are shown on the left and those of the 2-cube (e.g. left of (C.20)) are shown on
the right (omitting 2-cells for clarity):

𝑦 𝑦

𝑥

𝑓
OO

𝑓
// 𝑦

𝑦
𝑓
// 𝑦

𝑥 𝑦

𝑓
OO

A symmetric variant can be obtained by taking the free symmetric monoidal
category (in practice, one moreover asks both monoid structures to be commu-
tative). The cubical category with reversions □𝜌 is the PRO generated by

− +

satisfying the relations of □𝜅 together with

⇛ ⇛ ⇛
−
⇛

+

−
⇛

+
.

A presheaf 𝑋 on this category is equipped with morphisms

𝜌𝑛𝑖 : 𝑋𝑛 → 𝑋𝑛

reversing cubes in the 𝑖-th direction. There is also a cartesian variant [91], where
one usually requires axioms corresponding to the Lawvere theory of de Morgan
algebras, i.e., bounded distributive lattices with an idempotent negation.

C.14 Quantum processes

Let us briefly mention that presentations of PROPs are intensively used nowa-
days in the study of quantum processes, see [90] for an in-depth introduction.
One of the most notable axiomatic approach is the ZX-calculus [89], aiming
at modeling operations on qubits, which is a presented PROP together with a
canonical interpretation in the category FdHilb of finite-dimensional Hilbert
spaces and linear maps, which is a PROP when equipped with the usual tensor
product of vector spaces. The ZX-calculus is generated by

...
𝛼𝑚
𝑛
...

...
𝛽𝑚𝑛
...

where 𝛼𝑚𝑛 (resp. 𝛽𝑚𝑛 ) have 𝑚 inputs and 𝑛 outputs, such that various axioms
are satisfied, among which the fact that the first generator induces a symmetry
and the second and the third a self-duality. The generating object of this PROP
is interpreted as C2. Using the traditional notation, we write |0⟩, |1⟩ for the



C.14 Quantum processes 591

standard basis (also called the 𝑍-basis) of C2 and |−⟩, |+⟩ for the Bell basis
(also called the 𝑋-basis) defined by |−⟩ = 1√

2
( |0⟩− |1⟩) and |+⟩ = 1√

2
( |0⟩ + |1⟩).

We also write ⟨0| for the adjoint of |0⟩, etc. The interpretation of the generators
is then given by

r z
= |0⟩⊗2 + |1⟩⊗2

r z
= ⟨0|⊗2 + ⟨1|⊗2

s
...
𝛼𝑚
𝑛
...

{
= |0⟩⊗𝑛⟨0|⊗𝑚 + ei𝛼 |1⟩⊗𝑛⟨1|⊗𝑚

s
...
𝛽𝑚𝑛
...

{
= |+⟩⊗𝑛⟨+|⊗𝑚 + ei𝛼 |−⟩⊗𝑛⟨−|⊗𝑚

r z
= |0⟩⟨+| + |1⟩⟨−|

The original axiomatization is not complete in general [104], meaning that the
resulting functor to FdHilb is not faithful. However, the rules can be completed
so that it is the case [291]: the proof is based on an alternative complete
axiomatization called the ZW-calculus [167].



Appendix D
A syntactic description of free 𝑛-categories

In this chapter, we provide an explicit description of the free 𝑛-category 𝑃∗
generated by an 𝑛-polygraph 𝑃. Variants of this construction can be found
in [296, Deuxième partie], [264, Section 7] and [279, Section 4.1], but this
section is mostly inspired of the work of Makkai [264], where the proofs of
most assertions can be found, formulated in a slightly different language, see
also [134, Section 2].

We first provide, in §D.1, a formal definition of the syntax of 𝑛-categories,
i.e., a description of the morphisms in an (𝑛+1)-category freely generated by an
𝑛-polygraph, allowing reasoning by induction on its terms to prove results on
free categories. It turns out that this syntax for 𝑛-categories, which corresponds
to the one introduced in Chapter 14 and used throughout the book, is very
“redundant”, in the sense that there are many ways to express a composite of
cells which will give rise to the same result, and is sometimes not very practical
for this reason. In §D.2, we provide an alternative syntax, which suffers less
from these problems, by restricting compositions. Finally, in §D.3, we briefly
mention the word problem for free 𝑛-categories.

D.1 A syntax for 𝑛-categories

D.1.1 A syntax for free 𝑛-categories. Suppose fixed an 𝑛-polygraph 𝑃. We
define two sets of terms, as the smallest sets closed under certain operations.

– An expression is

𝑥 or 1 𝑓 or 𝑓 ∗−𝑖 𝑔

where 𝑥 is an element of
⊔

0⩽𝑖⩽𝑛 𝑃𝑛, 𝑓 and 𝑔 are expressions and 𝑖 is a

592
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natural number (which can be supposed to satisfy 0 < 𝑖 ⩽ 𝑛 without loss of
generality).

– A type is either

⋆ or 𝑓 −→
𝑇
𝑔

for some type 𝑇 and expressions 𝑓 and 𝑔.

The expressions should be thought of as formal composites of generators;
in particular, 𝑓 ∗−𝑖 𝑔 corresponds to two formal 𝑛-cells 𝑓 and 𝑔 composed in
dimension 𝑛 − 𝑖 (thus the minus sign in the index) and types represent either
the set of objects (⋆) or a particular hom-set.

D.1.2 Type-theoretic syntax. A judgment is an expression of one of the fol-
lowing forms, with the following meanings:

– well-formed type:

⊢ 𝑇
for some type 𝑇 ,

– well-typed term:

⊢ 𝑓 : 𝑇

for some term 𝑓 and type 𝑇 ,
– equivalent types:

⊢ 𝑇 ≃ 𝑈
for some types 𝑇 and𝑈,

– equivalent terms:

⊢ 𝑓 ≃ 𝑔 : 𝑇

for some terms 𝑓 and 𝑔 and type 𝑇 .

An inference rule is of the form

⊢ Γ1 . . . ⊢ Γ𝑛
⊢ Γ

where ⊢ Γ𝑖 and ⊢ Γ are judgments respectively called the premises and the
conclusion of the inference rule. A judgment is derivable when it is the conclu-
sion of an inference rule whose premises are all derivable. An expression 𝑓 is
derivable, when the judgment ⊢ 𝑓 : 𝑇 is derivable for some type 𝑇 , two terms
𝑓 and 𝑔 are equivalent if ⊢ 𝑓 ≃ 𝑔 : 𝑇 is derivable for some type 𝑇 , and two
types 𝑇 and𝑈 are equivalent when ⊢ 𝑇 ≃ 𝑈 is derivable.
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We are going to describe a typing system CAT𝑃 , i.e., a set of inference rules,
on the above expressions and types. The notation CAT𝑃 suggests that it depends
on 𝑃: as we have seen, the expressions and types depend on 𝑃, but the rules
will be uniform. This will allow us to define an 𝑛-category 𝐶𝑃 , where 𝐶𝑃𝑖 is
the set of derivable expressions of dimension 𝑖 (defined below), compositions
are given by ∗− 𝑗 and identities by 1. The main property that this construction
satisfies is the following one.

D.1.3 Theorem. The 𝑛-category 𝐶𝑃 is isomorphic to 𝑃∗.

The result will be proved by induction on 𝑛: we thus suppose that the property
is satisfied for strictly smaller values of 𝑛. In particular, given a cell 𝑓 ∈ 𝑃∗𝑖 for
0 ⩽ 𝑖 < 𝑛, up to isomorphism, we can suppose that 𝑃∗𝑖 = 𝐶

𝑃⩽𝑖
𝑖 , and thus that 𝑓

is the equivalence class of an expression in CAT𝑃⩽𝑖 . Clearly, a term in CAT𝑃⩽𝑖
is a term in CAT𝑃 , a valid derivation of CAT𝑃⩽𝑖 is a valid derivation of CAT𝑃

and finally the equivalence relation in CAT𝑃⩽𝑖 coincides with the one of CAT𝑃

(by Lemma D.1.10). In particular, given a cell 𝑥 ∈ 𝑃𝑖+1, we abusively write 𝑠𝑖𝑥
and 𝑡𝑖𝑥 for an expression representing the source and target of 𝑥 in 𝑃∗𝑖 . This
convention allows us to associate a type 𝑇𝑥 to each generator 𝑥 ∈ 𝑃𝑖 by

𝑇𝑥 =




⋆ if 𝑖 = 0,
𝑠𝑖−1𝑥 −−−−−→

𝑇𝑠𝑖−1𝑥
𝑡𝑖−1𝑥 otherwise.

D.1.4 Inference rules. Our typing system consists of the following inference
rules:

– rules for types:

⊢ ⋆

⊢ 𝑓 : 𝑇 ⊢ 𝑔 : 𝑇

⊢ 𝑓 −→
𝑇
𝑔

– rules for terms:
⊢ 𝑓 : 𝑇 ⊢ 𝑇 ≃ 𝑇 ′

⊢ 𝑓 : 𝑇 ′

⊢ 𝑥 : 𝑇𝑥
for 𝑥 ∈

⊔
𝑖

𝑃𝑖

⊢ 𝑓 : 𝑇

⊢ 1 𝑓 : 𝑓 −→
𝑇
𝑓

⊢ 𝑓 : 𝑔 −→
𝑇
𝑔′ ⊢ 𝑓 ′ : 𝑔′ −→

𝑇
𝑔′′

⊢ 𝑓 ∗−1 𝑓
′ : 𝑔 −→

𝑇
𝑔′′
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⊢ 𝑓 : 𝑔 −→
𝑇
𝑔′ ⊢ 𝑓 ′ : ℎ −−→

𝑇 ′
ℎ′ ⊢ 𝑔 ∗−𝑖 ℎ : 𝑈 ⊢ 𝑔′ ∗−𝑖 ℎ′ : 𝑈

⊢ 𝑓 ∗−(𝑖+1) 𝑓 ′ : 𝑔 ∗−𝑖 ℎ −→
𝑈
𝑔′ ∗−𝑖 ℎ′

– equivalence on types:

⊢ 𝑓 ≃ 𝑓 ′ : 𝑇 ⊢ 𝑔 ≃ 𝑔′ : 𝑇 ⊢ 𝑇 ≃ 𝑇 ′

⊢ ( 𝑓 −→
𝑇
𝑔) ≃ ( 𝑓 ′ −−→

𝑇 ′
𝑔′)

– equivalence on terms:

⊢ 𝑓 : 𝑇

⊢ 𝑓 ≃ 𝑓 : 𝑇

⊢ 𝑓 ≃ 𝑔 : 𝑇

⊢ 𝑔 ≃ 𝑓 : 𝑇

⊢ 𝑓 ≃ 𝑔 : 𝑇 ⊢ 𝑔 ≃ ℎ : 𝑇

⊢ 𝑓 ≃ ℎ : 𝑇

⊢ 𝑓 ≃ 𝑓 ′ : 𝑇

⊢ 1 𝑓 ≃ 1 𝑓 ′ : 𝑓 −→
𝑇
𝑓

⊢ 𝑓 ≃ 𝑓 ′ : 𝑇 ⊢ 𝑔 ≃ 𝑔′ : 𝑈 ⊢ 𝑓 ∗−𝑖 𝑔 : 𝑉

⊢ ( 𝑓 ∗−𝑖 𝑔) ≃ ( 𝑓 ′ ∗−𝑖 𝑔′) : 𝑉

⊢ 1𝑔 ∗−𝑖 𝑓 : 𝑇

⊢ (1𝑔 ∗−𝑖 𝑓 ) ≃ 𝑓 : 𝑇

⊢ 𝑓 ∗−𝑖 1𝑔 : 𝑇

⊢ ( 𝑓 ∗−𝑖 1𝑔) ≃ 𝑓 : 𝑇

⊢ ( 𝑓 ∗−𝑖 𝑔) ∗−𝑖 ℎ : 𝑇

⊢ ( 𝑓 ∗−𝑖 𝑔) ∗−𝑖 ℎ ≃ 𝑓 ∗−𝑖 (𝑔 ∗−𝑖 ℎ) : 𝑇

⊢ 1 𝑓 ∗−𝑖𝑔 : 𝑇

⊢ 1 𝑓 ∗−𝑖𝑔 ≃ 1 𝑓 ∗−(𝑖+1) 1𝑔 : 𝑇

⊢ ( 𝑓 ∗− 𝑗 𝑓 ′) ∗−𝑖 (𝑔 ∗− 𝑗 𝑔′) : 𝑇

⊢ ( 𝑓 ∗− 𝑗 𝑓 ′) ∗−𝑖 (𝑔 ∗− 𝑗 𝑔′) ≃ ( 𝑓 ∗−𝑖 𝑔) ∗− 𝑗 ( 𝑓 ′ ∗−𝑖 𝑔′) : 𝑇
for 𝑖 < 𝑗

D.1.5 Remark. Note that, in the last rule, the side condition 𝑖 < 𝑗 is important.
For instance, consider the 2-polygraph corresponding to the following diagram:

𝑥

𝑎

!!𝛼⇓
𝑏 // 𝑦

𝑒

==
𝛽⇓

𝑐 // 𝑧 𝑑 // 𝑤

The expression on the left is derivable, but the one on the right is not:

(𝛼 ∗−1 1𝑑) ∗−2 (1𝑏 ∗−1 𝛽) (𝛼 ∗−2 1𝑏) ∗−1 (1𝑑 ∗−2 𝛽).
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D.1.6 Admissible rules. A rule is admissible in the system when, whenever
the premises are derivable, the conclusion is also derivable (with the above
rules).

D.1.7 Lemma. The following rules are admissible

⊢ 𝑓 ≃ 𝑔 : 𝑇

⊢ 𝑓 : 𝑇

⊢ 𝑓 : 𝑇 ⊢ 𝑓 : 𝑈

⊢ 𝑇 ≃ 𝑈
⊢ 𝑓 : 𝑇 ⊢ 𝑇 ≃ 𝑈

⊢ 𝑓 : 𝑈

In particular, the type of an expression is uniquely defined up to ≃, and two
equivalent expressions have equivalent types.

This ensures that we can meaningfully consider terms and types up to equiva-
lence, and moreover, by definition of the equivalence, we have:

D.1.8 Lemma. The relation ≃ is a congruence on expressions.

D.1.9 Dimension of cells. The dimension dim(𝑇) of a type 𝑇 is the natural
number defined by

dim(⋆) = 0 dim( 𝑓 −→
𝑇
𝑔) = dim(𝑇) + 1

and the dimension of a derivable expression 𝑓 is the dimension of 𝑇 for some
derivable judgment ⊢ 𝑓 : 𝑇 . It is easily shown that two equivalent types have the
same dimension and, since by Lemma D.1.7 two equivalent expressions have
equivalent types, two equivalent expressions have the same dimension, i.e., the
dimension is well-defined on equivalence classes. A derivable expression of
dimension 𝑘 is sometimes called a 𝑘-expression.

D.1.10 Lemma. Any derivable expression involving a generator 𝑥 ∈ 𝑃𝑖 has
dimension at least 𝑖.

D.1.11 Construction of the free 𝑛-category. We define the category 𝐶𝑃 as
the category such that𝐶𝑃𝑖 , for 0 ⩽ 𝑖 ⩽ 𝑛, is the set of equivalence classes under
≃ of derivable expressions of dimension 𝑖, composition of two 𝑖-cells 𝑓 and 𝑔
is defined by 𝑓 ∗𝑖 𝑔 = 𝑓 ∗−(𝑛−𝑖) 𝑔 and the identity on 𝑓 is 1 𝑓 .

D.1.12 Lemma. The 𝑛-category 𝐶𝑃 is well-defined.

D.1.13 Theorem. The 𝑛-category 𝐶𝑃 is isomorphic to 𝑃∗.

D.2 Alternative syntax for 𝑛-categories

D.2.1 Composition in maximal codimension. In an 𝑛-category 𝐶, an 𝑖-cell
𝑥 is 𝑘-composable with a 𝑗-cell 𝑦, with 0 ⩽ 𝑘 < 𝑖 ∧ 𝑗 , whenever 𝑡𝑘𝑥 = 𝑠𝑘𝑦.
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In this case, we can extend the composition operation to cells which do not
necessarily have the same dimension, and define their 𝑘-composite as

𝑥 ∗𝑘 𝑦 = 1𝑖∨ 𝑗 (𝑥) ∗𝑘 1𝑖∨ 𝑗 (𝑦)

which is a (𝑖 ∨ 𝑗)-cell. It is moreover useful to adopt the following convention.
We write 𝑥 ∗ 𝑦 to mean that we compose 𝑥 and 𝑦 in the maximal possible
dimension:

𝑥 ∗ 𝑦 = 𝑥 ∗(𝑖∧ 𝑗 )−1 𝑦.

We say that 𝑥 and 𝑦 are composable, when this composite is defined, i.e.,

𝑡 (𝑖∧ 𝑗 )−1𝑥 = 𝑠 (𝑖∧ 𝑗 )−1𝑦.

Perhaps surprisingly, all the compositions can be recovered from those compo-
sitions in maximal codimension:

D.2.2 Lemma. Given cells 𝑥 and 𝑦 of respective dimensions 𝑖 and 𝑗 , and
0 ⩽ 𝑘 < 𝑖 ∨ 𝑗 − 1, we have

𝑥 ∗𝑘 𝑦 = (𝑥 ∗ 𝑠𝑘+1𝑦) ∗𝑘+1 (𝑡𝑘+1𝑥 ∗ 𝑦)
= (𝑠𝑘+1𝑥 ∗ 𝑦) ∗𝑘+1 (𝑥 ∗ 𝑡𝑘+1𝑦)

which allows to compute any composition by recurrence on 𝑘 .

Proof. We have

𝑥 ∗𝑘 𝑦 = (𝑥 ∗𝑘+1 1𝑡𝑘+1𝑥) ∗𝑘 (1𝑠𝑘+1𝑦 ∗𝑘+1 𝑦) identity is neutral
= (𝑥 ∗𝑘 𝑠𝑘+1𝑦) ∗𝑘+1 (𝑡𝑘+1𝑥 ∗𝑘 𝑦) exchange law
= (𝑥 ∗ 𝑠𝑘+1𝑦) ∗𝑘+1 (𝑡𝑘+1𝑥 ∗ 𝑦) definition of ∗

and similarly for the second equality. □

In fact, the whole structure of 𝑛-category can be axiomatized using this oper-
ation [264, Section 8], as follows. Given an (𝑖+1)-cell 𝑥, we write 𝑠𝑥 and 𝑡𝑥
instead of 𝑠𝑖𝑥 and 𝑡𝑖𝑥 respectively.

D.2.3 Proposition. Given 𝑛 ∈ N ∪ {𝜔}, an 𝑛-category 𝐶 consists of an 𝑛-
globular set equipped with composition and identity partial operations as fol-
lows. Two cells 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶 𝑗 , with 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛 are said to be composable
when

𝑡 (𝑖∧ 𝑗 )−1 (𝑥) = 𝑠 (𝑖∧ 𝑗 )−1 (𝑦).

The operations are
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– compositions: for every composable cells 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶 𝑗 , there is an
(𝑖 ∨ 𝑗)-cell

𝑥 ∗ 𝑦

– identities: for every 𝑥 ∈ 𝐶𝑖 , with 0 ⩽ 𝑖 < 𝑛, there is an (𝑖+1)-cell

1𝑥

and should satisfy

– sources and targets of compositions: for every composable cells 𝑥 ∈ 𝐶𝑖 and
𝑦 ∈ 𝐶 𝑗 , with 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛,

𝑠 (𝑥 ∗ 𝑦) =


𝑠𝑥 ∗ 𝑦 if 𝑖 > 𝑗 ,
𝑠𝑥 if 𝑖 = 𝑗 ,
𝑥 ∗ 𝑠𝑦 if 𝑖 < 𝑗 ,

𝑡 (𝑥 ∗ 𝑦) =


𝑡𝑥 ∗ 𝑦 if 𝑖 > 𝑗 ,
𝑡 𝑦 if 𝑖 = 𝑗 ,
𝑥 ∗ 𝑡 𝑦 if 𝑖 < 𝑗 ,

– sources and targets of identities: for every 𝑥 ∈ 𝐶𝑖 , with 0 ⩽ 𝑖 < 𝑛,

𝑠 (1𝑥) = 𝑥 = 𝑡 (1𝑥)

– associativity: for every 𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶 𝑗 and 𝑧 ∈ 𝐶𝑘 with 𝑥 and 𝑦 compatible,
𝑦 and 𝑧 compatible, and either 𝑖 = 𝑗 ⩽ 𝑘 or 𝑖 = 𝑘 ⩽ 𝑗 or 𝑗 = 𝑘 ⩽ 𝑖,

(𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧)

– distributivity: for every 𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶 𝑗 and 𝑧 ∈ 𝐶𝑘
𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)

if 𝑖 < 𝑗 and 𝑖 < 𝑘 , and (𝑦, 𝑧), (𝑥, 𝑦) and (𝑥, 𝑧) are compatible, and

(𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧)
if 𝑖 > 𝑘 and 𝑗 > 𝑘 , and (𝑥, 𝑦), (𝑥, 𝑧) and (𝑦, 𝑧) are compatible.

– unitality: for every 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶 𝑗 with 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛,

1𝑥 ∗ 𝑦 =
{
𝑦 if 𝑖 + 1 ⩽ 𝑗 ,
1𝑥∗𝑦 if 𝑖 + 1 > 𝑗 ,

𝑥 ∗ 1𝑦 =

{
𝑥 if 𝑖 ⩾ 𝑗 + 1,
1𝑥∗𝑦 if 𝑖 < 𝑗 + 1,

whenever 1𝑥 and 𝑦 (resp. 𝑥 and 1𝑦) are composable and 𝑖 < 𝑛 (resp. 𝑗 < 𝑛),
– commutativity: for every 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶 𝑗 , with 𝑡𝑘−1𝑥 = 𝑠𝑘−1𝑦, where
𝑘 = (𝑖 ∧ 𝑗) − 1 is supposed to satisfy 𝑘 > 0,

(𝑥 ∗ 𝑠𝑘 (𝑦)) ∗ (𝑡𝑘 (𝑥) ∗ 𝑦) = (𝑠𝑘 (𝑥) ∗ 𝑦) ∗ (𝑥 ∗ 𝑡𝑘 (𝑦)).
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D.3 The word problem for free 𝑛-categories

D.3.1 The word problem. Given an 𝑛-polygraph 𝑃, the word problem for 𝑃
consists in finding an algorithmic answer to the following decision problem:

Given two derivable expressions 𝑓 and 𝑔, do we have 𝑓 ≃ 𝑔?

It was shown by Makkai [264, Section 10] that this problem is decidable.
We provide here the main arguments of his construction, after recalling the
required notions and tools.

D.3.2 Multisupport. Given two multisets 𝜇 and 𝜈 with common domain (see
§1.4.1), we write

– 𝜇 + 𝜈 for their pointwise sum (noted 𝜇 ⊔ 𝜈 in §1.4.1),
– 𝜇 − 𝜈 for their pointwise difference (we only use this operation in situations

where 𝜇(𝑥) ⩾ 𝜈(𝑥) for every element 𝑥 of the domain),
– 𝜇 ⩽ 𝜈 whenever 𝜇(𝑥) ⩽ 𝜈(𝑥) for every element 𝑥 of the domain.

The multisupport supp♯ ( 𝑓 ) of a derivable expression 𝑓 is the multiset
on

⊔
𝑖⩽𝑛 𝑃𝑖 consisting of all occurrences of generators in 𝑓 . Formally, supp♯ ( 𝑓 )

is defined by induction on 𝑓 as




{𝑥} if 𝑓 = 𝑥 is a generator of type ⋆,
{𝑥} + supp♯ (𝑔) + supp♯ (ℎ) if 𝑓 = 𝑥 is a generator of type 𝑓 −→

𝑇
𝑔,

supp♯ (𝑔) if 𝑓 = 1𝑔,
supp♯ (𝑔) − supp♯ (𝑡−𝑖 (𝑔)) + supp♯ (ℎ) if 𝑓 = 𝑔 ∗−𝑖 ℎ.

This definition is invariant under equivalence of expressions:

D.3.3 Lemma. Given two derivable expressions 𝑓 and 𝑔 such that 𝑓 ≃ 𝑔, we
have supp♯ ( 𝑓 ) = supp♯ (𝑔).

D.3.4 Composition in maximal codimension. We recall the convention in-
troduced in §D.2.1. Given two derivable expressions 𝑓 and 𝑔, not necessar-
ily of the same dimension, whose target and source coincide in dimension
𝑘 = (dim( 𝑓 ) ∧ dim(𝑔)) − 1, we write 𝑓 ∗ 𝑔 for their composite in dimension 𝑘 ,
i.e., in their maximal codimension. Formally, we suppose that

𝑡−(dim( 𝑓 )−𝑘 ) ( 𝑓 ) = 𝑠−(dim(𝑔)−𝑘 ) (𝑔)

and define

𝑓 ∗ 𝑔 = 1𝑙−dim( 𝑓 )
𝑓 ∗−(𝑙−𝑘 ) 1𝑙−dim(𝑔)

𝑔
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which is a derivable expression of dimension 𝑙 = dim( 𝑓 ) ∨ dim(𝑔). By con-
vention, 10

𝑓 = 𝑓 and 1𝑖+1𝑓 = 11𝑖
𝑓
, and similarly for 𝑔.

D.3.5 Atoms and molecules. We mutually define notions of atom and mole-
cule by recurrence on the dimension 𝑘 as follows. Given 𝑘 ⩽ 𝑛,

– an atom of dimension 𝑘 is a derivable expression of the form

𝑓𝑘−1 ∗ ( 𝑓𝑘−2 ∗ (. . . ( 𝑓1 ∗ 𝑥 ∗ 𝑔1) . . .) ∗ 𝑔𝑘−2) ∗ 𝑔𝑘−1 (D.1)

where 𝑥 is a generator of dimension 𝑘 (the nucleus of the atom) and each 𝑓𝑖
and 𝑔𝑖 is a molecule of dimension 𝑖,

– a molecule of dimension 𝑘 is a derivable expression of the form

𝑓1 ∗ . . . ∗ 𝑓𝑝
where each 𝑓𝑖 is an atom of dimension 𝑘 (by convention, the composition is
bracketed on the right and, in the case 𝑝 = 0, it should be an expression of
the form 1 𝑓 with 𝑓 an expression of dimension 𝑘 − 1).

In the following, we sometimes say 𝑘-atom (resp. 𝑘-molecule) for an atom (resp.
molecule) of dimension 𝑘 . Clearly, every 𝑘-atom is a particular 𝑘-molecule.
Note that the notion of atom corresponds to the one of rewriting step (§16.7.1)
and the notion of molecule to the one of rewriting path (§16.7.2)

Molecules provide canonical representatives of derivable expressions up
to equivalence, in the sense that each equivalence class contains at least a
molecule, see [264, Proposition 8.(12)] and Proposition 16.7.3:

D.3.6 Proposition. Every 𝑘-expression is equivalent to a 𝑘-molecule.

D.3.7 Example. In the polygraph 𝑃 corresponding to the diagram

𝑥
𝑎
((

𝑎′
66𝛼⇓ 𝑦

𝑏
''

𝑏′
77𝛽⇓ 𝑧

the composite 𝛼 ∗−2 𝛽 is equivalent to the molecules

(1𝑥 ∗ 𝛼 ∗ 𝑏) ∗ (𝑎′ ∗ 𝛽 ∗ 1𝑧) and (𝑎 ∗ 𝛽 ∗ 1𝑧) ∗ (1𝑥 ∗ 𝛼 ∗ 𝑏′).

D.3.8 Equivalence of molecules. Two molecules are equivalent when one can
be obtained from the other by applying the exchange relation on adjacent atoms.
Formally, we define an equivalence relation ∼ on 𝑘-molecules, as the smallest
equivalence relation such that,
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1. for every molecules 𝑓 and ℎ, and atoms 𝑔 and 𝑔′, we have

𝑔 ≃ 𝑔′ implies 𝑓 ∗ 𝑔 ∗ ℎ ∼ 𝑓 ∗ 𝑔′ ∗ ℎ

whenever all composites are defined,
2. for every 𝑘-atoms 𝑓 : 𝑓 ′ −→

𝑇
𝑓 ′′ and 𝑔 : 𝑔′ −→

𝑈
𝑔′′, for every 𝑘-atoms

𝑓1, 𝑔1, 𝑓2, 𝑔2 such that

𝑓1 = 𝑓 ∗ 𝑔′ 𝑔1 = 𝑓 ′′ ∗ 𝑔 𝑓2 = 𝑓 ∗ 𝑔′′ 𝑔2 = 𝑓 ′ ∗ 𝑔 (D.2)

and for every 𝑘-molecules ℎ and ℎ′, we have

ℎ ∗ 𝑓1 ∗ 𝑔1 ∗ ℎ′ ∼ ℎ ∗ 𝑔2 ∗ 𝑓2 ∗ ℎ′.

Graphically,

��

ℎ⇓

HH

ℎ′⇓

𝑓 ′

��
𝑓 ⇓
𝑓 ′′ // 𝑔′ //

𝑔′′

GG
𝑔⇓

∼ ��

ℎ⇓

HH

ℎ′⇓

𝑓 ′ //
𝑓 ⇓
𝑓 ′′

GG

𝑔′

��𝑔′′ //
𝑔⇓

It is shown, in [264, Section 9]:

D.3.9 Proposition. Given two 𝑘-molecules 𝑓 and 𝑔, we have 𝑓 ≃ 𝑔 if and only
if 𝑓 ∼ 𝑔.

D.3.10 Contexts. Given 𝑘 > 0 and two molecules ℎ and ℎ′ with common
type 𝑇 , with dim(ℎ) = dim(ℎ′) = 𝑘 − 1, a context of type ℎ −→

𝑇
ℎ′ is a

𝑘-expression in which a formal variable of type ℎ −→
𝑇
ℎ′ occurs exactly once.

Formally, we consider the polygraph 𝑃′ obtained from 𝑃, by adding a new
generator 𝑥, i.e., 𝑃′𝑘 = 𝑃𝑘 ⊔

{
𝑥 : ℎ→ ℎ′

}
and 𝑃′𝑖 = 𝑃𝑖 for 𝑖 ≠ 𝑘 . A context 𝑐 is

then a derivable expression in CAT𝑃′ such that supp♯ (𝑐) (𝑥) = 1. The notion of
context corresponds to the one already introduced in Section 16.5.

To every (𝑘+1)-atom 𝑓 of the form (D.1), with top dimensional generator
𝑥 : ℎ −→

𝑇
ℎ′ of dimension 𝑘 + 1, one can associate the 𝑘-context

𝑓𝑘−1 ∗ ( 𝑓𝑘−2 ∗ (. . . ( 𝑓1 ∗ 𝑥 ∗ 𝑔1) . . .) ∗ 𝑔𝑘−2) ∗ 𝑔𝑘−1

where 𝑥 is a formal variable of dimension 𝑘 and of type 𝑇 . We then say that 𝑓
can be obtained by substituting the variable 𝑥 by the generator 𝑥 in 𝑐, what we
write 𝑓 = 𝑐[𝑥].
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D.3.11 Example. Consider a 3-atom 𝑓2 ∗ ( 𝑓1 ∗ 𝑥 ∗ 𝑔1) ∗ 𝑔2:

𝑥
%%

𝑓2⇓

99

𝑔2⇓

𝑓1 // 𝑦
%%

ℎ⇓ 𝑥
⇛⇓ℎ′ 99 𝑧 𝑔1 // 𝑤

The associated context is 𝑓2 ∗ ( 𝑓1 ∗ 𝑥 ∗ 𝑔1) ∗ 𝑔2:

𝑥
%%

𝑓2⇓

99

𝑔2⇓

𝑓1 // 𝑦
%%

𝑥⇓ 99 𝑧 𝑔1 // 𝑤

Equality on atoms can be characterized in the expected way, see [264, Sec-
tion 10.(6)]:

D.3.12 Proposition. Given two (𝑘+1)-atoms 𝑓 = 𝑐[𝑥] and 𝑔 = 𝑑 [𝑦], we have
𝑓 ≃ 𝑔 if and only if 𝑥 = 𝑦 and 𝑐 ≃ 𝑑.

D.3.13 Finiteness of equivalence classes. The main argument in order to
show that the word problem is decidable is the observation that there is only
a finite number of molecules with given generators of given multiplicities,
see [264, Lemma 10.(10)]:

D.3.14 Proposition. Suppose given a multiset 𝜇 on
⊔
𝑖⩽𝑛 𝑃𝑖 . There is a finite

number of molecules 𝑓 such that supp♯ ( 𝑓 ) ⩽ 𝜇.

D.3.15 Decidability results. As expected, the proof of decidability of the
word problem is performed by recurrence on the dimension 𝑘 of the two cells
𝑓 and 𝑔 we aim at comparing. The base case is immediate, so that we focus on
the inductive case. By Proposition D.3.6, whose proof is constructive, we can
suppose that 𝑓 and 𝑔 are 𝑘-molecules. In Proposition D.3.9, we have reduced
the equivalence of the molecules 𝑓 to the existence of a sequence of molecules

𝑓 = 𝑓1 ∼ 𝑓2 ∼ . . . ∼ 𝑓𝑝 = 𝑔 (D.3)

such that 𝑓𝑖+1 can be obtained from 𝑓𝑖 by exchanging adjacent atoms, which can
be tested using equivalence of 𝑘-atoms for some decompositions. Moreover,
in Proposition D.3.12, we have reduced the equivalence of two 𝑘-atoms to the
equivalence of (𝑘−1)-molecules (the associated contexts). In order to show our
decidability result, it is therefore enough to show that
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– the decompositions (D.2) in order to identify the possible exchange relations
can be found in a finite search space,

– the sequence of molecules (D.3) can be found in a finite search space.

Both properties follow from the facts that the multisupport is preserved under
equivalence (Lemma D.3.3) and there is only a finite number of molecules with
given multisupport (Proposition D.3.14).

D.3.16 Theorem. The word problem for polygraphs is decidable.

As a consequence, it can be shown that

D.3.17 Theorem. Whether an expression is derivable or not is decidable.

An actual implementation was performed by Forest [134, 133].



Appendix E
Complexes and homology

In this chapter, we recall basic notions on modules, abelian resolutions and
homology. We refer the reader to [260, 317, 241] for a deeper presentation and
the proofs of the given results. Throughout the chapter, we fix a ring 𝑅, and we
denote by 1𝑅 the multiplicative identity in 𝑅.

E.1 Modules over a ring

E.1.1 Modules over a ring. A left-𝑅-module consists of an abelian group
(𝑉, +) together with a left scalar multiplication

· : 𝑅 ×𝑉 → 𝑉

satisfying for all 𝑟, 𝑠 ∈ 𝑅 and 𝑥, 𝑦 ∈ 𝑉 the following four relations:

𝑟 · (𝑥 + 𝑦) = 𝑟 · 𝑥 + 𝑟 · 𝑦, (𝑟𝑠) · 𝑥 = 𝑟 · (𝑠 · 𝑥),
(𝑟 + 𝑠) · 𝑥 = 𝑟 · 𝑥 + 𝑠 · 𝑥, 1𝑅 · 𝑥 = 𝑥.

In the following, we often write 𝑟𝑥 instead of 𝑟 · 𝑥. We will say 𝑅-module,
or module, for a left 𝑅-module. The notion of right 𝑅-module can be defined
similarly, based on a right action · : 𝐺 × 𝑅 → 𝐺, satisfying dual axioms. All
the notions presented in this appendix are defined in a similar fashion for right
𝑅-modules since every right 𝑅-module is a left 𝑅op-module, where 𝑅op is the
opposite ring.

E.1.2 If𝑉 and𝑊 are two left-𝑅-modules, a morphism of 𝑅-modules 𝑓 : 𝑉 → 𝑊

is a morphism of abelian groups satisfying, for any 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑉 ,

𝑓 (𝑟 · 𝑥) = 𝑟 · 𝑓 (𝑥).

604
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The left-𝑅-modules and their morphisms form a category denoted by Mod𝑅.
We denote by Mod𝑅 (𝑉,𝑊) the abelian group of morphisms from 𝑉 to𝑊 .

For a morphism 𝑓 : 𝑉 → 𝑊 , we will denote by

ker 𝑓 := {𝑥 ∈ 𝑉 | 𝑓 (𝑥) = 0} ,
the kernel of 𝑓 and by

im 𝑓 := {𝑦 ∈ 𝑊 | 𝑦 = 𝑓 (𝑥) for some 𝑥 in 𝑉} ,
the image of 𝑓 . We will denote by coker 𝑓 := 𝑊/im 𝑓 the cokernel of 𝑓 .

E.1.3 Exact sequences. A pair of composable morphisms of modules

𝑉 ′
𝑓
// 𝑉

𝑔
// 𝑉 ′′

is exact at 𝑉 if im 𝑓 = ker 𝑔. A sequence of morphisms of modules

· · · // 𝑉𝑛+1
𝑑𝑛+1 // 𝑉𝑛

𝑑𝑛 // 𝑉𝑛−1 // · · ·
is exact if each adjacent pair (𝑑𝑖+1, 𝑑𝑖) of morphisms is exact at 𝑉𝑖 .

E.1.4 Example. The sequences

0 // 𝑉
𝑓
// 𝑉 ′, 𝑉

𝑓
// 𝑉 ′ // 0 and 0 // 𝑉

𝑓
// 𝑉 ′ // 0

are exact if and only if the morphism 𝑓 is injective, surjective and bĳective
respectively. If the sequence 𝑉 ′

𝑓→ 𝑉
𝑔→ 𝑉 ′′ is exact with 𝑓 surjective and 𝑔

injective, then 𝑉 is the zero module.

E.1.5 Free modules. A 𝑅-module𝑉 is free if it is a direct sum of copies of 𝑅.
If 𝑉 =

∐
𝑖∈𝐼 𝑅𝑥𝑖 , with 𝑅 ≃ 𝑅𝑥𝑖 , the set {𝑥𝑖 | 𝑖 ∈ 𝐼} is called a basis of 𝑉 . It

follows that each element 𝑥 in 𝑉 has a unique decomposition

𝑥 =
∑︁
𝑖∈𝐼

𝜆𝑖𝑥𝑖 ,

where 𝜆𝑖 is in 𝑅 and almost all 𝜆𝑖 are zero. Given a set 𝑋 , there exists a free
𝑅-module having 𝑋 as a basis, which is usually denoted 𝑅[𝑋].
E.1.6 Lemma. Let 𝑋 = {𝑥𝑖 | 𝑖 ∈ 𝐼} be a basis of a free module 𝑉 . For every
module𝑊 and every map 𝑓 : 𝑋 → 𝑊 , there is a unique morphism of 𝑅-modules
𝑓 : 𝑉 → 𝑊 extending 𝑓 , i.e., making the following triangle commute:

𝑋 //

𝑓
  

𝑉

𝑓
��

𝑊
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where the morphism 𝑋 → 𝑉 is the canonical inclusion.

One shows that every 𝑅-module is a quotient of a free 𝑅-module. As a
consequence, any 𝑅-module 𝑉 may be described by generators and relations
in the following way. Given a free 𝑅-module 𝐹 with basis 𝑋 and a surjective
morphism of 𝑅-modules 𝑓 : 𝐹 → 𝑉 , we say that 𝑋 is a set of generators of 𝑉
and the kernel ker 𝑓 is called its submodule of relations.

E.1.7 Finitely generated modules. A 𝑅-module𝑉 is finitely generated if there
is a finite subset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} of 𝑉 such that for every element 𝑥 of 𝑉 ,
there exist 𝑟1, 𝑟2, . . . , 𝑟𝑛 in 𝑅 with 𝑥 = 𝑟1𝑥1 + 𝑟2𝑥2 + . . . + 𝑟𝑛𝑥𝑛. Then the set 𝑋
is referred to as a generating set for 𝑉 . The finite generators need not form a
basis, since they need not be linearly independent over 𝑅. An 𝑅-module 𝑉 is
finitely generated if and only if there is a surjective morphism:

𝑅𝑛 → 𝑉

for some 𝑛. That is, 𝑉 is a quotient of a free module of finite rank.

E.1.8 Proposition. Let 𝐹, 𝑉 and 𝑊 be 𝑅-modules. If 𝐹 is free, 𝑒 : 𝑉 → 𝑊 is
a surjective morphism and 𝑓 : 𝐹 → 𝑊 is any morphism, then there exists a
morphism 𝑓 : 𝐹 → 𝑉 making the following triangle commute

𝐹

𝑓

��

𝑓

��

𝑉 𝑒
// 𝑊 // 0

As a consequence, for any free 𝑅-module, the functor

Mod𝑅 (𝐹,−) : Mod𝑅 → Ab

is exact, that is for any exact sequence

0→ 𝑉 ′ → 𝑉 → 𝑉 ′′ → 0

of 𝑅-modules, the induced sequence

0→Mod𝑅 (𝐹,𝑉 ′) →Mod𝑅 (𝐹,𝑉) →Mod𝑅 (𝐹,𝑉 ′′) → 0

is exact.

E.1.9 Projective module. A projective module is a module which behaves
as the free module 𝐹 in Proposition E.1.8. More explicitly, a 𝑅-module 𝑃 is
projective if whenever 𝑒 : 𝑉 → 𝑊 is a surjective morphism and 𝑓 : 𝑃 → 𝑊
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is any morphism, there exists a morphism 𝑓 : 𝑃 → 𝑉 making the following
triangle commute:

𝑃

𝑓

��

𝑓

��

𝑉 𝑒
// 𝑊 // 0

In particular, any free module is projective. The following result gives several
ways to characterize projective modules.

E.1.10 Proposition. The following conditions are equivalent for a 𝑅-module 𝑃:

(i) 𝑃 is projective,
(ii) if 𝑓 : 𝑉 → 𝑃 is a surjective morphism, then there exists ℎ : 𝑃 → 𝑉 such

that 𝑓 ℎ = 1𝑃 ,
(iii) if 𝑓 : 𝑉 → 𝑃 is a surjective morphism, then 𝑉 ≃ 𝑃 ⊕ ker 𝑓 ,
(iv) the functor Mod𝑅 (𝑃,−) : Mod𝑅 → Ab is exact,
(v) 𝑃 is a summand of a free module, that is there exists a free 𝑅-module 𝐹

such that 𝐹 ≃ 𝑃 ⊕ 𝑄, for some 𝑅-module 𝑄.

Note that the 𝑅-module 𝑄 in (v) is necessarily projective.

E.2 Chain complexes

We recall in this section the notion of chain complex which is the fundamental
object of study in homological algebra.

E.2.1 Chain complex. A chain complex in the category Mod𝑅 is a sequence
(𝑉𝑛)𝑛∈Z of 𝑅-modules, together with a sequence (𝑑𝑛)𝑛∈Z of morphisms

· · · // 𝑉𝑛+1
𝑑𝑛+1 // 𝑉𝑛

𝑑𝑛 // 𝑉𝑛−1 // · · ·

with the composite of adjacent morphisms being zero, that is 𝑑𝑛𝑑𝑛+1 = 0, for
every 𝑛 in Z. Such a complex is denoted (𝑉∗, 𝑑∗), or simply 𝑉∗ or 𝑉 . We say
that 𝑉𝑛 is the module of the complex 𝑉∗ in degree 𝑛.

Given two chain complexes (𝑉∗, 𝑑∗) and (𝑉 ′∗ , 𝑑′∗), a chain map

𝑓 : (𝑉∗, 𝑑∗) → (𝑉 ′∗ , 𝑑′∗)

is a family of morphisms of 𝑅-modules ( 𝑓𝑛 : 𝑉𝑛 → 𝑉 ′𝑛)𝑛∈Z making the
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following diagrams commute

· · · // 𝑉𝑛+1
𝑑𝑛+1 //

𝑓𝑛+1

��

𝑉𝑛
𝑑𝑛 //

𝑓𝑛

��

𝑉𝑛−1 //

𝑓𝑛−1

��

· · ·

· · · // 𝑉 ′𝑛+1
𝑑′𝑛+1 // 𝑉 ′𝑛

𝑑′𝑛 // 𝑉 ′𝑛−1
// · · ·

Chains complexes of 𝑅-modules and chains maps form a category that we
will denote by Ch𝑅.

A chain complex 𝑉 is positive if 𝑉𝑛 = 0 for every 𝑛 < 0. A positive complex
looks like a sequence

· · · // 𝑉𝑛
𝑑𝑛 // 𝑉𝑛−1 // · · · // 𝑉2

𝑑2 // 𝑉1
𝑑1 // 𝑉0.

Positives chain complexes of 𝑅-modules form a full subcategory of Ch𝑅
denoted by Ch𝑅,⩾0.

E.2.2 Homology. Let 𝑉 be a chain complex in Mod𝑅, and 𝑛 ∈ Z. The mor-
phisms 𝑑𝑛 are called boundary maps of 𝑉 , and the elements of the module 𝑉𝑛
are called 𝑛-chains. We denote by 𝑍𝑛 (𝑉) = ker 𝑑𝑛 the module of 𝑛-cycles of 𝑉
and by 𝐵𝑛 (𝑉) = im 𝑑𝑛+1 the module of 𝑛-boundaries of 𝑉 .

In the category Mod𝑅, the equation 𝑑𝑛𝑑𝑛+1 = 0 is equivalent to the condition
𝐵𝑛 (𝑉) ⊆ 𝑍𝑛 (𝑉), that is any 𝑛-boundary of 𝑉 is an 𝑛-cycle of 𝑉 . The 𝑛-th
homology module of 𝑉 is the 𝑅-module defined as the quotient

𝐻𝑛 (𝑉) = 𝑍𝑛 (𝑉)/𝐵𝑛 (𝑉).
An element of 𝐻𝑛 (𝑉) is a coset 𝑐 + 𝐵𝑛 (𝑉), and called a 𝑛-th homology class
of 𝑉 .

Given a chain map 𝑓 : 𝑉 → 𝑉 ′, and 𝑛 ∈ Z, we define a morphism of modules

𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝑉) → 𝐻𝑛 (𝑉 ′)
by setting 𝐻𝑛 ( 𝑓 ) (𝑐 + 𝐵𝑛 (𝑉)) = 𝑓 (𝑐) + 𝐵𝑛 (𝑉 ′). Then

𝐻𝑛 : Ch𝑅 →Mod𝑅

is a functor called 𝑛-th homology functor. We refer to [317, Proposition 6.8] for
a detailed proof.

E.2.3 Acyclic complex. A complex (𝑉, 𝑑) is an exact sequence if 𝐻𝑛 (𝑉) = 0
for every 𝑛 ∈ Z. This means that no 𝑛-cycles that are not 𝑛-boundaries. In this
way, homology of the complex 𝑉 measures the deviation of 𝑉 from being an
exact sequence. An exact sequence is also called an acyclic complex.
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E.2.4 Chain homotopy. Let 𝑓 , 𝑔 : 𝑉 → 𝑉 ′ be two chain maps. We say that
𝑓 and 𝑔 are (chain) homotopic, denoted by 𝑓 ≃ 𝑔, if there exists a family of
morphisms (𝑠𝑛 : 𝑉𝑛 → 𝑉 ′𝑛+1)𝑛∈Z such that the following relation holds for
every 𝑛 ∈ Z

𝑓𝑛 − 𝑔𝑛 = 𝑑′𝑛+1𝑠𝑛 + 𝑠𝑛−1𝑑𝑛.

· · · // 𝑉𝑛+1
𝑑𝑛+1 //

𝑓𝑛+1

��

𝑔𝑛+1

��

𝑉𝑛
𝑑𝑛 //

𝑓𝑛

��

𝑔𝑛

��

𝑠𝑛

~~

𝑉𝑛−1 //

𝑓𝑛−1

��

𝑔𝑛−1

��

𝑠𝑛−1

~~

· · ·

· · · // 𝑉 ′𝑛+1
𝑑′𝑛+1 // 𝑉 ′𝑛

𝑑′𝑛 // 𝑉 ′𝑛−1
// · · ·

A chain map 𝑓 : 𝑉 → 𝑉 ′ is null-homotopic if 𝑓 ≃ 0, where 0 is the zero chain
map.

It is easy to see that chain homotopy defines an equivalence relation between
chain maps. Moreover, two chain homotopic maps induce isomorphisms in
homology as states by the following result.

Two complexes 𝑉 and 𝑉 ′ are of the same homotopy type, or homotopic, if
there exist chain maps

𝑓 : 𝑉 → 𝑉 ′, and 𝑔 : 𝑉 ′ → 𝑉,

such that 𝑔 𝑓 ≃ 1𝑉 and 𝑓 𝑔 ≃ 1𝑉 ′ . In that case, the chain maps 𝑓 and 𝑔 are
called homotopy equivalences.

E.2.5 Proposition. Let 𝑓 , 𝑔 : 𝑉 → 𝑉 ′ be two chain maps such that 𝑓 ≃ 𝑔, then
for every 𝑛 ∈ Z,

𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑉) → 𝐻𝑛 (𝑉 ′).
Proof. Let (𝑠𝑛 : 𝑉𝑛 → 𝑉 ′𝑛+1)𝑛∈Z be a homotopy between 𝑓 and 𝑔. Given
𝑥 ∈ ker 𝑑𝑛, we have

( 𝑓𝑛 − 𝑔𝑛) (𝑥) = 𝑑′𝑛+1𝑠𝑛 (𝑥) + 𝑠𝑛−1𝑑𝑛 (𝑥) = 𝑑′𝑛+1𝑠𝑛 (𝑥).
Hence, 𝑓𝑛 (𝑥) − 𝑔𝑛 (𝑥) ∈ im 𝑑′𝑛+1 and 𝑓𝑛 (𝑥) = 𝑔𝑛 (𝑥) holds in 𝐻𝑛 (𝑉 ′). □

E.2.6 Contracting homotopy. A chain complex (𝑉, 𝑑) has a contracting ho-
motopy if its identity 1𝑉 = (1𝑉𝑛 : 𝑉𝑛 → 𝑉𝑛)𝑛∈Z is null-homotopic. That is
there is a family of morphisms (𝑖𝑛 : 𝑉𝑛 → 𝑉𝑛+1)𝑛∈Z such that the following
condition holds for every 𝑛 ∈ Z

1𝑉𝑛 = 𝑑𝑛+1𝑖𝑛 + 𝑖𝑛−1𝑑𝑛. (E.1)
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E.2.7 Proposition. A complex 𝑉 having a contracting homotopy is acyclic.

Proof. Prove that 𝐻𝑛 (𝑉) = 0 for every 𝑛 ∈ Z. Which is the amount of proving
the inclusion 𝑍𝑛 (𝑉) ⊆ 𝐵𝑛 (𝑉). This is a direct consequence of relation (E.1).
Indeed, for any 𝑥 in 𝑍𝑛 (𝑉), we have 𝑥 = 𝑑𝑛+1𝑖𝑛 (𝑥). This proves the acyclicity
of 𝑉 . □

E.3 Resolutions

E.3.1 Resolutions. A resolution of an 𝑅-module 𝑉 is an exact sequence of
𝑅-modules

· · · // 𝑉𝑛
𝑑𝑛 // 𝑉𝑛−1 // · · · // 𝑉1

𝑑1 // 𝑉0
𝜀 // 𝑉 // 0. (E.2)

From the definition, the morphism 𝜀 is surjective and, for every 𝑛 ∈ N, we have

im 𝑑1 = ker 𝜀, and im 𝑑𝑛+1 = ker 𝑑𝑛. (E.3)

Such a resolution is projective (resp. free) if all the modules𝑉𝑛 are projective
(resp. free). Given a natural number 𝑛, a partial resolution of length 𝑛 of 𝑉 is
defined in a similar way but with a bounded sequence (𝑉𝑘)0⩽𝑘⩽𝑛 of 𝑅-modules:

𝑉𝑛
𝑑𝑛 // 𝑉𝑛−1 // · · · // 𝑉1

𝑑1 // 𝑉0
𝜀 // 𝑉 // 0.

Note that by Proposition E.2.7 a way to prove that a complex (E.2) is a
resolution of 𝑉 is to construct a contracting homotopy

· · · 𝑉𝑛+1oo 𝑉𝑛−1
𝑖𝑛−1oo · · ·oo 𝑉1oo 𝑉0

𝑖0oo 𝑉
𝑖−1oo

such that 𝑑0𝑖−1 = 1𝑉 .

E.3.2 Proposition. Every 𝑅-module 𝑉 has a free resolution.

Proof. We take 𝑉0 = 𝑅[𝑉] to be the free 𝑅-module generated by 𝑉 and the
morphism 𝜀 : 𝑉0 → 𝑉 to be the morphism extending the identity on 𝑉 (whose
existence is asserted in Lemma E.1.6). The morphism 𝜖 is clearly surjective,
i.e., satisfies im 𝜀 = 𝑉 .

We then define 𝑉1 = 𝑅[ker 𝜀] to be the free module generated by ker 𝜀 and
𝑑1 to be the morphism extending the canonical inclusion ker 𝜀 → 𝑉0:

𝑅[ker 𝜀] 𝑑1 // 𝑉0
𝜀 // 𝑉.

ker 𝜀
?�

OO

, �

;;
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Similarly, by recurrence, if𝑉𝑛 and 𝑑𝑛 : 𝑉𝑛 → 𝑉𝑛−1 are defined for 𝑛 ⩾ 1, we
set𝑉𝑛+1 = 𝑅[ker 𝑑𝑛] and 𝑑𝑛+1 : 𝑉𝑛+1 → 𝑉𝑛 to be the extension of the inclusion
ker 𝑑𝑛 → 𝑉𝑛. The relations (E.3) are easily seen to be satisfied. □

E.3.3 Theorem. Let

· · · // 𝑃𝑛
𝑑𝑛 // 𝑃𝑛−1 // · · · // 𝑃1

𝑑1 // 𝑃0

be a projective complex and

𝑉𝑛
𝑑𝑛 // 𝑉𝑛−1 // · · · // 𝑉1

𝑑1 // 𝑉0

be an acyclic complex. Then, for every morphism 𝑓 : 𝐻0 (𝑃∗) → 𝐻0 (𝑉∗), there
exists a chain map 𝑓 : 𝑃∗ → 𝑉∗ inducing 𝑓 . Moreover, two chain maps inducing
𝑓 are homotopic.

We refer to [182, Theorem 4.1] for a detailed proof of this result. In the
same way as the proof of Proposition E.3.2, we prove that every 𝑅-module
𝑉 has a projective resolution. Indeed, there exists a projective presentation
of 𝑉 : 0 // 𝑉1 // 𝑃0 // 𝑉 // 0. Then there exists a projective presentation of
𝑉1 : 0 // 𝑉2 // 𝑃1 // 𝑉1 // 0, and so on. This gives us the following projective
and acyclic complex 𝑃∗:

· · · // 𝑃𝑛
𝑑𝑛 // 𝑃𝑛−1 // · · · // 𝑃1

𝑑1 // 𝑃0

where the morphism 𝑑𝑛 is defined as the composite 𝑃𝑛 // 𝑉𝑛 // 𝑃𝑛−1 . As
𝐻0 (𝑃∗) = 𝑉 , this is a resolution a resolution of 𝑉 .

From Theorem E.3.3 we deduce the following result, see [182, Theorem 4.3]
for a detailed proof.

E.3.4 Proposition. Two projective resolutions of a module 𝑉 are of the same
homotopy type.

E.3.5 Quasi-isomorphisms and homotopy equivalences. Let 𝑉 and 𝑉 ′ be
two chain complexes. A chain map 𝑓 : 𝑉 → 𝑉 ′ is a quasi-isomorphism if it
induces an isomorphism in homology meaning that the induced map

𝐻 ( 𝑓 ) : 𝐻 (𝑉) → 𝐻 (𝑉 ′)
is an isomorphism of graded modules.

A sufficient condition for a chain map 𝑓 : 𝑉 → 𝑉 ′ to be a quasi-isomorphism
is to be a homotopy equivalence in the sense that it admits an inverse up to
homotopy, that is, a chain map 𝑔 : 𝑉 ′ → 𝑉 such that 𝑔 𝑓 and 1𝑉 are homotopic,
and 𝑓 𝑔 and 1𝑉 ′ are homotopic. The fact that a homotopy equivalence is a
quasi-isomorphism follows from Proposition E.2.5.
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E.3.6 Resolutions as quasi-isomorphisms. Note that a projective resolution
(E.2) induces a chain map

· · · // 𝑉𝑛
𝑑𝑛 //

��

𝑉𝑛−1 //

��

· · · // 𝑉1
𝑑1 //

��

𝑉0

𝜀

��

· · · // 0 // 0 // · · · // 0 // 𝑉

between the chain complex (𝑉𝑛, 𝑑𝑛) of projective 𝑅-modules and the chain
complex consisting of 𝑉 in degree 0 and the 𝑅-module 0 in other degrees.

E.3.7 Schanuel’s lemma and finite homological type. Given two exact se-
quences of 𝑅-modules

0→ 𝐾1→ 𝑃1→ 𝑉 → 0,

0→ 𝐾2→ 𝑃2→ 𝑉 → 0,

where 𝑃1 and 𝑃2 are projective, Schanuel’s lemma states that there is an
isomorphism:

𝐾1 ⊕ 𝑃2 ≃ 𝐾2 ⊕ 𝑃1.

We refer the reader to [317] for a detailed proof and applications of this result.
The following proposition is an important generalization of this result which is
useful for defining the finite homology type of modules in §F.3.1.

E.3.8 Proposition (Generalized Schanuel’s Lemma). Given two exact se-
quences of 𝑅-modules

0→ 𝐾 → 𝑃𝑘 → 𝑃𝑘−1 → · · · → 𝑃1 → 𝑃0 → 𝑉 → 0,

0→ 𝐿 → 𝑄𝑘 → 𝑄𝑘−1→ · · · → 𝑄1→ 𝑄0→ 𝑉 → 0,

where all the 𝑃𝑖 and 𝑄𝑖 are projective, we write

𝑃od :=
⊕
𝑖 odd

𝑃𝑖 , 𝑃ev :=
⊕
𝑖 even

𝑃𝑖 , 𝑄od :=
⊕
𝑖 odd

𝑄𝑖 and 𝑄ev :=
⊕
𝑖 even

𝑄𝑖 .

The following properties hold:

1. If 𝑘 is even, then 𝐾 ⊕ 𝑄ev ⊕ 𝑃od ≃ 𝐿 ⊕ 𝑄od ⊕ 𝑃even.
2. If 𝑘 is odd then 𝐾 ⊕ 𝑄od ⊕ 𝑃ev ≃ 𝐿 ⊕ 𝑄ev ⊕ 𝑃od.

Let us mention an important consequence of the Proposition E.3.8 which
will be used to define the finite homological type in §F.3.
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E.3.9 Corollary. Given two exact sequences of 𝑅-modules

0→ 𝐾 → 𝑃𝑘 → 𝑃𝑘−1 → · · · → 𝑃1 → 𝑃0 → 𝑉 → 0,

0→ 𝐿 → 𝑄𝑘 → 𝑄𝑘−1→ · · · → 𝑄1→ 𝑄0→ 𝑉 → 0,

where all the 𝑃𝑖 and𝑄𝑖 are finitely generated and projective, then the 𝑅-module
𝐾 is finitely generated if and only if 𝐿 is finitely generated.

E.4 Homology of monoids

In this section we recall the homology of a monoid with integral coefficients. In
particular, the homology of monoids is used in Chapter 9 to define homological
finiteness conditions for the existence of finite convergent presentations.

E.4.1 Tensor product of modules. Given a right 𝑅-module 𝐶 and a left 𝑅-
module 𝐷, recall that their tensor product 𝐶 ⊗𝑅 𝐷 is the group obtained as the
quotient of the free abelian group over the set 𝐶 ×𝐷, whose elements are pairs
noted 𝑥 ⊗ 𝑦 with 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷, under the relations

(𝑥 + 𝑥′) ⊗ 𝑦 = 𝑥 ⊗ 𝑦 + 𝑥′ ⊗ 𝑦, (𝑥 · 𝑟) ⊗ 𝑦 = 𝑥 ⊗ (𝑟 · 𝑦),
𝑥 ⊗ (𝑦 + 𝑦′) = 𝑥 ⊗ 𝑦 + 𝑥 ⊗ 𝑦′,

for 𝑥, 𝑥′ ∈ 𝐶, 𝑦, 𝑦′ ∈ 𝐷 and 𝑟 ∈ 𝑅. This construction is functorial: given a
right 𝑅-module 𝐶 and a morphism 𝑓 : 𝐷 → 𝐷′ of left 𝑅-modules, there is an
induced group morphism

𝐶 ⊗𝑅 𝑓 : 𝐶 ⊗𝑅 𝐷 → 𝐶 ⊗𝑅 𝐷′

and this construction is compatible with composition and identities.
Given a monoid 𝑀 , the trivial Z𝑀-module Z is canonically a right module

with the right action given by 𝑛 ·𝑢 = 𝑛 for 𝑛 ∈ Z and 𝑢 ∈ 𝑀 . In the following, we
will mostly be interested in computing the tensor product of the trivial module
Z with a free Z𝑀-module Z𝑀 [𝑋] on a set 𝑋 , in which case the result is

Z ⊗Z𝑀 Z𝑀 [𝑋] = Z[𝑋]
where Z[𝑋] is the free abelian group over 𝑋 (which coincides with the free
Z-module).

E.4.2 Homology of monoids with integral coefficients. Let 𝑀 be a monoid.
To a free resolution of the trivial Z𝑀-module Z by left Z𝑀-modules

· · · // 𝐹𝑛+1
𝑑𝑛+1 // 𝐹𝑛 // · · · // 𝐹1

𝑑1 // 𝐹0
𝜀 // Z,
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by tensoring with the trivial right Z𝑀-module Z, we associate the complex of
Z-modules:

· · · // Z ⊗Z𝑀 𝐹𝑛+1
𝑑𝑛+1 // Z ⊗Z𝑀 𝐹𝑛 // · · · // Z ⊗Z𝑀 𝐹1

𝑑1 // Z ⊗Z𝑀 𝐹0,

where 𝑑𝑘 denotes the map 1Z ⊗Z𝑀 𝑑𝑘 , for all 𝑘 ⩾ 1. Note that the Z-module
Z ⊗Z𝑀 𝐹𝑛 is obtained from 𝐹𝑛 by trivializing the action of 𝑀 , that is 𝐹𝑛
quotiented by all relations 𝑢𝑥 = 𝑥, for 𝑢 in 𝑀 and 𝑥 in 𝐹𝑛. In particular, if
𝐹𝑛 = Z𝑀 [𝑋], then Z ⊗Z𝑀 𝐹𝑛 = Z[𝑋] is the free Z-module on 𝑋 . We obtain a
chain complex, because 𝑑𝑛𝑑𝑛+1 = 0 induces that 𝑑𝑛𝑑𝑛+1 = 0.

We define the 𝑛-th homology group of 𝑀 with integral coefficient Z as the
following Z-module:

H𝑛 (𝑀,Z) = ker 𝑑𝑛/im 𝑑𝑛+1,

with the convention that 𝑑0 = 0. By definition, for any monoid 𝑀 , we have
H0 (𝑀,Z) ≃ Z. Following results of the previous section, the homology do not
depend on the choice of the resolution used to compute it.

E.4.3 Proposition. The groups H𝑛 (𝑀,Z) does not depend on a particular
choice of a free resolution, but only on the monoid 𝑀 .



Appendix F
Homology of categories

F.1 Simplicial homology and nerve of a category

F.1.1 Simplicial sets. We will denote by Δ the simplicial category, that is, the
full subcategory of the category of posets whose objects are the

[𝑛] = {0 < 1 < · · · < 𝑛}
for 𝑛 ≥ 0. By definition, a simplicial set is a presheaf on Δ, i.e., a functor
Δop → Set. We will denote by Δ̂ the category of simplicial sets. If 𝑋 is a
simplicial set, the set 𝑋𝑛 = 𝑋 ( [𝑛]) is called the set of 𝑛-simplices of 𝑋 .

F.1.2 Homology of a simplicial set. Let 𝑛 ≥ 1. For 𝑖 such that 0 ≤ 𝑖 ≤ 𝑛,
denote by 𝛿𝑖 the unique injective order-preserving map

𝛿𝑖𝑛 : [𝑛 − 1] → [𝑛]
not reaching 𝑖. If 𝑋 is a simplicial set, we will denote by

𝑑𝑛𝑖 : 𝑋𝑛 → 𝑋𝑛−1

the map 𝑋 (𝛿𝑖𝑛).
We define a functor

𝑐 : Δ̂→ ChZ,⩾0

in the following way. If 𝑋 is a simplicial set, 𝑐(𝑋𝑛) is the free abelian group
on 𝑋𝑛 and, if 𝑥 is an 𝑛-simplex of 𝑋 with 𝑛 > 0, we set

𝑑𝑛 ( [𝑥]) =
𝑛∑︁
𝑖=0
(−1)𝑛 [𝑑𝑖𝑛 (𝑥)] .

A classical calculation shows that 𝑐(𝑋) is indeed a chain complex. If 𝑓 : 𝑋 → 𝑌

is a morphism of simplicial sets, the morphism 𝑐( 𝑓 ) : 𝑐(𝑋) → 𝑐(𝑌 ) is defined
by sending [𝑥], for 𝑥 an 𝑛-simplex of 𝑋 , to [ 𝑓𝑛 (𝑥)], where 𝑓𝑛 denotes 𝑓[𝑛] .

615
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The homology of a simplicial set 𝑋 is the homology of the chain com-
plex 𝑐(𝑋).

F.1.3 The nerve functor. As the category of posets embeds into the cate-
gory Cat of small categories, we get a functor 𝑖 : Δ → Cat. This functor 𝑖
induces the so-called nerve functor

𝑁 : Cat→ Δ̂

sending a category 𝐶 to the simplicial set Cat(𝑖(–), 𝐶). Explicitly, a 0-simplex
of 𝑁 (𝐶) is an object of𝐶 and an 𝑛-simplex, for 𝑛 > 0, is a chain of 𝑛 composable
arrows in 𝐶.

F.1.4 Homology of categories. If 𝐶 is a category, the homology of 𝐶 is the
homology of its nerve 𝑁 (𝐶). In particular, if 𝑀 is a monoid (or even more
particularly a group), by considering 𝑀 as a category with one object, we get
a notion of homology of 𝑀 .

F.1.5 Theorem. If 𝑀 is a monoid, then the homology of 𝑀 seen as a category
with one object coincides with the homology H𝑛 (𝑀,Z) of the monoid as defined
in §E.4.

Proof. If 𝑀 is a monoid, then the complex 𝑐(𝑁 (𝑀)) is canonically isomorphic
to the complexZ⊗Z𝑀𝐵, where 𝐵 is the bar resolution of𝑀 , see [260, Chapter X,
Section 5], whence the result. □

F.2 Homology of categories with coefficients

F.2.1 Modules of a category. A (left) module of a category 𝐶, or (left)
𝐶-module, is a functor from 𝐶 to the category Ab of abelian groups [287].
The 𝐶-modules and the natural transformations between them form an abelian
category with enough projectives denoted by Mod(𝐶).

We denote by Z𝐶 the free Z-category on 𝐶 whose 0-cells are the ones of 𝐶
and for all 0-cells 𝑝 and 𝑞 of 𝐶, the hom-set Z𝐶 (𝑝, 𝑞) is the free Z-module
on the hom-set 𝐶 (𝑝, 𝑞). It follows immediately from the definitions that the
category Mod(𝐶) is isomorphic to the category of additive functors from Z𝐶
to Ab.

Given a 𝐶-module 𝑀 , if 𝑥 ∈ 𝑀 (𝑝) for some 0-cell 𝑝 of 𝐶, then we say that
𝑥 is an element of 𝑀 . The left action on 𝑀 is defined for a 1-cell 𝑓 : 𝑝 → 𝑞

and 𝑥 in 𝑀 (𝑝), by 𝑓 · 𝑥 = 𝑀 ( 𝑓 ) (𝑥). A family 𝑋 = (𝑥𝑖)𝑖∈𝐼 of elements of 𝑀 is
called a family of generators for 𝑀 if every element 𝑥 of 𝑀 (𝑝) can be written
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as

𝑥 =
∑︁
𝑖∈𝐼

𝑓𝑖 · 𝑥𝑖 ,

for 1-cells 𝑓𝑖 : 𝑝𝑖 → 𝑝 in Z𝐶, where all but a finite number of 𝑓𝑖 are zero. This
amounts to say that the natural transformation

𝜙𝑋 :
⊕
𝑖∈𝐼
Z𝐶 (𝑝𝑖 ,−) → 𝑀,

with 𝑥𝑖 ∈ 𝑀 (𝑝𝑖) and which takes 1𝑝𝑖 to 𝑥𝑖 is an epimorphism in Mod(𝐶). The
family 𝑋 is a basis for 𝑀 if the natural transformation 𝜙𝑋 is an isomorphism. A
𝐶-module 𝑀 is free if it has a basis. It is finitely generated if it has a finite set of
generators. A finitely generated module 𝑀 is thus the cokernel of a morphism
of finitely generated free modules:⊕

𝑖∈𝐼 Z𝐶 (𝑞𝑖 ,−) //
⊕

𝑗∈𝐽 Z𝐶 (𝑝 𝑗 ,−) // 𝑀 // 0.

F.2.2 Natural systems. Given a small category 𝐶, the category of factoriza-
tions [308, 34] is the category, denoted by F𝐶, whose 0-cells are the 1-cells
of 𝐶 and whose 1-cells from 𝑤 to 𝑤′ are pairs (𝑢, 𝑣) of 1-cells of 𝐶 such that
the following diagram commutes in 𝐶:

· 𝑤 // ·
𝑣
��·

𝑢

OO

𝑤′
// ·

The triple (𝑢, 𝑤, 𝑣) is called a factorization of 𝑤′. Composition in the category
F𝐶 is defined by pasting, i.e., if (𝑢, 𝑣) : 𝑤 → 𝑤′ and (𝑢′, 𝑣′) : 𝑤′ → 𝑤′′ are
1-cells of F𝐶, then the composite (𝑢′, 𝑣′) (𝑢, 𝑣) is defined by the pair (𝑢′𝑢, 𝑣𝑣′):

· 𝑤 // ·
𝑣
��·

𝑢

OO

𝑤′ // ·
𝑣′
��·

𝑢′
OO

𝑤′′
// ·

The identity of 𝑤 is the pair (1𝑠(𝑤) , 1𝑡(𝑤) ):

· 𝑤 // ·
1𝑡 (𝑤)
��·

1𝑠 (𝑤)

OO

𝑤′
// ·
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An F𝐶-module 𝐷 is called a natural system of abelian groups on 𝐶. We will
denote by 𝐷𝑤 the abelian group which is the image of 𝑤 by the functor 𝐷. If
there is no confusion, we denote by 𝑢𝑎𝑣 the image of an element 𝑎 of𝐷𝑤 through
the homomorphism of groups 𝐷 (𝑢, 𝑣) : 𝐷𝑤 → 𝐷𝑤′ . The category Mod(F𝐶)
is also denoted by Nat(𝐶,Ab).

F.2.3 Homology of categories with coefficients. The cohomology of cate-
gories with values in natural systems was defined by Baues and Wirsching
in [34], and by Wells in [352]. It generalizes Hochschild-Mitchell cohomology
of categories with coefficients in bimodules [287], the cohomology with coef-
ficient in left modules [308, 314], and the cohomology of the classifying space,
see [34] for the correspondences.

Dually, we define the homology of a category 𝐶 with values in a con-
travariant natural system 𝐷 on 𝐶, that is an (𝐹𝐶)op-module, as follows. We
consider the nerve 𝑁 (𝐶) of 𝐶 defined in §F.1.3, with boundary maps denoted
by 𝑑𝑖 : 𝑁𝑛 (𝐶) → 𝑁𝑛−1 (𝐶), for 0 ⩽ 𝑖 ⩽ 𝑛. For 𝑠 = (𝑢1, . . . , 𝑢𝑛) in 𝑁𝑛 (𝐶),
we denote by 𝑠 the composite 1-cell 𝑢1 · · · 𝑢𝑛 of 𝐶. For 𝑛 in N, the 𝑛-th chain
group 𝐶𝑛 (𝐶, 𝐷) is defined as the abelian group

𝐶𝑛 (𝐶, 𝐷) =
⊕

𝑠∈𝑁𝑛 (𝐶 )
𝐷𝑠 .

We denote by 𝜄𝑠 the embedding of 𝐷𝑠 ↩→ 𝐶𝑛 (𝐶, 𝐷). We define a boundary map
𝑑 : 𝐶𝑛 (𝐶, 𝐷) → 𝐶𝑛−1 (𝐶, 𝐷) on the component 𝐷𝑠 of 𝐶𝑛 (𝐶, 𝐷) by setting

𝑑𝜄𝑠 = 𝜄𝑑0 (𝑠)𝑢1∗ +
𝑛−1∑︁
𝑖=1
(−1)𝑖 𝜄𝑑𝑖 (𝑠) + (−1)𝑛𝜄𝑑𝑛 (𝑠)𝑢∗𝑛 ,

for 𝑠 = (𝑢1, . . . , 𝑢𝑛) in 𝑁𝑛 (𝐶) and where 𝑢1∗ and 𝑢∗𝑛 denote the morphisms
𝐷 (𝑢1, 1) and 𝐷 (1, 𝑢𝑛) respectively. The homology of the category 𝐶 with
coefficients in 𝐷 is defined as the homology of the complex (𝐶∗ (𝐶, 𝐷), 𝑑∗):

H∗ (𝐶, 𝐷) = H∗ (𝐶∗ (𝐶, 𝐷), 𝑑∗).

Denoting Tor𝐹𝐶∗ (𝐷,−) the left derived functor of the functor 𝐷 ⊗𝐹𝐶 −, one
can prove that there is an isomorphism

H∗ (𝐶, 𝐷) ≃ Tor𝐹𝐶∗ (𝐷,Z).

natural in 𝐷.
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F.3 Categories of finite homological type

F.3.1 Modules of finite homological type. For 𝑛 ∈ N∪{∞}, a𝐶-module𝑀 is
of homological type FP𝑛 (where FP𝑛 stands for finitely 𝑛-presented) if it admits
a partial resolution of length 𝑛 by finitely generated projective 𝐶-modules

· · · // 𝑃𝑛 // 𝑃𝑛−1 // · · · // 𝑃0 // 𝑀 // 0.

By general homological arguments, see §E.3.7, we have the following charac-
terization of the property FP𝑛 which is a consequence of Corollary E.3.9.

F.3.2 Proposition. Let 𝐶 be a category, 𝑀 be a 𝐶-module, and 𝑛 be a natural
number. The following assertions are equivalent:

1. 𝑀 is of homological type FP𝑛,
2. 𝑀 admits a partial resolution of length 𝑛 by finitely generated free𝐶-modules:

𝐹𝑛 // 𝐹𝑛−1 // . . . // 𝐹0 // 𝑀,

3. 𝑀 is finitely generated and, for every natural number 𝑘 < 𝑛 and every
projective finitely generated partial resolution of 𝑀 of length 𝑘

𝑃𝑘
𝑑𝑘 // 𝑃𝑘−1 // · · · // 𝑃0 // 𝑀 // 0,

the 𝐶-module ker 𝑑𝑘 is finitely generated.

F.3.3 Categories of finite homological type. The property for a category 𝐶
to be of homological type FP𝑛 is defined according to a category of modules
over one of the categories in the following diagram

𝐶op -- 𝑞1

$$

F𝐶 𝜕 // // 𝐶op × 𝐶

𝑝1 11 11

𝑝2 .. ..

𝐶⊤

𝐶 00 𝑞2

::

where 𝜕 is the boundary map, 𝑝1 and 𝑝2 are the projections of the cartesian
product, 𝐶⊤ is the enveloping groupoid of 𝐶, and 𝑞1 and 𝑞2 are the canonical
inclusion morphisms. A category 𝐶 is of homological type

– FP𝑛 if the constant natural system Z is of type FP𝑛,
– bi-FP𝑛 if the 𝐶op × 𝐶-module Z𝐶 is of type FP𝑛,
– left-FP𝑛 if the constant 𝐶-module Z is of type FP𝑛,
– right-FP𝑛 if the constant 𝐶op-module Z is of type FP𝑛,
– top-FP𝑛 if the constant 𝐶⊤-module Z is of type FP𝑛.
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Using the fact that the property FP𝑛 is preserved by left Kan extensions [163,
Lemma 5.1.4], these finiteness homological properties of categories are related
by the following implications [163, Proposition 5.2.4]:

right-FP𝑛
�&

FP𝑛 +3 bi-FP𝑛

08

&.

top-FP𝑛.

left-FP𝑛

8@

If 𝐶 is a groupoid, all of these implications are equivalences [163, Proposi-
tion 5.2.6], but it is not the case in general. Indeed, Cohen constructed in [92] a
right-FP∞ monoid which is not left-FP1: thus, top-FP𝑛, left-FP𝑛 and right-FP𝑛
are not equivalent in general. Moreover, monoids with a finite convergent pre-
sentation are left-FP∞ and right-FP∞, see [8, 326, 219], but there exists a finitely
presented monoid that is left-FP∞ and right-FP∞, but does not satisfy the ho-
mological finiteness condition FHT introduced by Pride and Wang [222]; since
the properties FHT and bi-FP3 are equivalent [223], it follows that left-FP𝑛 and
right-FP𝑛 do not imply bi-FP𝑛 in general.

Finally, we note the following consequence of the definition.

F.3.4 Proposition. If a category 𝐶 is of homological type FP𝑛, for a natural
number 𝑛, then the abelian group H𝑘 (𝐶,Z) is finitely generated for every
0 ⩽ 𝑘 ⩽ 𝑛.

F.3.5 Monoids of finite homological type. The notion of finite homological
type for categories applies to monoids seen as categories with one object. In
particular, the proofs to show that a monoid is of homological type left-FP𝑛 in
Chapter 9 are based on the following result, which is an immediate consequence
of Proposition F.3.2.

F.3.6 Proposition. Let 𝑛 be a natural number. A monoid 𝑀 is of homological
type left-FP𝑛 if and only if the trivial left Z𝑀-module Z is of homological type
left-FP𝑛.



Appendix G
Locally presentable categories

This appendix is a quick introduction to locally presentable categories. We refer
the reader to the classical book [2] for a detailed presentation.

The notion of a locally presentable category is in some sense a formaliza-
tion of what is an algebraic structure. When category theory is restricted to
locally presentable categories, many things get simpler. In particular, there are
characterizations of adjoint functors purely in terms of preservation of lim-
its and colimits. Locally presentable categories also play an important role in
the theory of model categories through the concept of combinatorial model
categories.

There are many ways to define locally presentable categories. We start by
the presentation in terms of sketches, which are somehow categories encoding
the syntax of an algebraic structure. These sketches are used several times in
the body of the book. We then give the intrinsic categorical characterization,
defining on our way several notions that will be needed for the theory of model
categories. Finally, we give the syntactic characterization.

G.1 Sketches

G.1.1 Cones. Let C be a category. By a projective cone in C, we will mean a
triple (𝐹, 𝑋, 𝛼), where 𝐹 : 𝐷 → C is a functor from some small category 𝐼,
𝑋 is an object of C, and 𝛼 : 𝑋 ⇒ 𝐹 is a natural transformation, where 𝑋 is
considered as a constant functor. The diagram 𝐹 is then called the base of the
cone and the object 𝑋 the tip of the cone. We say that C is a projective limit
cone if the morphism 𝑋 → lim←−− 𝐹 induced by 𝛼 is an isomorphism.

The notion of inductive cone is defined similarly by reversing the direction
of the natural transformation 𝛼, that is, by considering a natural transformation
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𝛼 : 𝐹 ⇒ 𝑋 , and the notion of inductive limit cone by asking for the induced
morphism lim−−→ 𝐹 → 𝑋 to be an isomorphism.

G.1.2 Sketches. A sketch is a triple (𝑆, 𝑃, 𝐼), where 𝑆 is a small category, 𝑃
a set of projective cones in 𝑆 and 𝐼 a set of inductive cones in 𝑆. A sketch is
projective (resp. injective) if 𝐼 = ∅ (resp. 𝑃 = ∅). By abuse of notation, we will
often refer to the sketch (𝑆, 𝑃, 𝐼) as 𝑆 only, and we will talk of the projective
cones of 𝑆 (resp. of the inductive cones of 𝑆) for the elements of 𝑃 (resp. of 𝐼).

A model of a sketch 𝑆 in a category C consists of a functor 𝐹 : 𝑆 → C
sending every projective cone of 𝑆 to a projective limit cone in C and every
inductive cone of 𝑆 to an inductive limit cone in C. A morphism of models of a
sketch 𝑆 is just a natural transformation. We write Mod(𝑆) for the category of
models of a sketch 𝑆 in the category of sets.

A morphism of sketches from a sketch 𝑆 to a sketch 𝑆′ is a functor 𝑓 : 𝑆 → 𝑆′

sending every projective cone of 𝑆 to a projective cone of 𝑆′ and every inductive
cone of 𝑆 to an inductive cone of 𝑆′. If 𝑓 is such a morphism, then precompo-
sition by 𝑓 induces a functor

𝑓 ∗ : Mod(𝑆′) → Mod(𝑆).

G.1.3 Sketchable categories. We say that a category C is sketchable (resp.
projectively sketchable) if there exists a sketch (resp. a projective sketch) 𝑆 such
that C is equivalent to Mod(𝑆).

In this section, we will focus on projectively sketchable categories.

G.1.4 Example. The category of graphs is projectively sketchable. Indeed, this
category is nothing but the category of functors from the category

[0] [1]𝑠oo

𝑡
oo

to the category of sets, i.e., the category of models of a sketch without any pro-
jective or inductive cones. More generally, any diagram category is projectively
sketchable.

G.1.5 Example. The category of monoids is projectively sketchable. Indeed,
consider the category 𝑆 with three objects

[0], [1], [2], [3]
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and generated by the morphisms

[2]
𝑝1

��

𝑝2

��

[1] [1]

[3]
𝑞1

zz

𝑞2
��

𝑞3

$$

[1] [1] [1]

[3] 𝑞1,2
// [2] [3] 𝑞2,3

// [2]

[0] 𝑢 // [1] [2] 𝑚 // [1]

[1] ⟨𝑢,1⟩ // [2] [1] ⟨1,𝑢⟩ // [2]

[3] ⟨𝑚,1⟩ // [2] [3] ⟨1,𝑚⟩ // [2]
subject to the relations

𝑝1𝑞1,2 = 𝑞1, 𝑝2𝑞1,2 = 𝑞2, 𝑝2𝑞2,3 = 𝑞2, 𝑝2𝑞2,3 = 𝑞3,

𝑝1⟨𝑢, 1⟩ = 𝑢, 𝑝2⟨𝑢, 1⟩ = 1[1] , 𝑝1⟨1, 𝑢⟩ = 1[1] , 𝑝2⟨𝑢, 1⟩ = 𝑢,

𝑝1⟨𝑚, 1⟩ = 𝑚𝑞1,2 𝑝2⟨𝑚, 1⟩ = 𝑞3 𝑝1⟨1, 𝑚⟩ = 𝑞1, 𝑝2⟨𝑢, 𝑚⟩ = 𝑚𝑞2,3,

and

[1] ⟨𝑢,1⟩ // [2]
𝑚

��

[1]⟨1,𝑢⟩
oo

[1] ,

[3] ⟨𝑚,1⟩ //

⟨1,𝑚⟩
��

[2]
𝑚

��

[2] 𝑚
// [1].

Endow 𝑆 with the three projective cones

[0] [2]
𝑝1

��

𝑝2

��

[1] [1]

[3]
𝑞1

zz

𝑞2
��

𝑞3

%%

[1] [1] [1],
the first one being indexed by the empty category. Then we claim that the data
of a model 𝐹 : 𝑆 → Set of the sketch 𝑆 in Set is equivalent to the data of
a monoid of underlying set 𝑀 = 𝐹 ( [1]), multiplication 𝐹 (𝑚) and unit given
by 𝐹 (𝑢) (the value of 𝐹 ( [𝑖]), for 0 ≤ 𝑖 ≤ 3, being forced to be sent to 𝑀 𝑖).

More generally, any Lawvere theory defines a sketch whose models are the
models of the starting Lawvere theory.
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G.1.6 Example. The category Cat of small categories is projectively sketch-
able. Consider the full subcategory 𝑆 ⊆ Δop of the opposite category of the sim-
plicial category (see §F.1.1) on the objects [0], [1], [2] and [3]. If [𝑚] ↩→ [𝑛]
is an inclusion of Δ whose image avoids exactly 𝑖0, . . . , 𝑖𝑘 , the corresponding
morphism in Δop will be denoted by 𝑑𝑖0 ,...,𝑖𝑘 : [𝑛] → [𝑚]. With this notation,
the commutative diagrams

[2]
𝑑2

��

𝑑0

��

[1]

𝑑0 ��

[1]

𝑑1��

[0]

[3]
𝑑2,3

ww

𝑑0,3
��

𝑑0,1

''[1]

𝑑0 ��

[1]

𝑑1�� 𝑑0 ��

[1]

𝑑1��

[0] [0]
define two cones (which are actually limit cones) in 𝑆. One can show than the
category of models of the sketch defined by 𝑆 and these two cones is equivalent
to Cat.

G.1.7 Example. The category Cat𝜔 of small 𝜔-categories is projectively
sketchable (see Proposition 14.2.4).

G.1.8 Theorem. If 𝑓 : 𝑆 → 𝑆′ is a morphism of projective sketches, then the
functor

𝑓 ∗ : Mod(𝑆′) → Mod(𝑆).

admits a left adjoint

𝑓! : Mod(𝑆) → Mod(𝑆′).

Proof. See for instance [26, Section 4, Theorem 4.1]. □

G.1.9 Example. There is an obvious inclusion from the sketch of graphs de-
fined in Example G.1.4 into the sketch of categories defined in Example G.1.6.
This morphism of sketches induces the forgetful functor from small categories
to graphs. The previous theorem shows the well-known fact that this forgetful
functor admits a left adjoint, sending a graph to the free category on this graph.

G.1.10 Proposition. A projectively sketchable category is complete and co-
complete.

Proof. The completeness of such a category can be checked directly (limits
are computed as in presheaves). Proving the cocompleteness is more involved,
see [2, Example 3.11.8 and Theorem 1.38]. □
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We end the section by a very powerful criterion due to Lair to prove that a
functor is monadic in terms of sketches.

G.1.11 Theorem. Let 𝑓 : 𝑆 → 𝑆′ be a morphism of projective sketches
satisfying the two following conditions:

– the base of any cone of 𝑆′ factors though 𝑓 ,
– every object of 𝑆′ not in the image of 𝑓 is the tip of a cone of 𝑆′.

Then the induced functor 𝑓 ∗ : Mod(𝑆′) → Mod(𝑆) is monadic.

Proof. By Theorem G.1.8, the functor 𝑓 ∗ admits a right adjoint and the result
is thus a particular case of [239, Corollary 1]. □

G.2 Locally presentable categories

Fix 𝜅 be a regular cardinal. Recall that the fact that 𝜅 is regular means that the
category of sets of cardinal < 𝜅 is closed under colimits of cardinality < 𝜅.

G.2.1 𝜅-filtered diagrams. A small category 𝐼 is said to be 𝜅-small if the
cardinal of its set of morphisms is strictly smaller than 𝐼. An ℵ0-small category,
ℵ0 being the cardinal of countable sets, is called a finite category. A diagram
𝐹 : 𝐼 → C is said to be 𝜅-small if 𝐼 is 𝜅-small. A 𝜅-filtered category is a
category 𝐼 such that for every 𝜅-small diagram 𝐹 : 𝐽 → 𝐼, there exists an object
𝑖 of 𝐼 and cone 𝐹 ⇒ 𝑖. An ℵ0-filtered category is said to be filtered. A 𝜅-filtered
diagram is a diagram 𝐹 : 𝐼 → C such that 𝐼 is 𝜅-filtered.

G.2.2 𝜅-presentable objects. An object 𝑋 of a category C is said to be
𝜅-presentable if the functor

C(𝑋,−) : C → Set

preserves 𝜅-filtered colimits, that is, if for every 𝜅-filtered diagram 𝐹 : 𝐼 → C
the canonical map

lim−−→
𝑖

C(𝑋, 𝐹𝑖) → C(𝑋, lim−−→
𝑖

𝐹𝑖)

is a bĳection. An ℵ0-presentable object is called a finitely presentable object.

G.2.3 Locally presentable categories. A category C is said to be locally
𝜅-presentable if it is cocomplete and if there exists a set 𝑆 of 𝜅-small objects
of 𝐶 such that every object of C can be obtained as a 𝜅-filtered colimit of
objects in 𝑆. A locally ℵ0-presentable category is said to be locally finitely
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presentable. Essentially by definition, if a category C is locally 𝜅-presentable,
then it is locally 𝜅′-presentable for every regular cardinal 𝜅′ > 𝜅. A category C
is locally presentable if it is locally 𝜅-presentable for some regular cardinal 𝜅.

G.2.4 Theorem. A category is locally presentable if and only if it is equivalent
to the category of models of some projective sketch. More precisely, if 𝜅 is
a regular cardinal, a category is locally 𝜅-presentable if and only it is the
category of model of some projective sketch whose cones are over 𝜅-small
diagrams.

Proof. See for instance [2, Corollary 1.52]. □

G.3 Essentially algebraic theories

G.3.1 Algebraic theory. An algebraic theory 𝑃 consists of

– a set 𝑃0 of sorts,
– a set 𝑃1 of operations together with functions

𝑠0 : 𝑃1 → 𝑃∗0 𝑡0 : 𝑃1 → 𝑃0

associating to an operation its arity and coarity, where 𝑃∗0 denotes the free
monoid on 𝑃0,

– a set 𝑃2 ⊆ 𝑃∗1 × 𝑃∗1 of relations consisting of pairs of terms with the same
arity and coarity.

An element (𝑢, 𝑣) ∈ 𝑃∗1 × 𝑃∗1 is often written 𝑢 = 𝑣. Note that this notion
corresponds to the one of term rewriting system, as introduced in §13.1.12.

G.3.2 Essentially algebraic theory. An essentially algebraic theory consists
of an algebraic theory 𝑃 together with a function

𝑑 : 𝑃1 → P(𝑃∗1 × 𝑃∗1)

which to every operation in 𝑎 ∈ 𝑃1 associates a subset 𝑑 (𝑎) of 𝑃∗1 × 𝑃∗1, called
the domain of 𝑎, specifying the relations under which the operation is defined.
An operation 𝑎 ∈ 𝑃1 is total when 𝑑 (𝑎) = ∅, and a term is total when it is
composed of total operations only. An essentially algebraic theory is required
to satisfy the following condition: for every operation 𝑎 ∈ 𝑃1 and relation
(𝑢, 𝑣) ∈ 𝑑 (𝑎), the terms 𝑢 and 𝑣 are total.
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G.3.3 Model of an essentially algebraic theory. A model 𝑀 of an essentially
algebraic theory consists of

– a set 𝑀𝑠 for every sort 𝑠 ∈ 𝑃0,
– a partial function

𝑀𝑎 : 𝑀𝑠1 × . . . × 𝑀𝑠𝑘 → 𝑀𝑠

for every operation
𝑎 : 𝑠1 . . . 𝑠𝑘 → 𝑠

such that 𝑀𝑎 (𝑚1, . . . , 𝑚𝑘) is defined if and only if

𝑀𝑢 (𝑚1, . . . , 𝑚𝑘) = 𝑀𝑣 (𝑚1, . . . , 𝑚𝑘)
for every (𝑢, 𝑣) ∈ 𝑑 (𝑎).

In the definition above, the interpretation𝑀𝑢 for a term 𝑢 is defined by induction
on 𝑢 from the interpretation of operations in the expected way.

G.3.4 Example. The essentially algebraic theory 𝑃 of categories has two sorts
𝑠0 and 𝑠1 in 𝑃0, and four operations in 𝑃1

𝑠 : 𝑠1 → 𝑠0 𝑡 : 𝑠1 → 𝑠0 𝑐 : 𝑠1, 𝑠1 → 𝑠1 𝑒 : 𝑠0 → 𝑠1

with domains

𝑑 (𝑠) = ∅ 𝑑 (𝑡) = ∅ 𝑑 (𝑐) = {𝑡 (𝑥1) = 𝑠(𝑥2)} 𝑑 (𝑒) = ∅
and relations

𝑠 ◦ 𝑒(𝑥1) = 𝑥1 𝑠 ◦ 𝑐(𝑥1, 𝑥2) = 𝑠(𝑥1) 𝑐(𝑒(𝑥1), 𝑥2) = 𝑥2

𝑡 ◦ 𝑒(𝑥1) = 𝑥1 𝑡 ◦ 𝑐(𝑥1, 𝑥2) = 𝑡 (𝑥2) 𝑐(𝑥1, 𝑒(𝑥2)) = 𝑥1

and
𝑐(𝑐(𝑥1, 𝑥2), 𝑥3) = 𝑐(𝑥1, 𝑐(𝑥2, 𝑥3)).

Note that the terms 𝑡 (𝑥1) and 𝑠(𝑥2) occurring in the domain of 𝑐 are total as
required. The models of this theory are precisely the small categories.

G.3.5 Theorem. A category is locally finitely presentable if and only if it is
equivalent to the category of models of an essentially algebraic theory.

Proof. See [2, Theorem 3.36]. □

G.3.6 Remark. The above result can be generalized to locally 𝜅-presentable
categories by considering theories 𝑃 with operations 𝑎 with an arity of the form
𝑠0 (𝑎) ∈ 𝑃𝜅𝑎0 for some cardinal 𝜅𝑎 < 𝜅 (we recover the above case when all the
𝜅𝑎 are finite).



Appendix H
Model categories

One of the goals of this book is to construct the so-called “folk” model category
structure on the category of strict 𝜔-categories. This is achieved in Chapter 21.
The notion of model category, introduced by Quillen [307], constitutes a very
general framework in which to study the homotopical properties of a category
endowed with a class of weak equivalences.

The Chapters 19 to 21 introduce along their way the main definitions of
this theory. Nevertheless, for the convenience of the reader, we gather in this
appendix these main definitions plus some complements. For more details, we
refer the reader to the classical books [307, 184, 187] or to [313] for a recent
panorama on the subject.

H.1 Definition

We start by some preliminary definitions.

H.1.1 2-out-of-3 property. A class of maps W in a category C is said to
satisfy the 2-out-of-3 property if for any commutative triangle

𝑋
𝑓

//

ℎ
��

𝑌

𝑔
��

𝑍

in C, if two morphisms among 𝑓 , 𝑔 and ℎ are inW, then so is the third one.
For instance, isomorphisms in a category satisfy the 2-out-of-3 property. More
generally, any reasonable notion of “equivalence” in a category should satisfy
this property.

628
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H.1.2 Retracts. Let C be a category. We say that a morphism 𝑓 : 𝑋 → 𝑌

of C is a retract of a morphism 𝑔 : 𝑍 → 𝑇 of C if there exists a commutative
diagram

𝑋

𝑗

��

//

1𝑋
%%

𝑍

𝑔

��

// 𝑋

𝑓

��

𝑌 //

1𝑌

99𝑇 // 𝑌

in C. We say that a class of morphisms of C is closed under retracts if any
retract of an element of the class belongs to the class.

H.1.3 Lifting properties. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑇 be two morphisms
of C. One says that 𝑓 has the left lifting property with respect to 𝑔 or that 𝑔 has
the right lifting property with respect to 𝑓 if for every commutative square

𝑋

𝑓

��

// 𝑍

𝑔

��

𝑌 // 𝑇

there exists a lift, that is, a morphism ℎ : 𝑌 → 𝑍 making the two triangles

𝑋

𝑓

��

// 𝑍

𝑔

��

𝑌 //

ℎ

??

𝑇

commute. More generally, one says that 𝑓 has the left lifting property with
respect to a class of maps I if it has the left lifting property with respect to
every morphism inI, and similarly for the right lifting property. We will denote
by 𝑙 (I) and 𝑟 (I) the class of maps having the left or right lifting property with
respect to a class I.

We can now give the definition of a model category:

H.1.4 Model category. A model category is a categoryM endowed with three
classes of maps: the weak equivalences, the cofibrations and the fibrations; these
data are required to satisfy the following axioms:

1. the categoryM is finitely complete and finitely cocomplete,
2. the class of weak equivalences satisfies the 2-out-of-3 property,
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3. the class of weak equivalences, cofibrations and fibrations are closed under
retracts,

4. cofibrations have the left lifting property with respect to trivial fibrations
(that is, maps that are both a fibration and a weak equivalence); trivial
cofibrations (that is, maps that are both a cofibration and a weak equivalence)
have the left lifting property with respect to fibrations,

5. every map ofM factors as a cofibration followed by a trivial fibration, and
as a trivial cofibration followed by a fibration.

H.1.5 Example. One of the motivating example of Quillen is the following
model category structure on the category Top of topological spaces:

– the weak equivalences are the topological weak equivalences, that is, the
maps 𝑓 : 𝑋 → 𝑌 which induce a bĳection 𝜋0 ( 𝑓 ) : 𝜋0 (𝑋) → 𝜋0 (𝑌 ) on
path components and isomorphisms 𝜋𝑛 ( 𝑓 , 𝑥) : 𝜋𝑛 (𝑋, 𝑥) → 𝜋𝑛 (𝑌, 𝑓 (𝑥)) on
homotopy groups for every 𝑛 ≥ 1 and every base point 𝑥 in 𝑋 ,

– the fibrations are the Serre fibrations, that is, the maps having the right lifting
properties with respect to the inclusions

𝐷𝑛 ↩→ 𝐷𝑛 × 𝐼
𝑥 ↦→ (𝑥, 0)

of disks into cylinders, for 𝑛 ≥ 1,
– the cofibrations are the maps having the left lifting property with respect to

maps that are both topological weak equivalences and Serre fibrations.

H.1.6 Example. Another motivating example of Quillen is the following model
category structure on the category ChZ,⩾0 of chain complexes (see §E.2.1):

– the weak equivalences are the quasi-isomorphisms (see §E.3.5),
– the cofibrations are the monomorphisms 𝑓 such that, for every 𝑛 ≥ 0, the

cokernel of 𝑓𝑛 is projective,
– the fibrations are the morphisms 𝑓 such that, for every 𝑛 > 0, 𝑓𝑛 is an

epimorphism.

H.1.7 Example. The category Cat of small categories can be endowed with
the so-called “folk” model category structure:

– the weak equivalences are the equivalences of categories,
– the cofibrations are the functors injective on objects,
– the fibrations are the iso-fibrations, that is, the functors 𝑓 : 𝐶 → 𝐷 such that

for every object 𝑥 of 𝐶 and any isomorphism 𝑣 : 𝑓 (𝑥) → 𝑦 of 𝐷, there exists
an isomorphism 𝑢 : 𝑥 → 𝑥′ in 𝐶 such that 𝑓 (𝑢) = 𝑣.
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H.1.8 Example. Chapters 19 to 21 are devoted to the construction of the
“folk” model category structure on the category Cat𝜔 of strict 𝜔-categories,
see Theorem 21.1.2.

H.1.9 Cofibrant and fibrant replacements. LetM be a model category. An
object 𝑋 ofM is said to be cofibrant if the unique morphism ∅ → 𝑋 from the
initial object ofM to 𝑋 is a cofibration. Dually, one says that the object 𝑋 is
fibrant if the unique morphism 𝑋 → ∗ from 𝑋 to the terminal object ofM is a
fibration.

If 𝑋 is an object ofM, a cofibrant replacement of 𝑋 is a cofibrant object𝑄𝑋
of M endowed with a weak equivalence 𝑄𝑋 → 𝑋 . It follows immediately
from the axioms of model categories that cofibrant replacements exist. Indeed,
to produce one, it suffices to factor the morphism ∅ → 𝑋 as a cofibration
followed by a trivial fibration. Dually, a fibrant replacement consists of a fibrant
object 𝑅𝑋 together with a weak equivalence 𝑋 → 𝑅𝑋 .

H.1.10 Combinatorial model categories. A model categoryM is said to be
combinatorial if

1. the underlying category ofM is locally presentable (see §G.2.3),
2. there exists sets 𝐼 and 𝐽 of morphisms ofM such that the class of cofibrations

ofM is 𝑙𝑟 (𝐼) and the class of trivial cofibrations ofM is 𝑙𝑟 (𝐽).
Sets 𝐼 and 𝐽 as in the definition are called generating cofibrations and generating
trivial cofibrations respectively.

H.1.11 Remark. To build a model category, one often starts with a class of
weak equivalences and sets 𝐼 and 𝐽 of candidates to be generators. This is what
we did in Chapters 19 to 21 to build the folk model structure on Cat𝜔 .

H.1.12 Example. The model category structure on ChZ,⩾0 defined in Exam-
ple H.1.6 can be proven to be combinatorial.

H.1.13 Example. The model category structure on Cat defined in Exam-
ple H.1.7 is combinatorial. The set 𝐼 can be taken to consist of the three
functors

∅ ↩→ ·, { · · } ↩→ { · // · }, { · !!
<< · } → { · // · },

and the set 𝐽 to the functor

{𝑥} ↩→ { 𝑥 ∼ // 𝑦 },
where the symbol ∼ denotes an isomorphism.
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H.1.14 Example. The folk model structure on Cat𝜔 is combinatorial. A set
of generating cofibrations is given by the inclusions of spheres into disks (this
is the set I of §19.2.1). It is harder to describe a set of generating trivial
cofibrations, see the set J of §20.4.7.

H.1.15 Remark. The model category structure on Top described in Exam-
ple H.1.5 is not combinatorial because Top is not locally presentable. Never-
theless, there exists sets 𝐼 and 𝐽 as in the second point of the definition. For
instance, one can take as 𝐼 the set of canonical inclusions of spheres into disks,
and as 𝐽 the set of inclusions of disks into cylinders as in the definition of Serre
fibrations. These sets 𝐼 and 𝐽 do not satisfy the assumptions of the statement
of the “small object argument” we gave (see Proposition 19.1.9). Nevertheless,
one can check that the argument still applies. One says that this model category
structure is cofibrantly generated.

H.2 The homotopy category

H.2.1 Localization. A localizer (also called relative category) is a category C
endowed with a classW of morphisms called weak equivalences. The homo-
topy category of a localizer (C,W) is the category C[W−1] obtained from C
by formally inverting arrows inW. More precisely, the category C[W−1] is
the universal category endowed with a functor 𝑝 : C → C[W−1] sending the
elements of W to isomorphisms. Universal means that for any category D
equipped with a functor 𝐹 : C → D sending the elements ofW to isomor-
phisms, there is a unique functor 𝐹 : C[W−1] → D making the triangle

C
𝑝

��

𝐹 // D

C[W−1]
𝐹

;;

commute. We will often denote the category C[W−1] by Ho(C), making
implicit the classW.

H.2.2 If (C,W) is a localizer with C a small category, then the category
C[W−1] can be described in the following way: the objects of C[W−1] are
the object of C and its morphisms are sequences of zigzags of morphisms of C

𝑓1 //
𝑓2oo

𝑓3oo
𝑓4 // · · · ,

𝑓𝑛
oo
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with all the backward morphisms inW, modded out by the smallest congruence
such that

𝑓1 //
𝑓2 // =

𝑓2◦ 𝑓1 // 𝑋
1𝑋 // 𝑋 = 1𝑋 𝑋

𝑓
// 𝑌 𝑋

𝑓
oo = 1𝑋

𝑓1oo
𝑓2oo =

𝑓1◦ 𝑓2oo 𝑋 𝑋
1𝑋oo = 1𝑋 𝑌 𝑋

𝑓
oo

𝑓
// 𝑌 = 1𝑌 .

With appropriate set-theoretic foundations, one can adapt this construction to
locally small categories, although the localization of a locally small category
is not locally small in general.

H.2.3 Homotopy category. Any model categoryM has an underlying local-
izer (M,W) and thus a homotopy category Ho(M).

One of the goal of the theory of model categories is to get a good under-
standing of the homotopy category Ho(M). In particular, it admits a simpler
description in terms of homotopies.

H.2.4 Homotopies. LetM a model category. A cylinder object for an object 𝐴
ofM is a factorization

𝐴 + 𝐴

𝑖
##

(1𝐴,1𝐴) // 𝐴

𝐼𝐴

𝑠

>>

of the codiagonal map 𝐴 + 𝐴 → 𝐴 as a cofibration 𝑖 followed by a weak
equivalence 𝑠. The components of the map 𝑖 are denoted 𝑖0, 𝑖1 : 𝐴 → 𝐼 𝐴.
Similarly, a path object for 𝐴 is a factorization

𝐴
(1𝐴,1𝐴) //

𝑟
  

𝐴 × 𝐴

𝐴𝐼
𝑝

<<

of the diagonal map 𝐴 → 𝐴 × 𝐴 as a weak equivalence 𝑟 followed by a
fibration 𝑝. The components of the map 𝑝 are denoted 𝑝0, 𝑝1 : 𝐴𝐼 → 𝐴.

Given morphisms 𝑓 , 𝑔 : 𝐴 → 𝐵 of M, a left homotopy from 𝑓 to 𝑔 is a
morphism ℎ : 𝐼 𝐴 → 𝐵, for some cylinder object 𝐼 𝐴 of 𝐴, such that ℎ𝑖0 = 𝑓

and ℎ𝑖1 = 𝑔. If such a homotopy exists, we say that 𝑓 and 𝑔 are left homotopic.
Dually, a right homotopy from 𝑓 to 𝑔 is a morphism 𝑘 : 𝐴→ 𝐵𝐼 , for some path
object 𝐵𝐼 of 𝐵, such that 𝑝0𝑘 = 𝑓 and 𝑝1𝑘 = 𝑔. If such a homotopy exists, we
say that 𝑓 and 𝑔 are right homotopic
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H.2.5 Proposition. LetM be a model category. In the full subcategoryMcf
ofM whose objects are both cofibrant and fibrant,

1. the relation “being left homotopic” coincides with the relation “being right
homotopic”,

2. the relation “being (left or right) homotopic” is a congruence.

H.2.6 Proposition. The homotopy category Ho(M) of a model categoryM
is equivalent to the category Mcf/∼ obtained from Mcf by quotienting the
morphisms by the relation “being (left or right) homotopic”.

In particular, the homotopy category of a model category is locally small.

H.3 Derived functors

H.3.1 Homotopical functors. Let (C,WC) and (D,WD) be two localizers.
A functor 𝐹 : C → D is said to be homotopical if it preserves weak equiv-
alences, that is, if it sends the weak equivalences of C to weak equivalences
of D. In this case, by the universal property of the localization, the functor 𝐹
induces a functor

𝐹 : Ho(C) → Ho(D)

making the square

C
𝑝C
��

𝐹 // D
𝑝D
��

Ho(C)
𝐹

// Ho(D)

commute.

If 𝐹 : C → D is not homotopical, there is in general no functor 𝐹 making the
above square commute. Nevertheless, one can seek for “best approximations”
to this situation:

H.3.2 Derived functors. Let (C,WC) and (D,WD) be two localizers and
let 𝐹 : C → D be a functor. The (total) left derived functor of 𝐹, if it exists, is
the universal pair consisting of a functor

L𝐹 : Ho(C) → Ho(D)
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and a natural transformation

C
𝑝C
��

𝐹 // D
𝑝D
��

Ho(C)
L𝐹
//

𝜆 5=

Ho(D).

This means that for every other functor 𝐺 : Ho(C) → Ho(D) and natural
transformation

C
𝑝C
��

𝐹 // D
𝑝D
��

Ho(C)
𝐺
//

𝛼 5=

Ho(D),

there exists a unique natural transformation 𝛾 : 𝐺 ⇒ L𝐹 such that 𝛼 factors
as 𝛼 = 𝜆 ◦ (𝛾 ∗ 𝑝C). By abuse of language, one often refers to L𝐹 as the left
derived functor of 𝐹.

Similarly, the (total) right derived functor of 𝐹, if it exists, is the universal
functor R𝐹 : Ho(C) → Ho(D) endowed with a natural transformation

C
𝑝C
��

𝐹 // D
𝑝D
��

Ho(C)
R𝐹
//

𝜌
u}

Ho(D).

H.3.3 Remark. If 𝐹 is homotopical, then 𝐹 (endowed with the identity natural
transformation) is both the left and the right derived functor of 𝐹.

One important use of model categories is to provide tools to prove the
existence of derived functors and to compute them.

H.3.4 Theorem. Let 𝐹 : M → N be a functor between model categories.
Suppose that 𝐹 sends trivial cofibrations between cofibrant objects to weak
equivalences. Then 𝐹 admits a left derived functor L𝐹 : Ho(M) → Ho(N).
Moreover, if 𝑋 is an object ofM, then L𝐹 (𝑝M (𝑋)) is canonically isomorphic
to 𝑝N (𝐹 (𝑄𝑋)), where 𝑄𝑋 is a cofibrant replacement of 𝑋 .

Similarly, if 𝐹 sends trivial fibrations between fibrant objects to weak equiv-
alences, then 𝐹 admits a right derived functor that can be computed using
fibrant replacements.

H.3.5 Quillen pairs. LetM and N be two model categories and let

𝐹 :M ⇄ N : 𝐺
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be an adjunction. One says that (𝐹, 𝐺) is a Quillen pair or a Quillen adjunction
if 𝐹 preserves cofibrations and trivial cofibrations. This is equivalent to asking
that 𝐺 preserves fibrations and trivial fibrations. In this case, one also says
that 𝐹 is a left Quillen functor and that 𝐺 is a right Quillen functor. Using the
previous proposition, one can show that left Quillen functors admit left derived
functors and right Quillen functors admit right derived functors.

H.3.6 Theorem. If
𝐹 :M ⇄ N : 𝐺

is a Quillen pair, then

L𝐹 : Ho(M) ⇄ Ho(N) : R𝐺

is an adjunction.

H.3.7 Quillen equivalences. Let

𝐹 :M ⇄ N : 𝐺

be a Quillen pair. One says that (𝐹, 𝐺) is a Quillen equivalence if the adjunction

L𝐹 : Ho(C) ⇄ Ho(D) : R𝐺

is an adjoint equivalence.

H.3.8 Proposition. Let
𝐹 :M ⇄ N : 𝐺

be a Quillen pair. The following assertions are equivalent:

1. (𝐹, 𝐺) is a Quillen equivalence,
2. for every cofibrant object 𝑋 of M and every fibrant object 𝑌 of N , a

morphism 𝐹𝑋 → 𝑌 in N is a weak equivalence if and only if the adjoint
morphism 𝑋 → 𝐺𝑌 inM is a weak equivalence.
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Index of notations

□ cubical category, 585
Δ simplicial category, 613
Δ+ augmented simplicial category, 71, 514, 537
Δ𝜂 category of injective non-decreasing functions, 536
Δ𝜇 category of surjective non-decreasing functions, 536
𝜆(𝐶) augmented directed complex associated to an 𝜔-category 𝐶,

374
𝜇(𝐾) 𝜔-category associated to a chain complex 𝐾 , 375
𝜈(𝐾) 𝜔-category associated to an augmented directed complex, 376
𝐴𝑛 alternating group, 502
Ab category of abelian groups, 204
ADC category of augmented directed complexes, 374
Alg category of algebras, 145, 394
Alg𝑛 category of 𝑛-algebras, 394
B booleans, 496
B category of braids, 532
B+ category of positive braids, 531
𝐵𝑛 braid group, 502
𝐵+𝑛 braid monoid, 502
Bimod(𝐴) category of bimodules over an algebra 𝐴, 395
𝐶𝑛 Chinese monoid, 507
𝐶ℎ𝑛 Chinese monoid, 529
Cart category of cartesian categories, 295
Cart2 category of cartesian 2-categories, 313
CAT category of possibly large categories, 335
Cat𝑛 category of 𝑛-categories, 320
Cat𝑛,𝑝 category of (𝑛, 𝑝)-categories, 333
Cat𝜔 category of 𝜔-categories, 320
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Cat+𝑛 category of 𝑛-categories with a cellular extension, 335
Ch𝑅 category of chain complexes of 𝑅-modules, 606
Ch𝑅,⩾0 category of positive chain complexes of 𝑅-modules, 606
Circ category of circuits, 579
Corel category of corelations, 556
Cospan(𝐶) category of cospans in a category 𝐶, 74
Cub𝑛 polygraphic 𝑛-cube, 372, 383
Cyl𝑛 polygraphic 𝑛-cylinder, 371, 383
𝐷𝑛 dihedral group, 506
F category of functions, 296, 538
F𝜂 category of injective functions, 538
F𝜀 category of partial functions, 539
𝐹 (𝑃) free 𝜔-category on a polygraph 𝑃, 337
FP𝑛 homological type, 212
𝐺 (𝐶) standard resolution of an 𝜔-category 𝐶, 340
Glob𝑛 category of 𝑛-globular sets, 318
Glob𝜔 category of globular sets, 318
Gpd𝑛 category of 𝑛-groupoids, 333
gVect category of graded vector spaces, 161
Law category of Lawvere theories, 296
LinRelk category of linear relations, 558
M𝑅 category of matrices with coefficients in 𝑅, 545
Mag𝑛 category of 𝑛-magmas, 393
Mod(𝐶) category of modules over a category 𝐶, 614
Mod(𝑆) category of models of a sketch 𝑆, 620
Mod𝑅 category of 𝑅-modules, 603
Mon category of monoids, 495
Mon(B) category of monads in a bicategory B, 73
MonCat category of monoidal categories, 309, 548
MRel category of multirelations, 545
N natural numbers, 496
𝑁 nerve functor, 614
Nat(𝐶,Ab) category of natural systems, 205, 616
O category of globes, 318
O(𝑛) category of globes of dimension ≤ 𝑛, 318, 514
O𝑛 𝑛-globe (as a globular set), 319
O𝑛 𝑛-globe (as an 𝜔-category), 326
O𝑛 𝑛-th oriental, 373, 380
𝜕O𝑛 𝑛-sphere (as a globular set), 319
𝜕O𝑛 𝑛-sphere (as an 𝜔-category), 326
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Ord 2-category of posets, 258
P powerset, 498
𝑃𝑛 plactic monoid, 507, 526
𝑃∗ 𝜔-category generated by a polygraph 𝑃, 341
𝑃⊤ (𝑛, 𝑝)-category generated by an (𝑛, 𝑝)-polygraph, 344
𝑃

steps
𝑛 set of rewriting steps of a polygraph 𝑃, 363
𝑃⩽1 underlying 1-polygraph of a 2-polygraph, 44
𝑃⩽𝑘 underlying 𝑘-polygraph of a polygraph, 338
Pol1 category of 1-polygraphs, 22
Pol2 category of 2-polygraphs, 45
Pol3 category of 3-polygraphs, 231
Pol𝑛 category of 𝑛-polygraphs, 337
Pol𝑛,𝑝 category of (𝑛, 𝑝)-polygraphs, 343
Pol𝜔 category of 𝜔-polygraphs, 340
Rel category of relations, 548
S category of permutations, 244, 532
𝑆𝑛 symmetric group, 501
𝑆𝑘 Squier monoid, 201
Span(𝐶) bicategory of spans in a category 𝐶, 72
Span(𝐶) category of spans in a category 𝐶, 74
Sph(𝐶) 2-spheres in a 2-category 𝐶, 168
supp (𝑥) support of a cell 𝑥, 145, 352, 377
Tang category of tangles, 570
Top category of topological spaces, 628
𝑈𝑚 truncation functor for 𝜔-categories, 324
𝑈𝑚 truncation functor for 𝜔-polygraphs, 340
𝑈𝑛𝑚 truncation functor for 𝑛-categories, 324
𝑉 forgetful functor from 𝜔-categories to globular sets, 325
Vectk category of vector spaces, 145
𝑉𝑛 forgetful functor from 𝑛-categories to 𝑛-globular sets, 325



Index of terminology

0-polygraph, 23
1-graph, 24
1-polygraph, 23

linear, 147
2-algebra, 191
2-category, 53, 87
2-functor, 54
2-graph, 52
2-groupoid, 61
2-loop, 207
2-out-of-3 property, 419, 628
2-polygraph

linear, 191
2-sphere, 170
(2, 0)-category, 61
(2, 1)-category, 59
3-PRO, 282
3-PROP, 282
3-category, 174
3-monoid, 282
3-polygraph, 230
(3, 1)-category, 175
(3, 1)-polygraph, 173
(4, 2)-polygraph, 269
𝑛-category, 322
𝑛-globular set, 321
𝑛-groupoid, 335
𝑛-polygraph, 339
(𝑛, 𝑝)-category, 335
(𝑛, 𝑝)-polygraph, 345
𝜔-category, 322

cofibration, 407
fibration, 440
join, 386
of cylinders, 424

reversible, 428

Steiner, 381
strong Steiner, 381
tensor product, 384
trivial fibration, 407

𝜔-equivalence, 417
of cells, 415

𝜔-functor, 323
𝜔-groupoid, 335
𝜔-polygraph, 342
(𝜔, 1)-polygraph

abelianization, 480
(𝜔, 𝑝)-category, 335
abelianization, 461

of an (𝜔, 1)-polygraph, 480
abstract rewriting system, 30

of a 2-polygraph, 88
of a 3-polygraph, 235
of a term rewriting system, 305
of an 𝑛-polygraph, 366

action
of a monoid

on a category, 518
on a commutative monoid, 102

acyclic
chain complex, 608
extension, 171

ADC (augmented directed complex), 376
adjunction, 564

Quillen, 464, 635
admissible rule, 596
algebra, 147

2-, 191
free, 147
Frobenius, 555
graded, 163
Hopf, 551
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interchange, 561
of a 3-PRO, 282
Weyl, 151, 159

algebraic theory, 626
algorithm

Buchberger, 164
critical branching, 97
normal form, 37, 90

alternating group, 504
Artin

monoid, 508, 520
presentation, 520

coherent, 523
aspherical

3-PRO, 284
associative

algebra, 147
atom, 600

of an augmented directed complex, 380
augmented chain complex, 376
augmented directed complex, 376

atom, 380
basis, 379
loop-free, 380
strongly loop-free, 380
unital, 380

augmented simplicial category, 539, 585
autonomous category, 565
balanced category, 577
basis

augmented directed complex, 379
Gröbner, 162
PBW, 163

Baumslag–Solitar monoid, 500
bialgebra, 548

special, 550
bicategory, 58
bicyclic monoid, 77, 500
bimodule, 79, 102

globular, 397
bimonoid, 548
Birkhoff theorem, 302
boolean, 498
bottom-incomplete 𝑛-cylinder, 429
braid

category, 533
group, 504
groupoid, 534
monoid, 120, 142

braided
monoid, 542

monoidal category, 293, 535
branching, 34, 89, 155, 236, 305

confluent, 89, 236
critical, 94, 306
local, 89, 236
minimal, 94
orthogonal, 93, 367
overlapping, 94, 367
Peiffer, 93
triple, 188
trivial, 93, 367

Brauer
category, 569
monoid, 513

Buchberger algorithm, 164
Burau representation, 534
calculus of fractions, 113
canonical form, 106
canonical presentation, 51, 233
canonical resolution, 410
cartesian

category, 297
polygraph, 314

categorical stretching, 396
category
(2, 0)-, 61
(2, 1)-, 59
3-, 174
(3, 1)-, 175
𝑛-, 322
(𝑛, 𝑝)-, 335
𝜔-, 322
(𝜔, 𝑝)-, 335
autonomous, 565
balanced, 577
braided monoidal, 535
Brauer, 569
cartesian, 297
compact closed, 565
composite, 70
globe, 516
homology, 616
homotopy, 632
locally presentable, 625
monoidal, 58

strict, 57
of braids, 534
of contexts, 262
of factorizations, 206, 617
of matrices, 547
of permutations, 246, 534
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of positive braids, 533
pivotal, 565
rigid, 565
simplicial, 73, 107, 240, 245, 516, 615
sketchable, 622
Temperley-Lieb, 568
Thompson, 562
traced, 583

cell, 320
𝜔-equivalence, 415
invertible, 334
reversible, 413

cellular extension, 61, 170, 336
for factorization systems, 406
of an algebra, 191

chain complex, 607
acyclic, 608
homotopy, 609
model structure, 464

chain homotopy, 609
Chinese monoid, 509, 531
chord diagram, 569
Church-Rosser property, 33
cobordism, 559
coequalizer, 66
cofibrant

2-category, 177
object, 448
replacement, 177, 631

cofibration, 447, 629
generating, 631
of 𝜔-categories, 407
trivial, 447, 629

coherence
for algebras over a 3-PRO, 284

coherent
2-polygraph, 61
(3, 1)-polygraph, 175
(4, 2)-polygraph, 270
completion, 186
completion-reduction, 189
confluence, 61
presentation, 175

of a cartesian category, 316
collapsible

generator, 183
part, 187

column
presentation, 528

column presentation
coherent, 529

combinatorial model category, 448, 631
combinatory logic, 300
comonoid, 309, 542
compact closed category, 565
completion, 134, 238, 307

coherent, 186
composable cells, 322, 596
concatenation, 43
cone

inductive, 621
limit, 621
projective, 621

configuration space, 505
confluence, 34, 156

coherent, 61, 178
congruence

on a 2-category, 170
on a cartesian 2-category, 316
on a category, 47
on a Lawvere theory, 299
on a set, 25

connection, 589
context, 85, 234, 262, 304, 363, 601

thin, 363
contracting homotopy, 609
contraction, 474
convergence, 36

coherent, 178
coproduct, 65

of monoids, 500
corelation, 558
cospan, 75
Coxeter group, 508, 519
critical

branching, 94, 306
𝑛-, 476
triple, 188

critical branching
algorithm, 97

cubes (as polygraphs), 374, 385
cubical category, 587
cyclic monoid, 498
cylinder, 514

bottom-incomplete, 429
in an 𝜔-category, 421
object, 633
reversible, 428
top-incomplete, 430

cylinders (as polygraphs), 373, 385
decidability

of equality, 37, 89, 122
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decreasing
diagram, 40

deglex order, 101
derivation, 102, 263
derived functor, 634
diagram, 55
diamond lemma, 165
dictionary order, 101
dihedral group, 508
dimension, 596
directed acyclic graph, 578
directed path, 43
distributive law, 69

iterated, 77, 545
of categories, 81
of Lawvere theories, 301
of monads, 75, 543
of monoidal categories, 253

division lemma, 415
divisor, 351
dual, 565
duality, 565
Dyck word, 500
endomorphism, 575
enveloping

group, 501
equivalence

Quillen, 636
Tietze, 26, 124, 182, 231

essentially algebraic theory, 626
exact sequence, 605, 608
extended presentation, 175, 191
extension

acyclic, 171
factorization, 515
factorization system, 79

monoidal, 253
strict, 68
weak, 403

factorizations, 617
FDT (finite derivation type), 201, 270
FDT𝑛 (finite 𝑛-derivation type), 489
FDT∞ (finite∞-derivation type), 489
FDTab (abelian finite derivation type), 208,

494
fibrant

object, 448, 631
fibration, 447, 629

of 𝜔-categories, 440
trivial, 407, 447, 629

of 𝜔-categories, 407

filtered diagram, 625
finite

1-polygraph, 24
finite derivation type

1-category, 201
2-category, 270
2-polygraph, 201
3-polygraph, 270
𝑛-, 489
𝑛-category, 367
𝑛-polygraph, 367
∞-, 489
abelian, 208, 494

finite homological type, 619, 620
finitely

generated module, 606
presentable object, 403

folk model structure, 446
FP𝑛, 214, 489
free

1-category, 43
2-category, 55, 88
(2, 0)-category, 61
(2, 1)-category, 59
(3, 1)-category, 175
𝑛-category, 596
𝜔-category, 343
algebra, 147
braided monoidal category, 536
cartesian (2, 1)-category, 315
cartesian category, 543
category, 51
commutative monoid, 499
compact category, 566
groupoid, 44, 67
Lawvere theory, 298
module, 213, 605
monoid, 499
monoidal category, 552
natural system, 480
PROP, 290
symmetric monoidal category, 584

free product, 500
Frobenius algebra, 555
functor
𝜔-, 323
derived, 634
homotopical, 634
left derived, 463
Quillen, 463, 635
truncation, 326
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functorial interpretation, 259
Garside presentation, 521
generated

subcategory, 140
generator, 23, 24
𝑛-, 340
collapsible, 183

globe, 321, 328, 516
category of, 320

globular bimodule, 397
globular set, 320

2-, 52
𝑛-, 321

graded algebra, 163
graph, 24, 513

2-, 52
Gray tensor product, 384
group, 300

alternating, 504
Artin, 508
braid, 504
Coxeter, 508, 519
dihedral, 508
enveloping, 501
hyperoctahedral, 507
of progressive ribbons, 507
symmetric, 138, 503
Thompson, 510, 562

groupoid, 44
2-, 61
𝑛-, 335
𝜔-, 335

Gröbner basis, 162
homogeneous

algebra, 163
homological

finiteness condition, 220
left-FP𝑛, 214
syzygy, 482
type FP𝑛, 489

homology
group, 215
of a chain complex, 608
of categories, 616

with coefficients, 618
of monoids, 613
of simplicial sets, 615
polygraphic, 465

homotopical
functor, 634
reduction, 187

homotopy, 633
basis, 171
category, 463, 632
contracting, 609
equivalence, 611
relation, 171

Hopf algebra, 551
HSP theorem, 302
hyperoctahedral

category, 576
group, 507

icon, 61
idempotent, 562
identity among relations, 207
immersion

of 𝜔-categories, 441
strong, 451

indeterminate, 363
indexed polygraph, 252
inference rule, 593

admissible, 596
initial category, 65
integer, 501
interaction

combinator, 584
net, 584

interchange
algebra, 561
bialgebra, 562

interval, 514
inverse, 334

weak, 414
invertible cell, 334
isomorphism

walking, 50, 105
iterated monoidal category, 561
join of 𝜔-category, 386
joinability, 33
judgment, 593
knot, 574
Knuth-Bendix completion, 134, 238, 307
labeling, 39
Lawvere theory, 298

2-, 315
leading

coefficient, 154
monomial, 154
term, 154

left derived functor, 463
left lifting property, 402
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left Quillen functor, 463
left-FP𝑛, 214
Lehmer code, 250
lemma

diamond, 165
division, 415
Newman, 35
retract, 406
Schanuel, 612
transport, 430

length, 43, 85, 99
lexicographic

maximum measure, 39
order, 100
product, 100

lift, 402, 629
lifting property, 402, 629
linear

1-polygraph, 147
2-polygraph, 191
𝑛-polygraph, 396

linear non-linear term, 546
link, 574
local branching, 89, 236
localization, 68, 632
localizer, 463, 632
locally decreasing

1-polygraph, 40
locally presentable category, 625
loop

2-, 207
loop-free

augmented directed complex, 380
polygraph, 381

matrix, 547
model

of a 1-polygraph, 49
of a 2-category, 231
of a Lawvere theory, 300
of an essentially algebraic theory, 627

model (of a sketch), 622
model category, 447, 629

combinatorial, 448, 631
model structure

folk, 446
on chain complexes, 464
projective, 464

module, 604
finitely generated, 606
free, 605
of a category, 616

projective, 606
tensor product, 613
trivial, 214

molecule, 600
monad, 75, 232, 543

finitary, 302
monoid, 48, 75, 232, 306, 497

3-, 282
action, 553
Artin, 508, 520
Baumslag–Solitar, 500
bicyclic, 77, 500
boolean, 498
braid, 142, 504
braided, 542
Brauer, 513
Chinese, 509, 531
coproduct, 500
cyclic, 498
free, 499

commutative, 499
homology, 613
of integers, 501
of natural numbers, 498
partially commutative, 499
plactic, 509, 527
powerset, 500
product, 500
ring, 213
Squier, 203
Sylvester, 509
symmetric, 542
Temperley-Lieb, 512
Thompson, 510
Tseitin, 513
Wirtinger, 511

monoidal category, 58, 286
braided, 293, 535
iterated, 561
strict, 57
symmetric, 288, 291, 535

monomial
1-polygraph, 152
order, 154

multirelation, 547
multiset, 38, 499, 599
multisupport, 599
natural number, 498
natural system, 206, 262, 617

free, 480
nerve, 616
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Newman’s lemma, 35
coherent, 62

Nielsen transformation, 183
noetherian

1-polygraph, 31
category, 120

normal form, 30, 153
algorithm, 37, 90

normalization strategy, 217
normalizing

1-polygraph, 31
occurrence, 303

of a 2-generator, 234
oplax

transformation, 426
reversible, 429

order
deglex, 101
lexicographic, 100
monomial, 154
reduction, 98, 257, 307
rewrite, 154
termination, 99, 257

oriental, 375, 382
orthogonal branching, 93, 367
overlapping branching, 94, 367
parallel

1-cells, 45
2-cells, 128
3-cells, 270
𝑛-cells, 320
morphisms, 98

partially commutative monoid, 499
path

non-directed, 44
object, 451
rewriting, 30

path object, 633
PBW basis, 163
pearl, 277
Peiffer branching, 93
perl, 578
permutation, 48, 246, 503, 534
pivotal category, 565
plactic

congruence, 528
monoid, 527

plactic monoid, 509
polygraph

0-, 23
1-, 23

2-, 46
3-, 230
(3, 1)-, 173
(4, 2)-, 269
𝑛-, 339
(𝑛, 𝑝)-, 345
𝜔-, 342
(𝜔, 𝑝)-, 346
cartesian, 314
Church-Rosser, 33
coherent, 61
confluent, 34
finite, 361
indexed, 252
labeled, 39
linear, 147, 396
locally decreasing, 40
loop-free, 381
monomial, 152
normalizing, 31
of bialgebras, 548
of braids, 534
of commutative monoids, 540
of Frobenius algebras, 555
of Hopf algebras, 551
of monoids, 231, 232, 260, 284, 539
of pearls, 277, 578
of permutations, 246, 261, 267, 275, 290,

534
reduced, 128
relative, 407, 408
strongly loop-free, 381
terminating, 31

polygraphic
homology, 465
resolution, 409

of an (𝜔, 1)-category, 473
Squier, 477

poset, 580
positive chains of an augmented directed

complex, 376
powerset, 500
presentable object, 625
presentation

Artin, 520
coherent, 523

canonical, 51, 233
coherent, 175, 316
column, 528

coherent, 529
extended, 175, 191
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Garside, 521
minimal, 28
of a 2-category, 244
of a 2-category, 231
of a (3, 2)-PRO, 284
of a (3, 2)-PROP, 291
of a category, 47
of a group, 501
of a monoid, 48
of a PROP, 290
of a set, 25
of an algebra, 150
reduced, 161
residuated, 114
standard, 51, 106, 181, 233

coherent, 181, 198
reduced, 129

Wirtinger, 511
presimplicial

set, 585
PRO, 57

3-, 282
procedure

coherent
completion, 186
completion-reduction, 189

completion, 134, 238, 307
coherent, 186

product, 67
lexicographic, 100
of monoids, 500

profunctor, 80
progressive ribbon, 577

group, 507
projective

model structure, 464
module, 606
resolution, 214, 610

PROP, 289
3-, 282

pushout, 66
quasi-

convergence, 33
isomorphism, 611
normal form, 33
termination, 33

Quillen
adjunction, 464, 635
equivalence, 636
functor, 463, 635

left, 463

right, 463
pair, 464, 635

quotient
2-category, 171
𝑛-category, 339
category, 47

reduced
2-polygraph, 128
presentation, 161

reducible, 85
reduction

function, 99
homotopical, 187
order, 98, 257, 307
Tietze, 130

regular cardinal, 625
Reidemester-Fox Jacobian, 217
relation, 24, 550

linear, 560
relative

category, 463
polygraph, 407

relative polygraph, 408
residuated presentation, 114
residuation structure, 111
resolution, 214

canonical, 410
of a module, 610
polygraphic, 409
projective, 610

retract, 514, 629
lemma, 406

reversible
cell, 413
cylinder, 428
oplax transformation, 429

reversion, 590
rewriting

order, 154
path, 85, 366

length, 85
rule, 30, 84, 365
step, 30, 85, 152, 235, 305
system

abstract, 30
string, 84
terminating, 305

ribbon, 574
progressive, 577

right lifting property, 402
right Quillen functor, 463
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rigid category, 565
Schanuel’s lemma, 612
self-dual, 565
sesquicategory, 86
signature, 295
simplicial

category, 73, 107, 240, 245, 516, 539, 585,
615

set, 585, 615
homology, 615

size, 149, 234
sketch, 622

inductive, 622
projective, 622

small object argument, 404, 406
source, 320

of an 𝑛-cell, 320
span, 74
𝑛-, 515
category of, 76

special bialgebra, 550
sphere, 321, 328

2-, 170
Squier

completion, 185, 272
monoid, 203
theorem, 180, 368

for 1-polygraphs, 64
for cartesian polygraphs, 316
for linear polygraphs, 196
homological, 220

standard
polygraphic resolution

reduced, 483
presentation, 51, 106, 181, 233

coherent, 181
reduced, 129

Steiner
𝜔-category, 381
complex, 381

strong, 381
strict pullback, 389
string diagram, 55

empty, 57
string rewriting system, 84
strong Steiner
𝜔-category, 381
complex, 381

strongly loop-free
augmented directed complex, 380
polygraph, 381

structure, 302
subcategory

generated, 140
subpolygraph, 354
substitution, 296, 363
support, 147, 354, 379

multiset, 599
of a 2-cell, 86

Sylvester monoid, 509
symmetric

category, 534
cubical category, 588
group, 48, 138, 503
monoid, 542
monoidal category, 288, 291, 535

symmetry, 289, 537
Tamari lattice, 539
tangle, 571
target

of an 𝑛-cell, 320
Temperley-Lieb

algebra, 512
category, 568
monoid, 512

tensor product
of modules, 613

tensor product of 𝜔-categories, 384
term, 296

rewriting system, 299
terminal category, 67
terminating

1-polygraph, 31
termination, 31, 305

order, 99, 257
theory

algebraic, 626
essentially algebraic, 626
of groups, 300
of monoids, 306

thin context, 363
Thomason homology, 470
Thompson

category, 562
group, 510, 562
monoid, 510

Tietze
equivalence

of 1-polygraphs, 26
of 2-polygraphs, 124
of 3-polygraphs, 231
of (3, 1)-polygraphs, 182
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expansion, 28
invariance, 201
reduction, 28, 130
transformation

backward, 27
of 1-polygraph, 25
of 2-polygraphs, 124
of (3, 1)-polygraphs, 182
of term rewriting systems, 301

top-incomplete 𝑛-cylinder, 430
topological quantum field theory, 559
trace, 565
traced category, 583
transfer theorem, 172
transformation

Nielsen, 183
oplax, 426
Tietze, 25, 124, 182, 301

transport lemma, 430
triple branching, 188
trivial branching, 93, 367
trivial cofibration, 447, 629
trivial fibration, 447, 629

of 𝜔-categories, 407
trivial module, 214
truncation functor, 326
Tseitin monoid, 513
twist, 577

underlying
1-polygraph, 43
2-polygraph, 230
𝑛-polygraph, 340

unital augmented directed complex, 380
unital section, 473
universality of convergent rewriting, 142

variable, 296

weak equivalence, 447, 463, 629
weak factorization system, 403
weak inverse, 414
well-bracketed word, 500
well-founded

1-polygraph, 31
induction, 32

Weyl algebra, 151, 159
whisker, 85
Wirtinger monoid, 511
word problem

for 1-polygraphs, 37
for 2-polygraphs, 89
for 𝑛-polygraphs, 599

Yang-Baxter relation, 289, 533
ZW-calculus, 590
ZX-calculus, 590
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