Note manuscrite

Carnet de n... Premier carnet de notes

Créé le : 23/10/2019 08:28 Modifié le : 23/10/2019 08:55

Auteur : sophie.kervazo@gmail.com

PFD	Théorème du moment cinétique
$\int \mathbf{m} \hat{\mathbf{x}} = \overline{\mathbf{I}}_1 + \overline{\mathbf{I}}_2 \qquad (1)$	-en O ₄ :
$\begin{cases} m\tilde{x} = \overline{1}_1 + \overline{1}_2 & (1) \\ 0 = N_1 + N_2 - mg \end{cases}$	0 = -TAR
·	=> T ₁ =0
$\Gamma = \frac{\Gamma - \text{sur } \text{le pidalies}}{\Gamma}$	- en 0,
sur Pa	0 = -T2 R + T
noue arrière	$T_2 = \frac{\Gamma_r}{\Gamma_r}$
	$(u) = x = \frac{\pi}{x}$
•	\overline{mR}

· Pour que les sones ne glisse pas il fant 117; 11/5 p/N; 11

· Tonjorus a cas pour la noue avant (T1=0)

· Pour la sour assire il faut 72 & f N2

-> Calcul de N2:

Théorème du moment cinétique en G

or
$$N_1 + N_2 : mg$$
 et $T_2 = \frac{\Gamma_r}{R}$

$$N_2 = \frac{1}{a+b} \left(amg + h \frac{r}{R} \right)$$

$$\frac{T_1}{N_2} = \frac{\Gamma_r(a+b)}{h \Gamma_r + R mag} > 0$$

$$\int_{\Gamma} \rightarrow \infty \qquad \frac{T_2}{N_2} \rightarrow \frac{a+b}{h}$$

 $\frac{T_2}{N_2} < f$ pour d'émairer sans glissement

si $\int \frac{a+b}{h}$ -> le cycliste demarrera sans pariner.

sur mon velo: a = 45cm	
$R = 33 \mathrm{cm}$	a+b = 105
b = 60 cm	· ´
h = 100 cm p.	= 0,16
O-/b	= 0,6
$-\frac{1}{2}$ cas 2 $\int \frac{a+b}{h}$ = $\int un c c uph him$	ite Month tel que:
$ \Gamma = n\Gamma_r \leq \frac{nR_f^2 ang}{a+b-fh} = \Gamma_{lim} $	
a+b-fh	h = 2
lim = 123,6 N.m	m=tokg