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ABSTRACT: Asymmetric insertion of an arylvinylcarbenoid into
the C−H bond for direct enantioselective C(sp2)-H functionaliza-
tion of aniline derivatives catalyzed by a rhodium(I)-diene complex
was developed for the first time. The reaction occurred exclusively
at the uncommon vinyl terminus site with excellent E selectivity
and enantioselectivities, providing various chiral γ,γ-gem-diaryl-
substituted α,β-unsaturated esters with broad functional group
compatibility under simple and mild conditions. It provides a rare
example of the asymmetric C−H insertion of arenes with selective
vinylogous reactivity. Synthesis applications of this protocol were featured by several versatile product transformations. Systematic
DFT calculations were also performed to elucidate the reaction mechanism and origin of the uncommon enantio- and
regioselectivity of the Rh(I)-catalyzed C(sp2)-H functionalization reaction. The measured and computed inverse deuterium kinetic
isotope effect supports the C−C bond-formation step as the rate-determining step. Attractive interactions between the chiral ligand
and substrates were also proposed to control the enantioselectivity.

■ INTRODUCTION
Direct C−H functionalization is one of the most important
and promising subjects in synthetic chemistry. Among them,
transition-metal-catalyzed carbene or nitrene insertion repre-
sents an efficient and powerful approach to C−H functional-
ization.1 Notably, the past decade has witnessed considerable
developments of asymmetric C−H insertion with various
metal-carbene precursors by different groups. In particular, a
remarkable breakthrough in asymmetric C(sp3)−H insertion
has been made by the Davies group in recent years.2 However,
the achievement of asymmetric C(sp2)−H insertion is not
completely satisfactory. Despite some examples of asymmetric
C−H insertion of electron-rich heteroarenes catalyzed by
Rh(II)/Fe(II)/Pd(II)/Cu(I) carbene complexes,3 such func-
tionalization of less-reactive arenes by diazo compounds in an
enantioselective manner has been underexplored. A notable
exception is the Rh(II)-catalyzed enantioselective arylation of
α-aryl-α-diazoacetates with aniline derivatives by using a chiral
spiro phosphoric acid ligand as a cocatalyst reported by Zhou
and Zhu in 2015.4 Meanwhile, the Hu,5 Zhou,6a and Zhang6b,c

groups also realized the asymmetric C(sp2)−H insertion of
arenes independently by trapping zwitterionic intermediates
generated from reactions of aryldiazoacetates and arenes with
chiral electrophiles. Despite recent elegant progress, metal-
carbene-mediated enantioselective direct intermolecular C-
(sp2)−H functionalization remains elusive and is largely
limited to aryldiazoacetates.
Vinyldiazoacetates are unique and versatile carbene

precursors because they form vinylcarbenoid intermediates
upon treatment with transition metals.7 In these metal-carbene

complexes, electrophilic reactivity is intriguingly displayed at
both the carbenoid and vinylogous positions (Scheme 1a).
However, it is quite challenging to achieve sole addition at the
vinyl terminus due to the intrinsically higher reactivity of the
carbenoid site.7c−e,8 Moreover, it could be difficult to achieve
exclusive Z or E stereoselectivity as the reaction of substituted
vinylcarbenoids is often accompanied by a Z/E configurational
change in the CC bond.7c−e In the seminal work by Davies,9

vinylogous selectivity was formally achieved in the reaction
with 1,2-dihydronaphthalenes and related cycloalkenes via a
combined C−H functionalization/Cope rearrangement path-
way in which the initial C−H functionalization step proceeds
at the carbene site. Therefore, direct control of vinylogous
reactivity as well as achieving both high Z/E selectivity and
high enantioselectivity at the same time is synthetically
challenging with substituted vinylcarbenoids,8g,10 which has
been underdeveloped. Despite many efforts in developing
various transition-metal catalysts such as Mo,7c Ru(I),7d

Ag(I),7e,8d−g Cu(I)/(II),8a8g and Rh(II)8a−c complexes to
enhance vinylogous reactivity, challenging asymmetric variants
of such chemistry for arylvinylcarbenoids remain unexplored
(Scheme 1a).
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Recently, our laboratory has developed a series of C1-
symmetrical chira l dienes11 based on Hayashi ’s
biocyclo[2.2.2]octadiene framework and successfully employed
them in Rh(I)-carbene-mediated asymmetric B−H and Si−H
insertion.12 On the basis of these studies and inspired by the
great versatility of the Rh(I) carbenoid, we became interested
in exploring the asymmetric C−H functionlization of aniline
derivatives with arylvinyldiazoacetate through the Rh(I)-
carbene strategy. Herein, we report a rhodium(I)-catalyzed
regiospecific and direct enantioselective arylvinyldiazoacetate
insertion of the C−H bond of aniline derivatives for the first
time (Scheme 1b). This reaction occurred exclusively at the
vinyl terminus site with sole E selectivity and high
enantioselectivity to deliver chiral γ,γ-diaryl-α,β-unsaturated
esters bearing a gem-diaryl carbon stereocenter.

■ RESULTS AND DISCUSSION
On the basis of our previous work,12 we commenced our study
by using [Rh(C2H4)2Cl]2 as the precatalyst (1.5 mol %) with
C1-symmetric chiral diene L1 as the ligand (3.3 mol %) for the
reaction of styryldiazoacetate 1 with 1-(3-methoxyphenyl)-
pyrrolidine (2a). Pleasingly, the arylation reaction took place
preferentially at the vinylogous site, and 2,6-dichlorophenyl
styryldiazoacetate 1a was found to be the most efficient
substrate (details in the SI), providing corresponding product
E-3a in 98% yield with promising enantioselectivity (91% ee,
Table 1, entry 1). Unlike the previously reported Mo-, Ru(I)-,
Ag(I)-, or Rh(II)-catalyzed vinylogous transformations with a
mixture of E/Z products obtained,7c−e the Z isomer was not
observed in this system. To further improve the enantiose-
lectivity, a series of chiral diene ligands with different steric and
electronic properties were examined (entries 2−9). However,
no better results were obtained, except that L8 exhibited the
same performance (entry 8). A solvent screening revealed that
chlorinated solvents were superior to the other solvents
(entries 10−14). Changing CH2Cl2 to CHCl3 resulted in a
slightly improved enantioselectivity (93% ee), but the yield
decreased to 84% (entry 11). To our delight, the yield can be
improved to 96% when 5 mol % MgBr2·Et2O was added (entry
15). With the preprepared Rh(I)/diene (L1) complex, the
reaction gave the best results (97% yield and 94% ee) (entry

16). Moreover, almost no product was observed in the absence
of chiral diene ligands (entry 17). A byproduct (4) was also
isolated in 13% yield, when [Rh(COD)Cl]2 was used as a
catalyst (entry 18). These experimental results suggest that our
chiral diene ligand plays an essential role in the reaction. To
understand whether other transition metals, which were
commonly used to decompose diazo compounds, are also
suitable catalysts for this reaction, we then examined the
reaction with Rh2(OAc)4, AgOTf, and CuCl (entries 19−21).
Interestingly, the use of Rh2(OAc)4 resulted in a very
complicated reaction mixture with at least six different
byproducts. AgOTf gave only a trace amount of the product.
In the presence of CuCl, 30% yield of product was obtained.
Therefore, in contrast to Rh(II), Ag(I), and Cu(I), the Rh(I)/
diene catalyst was proved to be highly beneficial for the
vinylogous C−C bond formation with high catalytic efficiency
and excellent regio- and enantioselectivity.
With the optimized conditions in hand, we set out to

investigate the scope of the vinyldiazo substrates (Scheme 2).
Gratifyingly, various vinyldiazoacetates with different aromatic
groups substituted at the vinyl terminus were all efficiently
reacted with 1-(3-methoxyphenyl)pyrrolidine (2a) and gave
the desired products in high yields (89−99%) with excellent
enantioselectivities (90−95% ee). Generally, arylvinyldiazo-

Scheme 1. General Characteristic of Arylvinylcarbenoids
and the Current Challenges

Table 1. Optimization of Reaction Conditions

entrya catalyst solvent yield (%)b ee (%)c

1 [Rh(C2H4)2Cl]2, L1 DCM 98 91
2 [Rh(C2H4)2Cl]2, L2 DCM 39 85
3 [Rh(C2H4)2Cl]2, L3 DCM 35 81
4 [Rh(C2H4)2Cl]2, L4 DCM 89 89
5 [Rh(C2H4)2Cl]2, L5 DCM 22 78
6 [Rh(C2H4)2Cl]2, L6 DCM 39 85
7 [Rh(C2H4)2Cl]2, L7 DCM 16 79
8 [Rh(C2H4)2Cl]2, L8 DCM 98 91
9 [Rh(C2H4)2Cl]2, L9 DCM 48 82
10 [Rh(C2H4)2Cl]2, L1 DCE 97 91
11 [Rh(C2H4)2Cl]2, L1 CHCl3 84 93
12 [Rh(C2H4)2Cl]2, L1 toluene 15 81
13 [Rh(C2H4)2Cl]2, L1 THF 16 90
14 [Rh(C2H4)2Cl]2, L1 Et2O 24 81
15d [Rh(C2H4)2Cl]2, L1 CHCl3 96 93
16d [Rh(L1)Cl]2 CHCl3 97 94
17 [Rh(C2H4)2Cl]2 CHCl3
18 [Rh(COD)Cl]2 CHCl3 65
19 Rh2(OAc)4 CHCl3 complex
20 AgOTf CHCl3 trace
21 CuCl CHCl3 30

aReactions were performed with 1a (0.2 mmol) and 2a (0.4 mmol) in
the presence of 1.5 mol % [Rh(C2H4)2Cl]2 and 3.3 mol % ligand in
solvent (4.0 mL) at rt for 6 h. bIsolated yield. cDetermined by chiral
HPLC. dMgBr2·Et2O (5 mol %) was added.
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acetates with electron-withdrawing substituents on the
benzene ring gave slightly higher enantioselectivities than
those with electron-donating substituents (3b, 3e, 3h, 3i, and
3j vs 3c, 3d, 3f, 3g, 3k, and 3l). It is noteworthy that aryl (Ar)
could be a heteroaromatic substituent such as thienyl or furyl
(3n, 3o, or 3p).
Next, the scope of aniline substrates was assessed under

optimal conditions (Scheme 3). To our delight, 1-phenyl-
pyrrolidine with a broad range of substituents (such as OMe,
OEt, Me, Cl, OH, NHBoc, or CH2OH) was applicable to the
catalytic system, giving the corresponding products (3q−3w)
in moderate to good yields with promising enantioselectivities
(82−95% ee). In some cases, a slightly higher catalyst loading
(2.5 mol %) was required to achieve better yields. Notably,
upon using the less reactive chlorine-contained aniline, the
reaction could also be performed, leading to desired product 3t
with good enantioselectivity (82% ee) albeit in a somewhat
lower yield (42%). Most interestingly, both phenolic and

benzylic hydroxyl groups are tolerated, and only C−H
functionalization products 3u and 3w were formed in good
yields under the reaction conditions, when 3-(pyrrolidin-1-
yl)phenol and (3-(pyrrolidin-1-yl)phenyl)methanol were
employed. No observation of the corresponding O−H
insertion products demonstrates high chemoselectivity toward
C−H insertion. To the best of our knowledge, achieving direct
asymmetric C−H functionalization via a metal-carbene
approach with a substrate bearing unprotected hydroxyl
functionality has not been realized previously.13 Moreover,

Scheme 2. Scope of Arylvinyldiazoacetatesa,b,c

aReactions were performed with 1 (0.2 mmol) and 2a (0.4 mmol) in
the presence of 1.5 mol % of [Rh(L1)Cl]2, MgBr2·Et2O (5 mol %) in
CHCl3 (4.0 mL) for 6 h. bIsolated yield. cDetermined by chiral
HPLC.

Scheme 3. Scope of Aniline Derivativesa

aReactions were performed with 1 (0.2 mmol) and 2 (0.4 mmol) in
the presence of 1.5 mol % [Rh(L1)Cl]2 and MgBr2·Et2O (5 mol %) in
CHCl3 (4.0 mL) for 6 h; isolated product yields shown. b[Rh(L1)-
Cl]2 (2.5 mol %) in CHCl3.

c[Rh(L1)Cl]2 (2.5 mol %) in CH2Cl2.
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substrates 3x−3z with substituents at ortho positions of the
pyrrolidine ring and sterically congested substrate 3aa are all
well tolerated. Additionally, substituent effects on the aniline
nitrogen were also evaluated. We were pleased to find that
aniline derivatives bearing an N,N-dimethyl, piperidine,
morpholine, or N,N-bis(2-methoxyethyl) structural moiety
also underwent the desired C−H functionalization smoothly,
delivering the corresponding products (3ab, 3ac, 3ad, and
3ae) in high yields with essentially the same level of
enantioselectivity (91−95% ee).

In addition to arylvinyldiazoacetates, we also attempted to
extend the reaction to a more challenging arylvinyldiazoketone
substrate. As noted by Davies,14 arylvinyldiazoketone has rarely
been used in transition-metal-catalyzed asymmetric X−H
insertion reactions. We briefly examined the use of styryl-
diazoketone. To our satisfaction, styryldiazoketone was also
found to be compatible with the current catalytic system,
providing expected C−H functionalization product 3af in 40%
yield with 84% ee. The moderate yield of 3af was associated
with the instability of styryldiazoketone. This result further
highlights the broad substrate scope of this direct asymmetric
C−H functionalization protocol.
The absolute configuration of product 3u was unambigu-

ously determined by X-ray diffraction analysis of the single
crystal of its anti-5 derivative,15 which was prepared from the
oxa-Michael addition reaction of 3u by taking advantage of the
hydroxyl functionality at the ortho-aromatic carbon, followed
by reduction with LiAlH4 (Figure 1). It is worth mentioning
that 2,3-dihydrobenzofurans are important heterocycles which

Figure 1. Derivation of 3u and X-ray structure of anti-5.

Scheme 4. Transformation of Products

Scheme 5. Deuterium-Labeling Experiments

Scheme 6. Proposed Reaction Mechanism
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are present in many biologically active compounds.16 This
procedure offers a convenient method for the construction of
chiral 2,3-dihydrobenzofurans bearing two contiguous carbon
stereocenters.
To further demonstrate the synthesis value of this method, a

series of product transformations were conducted (Scheme 4).
Compound 3a was easily converted to alcohol 6 via successive
reduction with LiAlH4 and hydrogenation with PtO2/H2.
Then, the hydroxyl of alcohol 6 was protected by using TBSCl.
The deamination of product 7 with CH3I and Na/NH3,
followed by deprotection of the TBS group of 8 under the
TBAF conditions, provided gem-diaryl-substituted chiral
butanol 9 in 88% yield with 91% ee over two steps. Notably,

the chemoselective reduction of the CC double bond of the
α,β-unsaturated ester moiety could be readily achieved under
the conditions of PtO2/H2. For example, 3l was hydrogenated
to give the desired product in 90% yield. Then, the ester
hydrolysis with LiOH successfully afforded corresponding acid
10, which was further converted to 3,4-dihydronaphthalen-
1(2H)-one 11 through the intramolecular Friedel−Crafts
reaction without eroding the enantioselectivity. In the other
example, the hydrogenation of 3t followed by aminolysis led to
the formation of amide 12 in 82% overall yield. This amide was
subsequently transformed to valuable benzo-fused lactam
1,3,4,5-tetrahydro-benzo[b]azepin-2-one 13 containing a chiral
stereocenter in 96% yield with no ee erosion via an efficient
palladium-catalyzed C−N coupling. We also explored the
possibility of accessing benzo-fused oxygen-containing seven-
membered-ring heterocycles. The subjection of 3u to a tandem
LiAH4 and PtO2/H2 sequence, followed by the Mitsunobu
reaction, furnished chiral 2,3,4,5-tetrahydrobenzo[b]oxepine
15 in good yield with the complete retention of enantiopurity.
It is noteworthy that these derivation products bearing gem-
diaryl chirality would be difficult to access using other synthesis
strategies. In addition, the partial reduction of α,β-unsaturated
esters to form the corresponding allylic alcohols (e.g., 16)
without a loss of enantioselectivity can be efficiently achieved
with DIBAL-H. Moreover, α,β-unsaturated ester product 3a
was subjected to conjugate addition with Grignard reagent
EtMgBr under the copper/BINAP catalyst system. Interest-
ingly, this reaction proceeded cleanly and was found to
produce 5-substituted 3-heptanone compound 17 as the only
product (84% yield) with good diastereoselectivity (∼9/1 dr)
and excellent enantioselectivity (94% ee). The stereochemistry
of the newly formed carbon center was determined by X-ray
diffraction analysis of the single crystal of its derivative N-Ts
hydrazone. (See the SI for details.) Thus, both intramolecular
and intermolecular addition of the alkene moiety of the α,β-
unsaturated ester products can be achieved.
Subsequently, the practicality of this catalytic method was

evaluated by conducting the reaction of 2,6-dichlorophenyl
styryldiazoacetate 1a with 1-(3-methoxyphenyl)pyrrolidine 2a
on a 4.0 mmol scale (1.33 g) under the standard conditions.
To our delight, this gram-scale reaction smoothly furnished
desired insertion product 3a in a comparable yield (95%) and
with maintained enantioselectivity (93% ee). (See the SI for
details.)
To gain some insight into the reaction mechanism, a

combined experimental and computational study was then
performed. A set of deuterium-labeling experiments were
carried out. First, 3a was obtained with no deuterium
incorporated in the presence of D2O or CDCl3, indicating
that the α-hydrogen does not come from solvent or residue
water (Scheme 5a). To exclude the possible reaction pathway
through a π-allyl-rhodium intermediate, deuterated phenyl-
vinyldiazoacetate 1a was prepared and subjected to the
reaction conditions. Indeed, no migration of the deuterium
atom to the α-carbon was observed (Scheme 5b). When 2
equiv of the aniline 2a/2a-d (0.43:0.57) mixture was employed
in the reaction, the product was obtained with 39% hydrogen
at the α-position of the α,β-unsaturated ester (Scheme 5c).
This result clearly indicates that the α-hydrogen atom is
derived exclusively from the C4 position of aniline derivative.
Furthermore, the proton transfer should not be the rate-
determining step of the reaction because an inverse kinetic

Scheme 7. Calculated Relative Free Energies of Several
Isomers of the Rh(I)-Vinylcarbenoid Intermediate in
Solution by the SMD B3LYP-D3 Method

Figure 2. Calculated LUMO, Hirshfeld charge, and electrophilicity (f
+, in blue color) for the two reacting carbon sites of the three key
Rh(I)-vinylcarbenoid intermediates (C1cd, C1cp, and C2cp) as well as
the related carbene intermediate in the absence of the Rh(I)-ligand
part (Non-Rh) in solution by the SMD B3LYP-D3 method.
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isotope effect (kH/kD ≈ 0.848) was detected (vide inf ra)
instead of the normal kinetic isotope effect (KIE).
On the basis of the above results, a plausible catalytic cycle is

proposed in Scheme 6. Initially, active monorhodium catalyst I
reacts with arylvinyldiazoacetate to generate an active Rh(I)-
arylvinylcarbenoid species II in a s-cis configuration. The
addition of the electron-rich phenyl ring of aniline onto
carbene intermediate II at the vinyl terminus site forms
zwitterionic intermediate III. Subsequently, III could undergo
a 1,5-proton shift to form neutral Rh(III) intermediate IV,
which after reductive elimination affords the desired product
and regenerates catalytically active species I. Although the
exact role of the MgBr2·Et2O additive in the yield increase is
not clear, we proposed that the obtained α,β-unsaturated ester
products may coordinate to active Rh-catalyst I after the last
catalytic step and compete the sole coordination site with the
new substrate for the subsequent catalytic cycles. Therefore,
the addition of the MgBr2 salt may facilitate the coordination
with the insertion product to benefit the catalytic cycle.
A systematic DFT (SMD B3LYP-D3/6-31G*+SDD(Rh)

method mainly) study was also carried out by using the chiral
Rh(I)-diene catalyst, [Rh(L1)Cl]2, as well as substrates 1a and
1-phenylpyrrolidine.7e,15,17 The relative stability of several
possible isomers of the active Rh(I)-vinylcarbenoid inter-
mediate (II in Scheme 6) was first examined (Scheme 7). As
reported previously,7e,17b our DFT calculations generally show
that the s-cis and s-trans conformations of the Rh(I)-
vinylcarbenoid intermediate have comparable stability. In
addition, s-cis intermediate C1cd was computed to be the
most stable conformation (Scheme 7). In this C1-type isomer,
an aryl group of the arylvinylcarbenoid part is preferentially
oriented to a closed quadrant of the catalyst to have π−π
stacking with the 3,5-(CF3)2Ph part of the L1 ligand in C1cd,
while the acetate part is positioned in an open quadrant

(Figure 2).18 C1cd is lower in free energy than those with the
opposite orientation of the arylvinylcarbenoid part by around
2.8−6.5 kcal/mol in solution (C2-type isomers, Scheme 7 and
Figure 2). Interestingly, the two reacting vinylogous and
carbenoid sites (i.e., Cγ and Cα) have the almost same
contribution (26−27%) to LUMO in key s-cis intermediates
C1cd, C1cp, and C2cp, which should interact with an occupied
orbital of 1-phenylpyrrolidine for the new C−C bond
construction with lower barriers (vide inf ra). Moreover, the
computed Hirshfeld charge and electrophilicity (f+) on the Cγ
and Cα sites are also similar. These computational results
imply a similar reactivity on the Cγ and Cα sites for the initial
C−C bond formation process (vide inf ra).
As shown in Figure 3, the most favorable pathway for

forming the desired (S) γ,γ-diarylsubstituted α,β-unsaturated
ester product (P1-S) is suggested to start with the
coordination of 1-phenylpyrrolidine to C1cd and form a weak
1-Scd complex (ΔG = 4.9 kcal/mol). It is followed by the C−C
addition at the Cγ position via TS1-Scd with a barrier of about
16.3 kcal/mol in solution to form zwitterionic intermediate 2-
Scd. 2-Scd undergoes Cβ−Cγ bond rotation to give the 3-Scd
isomer with the C−H → Rh agostic interaction.19 Then, very
facile proton transfer to the formal anionic Rh(I) metal from
zwitterionic intermediate 3-Scd occurs to give a neutral
Rh(III)-hydride vinyl intermediate 4-Scd.

20 Finally, reductive
elimination, which has a slightly lower barrier than the initial
C−C formation step, affords the major (S)-product (P1-S)
and regenerates active catalyst (L1)RhCl. To further prove the
C−C formation step as the rate-determining step, secondary
deuterium KIE on this step was computed using a deuterated
1-phenylpyrrolidine. A considerable inverse KIE (∼0.81) for
the 1-phenylpyrrolidine substrate, which mainly resulted from
the change in hybridization on the Cγ site from Csp

2 to Csp
3,21

was obtained by the SMD B3LYP-D3 method. The computed

Figure 3. Calculated free-energy profiles for the most favorable γ-addition (1, TS1, 2, 3, TS2, 4, TS3, and 5) and α-addition (6, TS4, 7, 8, TS5, and
9) pathways of the Rh(I)-catalyzed C−H functionalization of aniline in solution by the SMD B3LYP-D3 method. Their optimized 3D structures
can be found in Figures S3 and S4. The pathways with the less favorable conformations are given in Figure S2 and Table S5. The detailed results for
the transformation of 9-Rcp to P2-R are given in Figure S8.
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KIE value for the 1-phenylpyrrolidine substrate is qualitatively
similar to the measured KIE value for the electron-rich and
more reactive 1-(3-methoxyphenyl)pyrrolidine substrate
(∼0.848; Scheme 5c).21d Therefore, our combined exper-
imental and computational results support the C−C formation
step as the rate-determining step.
However, the corresponding addition at the Cα position

from C1cd has to overcome a higher barrier (20.9 kcal/mol via
TS4-Scd, Figure 3). In comparison, the most favorable
productive addition pathway at the Cα position also requires
high barriers for the C−C formation step (16.8 kcal/mol via
TS4-Rcp) and particularly for the subsequent proton transfer to
the ester group via TS5-Rcp (∼22.2 kcal/mol above C1cd).

19b

The latter process has to overcome a higher reaction barrier
than the most favorable addition at the Cγ position via TS1-Scd
by about 5.9 kcal/mol, which accounts for the observed
regiospecific γ-addition.
Moreover, our DFT calculations show that, in the most

favorable rate- and stereodetermining C−C addition step at
the Cγ site, TS1-Scd (C1-type rearrangement) leading to the
major enantiomeric (S)-product has a lower free-energy barrier
than TS1-Rcp (C2-type rearrangement), forming the minor
(R)-product by 2.6 kcal/mol (Figures 4 and 5). Such a free-
energy difference corresponds to the computed ee value of

∼97.5%, which is close to the observed ee value of 91%
(Scheme 3). The higher reaction barrier for the minor pathway
can be attributed to the less stable resultant zwitterionic
intermediate (ΔG = 17.7 and 13.7 kcal/mol for 2-Rcp and 2-
Scd, respectively). Relative distortion/interaction analysis22 was
performed to further understand the stereoselectivity of the
vital C−C formation step (Figure 6a). Unstable C2-type active
species C2cp (ΔE = 3.1 kcal/mol) and a higher distortion
energy (ΔΔEdist = 2.8 kcal/mol, especially that on the metal-
carbene and ligand part, 2.4 kcal/mol) play critical roles in
determining the stereoselectivity. In this regard, noncovalent
interaction (NCI) analysis23 indicates the π−π stacking
between the aryl group of the arylvinylcarbenoid part and
the 3,5-(CF3)2Ph part of the L1 ligand as well as the dispersion
of one chloro group of the ester with the C6H5 group of L1
(pink circle in Figure 6b) in TS1-Scd. The interactions should
contribute some stabilization to C1cd (ΔG = 0.0 vs = 4.2 kcal/
mol for C2cp) and to their C−C bond formation step. In
addition, owing to Hammond’s postulate, a less stable
zwitterionic intermediate 2-Rcp should be associated with a
later transition state TS1-Rcp (C−C: 1.97 Å vs 1.99 Å for TS1-
Scd; see Figure 4), which thus leads to a higher distortion
energy.

Figure 4. Optimized key transition-state structures of the regio- and stereoselective Rh(I)-catalyzed C−H functionalization with their relative free
energy (in kcal/mol) and key distance (in Å) in solution by the SMD B3LYP-D3 method.
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Figure 5. Calculated free-energy profiles for the key stereoselectivity of the Rh(I)-catalyzed C−H functionalization of aniline in solution by the
SMD B3LYP-D3 method. Their optimized 3D structures can be found in Figures S3 and S5.

Figure 6. (a) Distortion/interaction analysis of the two key transition states by the SMD B3LYP-D3 method. (b) Noncovalent interaction (NCI)
analysis (red, strong repulsion; green, weak attraction; blue, strong attraction) and stereoinduction mode of the two key transition states (side-view
structures shown by the VDW representation).
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Furthermore, when the aryl group of the arylvinylcarbenoid
part is swapped to have π−π stacking with the C6H5 part of the
L1 ligand and have interactions of the chloro group (ester)
with the 3,5-(CF3)2Ph group, such an isomeric addition
transition state TS1-S′cd (ΔG± = 20.7 kcal/mol, Figure 4)

becomes more unstable than TS1-Scd by 4.4 kcal/mol.18

Overall, these computational results suggest that the high
stability of the C1-type active species and the interactions
between the chiral ligand and substrates should mainly
determine the observed enantioselectivity: attraction-con-
trolled enantioselectivity.24

Finally, although the γ-addition in the s-trans form via TS1-
Rtd can take place with a low barrier (15.8 kcal/mol, Scheme
8b), it is impossible for subsequent zwitterionic intermediate
2-Rtd to directly transfer the proton to the Rh(I) metal due to
a long separation in the trans configuration of 2-Rtd (H−Rh:
4.9 Å). Also, it is much more challenging for 2-Rtd to transfer
the proton to the nearby carbon sites (Cα or Cβ) or carbonyl
oxygen of the ester due to their much higher reaction barriers
(∼26.0−50.5 kcal/mol, Scheme 8b). Therefore, the γ-addition
in the s-trans form is not the productive pathway in this present
system and has to undergo the reversible process to regenerate
the stable s-cis C1-type active species and aniline substrate
before the productive addition pathway (e.g., Scheme 8a and
Figure 5). These computational results highlight the
importance of the low-valence four-coordinate Rh(I) metal
to transiently donate two electrons to accept the proton and
form a neutral five-coordinate Rh(III)-hydride intermediate in
the current s-cis Rh(I)-vinylcarbenoid system. For Rh2(II,II)
dimer systems, the proton transfer from the related
zwitterionic intermediate is envisioned to be energetically
less favorable than our Rh(I) system, as one bridging acetate-
type ligand should dissociate from one higher-valence and
coordinately saturated Rh(II) metal center during two possible
proton transfer processes (Scheme 8c). Alternatively, Davies,
Hu, and Zhou reported that the Rh2(II,II) zwitterionic
intermediate can undergo dissociation to give a metal-free
zwitterion.4,25

Moreover, our DFT calculations were further performed to
examine the high chemoselectivity toward the C−H insertion
of substrate 2u instead of the corresponding O−H insertion
(Scheme 9). The initial C−C addition step leading to the C−
H insertion product was found to require a barrier of 8.5 kcal/
mol via TS1-OScd. Interestingly, many attempts to locate the
related C−O addition transition state and product for the O−
H insertion pathway failed. The assumed C−O addition
product which was found to be higher in electronic energy
than TS1-OScd by about 7.5 kcal/mol can exist only when the
C−O bond is fixed (Figure S6). However, the C−O bond is
broken to regenerate the substrate when the C−O bond is
relaxed. These computational results support the observed
chemoselectivity for this Rh(I) catalyst. Furthermore, a large
inverse KIE (∼0.83) for more reactive substrate 2u was also
found in our SMD B3LYP-D3 study, which is comparable to
that for the related 1-(3-methoxyphenyl)pyrrolidine substrate
(∼0.848, Scheme 5c).

■ CONCLUSIONS
We have developed the first example of the regiospecific and
direct enantioselective C(sp2)-H functionalization of aniline
derivatives with arylvinyldiazoacetates enabled by Rh(I)-diene
catalysts. A promising finding is that our chiral rhodium(I)-
diene catalysts exhibit superior performance in controlling the
vinylogous reactivity of arylvinylcarbenoids and achieving
enantioselective variants of this chemistry. The reaction
proceeds in high yield, with broad functional group
compatibility, allowing access to a variety of chiral γ,γ-gem-
diarylsubstituted α,β-unsaturated esters with excellent enantio-

Scheme 8. Calculated Free Energy of the Key Steps for the
(a) s-cis and (b) s-trans Rh(I) Intermediates by the SMD
B3LYP-D3 Method and (c) Proposed Key Change for the
Rh2(II,II) Dimer Intermediate

Scheme 9. Key Computational Results for the Initial
Addition Step of Substrate 2u by the SMD B3LYP-D3
Method
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selectivities under simple and mild conditions. Moreover, such
a direct enantioselective C−H functionalization reaction can
also be applied to a substrate bearing an unprotected hydroxyl
functionality for the first time, showing high chemoselectivity
toward C−H insertion. Of particular note, the products can be
transformed to a diverse set of important chiral compounds
which should find applications in organic synthesis and
pharmaceutical research. A combined experimental and
systematic DFT study was also carried out to understand the
reaction mechanism and origin of the uncommon enantio- and
regioselectivity of the present Rh(I)-catalyzed insertion
reaction. The observed and computed inverse deuterium KIE
reflects the C−C bond formation step as the rate-determining
step. Attractive interactions between the chiral ligand and
substrates were also suggested to determine the enantiose-
lectivity. Further investigations on chiral Rh(I)-carbene
chemistry are ongoing in our laboratory.
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